-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathaugmentation.py
94 lines (81 loc) · 3.08 KB
/
augmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import math
import random
from PIL import Image
from torchvision import transforms
import torch
def round(x):
return math.floor(x + 0.5)
def read_data(d, opt, vocab_mapping):
test_mode = d['test'] or False
mode = d['mode'] or random.randint(1, 6)
flip = d['flip'] or False
if mode < 7:
w_start = d['w_start'] or random.randint(1, len(d['words']) - mode + 1)
w_end = w_start + mode -1
min_frame_v, max_frame_v = 1, 75
sub = ''
frame_v_start, frame_v_end = -1, -1
# test mode
if test_mode:
frame_v_start, frame_v_end = min_frame_v, max_frame_v
sub = ' '.join(d['words'])
# train mode
else:
# check number of words to train on
if mode == 7:
frame_v_start, frame_v_end = min_frame_v, max_frame_v
sub = ' '.join(d['words'])
else:
# generate target
words = []
for w_i in range(w_start, w_end + 1):
words.append(d['words'][w_i - 1])
sub = ' '.join(words)
frame_v_start = max(round(1 / 1000 * d['t_start'][w_start - 1]), 1)
frame_v_end = min(round(1 / 1000 * d['t_end'][w_end - 1]), 75)
# if too short, back off to whole sequence
if frame_v_end - frame_v_start + 1 <= 2:
frame_v_start, frame_v_end = min_frame_v, max_frame_v
sub = ' '.join(d['words'])
# construct output tensor
y = []
# allow whitespaces to be predicted
for char in sub: y.append(vocab_mapping[char])
# load images
# data path: $BASE/sX/.../mouth_xxx.png
cur_path = '{}/{}/{}/{}'.format(opt.datapath, d['s'], d['v'], opt.mode_img)
# randomly flip video
if test_mode: flip = False
else: flip = flip or random.random() > 0.5
x = torch.FloatTensor(3, frame_v_end - frame_v_start + 1, 50, 100)
transform_lst = []
if flip:
transform_lst.append(transforms.functional.hflip)
transform_lst += [
transforms.ToTensor(),
transforms.Normalize(mean=[0.7136, 0.4906, 0.3283],
std=[0.113855171, 0.107828568, 0.0917060521])
]
data_transform = transforms.Compose(transform_lst)
frame_count = 0
for f_frame in range(frame_v_start, frame_v_end + 1):
img = Image.open('{}_{:03d}.png'.format(cur_path, f_frame - 1)).convert('RGB')
img = data_transform(img)
x[:, frame_count, :, :] = img
frame_count += 1
# temporal jitter
if opt.temporal_aug > 0 and not test_mode:
length = x.size(1)
output = x.clone()
prob_del = torch.Tensor(length).bernoulli_(opt.temporal_aug)
prob_dup = prob_del.index_select(0, torch.linspace(length - 1, 0, length).long())
output_count = 0
for t in range(0, length):
if prob_del[t] == 0:
output[:, output_count, :] = x[:, t, :]
output_count += 1
if prob_dup[t] == 1 and output_count > 0:
output[:, output_count, :] = x[:, output_count - 1, :]
output_count += 1
x = output
return x, y, sub