-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathparser_and_builder.py
212 lines (181 loc) · 10.8 KB
/
parser_and_builder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# Copyright 2023 Garena Online Private Limited.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import torch
def get_args_parser():
parser = argparse.ArgumentParser('MCC', add_help=False)
# Model
parser.add_argument('--input_size', default=224, type=int,
help='Images input size')
parser.add_argument('--occupancy_weight', default=1.0, type=float,
help='A constant to weight the occupancy loss')
parser.add_argument('--rgb_weight', default=0.01, type=float,
help='A constant to weight the color prediction loss')
parser.add_argument('--drop_path', default=0.1, type=float,
help='drop_path probability')
parser.add_argument('--regress_color', action='store_true',
help='If true, regress color with MSE. Otherwise, 256-way classification for each channel.')
# Training
parser.add_argument('--batch_size', default=16, type=int,
help='Batch size per GPU for training (effective batch size is batch_size * accum_iter * # gpus')
parser.add_argument('--eval_batch_size', default=2, type=int,
help='Batch size per GPU for evaluation (effective batch size is batch_size * accum_iter * # gpus')
parser.add_argument('--accum_iter', default=8, type=int,
help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)')
parser.add_argument('--lr', type=float, default=None, metavar='LR',
help='Learning rate (absolute lr)')
parser.add_argument('--blr', type=float, default=1e-4, metavar='LR',
help='Base learning rate: absolute_lr = base_lr * total_batch_size / 512')
parser.add_argument('--min_lr', type=float, default=0., metavar='LR',
help='Lower lr bound for cyclic schedulers that hit 0')
parser.add_argument('--warmup_epochs', type=int, default=5, metavar='N',
help='Epochs to warmup LR')
parser.add_argument('--clip_grad', type=float, default=1.0,
help='Clip gradient at the specified norm')
# Job
parser.add_argument('--job_dir', default='',
help='Path to where to save, empty for no saving')
parser.add_argument('--output_dir', default='./output_dir',
help='Path to where to save, empty for no saving')
parser.add_argument('--exp_name', default='test',
help='Experiment name')
parser.add_argument('--device', default='cuda',
help='Device to use for training / testing')
parser.add_argument('--seed', default=0, type=int,
help='Random seed.')
parser.add_argument('--resume', default='',
help='Resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='Start epoch')
parser.add_argument('--num_workers', default=8, type=int,
help='Number of workers for training data loader')
parser.add_argument('--num_eval_workers', default=4, type=int,
help='Number of workers for evaluation data loader')
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
parser.set_defaults(pin_mem=True)
# Distributed training
parser.add_argument('--world_size', default=1, type=int,
help='Number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://',
help='Url used to set up distributed training')
# Experiments
parser.add_argument('--debug', action='store_true')
parser.add_argument('--run_viz', action='store_true',
help='Specify to run only the visualization/inference given a trained model.')
parser.add_argument('--max_n_viz_obj', default=10, type=int,
help='Max number of objects to visualize during training.')
# Data
parser.add_argument('--train_epoch_len_multiplier', default=32, type=int,
help='# examples per training epoch is # objects * train_epoch_len_multiplier')
parser.add_argument('--eval_epoch_len_multiplier', default=1, type=int,
help='# examples per eval epoch is # objects * eval_epoch_len_multiplier')
# CO3D
parser.add_argument('--co3d_path', type=str, default='/mnt/cache_dataset/co3d_source/co3d/dataset',
help='Path to CO3D v2 data.')
parser.add_argument('--holdout_categories', action='store_true',
help='If true, hold out 10 categories and train on only the remaining 41 categories.')
parser.add_argument('--co3d_world_size', default=3.0, type=float,
help='The world space we consider is \in [-co3d_world_size, co3d_world_size] in each dimension.')
# Hypersim
parser.add_argument('--use_hypersim', action='store_true',
help='If true, use hypersim, else, co3d.')
parser.add_argument('--hypersim_path', default="hypersim_data", type=str,
help="Path to Hypersim data.")
