-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdqn.py
257 lines (218 loc) · 9.99 KB
/
dqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
The original code is from the PyTorch DQN tutorial:
https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html
The licence of the original part conforms to that of the site.
"""
import os
import argparse
import json
import gymnasium as gym
import math
import random
from collections import namedtuple, deque
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
class DQN:
def __init__(self, config, n_observations, n_actions):
self.config = config
self.BATCH_SIZE = config['BATCH_SIZE']
self.GAMMA = config['GAMMA']
self.EPS_START = config['EPS_START']
self.EPS_END = config['EPS_END']
self.EPS_DECAY = config['EPS_DECAY']
self.TAU = config['TAU']
self.LR = config['LR']
self.model_file = config['model_file'] if "model_file" in config else None
self.n_actions = n_actions
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.policy_net = DQN.DQN_nn(n_observations, n_actions).to(self.device)
if self.model_file is not None and os.path.isfile(self.model_file):
self.policy_net.load_state_dict(torch.load(self.model_file))
self.policy_net.eval()
self.target_net = DQN.DQN_nn(n_observations, n_actions).to(self.device)
self.target_net.load_state_dict(self.policy_net.state_dict())
self.optimizer = optim.AdamW(self.policy_net.parameters(), lr=self.LR, amsgrad=True)
self.memory = DQN.ReplayMemory(10000)
if "steps_done" in config:
self.steps_done = config['steps_done']
else:
self.steps_done = 0
class ReplayMemory(object):
def __init__(self, capacity):
self.Transition = namedtuple('Transition',
('state', 'action', 'next_state', 'reward'))
self.memory = deque([], maxlen=capacity)
def push(self, *args):
"""Save a transition"""
self.memory.append(self.Transition(*args))
def sample(self, batch_size):
return random.sample(self.memory, batch_size)
def __len__(self):
return len(self.memory)
# DQN algorithm
class DQN_nn(nn.Module):
def __init__(self, n_observations, n_actions):
super(DQN.DQN_nn, self).__init__()
self.layer1 = nn.Linear(n_observations, 128)
self.layer2 = nn.Linear(128, 128)
self.layer3 = nn.Linear(128, n_actions)
# Called with either one element to determine next action, or a batch
# during optimization. Returns tensor([[left0exp,right0exp]...]).
def forward(self, x):
x = F.relu(self.layer1(x))
x = F.relu(self.layer2(x))
return self.layer3(x)
def select_action(self, observation):
observation = torch.tensor(observation, dtype=torch.float32, device=self.device).unsqueeze(0)
sample = random.random()
eps_threshold = self.EPS_END + (self.EPS_START - self.EPS_END) * \
math.exp(-1. * self.steps_done / self.EPS_DECAY)
self.steps_done += 1
if sample > eps_threshold:
with torch.no_grad():
# t.max(1) will return the largest column value of each row.
# second column on max result is index of where max element was
# found, so we pick action with the larger expected reward.
action = self.policy_net(observation).max(1).indices.view(1, 1)
else:
action = torch.tensor([[np.random.randint(0, self.n_actions)]], device=self.device, dtype=torch.long)
pass
return action
def optimize_model(self):
if len(self.memory) < self.BATCH_SIZE:
return
transitions = self.memory.sample(self.BATCH_SIZE)
# Transpose the batch (see https://stackoverflow.com/a/19343/3343043 for
# detailed explanation). This converts batch-array of Transitions
# to Transition of batch-arrays.
batch = self.memory.Transition(*zip(*transitions))
# Compute a mask of non-final states and concatenate the batch elements
# (a final state would've been the one after which simulation ended)
non_final_mask = torch.tensor(tuple(map(lambda s: s is not None,
batch.next_state)), device=self.device, dtype=torch.bool)
non_final_next_states = torch.cat([s for s in batch.next_state
if s is not None])
state_batch = torch.cat(batch.state)
action_batch = torch.cat(batch.action)
reward_batch = torch.cat(batch.reward)
# Compute Q(s_t, a) - the model computes Q(s_t), then we select the
# columns of actions taken. These are the actions which would've been taken
# for each batch state according to policy_net
state_action_values = self.policy_net(state_batch).gather(1, action_batch)
