-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
554 lines (440 loc) · 18.3 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
import csv
import datetime
import json
import os
import pandas as pd
import requests
os.makedirs('data', exist_ok=True)
def getWeeklyData():
apirURL = 'https://services.arcgis.com/g1fRTDLeMgspWrYp/arcgis/rest/services/Weekly_Bexar_County_CoVID19_Surveillance_Data_Public/FeatureServer/0/query?where=1%3D1&outFields=*&outSR=4326&f=json'
r = requests.get(apirURL)
weeklyData = json.loads(r.text)['features']
return weeklyData
def getWeeklySAMHDData():
apiURL = 'https://services.arcgis.com/g1fRTDLeMgspWrYp/arcgis/rest/services/vSAMHD_COVID19_DataEntry/FeatureServer/0/query?where=1%3D1&outFields=*&outSR=4326&f=json'
r = requests.get(apiURL)
weeklySAMHDData = json.loads(r.text)['features']
return weeklySAMHDData
def getWeeklyLabData():
apirURL = 'https://services.arcgis.com/g1fRTDLeMgspWrYp/arcgis/rest/services/vCOVID19_WeeklyLabTesting_Public/FeatureServer/0/query?where=1%3D1&outFields=*&outSR=4326&f=json'
r = requests.get(apirURL)
weeklyLabData = json.loads(r.text)['features']
return weeklyLabData
def getDailyData():
apirURL = 'https://services.arcgis.com/g1fRTDLeMgspWrYp/arcgis/rest/services/SAMHD_DailySurveillance_Data_Public/FeatureServer/0/query?where=1%3D1&outFields=*&outSR=4326&f=json'
r = requests.get(apirURL)
dailyData = json.loads(r.text)['features']
return dailyData
dailyData = getDailyData()
weeklyData = getWeeklyData()
weeklyLabData = getWeeklyLabData()
weeklySAMHDData = getWeeklySAMHDData()
# DAILY GRAPHICS
# def getTwoWeekChange(data):
# currentDataIndex = len(data) - 1
# twoWeeksAgoIndex = currentDataIndex - 14
# currentCaseAverage = data[currentDataIndex]['attributes']['count_7_day_moving_avg']
# twoWeeksAgoCaseAverage = data[twoWeeksAgoIndex]['attributes']['count_7_day_moving_avg']
# twoWeeksChange = round((currentCaseAverage - twoWeeksAgoCaseAverage) / twoWeeksAgoCaseAverage * 100, 1)
# if (twoWeeksChange > 0):
# upDown = 'up'
# color = 'red'
# else:
# upDown = 'down'
# color = 'green'
# s = '<div><p>The 7-day rolling average of new COVID-19 cases in San Antonio has gone <span style = "color: {}">{} by {}%</span> over the last two weeks.</p></div>'.format(color, upDown,twoWeeksChange)
# with open('data/twoWeeksChange.csv', 'w') as f:
# writer = csv.writer(f)
# writer.writerow([s])
def getLast90Days(data):
'''
TK TK TK
'''
dateColumn = []
newCaseList = []
startRow = len(data) - 90
for i in range(startRow, len(data)):
datetime_time = datetime.datetime.fromtimestamp(data[i]['attributes']['reporting_date'] / 1000).strftime("%Y-%m-%d")
print(datetime_time)
dateColumn.append(datetime_time)
newCaseList.append(data[i]['attributes']['count_7_day_moving_avg'])
df = pd.DataFrame()
