From 0cb33e9c2ecc7f0df632096970f186aa4b238ce5 Mon Sep 17 00:00:00 2001 From: Rutger van Koert Date: Mon, 17 Jun 2024 11:30:41 +0200 Subject: [PATCH] remove tfm dependency --- src/data/gaussian_filter2d.py | 490 +++++++++++++++------------------- 1 file changed, 216 insertions(+), 274 deletions(-) diff --git a/src/data/gaussian_filter2d.py b/src/data/gaussian_filter2d.py index 6122e15..5a8f015 100644 --- a/src/data/gaussian_filter2d.py +++ b/src/data/gaussian_filter2d.py @@ -1,4 +1,4 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. +# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. @@ -11,298 +11,240 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. -# ============================================================================== ### COPIED #### ### FROM ### -### https://github.com/tensorflow/addons/blob/v0.20.0/tensorflow_addons/image/filters.py#L218-L302 ### +### https://github.com/tensorflow/models/blob/v2.15.0/official/vision/ops/augment.py#L184-L270 ### ### DO NOT REMOVE THIS NOTICE ### - import tensorflow as tf -from tensorflow_addons.image import utils as img_utils -from tensorflow_addons.utils import keras_utils -from tensorflow_addons.utils.types import TensorLike +from typing import List, Tuple, Union, Optional + + +def to_4d(image: tf.Tensor) -> tf.Tensor: + """Converts an input Tensor to 4 dimensions. + + 4D image => [N, H, W, C] or [N, C, H, W] + 3D image => [1, H, W, C] or [1, C, H, W] + 2D image => [1, H, W, 1] + + Args: + image: The 2/3/4D input tensor. + + Returns: + A 4D image tensor. + + Raises: + `TypeError` if `image` is not a 2/3/4D tensor. + + """ + shape = tf.shape(image) + original_rank = tf.rank(image) + left_pad = tf.cast(tf.less_equal(original_rank, 3), dtype=tf.int32) + right_pad = tf.cast(tf.equal(original_rank, 2), dtype=tf.int32) + new_shape = tf.concat( + [ + tf.ones(shape=left_pad, dtype=tf.int32), + shape, + tf.ones(shape=right_pad, dtype=tf.int32), + ], + axis=0, + ) + return tf.reshape(image, new_shape) -from typing import Optional, Union, List, Tuple, Iterable +def from_4d(image: tf.Tensor, ndims: tf.Tensor) -> tf.Tensor: + """Converts a 4D image back to `ndims` rank.""" + shape = tf.shape(image) + begin = tf.cast(tf.less_equal(ndims, 3), dtype=tf.int32) + end = 4 - tf.cast(tf.equal(ndims, 2), dtype=tf.int32) + new_shape = shape[begin:end] + return tf.reshape(image, new_shape) def _pad( - image: TensorLike, - filter_shape: Union[List[int], Tuple[int]], - mode: str = "CONSTANT", - constant_values: TensorLike = 0, + image: tf.Tensor, + filter_shape: Union[List[int], Tuple[int, ...]], + mode: str = 'CONSTANT', + constant_values: Union[int, tf.Tensor] = 0, ) -> tf.Tensor: - """Explicitly pad a 4-D image. - - Equivalent to the implicit padding method offered in `tf.nn.conv2d` and - `tf.nn.depthwise_conv2d`, but supports non-zero, reflect and symmetric - padding mode. For the even-sized filter, it pads one more value to the - right or the bottom side. - - Args: - image: A 4-D `Tensor` of shape `[batch_size, height, width, channels]`. - filter_shape: A `tuple`/`list` of 2 integers, specifying the height - and width of the 2-D filter. - mode: A `string`, one of "REFLECT", "CONSTANT", or "SYMMETRIC". - The type of padding algorithm to use, which is compatible with - `mode` argument in `tf.pad`. For more details, please refer to - https://www.tensorflow.org/api_docs/python/tf/pad. - constant_values: A `scalar`, the pad value to use in "CONSTANT" - padding mode. - """ - if mode.upper() not in {"REFLECT", "CONSTANT", "SYMMETRIC"}: - raise ValueError( - 'padding should be one of "REFLECT", "CONSTANT", or "SYMMETRIC".' - ) - constant_values = tf.convert_to_tensor(constant_values, image.dtype) - filter_height, filter_width = filter_shape - pad_top = (filter_height - 1) // 