-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresnet.py
106 lines (94 loc) · 4.17 KB
/
resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import torch
import torch.nn as nn
import torch.nn.functional as F
from deepnet.model.learner import Model
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1):
"""Creates the basic block of RESNET-18
Arguments:
in_planes : Number of input channels
planes : Number of output channels
stride : Value of stride in the model (By default = 1)
"""
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, num_blocks, num_classes=10):
"""Creates RESNET-18
Arguments:
block : Basic block of resnet
num_blocks : List of number of convolutions in each block
num_classes : Number of labels in dataset
"""
super(ResNet, self).__init__()
self.in_planes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
self.linear = nn.Linear(512*block.expansion, num_classes)
def _make_layer(self, block, planes, num_blocks, stride):
"""Adds layer to the model
Arguments:
block : The basic block for the coresponding layer
planes : Number of output channels
num_blocks : Number of convolutions for this block
stride : Value of stride
"""
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = F.avg_pool2d(out, 4)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
def learner(self, model, tensorboard, dataset_train, train_loader, test_loader, device, optimizer, criterion, epochs, metrics, callbacks):
"""Trains the model
Arguments:
model: Model to trained and validated
tensorboard: Tensorboard instance for visualization
dataset_train: Dataset training instance
train_loader: Dataloader containing train data on the GPU/ CPU
test_loader: Dataloader containing test data on the GPU/ CPU
device: Device on which model will be trained (GPU/CPU)
optimizer: optimizer for the model
criterion: Loss function
epochs: Number of epochs to train the model
metrics(bool): If metrics is to be displayed or not
(default: False)
callbacks: Scheduler to be applied on the model
(default : None)
"""
learn = Model(model, tensorboard, dataset_train, train_loader, test_loader, device, optimizer, criterion, epochs, metrics, callbacks)
self.result = learn.fit()
@property
def results(self):
"""Returns model results"""
return self.result