-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path.Rhistory
512 lines (512 loc) · 18.8 KB
/
.Rhistory
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
column_data_list[[col_index]] <- column_data
# Searching for missing values
current_missing_value <- sum(is.na(column_data))
# Filling missing_values_list
missing_values_list[[col_index]] <- current_missing_value
# Increment the column index
col_index <- col_index + 1
}
# Adding Y data to the list
y_column_data <- train[["y"]]
column_data_list[["y"]] <- y_column_data
y_missing_values <- sum(is.na(y_column_data))
missing_values_list[["y"]] <- y_missing_values
# Creating a new dataframe for each data type
quali_nom <- metadata[metadata$Variavel.tipo=="Qualitativo nominal" & metadata$Variavel.cod != 'id',]
quali_ord <- metadata[metadata$Variavel.tipo=="Qualitativo ordinal", ]
quant_disc <- metadata[metadata$Variavel.tipo=="Quantitativo discreto", ]
quant_cont <- metadata[metadata$Variavel.tipo=="Quantitativo continua", ]
# Creating a list for each new dataframe
quali_nom_list <- list()
quali_ord_list <- list()
quant_disc_list <- list()
quant_cont_list <- list()
create_list_for_df <- function(df) {
col_index <- 1
# Temporary list
df_list <- list()
while (col_index <= length(col(df[1]))) {
column_name <- df$Variavel.cod[col_index]
# Access the column using the variable name
column_data <- train[[column_name]]
# Increment the list
df_list[[col_index]] <- column_data
# Counter
col_index <- col_index + 1
}
return(df_list)
}
# Populating lists
quali_ord_list <- create_list_for_df(quali_ord)
quali_nom_list <- create_list_for_df(quali_nom)
quant_cont_list <- create_list_for_df(quant_cont)
quant_disc_list <- create_list_for_df(quant_disc)
# Naming list vectors
names(quali_nom_list) <- quali_nom$Variavel.cod
names(quali_ord_list) <- quali_ord$Variavel.cod
names(quant_cont_list) <- quant_cont$Variavel.cod
names(quant_disc_list) <- quant_disc$Variavel.cod
## Summary Statistics:
quant_cont_summary <- list()
for(i in seq(length(quant_cont_list))) {
quant_cont_summary[[i]] <- summary(quant_cont_list[[i]])
}
# Removing y for this analysis
temp_quant_disc_list <- quant_disc_list
temp_quant_disc_list$y <- NULL
cor_quant_cont_y <- sapply(quant_cont_list, function(x) cor(x, train$y))
cor_quant_disc_y <- sapply(temp_quant_disc_list, function(x) cor(x, train$y))
cor_quali_ord_y <- sapply(quali_ord_list, function(x) cor(x, train$y))
cor_quali_nom_y <- sapply(quali_nom_list, function(x) cor(x, train$y))
# Summaries in relation to y:
summary(cor_quali_nom_y)
summary(cor_quali_ord_y)
summary(cor_quant_cont_y)
summary(cor_quant_disc_y)
# Pairs type by type:
# Continuos X Discrete
cor_matrix_quant_cont_disc <- cor(do.call(cbind, quant_cont_list), do.call(cbind, temp_quant_disc_list))
# Continuos X Nominal
cor_matrix_quant_cont_nom <- cor(do.call(cbind, quant_cont_list), do.call(cbind, quali_nom_list))
# Discrete X Nominal
cor_matrix_quant_disc_nom <- cor(do.call(cbind, quant_disc_list), do.call(cbind, quali_nom_list))
# Summaries type by type:
corrplot.mixed(cor_matrix_quant_cont_disc, tl.col="black", tl.pos="lt")
corrplot.mixed(cor_matrix_quant_cont_nom, tl.col="black", tl.pos="lt")
corrplot.mixed(cor_matrix_quant_disc_nom, tl.col="black", tl.pos="lt")
# Pairs in each type:
cor_matrix_quant_cont <- cor(do.call(cbind, quant_cont_list))
cor_matrix_quant_disc <- cor(do.call(cbind, quant_disc_list))
cor_matrix_quali_nom <- cor(do.call(cbind, quali_nom_list))
cor_matrix_quali_ord <- cor(do.call(cbind, quali_ord_list))
# Threshold
threshold <- 0.7
# Plotting
corrplot.mixed(cor_matrix_quant_cont, tl.col="black", tl.pos="lt")
corrplot.mixed(cor_matrix_quant_disc, tl.col="black", tl.pos="lt")
corrplot.mixed(cor_matrix_quali_nom, tl.col="black", tl.pos="lt")
## Utils
column_data_list_length <-length(column_data_list)
# Function to detect outliers using Tukey's fences
detect_outliers <- function(matrix_data) {
outliers <- list()
for (i in 1:column_data_list_length) {
matrix_values <- matrix_data[[i]]
# Calculate the lower and upper fences using Tukey's fences
q1 <- quantile(matrix_values, 0.25)
q3 <- quantile(matrix_values, 0.75)
iqr <- q3 - q1
lower_fence <- q1 - (1.5 * iqr)
upper_fence <- q3 + (1.5 * iqr)
# Identify outliers based on the fences
outliers[[i]] <- matrix_values[matrix_values < lower_fence | matrix_values > upper_fence]
}
return(outliers)
}
library(corrr)
library(corrr)
library(corrr)
library(corrr)
library("FactoMineR")
str(train)
head(train)
## PCA
train_without_id <- train
train_without_id[0]
train_without_id[[0]]
train_without_id
train_without_id['id']
train_without_id['id'] <- NULL
train_without_id['id']
