-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
answer_82.py
112 lines (83 loc) · 2.3 KB
/
answer_82.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import cv2
import numpy as np
import matplotlib.pyplot as plt
# Harris corner detection
def Harris_corner_step1(img):
## Grayscale
def BGR2GRAY(img):
gray = 0.2126 * img[..., 2] + 0.7152 * img[..., 1] + 0.0722 * img[..., 0]
gray = gray.astype(np.uint8)
return gray
## Sobel
def Sobel_filtering(gray):
# get shape
H, W = gray.shape
# sobel kernel
sobely = np.array(((1, 2, 1),
(0, 0, 0),
(-1, -2, -1)), dtype=np.float32)
sobelx = np.array(((1, 0, -1),
(2, 0, -2),
(1, 0, -1)), dtype=np.float32)
# padding
tmp = np.pad(gray, (1, 1), 'edge')
# prepare
Ix = np.zeros_like(gray, dtype=np.float32)
Iy = np.zeros_like(gray, dtype=np.float32)
# get differential
for y in range(H):
for x in range(W):
Ix[y, x] = np.mean(tmp[y : y + 3, x : x + 3] * sobelx)
Iy[y, x] = np.mean(tmp[y : y + 3, x : x + 3] * sobely)
Ix2 = Ix ** 2
Iy2 = Iy ** 2
Ixy = Ix * Iy
return Ix2, Iy2, Ixy
# gaussian filtering
def gaussian_filtering(I, K_size=3, sigma=3):
# get shape
H, W = I.shape
## gaussian
I_t = np.pad(I, (K_size // 2, K_size // 2), 'edge')
# gaussian kernel
K = np.zeros((K_size, K_size), dtype=np.float)
for x in range(K_size):
for y in range(K_size):
_x = x - K_size // 2
_y = y - K_size // 2
K[y, x] = np.exp( -(_x ** 2 + _y ** 2) / (2 * (sigma ** 2)))
K /= (sigma * np.sqrt(2 * np.pi))
K /= K.sum()
# filtering
for y in range(H):
for x in range(W):
I[y,x] = np.sum(I_t[y : y + K_size, x : x + K_size] * K)
return I
# 1. grayscale
gray = BGR2GRAY(img)
# 2. get difference image
Ix2, Iy2, Ixy = Sobel_filtering(gray)
# 3. gaussian filtering
Ix2 = gaussian_filtering(Ix2, K_size=3, sigma=3)
Iy2 = gaussian_filtering(Iy2, K_size=3, sigma=3)
Ixy = gaussian_filtering(Ixy, K_size=3, sigma=3)
# show result
plt.subplots_adjust(left=0, right=1, top=1, bottom=0, hspace=0, wspace=0.2)
plt.subplot(1,3,1)
plt.imshow(Ix2, cmap='gray')
plt.title("Ix^2")
plt.axis("off")
plt.subplot(1,3,2)
plt.imshow(Iy2, cmap='gray')
plt.title("Iy^2")
plt.axis("off")
plt.subplot(1,3,3)
plt.imshow(Ixy, cmap='gray')
plt.title("Ixy")
plt.axis("off")
plt.savefig("out.png")
plt.show()
# Read image
img = cv2.imread("thorino.jpg").astype(np.float32)
# Harris corner detection step1
out = Harris_corner_step1(img)