2 - pad_bottom = filter_height - 1 - pad_top - pad_left = (filter_width - 1) // 2 - pad_right = filter_width - 1 - pad_left - paddings = [[0, 0], [pad_top, pad_bottom], [pad_left, pad_right], [0, 0]] - return tf.pad(image, paddings, mode=mode, constant_values=constant_values) - - -@tf.function -def mean_filter2d( - image: TensorLike, - filter_shape: Union[int, Iterable[int]] = (3, 3), - padding: str = "REFLECT", - constant_values: TensorLike = 0, - name: Optional[str] = None, -) -> tf.Tensor: - """Perform mean filtering on image(s). - - Args: - image: Either a 2-D `Tensor` of shape `[height, width]`, - a 3-D `Tensor` of shape `[height, width, channels]`, - or a 4-D `Tensor` of shape `[batch_size, height, width, channels]`. - filter_shape: An `integer` or `tuple`/`list` of 2 integers, specifying - the height and width of the 2-D mean filter. Can be a single integer - to specify the same value for all spatial dimensions. - padding: A `string`, one of "REFLECT", "CONSTANT", or "SYMMETRIC". - The type of padding algorithm to use, which is compatible with - `mode` argument in `tf.pad`. For more details, please refer to - https://www.tensorflow.org/api_docs/python/tf/pad. - constant_values: A `scalar`, the pad value to use in "CONSTANT" - padding mode. - name: A name for this operation (optional). - Returns: - 2-D, 3-D or 4-D `Tensor` of the same dtype as input. - Raises: - ValueError: If `image` is not 2, 3 or 4-dimensional, - if `padding` is other than "REFLECT", "CONSTANT" or "SYMMETRIC", - or if `filter_shape` is invalid. - """ - with tf.name_scope(name or "mean_filter2d"): - image = tf.convert_to_tensor(image, name="image") - original_ndims = img_utils.get_ndims(image) - image = img_utils.to_4D_image(image) - - filter_shape = keras_utils.normalize_tuple(filter_shape, 2, "filter_shape") - - # Keep the precision if it's float; - # otherwise, convert to float32 for computing. - orig_dtype = image.dtype - if not image.dtype.is_floating: - image = tf.dtypes.cast(image, tf.dtypes.float32) - - # Explicitly pad the image - image = _pad(image, filter_shape, mode=padding, constant_values=constant_values) - - # Filter of shape (filter_width, filter_height, in_channels, 1) - # has the value of 1 for each element. - area = tf.constant(filter_shape[0] * filter_shape[1], dtype=image.dtype) - filter_shape += (tf.shape(image)[-1], 1) - kernel = tf.ones(shape=filter_shape, dtype=image.dtype) - - output = tf.nn.depthwise_conv2d( - image, kernel, strides=(1, 1, 1, 1), padding="VALID" - ) - - output /= area - - output = img_utils.from_4D_image(output, original_ndims) - return tf.dtypes.cast(output, orig_dtype) - - -@tf.function -def median_filter2d( - image: TensorLike, - filter_shape: Union[int, Iterable[int]] = (3, 3), - padding: str = "REFLECT", - constant_values: TensorLike = 0, - name: Optional[str] = None, -) -> tf.Tensor: - """Perform median filtering on image(s). - - Args: - image: Either a 2-D `Tensor` of shape `[height, width]`, - a 3-D `Tensor` of shape `[height, width, channels]`, - or a 4-D `Tensor` of shape `[batch_size, height, width, channels]`. - filter_shape: An `integer` or `tuple`/`list` of 2 integers, specifying - the height and width of the 2-D median filter. Can be a single integer - to specify the same value for all spatial dimensions. - padding: A `string`, one of "REFLECT", "CONSTANT", or "SYMMETRIC". - The type of padding algorithm to use, which is compatible with - `mode` argument in `tf.pad`. For more details, please refer to - https://www.tensorflow.org/api_docs/python/tf/pad. - constant_values: A `scalar`, the pad value to use in "CONSTANT" - padding mode. - name: A name for this operation (optional). - Returns: - 2-D, 3-D or 4-D `Tensor` of the same dtype as input. - Raises: - ValueError: If `image` is