-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpack.py
47 lines (43 loc) · 1.3 KB
/
pack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
n = 300
canvas = 999*np.ones((n,n))
for i in range(n):
for j in range(n):
canvas[i][j] = min(i,j,n-i,n-j)
num_seed_circles = 3
num_fill_circles = 30
xs,ys,ss = [],[],[]
patches = []
for q in range(num_seed_circles):
print(q)
x,y = np.random.randint(0,n,2)
while canvas[x][y] == 0:
x,y = np.random.randint(0,n,2)
radius = min(50,canvas[x][y])
patches.append(mpl.patches.Circle([x,y], radius=radius))
for i in range(n):
for j in range(n):
dis = ((x-i)**2 + (y-j)**2)**.5
if dis-radius < canvas[i][j]:
canvas[i][j] = max( dis-radius ,0)
for q in range(num_fill_circles):
print(q)
x,y = np.unravel_index(np.argmax(canvas, axis=None), canvas.shape)
radius = canvas[x][y]
patches.append(mpl.patches.Circle([x,y], radius=radius))
for i in range(n):
for j in range(n):
dis = ((x-i)**2 + (y-j)**2)**.5
if dis-radius < canvas[i][j]:
canvas[i][j] = max( dis-radius ,0)
p = mpl.collections.PatchCollection(patches, alpha=0.4)
colors = 100*np.random.rand(len(patches))
p.set_array(np.array(colors))
plt.figure()
ax = plt.gca()
ax.add_collection(p)
plt.axis('equal')
plt.axis('off')
plt.savefig('pack.png')