diff --git a/app/services/gaze_tracker.py b/app/services/gaze_tracker.py index 3354551..e1b7d16 100644 --- a/app/services/gaze_tracker.py +++ b/app/services/gaze_tracker.py @@ -81,7 +81,7 @@ def squash(v, limit=1.0): """Squash não-linear estilo WebGazer""" return np.tanh(v / limit) -def trian_and_predict(model_name, X_train, y_train, X_test, y_test, label): +def train_and_predict(model_name, X_train, y_train, X_test, y_test, label): """ Helper to train a model (with or without GridSearchCV) and return predictions. """ @@ -161,7 +161,7 @@ def predict(data, k, model_X, model_Y): X_train_x = scaler_x.fit_transform(X_train_x) X_test_x = scaler_x.transform(X_test_x) - y_pred_x = trian_and_predict(model_X, X_train_x, y_train_x, X_test_x, y_test_x, "X") + y_pred_x = train_and_predict(model_X, X_train_x, y_train_x, X_test_x, y_test_x, "X") # Scaling (fit on train only) scaler_y = StandardScaler() @@ -169,7 +169,7 @@ def predict(data, k, model_X, model_Y): X_test_y = scaler_y.transform(X_test_y) - y_pred_y = trian_and_predict(model_Y, X_train_y, y_train_y, X_test_y, y_test_y, "Y") + y_pred_y = train_and_predict(model_Y, X_train_y, y_train_y, X_test_y, y_test_y, "Y") # Convert the predictions to a numpy array and apply KMeans clustering data = np.array([y_pred_x, y_pred_y]).T