-
Notifications
You must be signed in to change notification settings - Fork 59
/
customer_churn.R
181 lines (149 loc) · 5.17 KB
/
customer_churn.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
library(keras)
library(lime)
library(tidyquant)
library(rsample)
library(recipes)
library(yardstick)
library(corrr)
library(readr)
library(ggplot2)
library(forcats)
churn_data_raw <- read_csv("data/WA_Fn-UseC_-Telco-Customer-Churn.csv")
# Remove unnecessary data
churn_data_tbl <- churn_data_raw %>%
drop_na() %>%
select(Churn, everything())
# Split test/training sets
set.seed(100)
train_test_split <- initial_split(churn_data_tbl, prop = 0.8)
train_test_split
# Retrieve train and test sets
train_tbl_with_ids <- training(train_test_split)
test_tbl_with_ids <- testing(train_test_split)
train_tbl <- select(train_tbl_with_ids, -customerID)
test_tbl <- select(test_tbl_with_ids, -customerID)
# Determine if log transformation improves correlation
# between TotalCharges and Churn
train_tbl %>%
select(Churn, TotalCharges) %>%
mutate(
Churn = Churn %>% as.factor() %>% as.numeric(),
LogTotalCharges = log(TotalCharges)
) %>%
correlate() %>%
focus(Churn) %>%
fashion()
# Create recipe
rec_obj <- recipe(Churn ~ ., data = train_tbl) %>%
step_discretize(tenure, options = list(cuts = 6)) %>%
step_log(TotalCharges) %>%
step_dummy(all_nominal(), -all_outcomes()) %>%
step_center(all_predictors(), -all_outcomes()) %>%
step_scale(all_predictors(), -all_outcomes()) %>%
prep(data = train_tbl)
x_train_tbl <- bake(rec_obj, new_data = train_tbl) %>% select(-Churn)
x_test_tbl <- bake(rec_obj, new_data = test_tbl) %>% select(-Churn)
y_train_vec <- ifelse(pull(train_tbl, Churn) == 'Yes', 1, 0)
y_test_vec <- ifelse(pull(test_tbl, Churn) == 'Yes', 1, 0)
# Building our Artificial Neural Network
model_keras <- keras_model_sequential()
model_keras %>%
# First hidden layer
layer_dense(
units = 16,
kernel_initializer = "uniform",
activation = "relu",
input_shape = ncol(x_train_tbl)) %>%
# Dropout to prevent overfitting
layer_dropout(rate = 0.1) %>%
# Second hidden layer
layer_dense(
units = 16,
kernel_initializer = "uniform",
activation = "relu") %>%
# Dropout to prevent overfitting
layer_dropout(rate = 0.1) %>%
# Output layer
layer_dense(
units = 1,
kernel_initializer = "uniform",
activation = "sigmoid") %>%
# Compile ANN
compile(
optimizer = 'adam',
loss = 'binary_crossentropy',
metrics = 'accuracy'
)
# Fit the keras model to the training data
history <- fit(
object = model_keras,
x = as.matrix(x_train_tbl),
y = y_train_vec,
batch_size = 50,
epochs = 35,
validation_split = 0.30,
verbose = 0
)
# save the model
save_model_hdf5(model_keras, 'model/customer_churn.hdf5')
plot(history) +
theme_tq() +
scale_color_tq() +
scale_fill_tq() +
labs(title = "Deep Learning Training Results")
# Predicted Class
yhat_keras_class_vec <- predict_classes(object = model_keras, x = as.matrix(x_test_tbl)) %>%
as.vector()
# Predicted Class Probability
yhat_keras_prob_vec <- predict_proba(object = model_keras, x = as.matrix(x_test_tbl)) %>%
as.vector()
# Format test data and predictions for yardstick metrics
estimates_keras_tbl <- tibble(
truth = as.factor(y_test_vec) %>% fct_recode(yes = "1", no = "0"),
estimate = as.factor(yhat_keras_class_vec) %>% fct_recode(yes = "1", no = "0"),
class_prob = yhat_keras_prob_vec
)
estimates_keras_tbl
estimates_keras_tbl %>% conf_mat(truth, estimate)
estimates_keras_tbl %>% metrics(truth, estimate)
estimates_keras_tbl %>% roc_auc(truth, class_prob)
options(yardstick.event_first = FALSE)
# Precision
tibble(
precision = estimates_keras_tbl %>% precision(truth, estimate),
recall = estimates_keras_tbl %>% recall(truth, estimate)
)
# F1-Statistic
estimates_keras_tbl %>% f_meas(truth, estimate, beta = 1)
# Setup lime::model_type() function for keras
model_type.keras.engine.sequential.Sequential <- function(x, ...) {
"classification"
}
# Setup lime::predict_model() function for keras
predict_model.keras.engine.sequential.Sequential <- function(x, newdata, type, ...) {
pred <- predict_proba(object = x, x = as.matrix(newdata))
data.frame(Yes = pred, No = 1 - pred)
}
# Test our predict_model() function
predictions <- predict_model(x = model_keras, newdata = x_test_tbl, type = 'raw') %>%
tibble::as_tibble()
test_tbl_with_ids$churn_prob <- predictions$Yes
# Run lime() on training set
explainer <- lime::lime(
x = x_train_tbl,
model = model_keras,
bin_continuous = FALSE)
# Run explain() on explainer
explanation <- lime::explain(
x_test_tbl[1,],
explainer = explainer,
n_labels = 1,
n_features = 4,
kernel_width = 0.5)
plot_features(explanation) +
labs(title = "LIME Feature Importance Visualization",
subtitle = "Hold Out (Test) Set, First 10 Cases Shown")
plot_explanations(explanation) +
labs(title = "LIME Feature Importance Heatmap",
subtitle = "Hold Out (Test) Set, First 10 Cases Shown")
save(list = ls(), file = 'data/customer_churn.RData')