You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
filter(unit == "P_MHAB") %>% # Patents per one million inhabitants
277
277
filter(time == 2012) %>% # 2012
278
278
filter(str_detect(geo, "^NO")) %>% # Norway
279
-
select(-unit)
279
+
dplyr::select(-unit)
280
280
281
281
# Classifying the Data
282
282
pat_classified <- nuts_classify(
@@ -795,10 +795,10 @@ In addition to tracing the evolution of NUTS codes, the table contains **flows**
795
795
```{r, echo=FALSE, message = FALSE, warning = FALSE, fig.cap= "Alluvial plot illustrating area size flows; Created using the [ggalluvial](https://corybrunson.github.io/ggalluvial/) package.", fig.alt ="The alluvial plot shows population flows from NUTS version 2016 to 2021."}
@@ -831,13 +831,18 @@ To illustrate the main idea, the map below showcases **population densities** ac
831
831
832
832
```{r, echo=FALSE, message = FALSE, warning = FALSE, out.width = "100%", fig.width = 7, fig.cap= "Spatial distribution of population and boundary changes; Sources: [Shapefiles](https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units/nuts) and [population raster](https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/population-distribution-demography/geostat) from EUROSTAT; Created using the [sf](https://r-spatial.github.io/sf/) and the [terra](https://rspatial.github.io/terra/reference/terra-package.html) packages.", fig.alt ="Two maps of Southern Norway with very granular population density and administrative boundaries of the 2016 and 2021 NUTS version. The region with the capital Olso and its adjacent region are highlighted in version 2016 that both contribute to a larger single region in version 2021."}
833
833
834
-
pop <- raster("JRC_1K_POP_2018.tif")
835
-
no_2016_1 <- no_2016 %>% st_transform(crs(pop))
836
-
no_2021_1 <- no_2021 %>% st_transform(crs(pop))
837
-
no_pop <- crop(x = pop, y = as_Spatial(no_2016_1))
0 commit comments