# Data aug
parser.add_argument('--random_scale_delta', default=0.2, type=float,
help='Random scaling each example by a scaler \in [1 - random_scale_delta, 1 + random_scale_delta].') #0.2
parser.add_argument('--random_shift', default=1.0, type=float,
help='Random shifting an example in each axis by an amount \in [-random_shift, random_shift]') #1.0
parser.add_argument('--random_rotate_degree', default=180, type=int,
help='Random rotation degrees.')
# Smapling, evaluation, and coordinate system
parser.add_argument('--shrink_threshold', default=10.0, type=float,
help='Any points with distance beyond this value will be shrunk.')
parser.add_argument('--semisphere_size', default=6.0, type=float,
help='The Hypersim task predicts points in a semisphere in front of the camera.'
'This value specifies the size of the semisphere.')
parser.add_argument('--eval_granularity', default=0.1, type=float,
help='Granularity of the evaluation points.')
parser.add_argument('--viz_granularity', default=0.1, type=float,
help='Granularity of points in visaulizatoin.')
parser.add_argument('--eval_score_threshold', default=0.4, type=float,
help='Score threshold for evaluation.')
parser.add_argument('--eval_dist_threshold', default=0.1, type=float,
help='Points closer than this amount to a groud-truth is considered correct.')
parser.add_argument('--train_dist_threshold', default=0.1, type=float,
help='Points closer than this amount is considered positive in training.')
# More args
parser.add_argument('--print_every', default=200, type=int)
parser.add_argument('--val_every', default=5, type=int)
parser.add_argument('--viz_every', default=5, type=int)
parser.add_argument('--save_every', default=1, type=int)
parser.add_argument('--run_val', action='store_true')
parser.add_argument('--epochs', default=100, type=int)
parser.add_argument('--n_queries', default=550, type=int)
parser.add_argument('--fix', default=0, type=int)
parser.add_argument('--weight_decay', type=float, default=0.05)
parser.add_argument('--cd_norm', default=1, type=int)
parser.add_argument('--n_groups', default=200, type=int)
parser.add_argument('--nneigh', default=4, type=int)
parser.add_argument('--nn_seen', default=4, type=int)
parser.add_argument('--xyz_size', default=112, type=int)
parser.add_argument('--hr', action='store_true')
parser.add_argument('--xyz_size_hr', default=224, type=int)
parser.add_argument('--no_fine', default=0, type=int)
parser.add_argument('--geo', type=str, default='udf', choices=['udf','occ'])
parser.add_argument('--reset_geo', action='store_true')
parser.add_argument('--udf_threshold', default=0.23, type=float)
parser.add_argument('--udf_n_iter', default=10, type=int)
parser.add_argument('--repulsive', default=1, type=int, choices=[0,1])
parser.add_argument('--n_query_udf', default=12000, type=int)
parser.add_argument('--save_pc', action='store_true')
parser.add_argument('--one_class', default='', type=str)
return parser
def build_loader(args, num_tasks, global_rank, is_train, dataset_type, collate_fn, dataset_maps):
'''Build data loader'''
dataset = dataset_type(args, is_train=is_train, dataset_maps=dataset_maps)
sampler_train = torch.utils.data.DistributedSampler(
dataset, num_replicas=num_tasks, rank=global_rank, shuffle=is_train
)
batch_size = args.batch_size if is_train else args.eval_batch_size
if args.geo == 'udf' and is_train == False:
batch_size = 1
data_loader = torch.utils.data.DataLoader(
dataset, batch_size=batch_size,
sampler=sampler_train,
num_workers=args.num_workers if is_train else args.num_eval_workers,
pin_memory=args.pin_mem,
collate_fn=collate_fn,
)
return data_loader
def build_loader_subset(args, num_tasks, global_rank, is_train, dataset_type, collate_fn, dataset_maps):
'''Build data loader'''
dataset = dataset_type(args, is_train=is_train, dataset_maps=dataset_maps)
subset_indices = list(range(20)) # select your indices here as a list
subset = torch.utils.data.Subset(dataset, subset_indices)
sampler_train = torch.utils.data.DistributedSampler(
subset, num_replicas=num_tasks, rank=global_rank, shuffle=is_train
)
data_loader = torch.utils.data.DataLoader(
subset, batch_size=2,
sampler=sampler_train,
num_workers=args.num_workers if is_train else args.num_eval_workers,
pin_memory=args.pin_mem,
collate_fn=collate_fn,
)
return data_loader