-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathhelping_functions.py
204 lines (190 loc) · 5.36 KB
/
helping_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow import keras
import numpy as np
from tensorflow.keras.models import model_from_json
from PIL import Image, ImageEnhance
import PIL.ImageOps
import PIL
import cv2
json_file = open('model_w.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
loaded_model = model_from_json(loaded_model_json)
loaded_model.load_weights("model_w.h5")
def edge_detect(arr):
#edge detection
fil1=np.array([[0,-1,0],
[-1,4,-1],
[0,-1,0]])
#blurring
fil2=np.array([[1,2,1],
[2,4,2],
[1,2,1]])/16
#sharpening
fil3=np.array([[0,-1,0],
[-1,5,-1],
[0,-1,0]])
arr=cv2.filter2D(arr, -1, fil2)
arr=cv2.filter2D(arr, -1, fil2)
arr=cv2.Canny(arr, 112, 479, 20.0)
return arr
def new_rectifier(arr):
l,b=(84,479)
img=PIL.ImageOps.invert(PIL.Image.fromarray(arr))
enhancer=ImageEnhance.Contrast(img)
img=enhancer.enhance(10)
img=img.crop((0,184,479,296))
arr=np.array(img)
arr=edge_detect(arr)
return arr
def rectifier(arr):
l,b=arr.shape
for i in range(l):
for j in range(b):
if arr[i][j]<50:
arr[i][j]=0
else :
arr[i][j]=255
return arr
def dot_remove(tt):
l,b=tt.shape
for i in range(l):
for j in range(b):
if tt[i][j]!=0:
c1,c2,c3,c4=(max(0,i-3),min(l-1,i+3),max(0,j-3),min(b-1,j+3))
flag=0
for loo in range(c3,c4):
if tt[c1][loo]!=0 and c1!=i and loo!=j:
flag=1
break
for loo in range(c3,c4):
if tt[c2][loo]!=0 and c2!=i and loo!=j:
flag=1
break
for loo in range(c1,c2):
if tt[loo][c3]!=0 and loo!=i and c3!=j:
flag=1
break
for loo in range(c1,c2):
if tt[loo][c4]!=0 and loo!=i and c4!=j:
flag=1
break
if flag==0:
tt[i][j]=0
return tt
def preprocess(img):
img=img.convert(mode="L")
#img=img.resize((28,28))
img=PIL.ImageOps.invert(img)
enhancer=ImageEnhance.Contrast(img)
img=enhancer.enhance(4)
return img
def output(arr):
return loaded_model.predict_classes(arr.reshape(1,28,28,1).astype("float32"))
def output_multiple(img):
li=[]
nums=[]
try:
ll=local(np.array(img))
img=img.crop((ll[0], ll[1], ll[3], ll[2]))
ll=split(np.array(img))
li.append(0)
li.append(ll[0])
for i in range(len(ll)-1):
if (ll[i]+1)!=ll[i+1]:
li.append(ll[i+1])
tt=np.array(img)
l,b=tt.shape
li.append(b)
except:
_=1
#plt.imshow(tt,cmap="gray")
#plt.show()
for i in range(len(li)-1):
try :
ii=img.crop((li[i],0,li[i+1],l))
trr=local(np.array(ii))
try:
ii=ii.crop((trr[0],trr[1],trr[3],trr[2]))
except:
_=1
b1,l1=ii.size
ch=l1-b1
if ch>0: #making square
ii=ii.crop((int(ch/2)*-1,0,b1+int(ch/2),l1))
else:
ii=ii.crop((0,int(ch/2),b1,l1+(-1*int(ch/2))))
ii=ii.resize((24,24))
#ii=ii.crop((max(-0.1*b1,-25),-0.1*l1,min(1.1*b1,b1+25),1.1*l1)) #expanding horizons
ii=ii.crop((-2,-2,26,26))
it=np.array(ii)
it=rectifier(it)
c=0
for i in range(28):
for j in range(28):
if it[i][i]>250:
c=c+1
if c>20:
nums.append(it)
except:
_=1
opp=0
for i in nums:
opp=opp*10+output(i)[0]
print(opp)
return opp
def split(arr):
l,b=arr.shape
ver_lim=[]
flag=0
for j in range(b):
flag=0
for i in range(l):
if arr[i][j]!=0:
flag=1
break
if flag==0:
ver_lim.append(j)
return ver_lim
def local(arr):
l,b=arr.shape
lims=[]
alt=200
flag=0
for j in range(b):
for i in range(l):
if arr[i][j]>=alt:
lims.append(j)
flag=1
break
if flag==1:
break
flag=0
for i in range(l):
for j in range(b):
if arr[i][j]>=alt:
lims.append(i)
flag=1
break
if flag==1:
break
flag=0
for i in range(l):
for j in range(b):
if arr[l-i-1][b-j-1]>=alt:
lims.append(l-i-1)
flag=1
break
if flag==1:
break
flag=0
for j in range(b):
for i in range(l):
if arr[l-i-1][b-j-1]>=alt:
lims.append(b-j-1)
flag=1
break
if flag==1:
break
return lims