-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdepthnet.py
180 lines (145 loc) · 5.77 KB
/
depthnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import torch
import torch.nn as nn
import torch.nn.functional as F
from deepnet.model.learner import Model
class Encoder(nn.Module):
def __init__(self, in_channel, out_channel):
super(Encoder, self).__init__()
self.conv1 = nn.Sequential(
nn.MaxPool2d(2),
nn.Conv2d(in_channel, out_channel, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channel),
nn.ReLU()
)
self.conv2 = nn.Sequential(
nn.Conv2d(out_channel, out_channel, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channel),
nn.ReLU()
)
self.skip_conn = nn.Sequential(
nn.Conv2d(in_channel, out_channel, kernel_size=1, stride=2, bias=False),
nn.BatchNorm2d(out_channel)
)
def forward(self,x):
x1 = self.conv1(x)
x1 = self.conv2(x1)
x1 += self.skip_conn(x)
x1 = F.relu(x1)
return x1
class Decoder(nn.Module):
def __init__(self, in_channel, out_channel):
super(Decoder, self).__init__()
self.layer = nn.Conv2d(in_channel, out_channel, kernel_size=1)
self.conv1 = nn.Sequential(
nn.Conv2d(out_channel, out_channel, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channel),
nn.ReLU()
)
self.conv2 = nn.Sequential(
nn.Conv2d(out_channel, out_channel, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channel),
nn.ReLU()
)
def forward(self, decode, encode, change=True):
x = decode
x = self.layer(x)
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)
x += encode
x = self.conv1(x)
x = self.conv2(x)
x = F.relu(x)
return x
class DepthMaskNet8(nn.Module):
def __init__(self):
"""Creates DepthMaskNet-8"""
super(DepthMaskNet8, self).__init__()
self.layer1a = nn.Sequential(
nn.Conv2d(3, 16, kernel_size=3, padding=1),
nn.BatchNorm2d(16),
nn.ReLU(),
nn.Conv2d(16, 16, kernel_size=3, padding=1),
nn.BatchNorm2d(16),
nn.ReLU()
)
self.layer1b = nn.Sequential(
nn.Conv2d(3, 16, kernel_size=3, padding=1),
nn.BatchNorm2d(16),
nn.ReLU(),
nn.Conv2d(16, 16, kernel_size=3, padding=1),
nn.BatchNorm2d(16),
nn.ReLU()
)
self.last_mask = nn.Conv2d(16, 1, kernel_size=1)
self.last_depth = nn.Conv2d(16, 1, kernel_size=1)
self.encodebg = Encoder(16, 16) #112
self.encodebg_fg = Encoder(16, 16) #112
#Common
self.encode1 = Encoder(32,64) #56
self.encode2 = Encoder(64,128) #28
self.encode3 = Encoder(128,256) #14
#Mask
self.decode1_map = Decoder(256,128) #28
self.decode2_map = Decoder(128,64) #56
self.decode3_map = Decoder(64,32) #112
self.decode4_map = Decoder(32,16) #224
#Depth
self.encode4 = Encoder(256,512) #7
self.decode1_depth = Decoder(512,256) #14
self.decode2_depth = Decoder(256,128) #28
self.decode3_depth = Decoder(128,64) #56
self.decode4_depth = Decoder(64,32) #112
self.decode5_depth = Decoder(32,16) #224
def forward(self, feature):
bg = feature['bg']
bg_fg = feature['bg_fg']
bg = self.layer1a(bg)
bg_fg = self.layer1b(bg_fg)
x1 = self.encodebg(bg)
x2 = self.encodebg_fg(bg_fg)
x3 = torch.cat([x1, x2], dim=1)
#Common
x4 = self.encode1(x3)
x5 = self.encode2(x4)
x6 = self.encode3(x5)
# Mask Prediction
m1 = self.decode1_map(x6,x5)
m2 = self.decode2_map(m1,x4)
m3 = self.decode3_map(m2,x3)
m4 = self.decode4_map(m3,bg_fg)
Out_M = self.last_mask(m4)
#Depth Prediction
x7 = self.encode4(x6)
d1 = self.decode1_depth(x7,x6)
d2 = self.decode2_depth(d1,x5)
d2 += m1
d3 = self.decode3_depth(d2,x4)
d3 += m2
d4 = self.decode4_depth(d3,x3)
d4 += x3
d5 = self.decode5_depth(d4,bg_fg)
Out_D = self.last_depth(d5)
return Out_M, Out_D
def learner(self, start_epoch, model, tensorboard, dataset_train, train_loader, test_loader, device, optimizer, criterion, epochs, metrics, callbacks):
"""Trains the model
Arguments:
model: Model to trained and validated
tensorboard: Tensorboard instance for visualization
dataset_train: Dataset training instance
train_loader: Dataloader containing train data on the GPU/ CPU
test_loader: Dataloader containing test data on the GPU/ CPU
device: Device on which model will be trained (GPU/CPU)
optimizer: optimizer for the model
criterion: Loss function
epochs: Number of epochs to train the model
metrics(bool): If metrics is to be displayed or not
(default: False)
callbacks: Scheduler to be applied on the model
(default : None)
"""
def learner(self, start_epoch, model, tensorboard, dataset_train, train_loader, test_loader, device, optimizer, criterion, epochs, metrics, callbacks):
learn = Model(start_epoch, model, tensorboard, dataset_train, train_loader, test_loader, device, optimizer, criterion, epochs, metrics, callbacks)
self.result = learn.fit()
@property
def results(self):
"""Returns model results"""
return self.result