Note: This is a generated markdown export from the Jupyter notebook file dimensionality_reduction_isomap.ipynb. You can also view the notebook with the nbviewer from Jupyter.
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
from sklearn import manifold, datasets
from matplotlib.colors import ListedColormap
iris = datasets.load_iris()
isomap = manifold.Isomap(n_components=2)
new_dim = isomap.fit_transform(iris.data)
df = pd.DataFrame(new_dim, columns=['X', 'Y'])
df['label'] = iris.target
df.head()
X | Y | label | |
---|---|---|---|
0 | 0.118155 | 0.381038 | 0 |
1 | 0.113729 | 0.323243 | 0 |
2 | 0.113922 | 0.325955 | 0 |
3 | 0.113904 | 0.325207 | 0 |
4 | 0.117613 | 0.372992 | 0 |
fig = plt.figure()
fig.suptitle('Isomap', fontsize=14, fontweight='bold')
ax = fig.add_subplot(111)
plt.scatter(df[df.label == 0].X, df[df.label == 0].Y, color='red', label=iris.target_names[0])
plt.scatter(df[df.label == 1].X, df[df.label == 1].Y, color='blue', label=iris.target_names[1])
plt.scatter(df[df.label == 2].X, df[df.label == 2].Y, color='green', label=iris.target_names[2])
_ = plt.legend(bbox_to_anchor=(1.25, 1))