df['Date'] = dateColumn
df['Cases'] = newCaseList
# Sort the DF by the date.
df['Date'] = pd.to_datetime(df['Date'])
df = df.sort_values(by='Date')
df.to_csv('data/last90Days.csv', index=False)
def getSevenDayNewCases(data):
'''
Chart title: New confirmed and probable COVID-19 cases in Bexar County, daily count and 7-day rolling average
DW link: https://app.datawrapper.de/chart/cBNh5/publish
WCM Link: https://wcm.hearstnp.com/index.php?_wcmAction=business/item&id=96075
'''
dateColumn = []
newCaseList = []
baselineList = []
rollingAverage = []
for i in range(len(data)):
if data[i]['attributes']['count_7_day_moving_avg'] == None:
pass
elif data[i]['attributes']['reporting_date'] == 1594875600000:
timeDate = data[i]['attributes']['reporting_date'] / 1000
datetime_time = datetime.datetime.fromtimestamp(
timeDate).strftime("%Y-%m-%d")
dateColumn.append(datetime_time)
newCaseList.append(691)
baselineList.append(0)
rollingAverage.append(479)
else:
timeDate = data[i]['attributes']['reporting_date'] / 1000
datetime_time = datetime.datetime.fromtimestamp(
timeDate).strftime("%Y-%m-%d")
dateColumn.append(datetime_time)
newCaseList.append(data[i]['attributes']
['total_case_daily_change'])
rollingAverage.append(data[i]['attributes']
['count_7_day_moving_avg'])
baselineList.append(0)
# Pandas work
df = pd.DataFrame()
df['Date'] = dateColumn
df['Cases'] = newCaseList
df['Seven Day Rolling Average'] = rollingAverage
df['Baseline'] = baselineList
# Sort the DF by the date.
df['Date'] = pd.to_datetime(df['Date'])
df = df.sort_values(by='Date')
# print(df)
df.to_csv('data/seven_day_case_line_bar.csv', index=False)
def getUpdateTable(data):
'''
Chart title: CORONAVIRUS IN BEXAR COUNTY [It's blank on DW]
DW link: https://app.datawrapper.de/table/MXNZd/publish
WCM: https://wcm.hearstnp.com/index.php?_wcmAction=business/item&id=96125
'''
dateColumn = []
newCaseNumbers = []
newDeathNumbers = []
caseCumList = []
deathCumList = []
for i in range(len(data)):
if data[i]['attributes']['reporting_date'] == None:
pass
elif data[i]['attributes']['total_case_daily_change'] == None:
pass
else:
timeDate = data[i]['attributes']['reporting_date'] / 1000
datetime_time = datetime.datetime.fromtimestamp(
timeDate).strftime("%Y-%m-%d")
# print(str(datetime_time) + " | " +
# str(data[i]['attributes']['reporting_date']))
dateColumn.append(datetime_time)
caseCumList.append(data[i]['attributes']['total_case_cumulative'])
deathCumList.append(data[i]['attributes']['deaths_cumulative'])
newCaseNumbers.append(
data[i]['attributes']['total_case_daily_change'])
newDeathNumbers.append(
data[i]['attributes']['deaths_daily_change'])
latestNums = [newCaseNumbers[-1], newDeathNumbers[-1]]
totalNums = [caseCumList[-1], deathCumList[-1]]
# Sorting
df2 = pd.DataFrame()
df2['Date'] = dateColumn
df2['New Cases'] = newCaseNumbers
df2['New Deaths'] = newDeathNumbers
df2['Cumulative cases'] = caseCumList
df2['Cumulative deaths'] = deathCumList
df2['Date'] = pd.to_datetime(df2['Date'])
df2 = df2.sort_values(by='Date')
newCases = df2['New Cases'].iloc[-1]
cumCases = df2['Cumulative cases'].iloc[-1]
newDeaths = df2['New Deaths'].iloc[-1]
cumDeaths = df2['Cumulative deaths'].iloc[-1]
cases = ['+' + f'{newCases:,}', f'{cumCases:,}']
deaths = ['+' + f'{int(newDeaths):,}', f'{cumDeaths:,}']
df3 = pd.DataFrame()
df3[''] = ['New', 'All time']
df3['Cases'] = cases
df3['Deaths'] = deaths
df3.to_csv('data/covid_update_table.csv', index=False)
def getSevenDayNewDeaths(data):
'''
Chart title: COVID-19 deaths in Bexar County, daily count and 7-day rolling average
DW link: https://app.datawrapper.de/chart/y1v4d/publish
WCM id: https://wcm.hearstnp.com/?_wcmAction=business/item&id=96074
'''
dateColumn = []
deathsCumList = []
baselineList = []
for i in range(len(data)):
if data[i]['attributes']['reporting_date'] == None:
pass
elif data[i]['attributes']['deaths_daily_change'] == None:
pass
elif data[i]['attributes']['reporting_date'] == 1608789600000:
pass
elif data[i]['attributes']['reporting_date'] == 1608876000000:
pass
elif data[i]['attributes']['reporting_date'] == 1609005600000:
pass
else:
timeDate = data[i]['attributes']['reporting_date'] / 1000
datetime_time = datetime.datetime.fromtimestamp(
timeDate).strftime("%Y-%m-%d")
dateColumn.append(datetime_time)
deathsCumList.append(data[i]['attributes']['deaths_daily_change'])
baselineList.append(0)
# Pandas work
df = pd.DataFrame()
