-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
189 lines (146 loc) · 6.39 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import streamlit as st
from text_classifer import preprocess_text,analyze_sentiment
from fetch import get_movie_details,get_poster
from scrapper import scrape_movie_reviews
from data import load_content_similarity,load_knn_model,load_movie_data
movie = load_movie_data()
content_similarity = load_content_similarity()
knn = load_knn_model()
def recommend_movies(movie_title, num_recommendations=5):
# Find the index of the movie title
movie_index = movie[movie['title'] == movie_title].index[0]
# Get the indices of similar movies based on content similarity
_, indices = knn.kneighbors([content_similarity[movie_index]], n_neighbors=num_recommendations+1)
# Exclude the movie itself from recommendations
indices = indices.squeeze()[1:]
# Return the recommended movie titles
recommended_movies = movie.iloc[indices]['title']
return recommended_movies
# Main function to run the Streamlit app
def main():
# Set custom CSS styles for IMDb-inspired design
st.markdown(
"""
<style>
.title {
font-size: 36px;
font-weight: bold;
color: #003580;
text-align: center;
}
.subheader {
font-size: 24px;
font-weight: bold;
color: #333333;
margin-top: 20px;
}
.imdb-header {
font-size: 24px;
font-weight: bold;
color: #003580;
margin-top: 30px;
}
.poster {
display: block;
margin: 20px auto;
max-width: 200px; /* Adjust the max-width value as desired */
}
.review-author {
font-size: 18px;
font-weight: bold;
margin-top: 20px;
}
.review-info {
font-size: 14px;
color: #666666;
margin-bottom: 10px;
}
.review-sentiment {
font-size: 16px;
font-weight: bold;
margin-top: 10px;
}
.positive {
color: #008000;
}
.negative {
color: #FF0000;
}
.objective {
color: #333333;
}
.subjective {
color: #666666;
}
</style>
""",
unsafe_allow_html=True
)
st.markdown("<h1 class='title'>Miniature IMDB Application</h1>", unsafe_allow_html=True)
# Sidebar - Movie Title Slider
movie_title = st.sidebar.selectbox("Select a Movie", options=movie['title'])
# Sidebar - Search Button
search_button = st.sidebar.button("Search")
if search_button:
movie_details = get_movie_details(movie_title)
if movie_details:
title, movie_url, cast, poster_url, plot, year, country, genres = movie_details
# Display movie information
st.markdown(f"<a href='{movie_url}' target='_blank'><h1 class='title'>{title}</h1></a>", unsafe_allow_html=True)
# Poster
st.image(poster_url, caption=title, use_column_width=True, output_format="JPEG")
# Plot
with st.expander("Plot", expanded=True):
st.markdown(f"<p>{plot}</p>", unsafe_allow_html=True)
# Year, Country, Genres
with st.expander("Details", expanded=True):
st.markdown(f"Year: {year} \nCountry: {country} \nGenres: {', '.join(genres)}", unsafe_allow_html=True)
# Cast
with st.expander("Cast", expanded=True):
st.markdown(f"<p>{', '.join(cast)}</p>", unsafe_allow_html=True)
st.header("Recommendation")
recommended_movies = recommend_movies(movie_title, num_recommendations=5)
# Display recommended movies side by side
columns = st.columns(len(recommended_movies))
for column, recommended_movie in zip(columns, recommended_movies):
title, poster_url = get_poster(recommended_movie)
with column:
st.markdown(f"<p class='imdb-header'>{recommended_movie}</p>", unsafe_allow_html=True)
if poster_url:
st.image(poster_url, caption=recommended_movie, use_column_width=True, output_format="JPEG")
else:
st.write("Poster URL not available for this movie.")
st.header("Review Analysis")
review_df = scrape_movie_reviews(movie_url)
if not review_df.empty:
for index, row in review_df.iterrows():
st.markdown(f"<p class='review-author'>Author: {row['Author']}</p>", unsafe_allow_html=True)
st.markdown(f"<p class='review-info'>Review Date: {row['Review_Date']}</p>", unsafe_allow_html=True)
st.markdown(f"<p class='review-info'>Rating: {row['Rating']}</p>", unsafe_allow_html=True)
st.markdown(f"<p class='review-info'>Review Title: {row['Review_Title']}</p>", unsafe_allow_html=True)
# Preprocess and analyze sentiment of the review text
preprocessed_text = preprocess_text(row['Review'])
sentiment_label, subjective_label = analyze_sentiment(preprocessed_text)
# Set color based on sentiment label
if sentiment_label == 'Positive':
color = 'positive'
elif sentiment_label == 'Negative':
color = 'negative'
else:
color = 'objective'
# Set color for subjective label
if subjective_label == 'Subjective':
subjective_color = 'subjective'
else:
subjective_color = 'objective'
# Display sentiment label and subjective label
st.markdown(f"<p class='review-sentiment {color}'>Sentiment: {sentiment_label}</p>", unsafe_allow_html=True)
st.markdown(f"<p class='review-sentiment {subjective_color}'>{subjective_label}</p>", unsafe_allow_html=True)
st.write("Review: " + row['Review'])
st.write("--------------------------------------------------------------------")
else:
st.write("No reviews found for this movie.")
else:
st.write("Movie not found.")
if __name__ == "__main__":
main()