# Compute V(s_{t+1}) for all next states.
# Expected values of actions for non_final_next_states are computed based
# on the "older" target_net; selecting their best reward with max(1).values
# This is merged based on the mask, such that we'll have either the expected
# state value or 0 in case the state was final.
next_state_values = torch.zeros(self.BATCH_SIZE, device=self.device)
with torch.no_grad():
next_state_values[non_final_mask] = self.target_net(non_final_next_states).max(1).values
# Compute the expected Q values
expected_state_action_values = (next_state_values * self.GAMMA) + reward_batch
# Compute Huber loss
criterion = nn.SmoothL1Loss()
loss = criterion(state_action_values, expected_state_action_values.unsqueeze(1))
# Optimize the model
self.optimizer.zero_grad()
loss.backward()
# In-place gradient clipping
torch.nn.utils.clip_grad_value_(self.policy_net.parameters(), 100)
self.optimizer.step()
def learn(self, prev_observation, action, observation, reward, terminated, truncated):
prev_observation = torch.tensor(prev_observation, dtype=torch.float32, device=self.device).unsqueeze(0)
reward = torch.tensor([reward], device=self.device)
done = terminated or truncated
if terminated:
observation = None
else:
observation = torch.tensor(observation, dtype=torch.float32, device=self.device).unsqueeze(0)
# Store the transition in memory
self.memory.push(prev_observation, action, observation, reward)
# Perform one step of the optimization (on the policy network)
self.optimize_model()
# Soft update of the target network's weights
# θ′ ← τ θ + (1 −τ )θ′
target_net_state_dict = self.target_net.state_dict()
policy_net_state_dict = self.policy_net.state_dict()
for key in policy_net_state_dict:
target_net_state_dict[key] = policy_net_state_dict[key] * self.TAU + target_net_state_dict[key] * (1 - self.TAU)
self.target_net.load_state_dict(target_net_state_dict)
return done
def close(self):
if self.model_file is not None:
torch.save(self.policy_net.state_dict(), self.model_file)
print("steps_done:", self.steps_done)
def plot_durations(episode_durations, show_result=False):
plt.figure(1)
durations_t = torch.tensor(episode_durations, dtype=torch.float)
if show_result:
plt.title('Result')
else:
plt.clf()
plt.title('Training...')
plt.xlabel('Episode')
plt.ylabel('Duration')
plt.plot(durations_t.numpy())
# Take 100 episode averages and plot them too
if len(durations_t) >= 100:
means = durations_t.unfold(0, 100, 1).mean(1).view(-1)
means = torch.cat((torch.zeros(99), means))
plt.plot(means.numpy())
plt.pause(0.001) # pause a bit so that plots are updated
if is_ipython:
if not show_result:
display.display(plt.gcf())
display.clear_output(wait=True)
else:
display.display(plt.gcf())
def main():
parser = argparse.ArgumentParser(description='DQN pytorch implementation')
parser.add_argument('--config', type=str, default='DQN.json', metavar='N',
help='Model configuration (default: DQN.json')
parser.add_argument('--num_episodes', type=int, default=600, metavar='N',
help='Number of training episodes (default: 600)')
args = parser.parse_args()
with open(args.config) as config_file:
config = json.load(config_file)
env = gym.make("CartPole-v1")
# Training
# Get number of actions from gym action space
n_actions = env.action_space.n
# Get the number of state observations
observation, info = env.reset()
n_observations = len(observation)
dqn = DQN(config, n_observations, n_actions)
episode_durations = []
# Training loop
for i_episode in range(args.num_episodes):
# Initialize the environment and get its observation
prev_observation, info = env.reset()
for t in count():
action = dqn.select_action(prev_observation)
observation, reward, terminated, truncated, _ = env.step(action.item())
done = dqn.learn(prev_observation, action, observation, reward, terminated, truncated)
prev_observation = observation
if done:
episode_durations.append(t + 1)
plot_durations(episode_durations)
break
print('Complete')
dqn.close()
plot_durations(episode_durations, show_result=True)
plt.ioff()
plt.show()
if __name__ == '__main__':
from itertools import count
# set up matplotlib
import matplotlib
import matplotlib.pyplot as plt
is_ipython = 'inline' in matplotlib.get_backend()
if is_ipython:
from IPython import display
plt.ion()
main()