df['Date'] = dateColumn
df['Deaths'] = deathsCumList
# Thursday, June 30, 2022: Metro health entered the data incorrectly. The death change was 1.
df.at[df.index[df['Date'] == '2022-06-24'].to_list()[0], 'Deaths'] = 1
df['7-day rolling average'] = df['Deaths'].rolling(7).mean().round(1)
df['Baseline'] = baselineList
df = df.dropna(subset=['7-day rolling average'])
# Sort by date
df['Date'] = pd.to_datetime(df['Date'])
df = df.sort_values(by='Date')
df.to_csv('data/seven_day_deaths_line_bar.csv', index=False)
def getCumConfirmedCases(data):
'''
Chart title: Confirmed and probable COVID-19 cases in San Antonio
DW link: https://app.datawrapper.de/chart/6yc5D/publish
WCM id: https://wcm.hearstnp.com/?_wcmAction=business/item&id=96319
'''
dateColumn = []
casesCumList = []
for i in range(len(data)):
if data[i]['attributes']['reporting_date'] == None:
pass
elif data[i]['attributes']['total_case_daily_change'] == None:
pass
else:
timeDate = data[i]['attributes']['reporting_date'] / 1000
datetime_time = datetime.datetime.fromtimestamp(
timeDate).strftime("%Y-%m-%d")
dateColumn.append(datetime_time)
casesCumList.append(data[i]['attributes']['total_case_cumulative'])
# Pandas work
df = pd.DataFrame()
df['Date'] = dateColumn
df['Confirmed and probable'] = casesCumList
# Sort the DF by the date.
df['Date'] = pd.to_datetime(df['Date'])
df = df.sort_values(by='Date')
# print(df)
df.to_csv('data/cumulative_confirmed_cases.csv', index=False)
def getCumDeaths(data):
'''
Chart title: Cumulative number of deaths caused by COVID-19 in Bexar County
DW link: https://app.datawrapper.de/chart/vfSa2/publish
WCM id: https://wcm.hearstnp.com/?_wcmAction=business/item&id=95837
'''
dateColumn = []
deathsCumList = []
for i in range(len(data)):
if data[i]['attributes']['reporting_date'] == None:
pass
# elif data[i]['attributes']['total_case_daily_change'] == None:
# pass
elif data[i]['attributes']['deaths_cumulative'] == 0:
pass
else:
timeDate = data[i]['attributes']['reporting_date'] / 1000
datetime_time = datetime.datetime.fromtimestamp(
timeDate).strftime("%Y-%m-%d")
dateColumn.append(datetime_time)
deathsCumList.append(data[i]['attributes']['deaths_cumulative'])
df = pd.DataFrame()
