-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
59 lines (47 loc) · 1.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import matplotlib
matplotlib.use('Agg')
import logging
from pytorch_lightning import Trainer
from argparse import ArgumentParser
from models.model import AffWild2VA
import torch
import random
import numpy as np
logging.basicConfig(level=logging.INFO)
def main(hparams):
torch.backends.cudnn.deterministic = True
random.seed(hparams.seed)
torch.manual_seed(hparams.seed)
torch.cuda.manual_seed(hparams.seed)
np.random.seed(hparams.seed)
# init module
model = AffWild2VA(hparams)
if hparams.fusion_checkpoint:
checkpoint = torch.load(hparams.fusion_checkpoint, map_location=lambda storage, loc: storage)
model.load_state_dict(checkpoint['state_dict'], strict=False)
print ('Loaded pretrained weights for individual streams')
elif hparams.checkpoint:
model = model.load_from_checkpoint(hparams.checkpoint)
trainer = Trainer(
early_stop_callback=None,
check_val_every_n_epoch=1,
gradient_clip_val=1.0,
default_save_path=hparams.checkpoint_path,
max_epochs=hparams.max_nb_epochs,
gpus=hparams.gpus,
nb_gpu_nodes=hparams.nodes,
distributed_backend='ddp' if hparams.distributed else 'dp'
)
trainer.fit(model)
if __name__ == '__main__':
parser = ArgumentParser(add_help=False)
parser.add_argument('--gpus', type=str, default='2')
parser.add_argument('--nodes', type=int, default=1)
parser.add_argument('--seed', type=int, default=12345)
parser.add_argument('--fusion_checkpoint', type=str, default='') # manual checkpoint
parser.add_argument('--checkpoint', type=str, default='') # actual restore
# give the module a chance to add own params
parser = AffWild2VA.add_model_specific_args(parser)
# parse params
hparams = parser.parse_args()
main(hparams)