Skip to content

Latest commit

 

History

History
98 lines (75 loc) · 2.09 KB

File metadata and controls

98 lines (75 loc) · 2.09 KB

Note: This is a generated markdown export from the Jupyter notebook file dimensionality_reduction_isomap.ipynb. You can also view the notebook with the nbviewer from Jupyter.

Dimensionality Reduction with Isomap

%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd

from sklearn import manifold, datasets
from matplotlib.colors import ListedColormap
iris = datasets.load_iris()
isomap = manifold.Isomap(n_components=2)
new_dim = isomap.fit_transform(iris.data)
df = pd.DataFrame(new_dim, columns=['X', 'Y'])
df['label'] = iris.target
df.head()
X Y label
0 0.118155 0.381038 0
1 0.113729 0.323243 0
2 0.113922 0.325955 0
3 0.113904 0.325207 0
4 0.117613 0.372992 0
fig = plt.figure()
fig.suptitle('Isomap', fontsize=14, fontweight='bold')
ax = fig.add_subplot(111)

plt.scatter(df[df.label == 0].X, df[df.label == 0].Y, color='red', label=iris.target_names[0])
plt.scatter(df[df.label == 1].X, df[df.label == 1].Y, color='blue', label=iris.target_names[1])
plt.scatter(df[df.label == 2].X, df[df.label == 2].Y, color='green', label=iris.target_names[2])

_ = plt.legend(bbox_to_anchor=(1.25, 1))

png