df['Date'] = dateColumn
df['Deaths'] = deathsCumList
# Sort the DF by the date.
df['Date'] = pd.to_datetime(df['Date'])
df = df.sort_values(by='Date')
df.to_csv('data/cumulative_deaths.csv', index=False)
# WEEKLY GRAPHICS
def GetActiveCaseMap():
df = pd.read_csv(
'https://cosacovid-cosagis.hub.arcgis.com/datasets/a39a0abe9bb246d0b2fe3334616e5bc3_0.csv?outSR=%7B%22latestWkid%22%3A2278%2C%22wkid%22%3A102740%7D')
del df['OBJECTID']
activeCaseRatePer1k = []
for i in range(len(df)):
# print(df['ZIP_CODE'][i])
totalActiveCases = df['ActiveCases']
zipPop = df['TotPop2020']
rate = (totalActiveCases / zipPop) * 1000
activeCaseRatePer1k.append(rate[i])
df['active cases per 1k'] = activeCaseRatePer1k
df.to_csv('data/active_case_map.csv', index=False)
def getWeeklyPositivity(data):
'''
Chart title: Weekly positive test rate for Bexar County
DW link: https://app.datawrapper.de/chart/tAc4D/publish
WCM: https://wcm.hearstnp.com/index.php?_wcmAction=business/item&id=96347
'''
dateColumn = []
weeklyRate = []
for i in range(len(data)):
timeDate = data[i]['attributes']['enter_web_posting_date'] / 1000
datetime_time = datetime.datetime.fromtimestamp(
timeDate).strftime("%Y-%m-%d")
dateColumn.append(datetime_time)
weeklyRate.append(data[i]['attributes']
['percent_weekly_bexar_county_pos'])
df = pd.DataFrame()
df['Date'] = dateColumn
df['Weekly positivity rate'] = weeklyRate
# print(df)
df.to_csv('data/weekly_positivity_line.csv', index=False)
def getWeeklyCaseChange(data):
'''
Chart title: New confirmed and probable COVID-19 cases in Bexar County each week
DW link: https://app.datawrapper.de/chart/1UYvz/visualize#refine
WCM Link: https://wcm.hearstnp.com/index.php?_wcmAction=business/item&id=98631
'''
dateColumn = []
newCaseList = []
baselineList = []
for i in range(len(data)):
if data[i]['attributes']['reporting_date'] == None:
pass
elif data[i]['attributes']['case_count_weekly_change'] == None:
pass
else:
timeDate = data[i]['attributes']['reporting_date'] / 1000
datetime_time = datetime.datetime.fromtimestamp(
timeDate).strftime("%Y-%m-%d")
dateColumn.append(datetime_time)
newCaseList.append(data[i]['attributes']
['case_count_weekly_change'])
baselineList.append(0)
# # Pandas work
df = pd.DataFrame()
df['Date'] = dateColumn
df['Total new cases'] = newCaseList
# print(df)
df.to_csv('data/weekly_new_cases.csv', index=False)
def getCumDeaths(data):
'''
Chart title: Cumulative number of deaths caused by COVID-19 in Bexar County
DW link: https://app.datawrapper.de/chart/vfSa2/publish
WCM id: https://wcm.hearstnp.com/?_wcmAction=business/item&id=95837
'''
dateColumn = []
deathsCumList = []
for i in range(len(data)):
if data[i]['attributes']['reporting_date'] == None:
pass
elif data[i]['attributes']['deaths_cumulative'] == 0:
pass
elif data[i]['attributes']['deaths_cumulative'] == None:
pass
else:
timeDate = data[i]['attributes']['reporting_date'] / 1000
datetime_time = datetime.datetime.fromtimestamp(
timeDate).strftime("%Y-%m-%d")
dateColumn.append(datetime_time)
deathsCumList.append(data[i]['attributes']
['deaths_cumulative'])
df = pd.DataFrame()
df['Date'] = dateColumn
df['Cumulative Deaths'] = deathsCumList
# Thursday, June 30, 2022: Metro health entered the data incorrectly. The cumulative death count was
df.at[df.index[df['Date'] == '2022-06-24'].to_list()[0], 'Cumulative Deaths'] = 5338