not 2, 3 or 4-dimensional, - if `padding` is other than "REFLECT", "CONSTANT" or "SYMMETRIC", - or if `filter_shape` is invalid. - """ - with tf.name_scope(name or "median_filter2d"): - image = tf.convert_to_tensor(image, name="image") - original_ndims = img_utils.get_ndims(image) - image = img_utils.to_4D_image(image) - - filter_shape = keras_utils.normalize_tuple(filter_shape, 2, "filter_shape") - - image_shape = tf.shape(image) - batch_size = image_shape[0] - height = image_shape[1] - width = image_shape[2] - channels = image_shape[3] - - # Explicitly pad the image - image = _pad(image, filter_shape, mode=padding, constant_values=constant_values) - - area = filter_shape[0] * filter_shape[1] - - floor = (area + 1) // 2 - ceil = area // 2 + 1 - - patches = tf.image.extract_patches( - image, - sizes=[1, filter_shape[0], filter_shape[1], 1], - strides=[1, 1, 1, 1], - rates=[1, 1, 1, 1], - padding="VALID", - ) - - patches = tf.reshape(patches, shape=[batch_size, height, width, area, channels]) - - patches = tf.transpose(patches, [0, 1, 2, 4, 3]) - - # Note the returned median is casted back to the original type - # Take [5, 6, 7, 8] for example, the median is (6 + 7) / 2 = 3.5 - # It turns out to be int(6.5) = 6 if the original type is int - top = tf.nn.top_k(patches, k=ceil).values - if area % 2 == 1: - median = top[:, :, :, :, floor - 1] - else: - median = (top[:, :, :, :, floor - 1] + top[:, :, :, :, ceil - 1]) / 2 - - output = tf.cast(median, image.dtype) - output = img_utils.from_4D_image(output, original_ndims) - return output + """Explicitly pads a 4-D image. + + Equivalent to the implicit padding method offered in `tf.nn.conv2d` and + `tf.nn.depthwise_conv2d`, but supports non-zero, reflect and symmetric + padding mode. For the even-sized filter, it pads one more value to the + right or the bottom side. + + Args: + image: A 4-D `Tensor` of shape `[batch_size, height, width, channels]`. + filter_shape: A `tuple`/`list` of 2 integers, specifying the height and + width of the 2-D filter. + mode: A `string`, one of "REFLECT", "CONSTANT", or "SYMMETRIC". The type of + padding algorithm to use, which is compatible with `mode` argument in + `tf.pad`. For more details, please refer to + https://www.tensorflow.org/api_docs/python/tf/pad. + constant_values: A `scalar`, the pad value to use in "CONSTANT" padding + mode. + + Returns: + A padded image. + """ + if mode.upper() not in {'REFLECT', 'CONSTANT', 'SYMMETRIC'}: + raise ValueError( + 'padding should be one of "REFLECT", "CONSTANT", or "SYMMETRIC".' + ) + constant_values = tf.convert_to_tensor(constant_values, image.dtype) + filter_height, filter_width = filter_shape + pad_top = (filter_height - 1) // 2 + pad_bottom = filter_height - 1 - pad_top + pad_left = (filter_width - 1) // 2 + pad_right = filter_width - 1 - pad_left + paddings = [[0, 0], [pad_top, pad_bottom], [pad_left, pad_right], [0, 0]] + return tf.pad(image, paddings, mode=mode, constant_values=constant_values) def _get_gaussian_kernel(sigma, filter_shape): - """Compute 1D Gaussian kernel.""" - sigma = tf.convert_to_tensor(sigma) - x = tf.range(-filter_shape // 2 + 1, filter_shape // 2 + 1) - x = tf.cast(x**2, sigma.dtype) - x = tf.nn.softmax(-x / (2.0 * (sigma**2))) - return x + """Computes 1D Gaussian kernel.""" + sigma = tf.convert_to_tensor(sigma) + x = tf.range(-filter_shape // 2 + 1, filter_shape // 2 + 1) + x = tf.cast(x**2, sigma.dtype) + x = tf.nn.softmax(-x / (2.0 * (sigma**2))) + return x def _get_gaussian_kernel_2d(gaussian_filter_x, gaussian_filter_y): - """Compute 2D Gaussian kernel given 1D kernels.""" - gaussian_kernel = tf.matmul(gaussian_filter_x, gaussian_filter_y) - return gaussian_kernel + """Computes 2D Gaussian kernel given 1D kernels.""" + gaussian_kernel = tf.matmul(gaussian_filter_x, gaussian_filter_y) + return gaussian_kernel + +def _normalize_tuple(value, n, name): + """Transforms an integer or iterable of integers into an integer tuple. + + Args: + value: The value to validate and convert. Could an int, or any iterable of + ints. + n: The size of the tuple to be returned. + name: The name of the argument being validated, e.g. "strides" or + "kernel_size". This is only used to format error messages. + + Returns: + A tuple of n integers. + + Raises: + ValueError: If something else than an int/long or iterable thereof was + passed. + """ + if isinstance(value, int): + return (value,) * n + else: + try: + value_tuple = tuple(value) + except TypeError as exc: + raise TypeError( + f'The {name} argument must be a tuple of {n} integers. ' + f'Received: {value}' + ) from exc + if len(value_tuple) != n: + raise ValueError( + f'The {name} argument must be a tuple of {n} integers. ' + f'Received: {value}' + ) + for single_value in value_tuple: + try: + int(single_value) + except (ValueError, TypeError) as exc: + raise ValueError( + f'The {name} argument must be a tuple of {n} integers. Received:' + f' {value} including element {single_value} of type' + f' {type(single_value)}.' + ) from exc + return value_tuple -@tf.function def gaussian_filter2d( - image: TensorLike, - filter_shape: Union[int, Iterable[int]] = (3, 3), + image: tf.Tensor, + filter_shape: Union[List[int], Tuple[int, ...], int], sigma: Union[List[float], Tuple[float], float] = 1.0, - padding: str = "REFLECT", - constant_values: TensorLike = 0, + padding: str = 'REFLECT', + constant_values: Union[int, tf.Tensor] = 0, name: Optional[str] = None, -) -> TensorLike: - """Perform Gaussian blur on image(s). - - Args: - image: Either a 2-D `Tensor` of shape `[height, width]`, - a 3-D `Tensor` of shape `[height, width, channels]`, - or a 4-D `Tensor` of shape `[batch_size, height, width, channels]`. - filter_shape: An `integer` or `tuple`/`list` of 2 integers, specifying - the height and width of the 2-D gaussian filter. Can be a single - integer to specify the same value for all spatial dimensions. - sigma: A `float` or `tuple`/`list` of 2 floats, specifying - the standard deviation in x and y direction the 2-D gaussian filter. - Can be a single float to specify the same value for all spatial - dimensions. - padding: A `string`, one of "REFLECT", "CONSTANT", or "SYMMETRIC". - The type of padding algorithm to use, which is compatible with - `mode` argument in `tf.pad`. For more details, please refer to - https://www.tensorflow.org/api_docs/python/tf/pad. - constant_values: A `scalar`, the pad value to use in "CONSTANT" - padding mode. - name: A name for this operation (optional). - Returns: - 2-D, 3-D or 4-D `Tensor` of the same dtype as input. - Raises: - ValueError: If `image` is not 2, 3 or 4-dimensional, - if `padding` is other than "REFLECT", "CONSTANT" or "SYMMETRIC", - if `filter_shape` is invalid, - or if `sigma` is invalid. - """ - with tf.name_scope(name or "gaussian_filter2d"): - if isinstance(sigma, (list, tuple)): - if len(sigma) != 2: - raise ValueError("sigma should be a float or a tuple/list of 2 floats") - else: - sigma = (sigma,) * 2 - - if any(s < 0 for s in sigma): - raise ValueError("sigma should be greater than or equal to 0.") - - image = tf.convert_to_tensor(image, name="image") - sigma = tf.convert_to_tensor(sigma, name="sigma") - - original_ndims = img_utils.get_ndims(image) - image = img_utils.to_4D_image(image) - - # Keep the precision if it's float; - # otherwise, convert to float32 for computing. - orig_dtype = image.dtype - if not image.dtype.is_floating: - image = tf.cast(image, tf.float32) - - channels = tf.shape(image)[3] - filter_shape = keras_utils.normalize_tuple(filter_shape, 2, "filter_shape") - - sigma = tf.cast(sigma, image.dtype) - gaussian_kernel_x = _get_gaussian_kernel(sigma[1], filter_shape[1]) - gaussian_kernel_x = gaussian_kernel_x[tf.newaxis, :] - - gaussian_kernel_y = _get_gaussian_kernel(sigma[0], filter_shape[0]) - gaussian_kernel_y = gaussian_kernel_y[:, tf.newaxis] - - gaussian_kernel_2d = _get_gaussian_kernel_2d( - gaussian_kernel_y, gaussian_kernel_x - ) - gaussian_kernel_2d = gaussian_kernel_2d[:, :, tf.newaxis, tf.newaxis] - gaussian_kernel_2d = tf.tile(gaussian_kernel_2d, [1, 1, channels, 1]) - - image = _pad(image, filter_shape, mode=padding, constant_values=constant_values) - - output = tf.nn.depthwise_conv2d( - input=image, - filter=gaussian_kernel_2d, - strides=(1, 1, 1, 1), - padding="VALID", - ) - output = img_utils.from_4D_image(output, original_ndims) - return tf.cast(output, orig_dtype) \ No newline at end of file +) -> tf.Tensor: + """Performs Gaussian blur on image(s). + + Args: + image: Either a 2-D `Tensor` of shape `[height, width]`, a 3-D `Tensor` of + shape `[height, width, channels]`, or a 4-D `Tensor` of shape + `[batch_size, height, width, channels]`. + filter_shape: An `integer` or `tuple`/`list` of 2 integers, specifying the + height and width of the 2-D gaussian filter. Can be a single integer to + specify the same value for all spatial dimensions. + sigma: A `float` or `tuple`/`list` of 2 floats, specifying the standard + deviation in x and y direction the 2-D gaussian filter. Can be a single + float to specify the same value for all spatial dimensions. + padding: A `string`, one of "REFLECT", "CONSTANT", or "SYMMETRIC". The type + of padding algorithm to use, which is compatible with `mode` argument in + `tf.pad`. For more details, please refer to + https://www.tensorflow.org/api_docs/python/tf/pad. + constant_values: A `scalar`, the pad value to use in "CONSTANT" padding + mode. + name: A name for this operation (optional). + + Returns: + 2-D, 3-D or 4-D `Tensor` of the same dtype as input. + + Raises: + ValueError: If `image` is not 2, 3 or 4-dimensional, + if `padding` is other than "REFLECT", "CONSTANT" or "SYMMETRIC", + if `filter_shape` is invalid, + or if `sigma` is invalid. + """ + with tf.name_scope(name or 'gaussian_filter2d'): + if isinstance(sigma, (list, tuple)): + if len(sigma) != 2: + raise ValueError('sigma should be a float or a tuple/list of 2 floats') + else: + sigma = (sigma,) * 2 + + if any(s < 0 for s in sigma): + raise ValueError('sigma should be greater than or equal to 0.') + + image = tf.convert_to_tensor(image, name='image') + sigma = tf.convert_to_tensor(sigma, name='sigma') + + original_ndims = tf.rank(image) + image = to_4d(image) + + # Keep the precision if it's float; + # otherwise, convert to float32 for computing. + orig_dtype = image.dtype + if not image.dtype.is_floating: + image = tf.cast(image, tf.float32) + + channels = tf.shape(image)[3] + filter_shape = _normalize_tuple(filter_shape, 2, 'filter_shape') + + sigma = tf.cast(sigma, image.dtype) + gaussian_kernel_x = _get_gaussian_kernel(sigma[1], filter_shape[1]) + gaussian_kernel_x = gaussian_kernel_x[tf.newaxis, :] + + gaussian_kernel_y = _get_gaussian_kernel(sigma[0], filter_shape[0]) + gaussian_kernel_y = gaussian_kernel_y[:, tf.newaxis] + + gaussian_kernel_2d = _get_gaussian_kernel_2d( + gaussian_kernel_y, gaussian_kernel_x + ) + gaussian_kernel_2d = gaussian_kernel_2d[:, :, tf.newaxis, tf.newaxis] + gaussian_kernel_2d = tf.tile(gaussian_kernel_2d, [1, 1, channels, 1]) + + image = _pad( + image, filter_shape, mode=padding, constant_values=constant_values + ) + + output = tf.nn.depthwise_conv2d( + input=image, + filter=gaussian_kernel_2d, + strides=(1, 1, 1, 1), + padding='VALID', + ) + output = from_4d(output, original_ndims) + return tf.cast(output, orig_dtype) +