# Sort the DF by the date.
df['Date'] = pd.to_datetime(df['Date'])
df = df.sort_values(by='Date')
# print(df)
df.to_csv('data/cumulative_deaths.csv', index=False)
def getPatientStatus(data):
'''
Chart title: COVID-19 patients in Bexar County hospitals by day
DW link: https://app.datawrapper.de/chart/zlJXV/publish
WCM: https://wcm.hearstnp.com/index.php?_wcmAction=business/item&id=96060
'''
dateColumn = []
PosPatientsList = []
CovidIcuList = []
CovidonVentList = []
for i in range(len(data)):
if data[i]['attributes']['reporting_date'] == None:
pass
elif data[i]['attributes']['total_case_daily_change'] == None:
pass
else:
timeDate = data[i]['attributes']['reporting_date'] / 1000
datetime_time = datetime.datetime.fromtimestamp(
timeDate).strftime("%Y-%m-%d")
dateColumn.append(datetime_time)
CovidIcuList.append(data[i]['attributes']
['strac_covid_positive_in_icu'])
PosPatientsList.append(
data[i]['attributes']['strac_covid_positive_in_hospita'])
CovidonVentList.append(
data[i]['attributes']['strac_covid_positive_on_ventila'])
df = pd.DataFrame()
df['Date'] = dateColumn
df['Total number of patients'] = PosPatientsList
df['Patients in ICU'] = CovidIcuList
df['Patients on ventilators'] = CovidonVentList
df = df.dropna(subset=['Patients on ventilators'])
# Sort the DF by the date.
df['Date'] = pd.to_datetime(df['Date'])
df = df.sort_values(by='Date')
# print(df)
df.to_csv('data/patient_status.csv', index=False)
def getTexasCountyData():
df = pd.read_excel('https://dshs.texas.gov/sites/default/files/chs/data/Texas%20COVID-19%20New%20Probable%20Cases%20by%20County.xlsx', sheet_name='New Probable by County 2022', skiprows=2)
df = df.iloc[:,list([0] + [-1])]
df.columns = ['County', 'Cases']
df.to_csv('data/texas_county_data.csv', index=False)
def createMetadata():
print('Creating metadata...')
# Save current date to variable in this format: Aug. 4, 2022
date = datetime.datetime.now().strftime("%b. %-d, %Y")
s = f'Data as of {date}'
data = {}
# Create nested dictionary with metadata
data['annotate'] = {'notes': s}
json_data = json.dumps(data)
with open('data/metadata.json', 'w') as f:
f.write(json_data)
def get_average_daily_cases(data):
"""
This function grabs the average number of daily cases for each week from the SAMHD data.
"""
dailyCaseList = []
for week in range(len(data)):
# If the average daily cases is None, then skip this week.
if data[week]['attributes']['average_daily_cases'] == None:
continue
datetime_time = datetime.datetime.fromtimestamp(data[week]['attributes']['reporting_date'] / 1000).strftime("%Y-%m-%d")
dailyCaseList.append({
'For the previous week of': datetime_time,
'Average daily cases': data[week]['attributes']['average_daily_cases']
})
df = pd.DataFrame(dailyCaseList)
df.to_csv('data/SAMHD_average_daily_cases_by_week.csv', index=False)
# July 13, 2021 Functions
getWeeklyPositivity(weeklyLabData)
getWeeklyCaseChange(weeklyData)
# GetActiveCaseMap()
# DAILY GRAPHICS
# getTwoWeekChange(dailyData)
getLast90Days(dailyData)
getSevenDayNewCases(dailyData)
getCumConfirmedCases(dailyData)
getUpdateTable(dailyData)
getSevenDayNewDeaths(dailyData)
getPatientStatus(dailyData)
getCumDeaths(dailyData)
# Beginning on Jan. 2, 2023, the city only updates the data once a week on Tuesdays.
get_average_daily_cases(weeklySAMHDData)
# State data
try:
getTexasCountyData()
except:
print('🚨 Texas data not available 🚨')
createMetadata()