# Normalization
train_normalized <- scale(train_without_id)
train_normalized
# Correlation matrix
corr_matrix <- cor(train_normalized)
ggcorrplot(corr_matrix)
library(ggcorrplot)
ggcorrplot(corr_matrix)
to.dataframe(quant_disc_list)]
to.dataframe(quant_disc_list)
data.frame(quant_cont_list)
# Dataframes:
quant_cont_df <- data.frame(quant_cont_list)
quant_disc_df <- data.frame(quant_disc_list)
quali_nom_df <- data.frame(quali_nom_list)
quali_ord_df <- data.frame(quali_nom_list)
quali_nom_normalized <- scale(quali_nom_df)
quali_ord_normalized <- scale(quali_ord_df)
quant_cont_normalized <- scale(quant_cont_df)
quant_disc_normalized <- scale(quant_disc_df)
corr_quali_nom_matrix <- cor(quali_nom_normalized)
corr_quali_ord_matrix <- cor(quali_ord_normalized)
cor_quant_cont_matrix <- cor(quant_cont_normalized)
cor_quant_disc_matrix <- cor(quant_disc_normalized)
corr_quant_cont_matrix <- cor(quant_cont_normalized)
corr_quant_disc_matrix <- cor(quant_disc_normalized)
ggcorrplot(corr_quali_nom_matrix)
ggcorrplot(corr_quali_ord_matrix)
ggcorrplot(corr_quant_cont_matrix)
ggcorrplot(corr_quant_disc_matrix)
# Applying PCA
data.pca <- princomp(corr_matrix)
summary(data.pca)
data.pca$loadings[, 1:14]
data.pca$loadings[, 1:2]
fviz_eig(data.pca, addlabels=TRUE)
# libraries
library(ggplot2)
library(corrplot)
library(outliers)
library(corrr)
library(ggcorrplot)
library("FactoMineR")
fviz_eig()
library(FactoMineR)
install.packages("FactoMineR")
install.packages("FactoMineR")
# libraries
library(ggplot2)
library(corrplot)
library(outliers)
library(corrr)
library(ggcorrplot)
library(FactoMineR)
# Importing data
metadata=read.csv("metadata.csv")
train=read.csv("train.csv")
# Initialize the column index
col_index<-1
# Initialize an empty list to store column data
column_data_list <- list()
# Missing Values List
missing_values_list <- list()
# Running through train data
while (col_index <= length(col(train))) {
# Create the variable name
column_name <- paste0("var", col_index)
# Access the column using the variable name
column_data <- train[[column_name]]
# Perform operations on the column
column_data_list[[col_index]] <- column_data
# Searching for missing values
current_missing_value <- sum(is.na(column_data))
# Filling missing_values_list
missing_values_list[[col_index]] <- current_missing_value
# Increment the column index
col_index <- col_index + 1
}
# Applying PCA
data.pca <- princomp(corr_matrix)
summary(data.pca)
fviz_eig(data.pca, addlabels=TRUE)
fviz_eig(data.pca, addlabels=TRUE)
library(factoextra)
fviz_eig(data.pca, addlabels=TRUE)
ggcorrplot(corr_matrix)
# PCA: Biplot
fviz_pca_var(data.pca, col.var = "black")
# PCA: Biplot
?fviz_pca_var()
# PCA: Biplot
fviz_pca_biplot(data.pca, col.var = "black")
# PCA: Biplot
fviz_pca_ind(data.pca, col.var = "black")
# Contribution of each variable
fviz_cos2(data.pca, choice = "var", axes = 1:14)
?fviz_cos2()
# Contribution of each variable
fviz_cos2(data.pca, choice = "var", choose.vars=30, axes = 1:14)
# Contribution of each variable
fviz_cos2(data.pca, choice = "var", choose.vars=10, axes = 1:14)
# Contribution of each variable
num_vars = 10
fviz_cos2(data.pca, choose.vars= num_vars, choice = "var", axes = 1:14)
# Contribution of each variable
num_vars = 10
fviz_cos2(data.pca, top = num_vars, choice = "var", axes = 1:14)
# Contribution of each variable
num_vars = 30
fviz_cos2(data.pca, top = num_vars, choice = "var", axes = 1:14)
# Contribution of each variable
num_vars = 25
fviz_cos2(data.pca, top = num_vars, choice = "var", axes = 1:14)
# Contribution of each variable
num_vars = 23 # One third of the total of vars[69/3]
fviz_cos2(data.pca, top = num_vars, choice = "var", axes = 1:14)
# 10 dimensions, since they add up to 87% of relevance
dim = 10
fviz_cos2(data.pca, top = num_vars, choice = "var", axes = 1:dim)
# Biplot & cos2
fviz_pca_var(data.pca, col.var = 'cos2',
gradient.cols = c('blue', 'purple', 'magenta'),
repel = TRUE)
# PCA: Biplot
fviz_pca_var(data.pca, col.var = "black", repel=TRUE)
# PCA: Biplot
fviz_pca_var(data.pca, col.var = "magenta", repel=TRUE)
# PCA: Biplot
fviz_pca_var(data.pca, col.var = "cyan", repel=TRUE)
# Biplot & cos2
fviz_pca_var(data.pca, col.var = 'cos2',
gradient.cols = c('blue', 'purple', 'magenta'),
repel = TRUE,
addEllipses=TRUE, ellipse.level=0.95)
fviz_pca_biplot(data.pca, col.var = "black", repel=TRUE,
addEllipses=TRUE, ellipse.level=0.95)
fviz_pca_ind(data.pca, col.var = "black", repel=TRUE,
addEllipses=TRUE, ellipse.level=0.95)
# Biplot & cos2
fviz_pca_biplot(data.pca, col.var = 'cos2',
gradient.cols = c('blue', 'purple', 'magenta'),
repel = TRUE)
# Biplot & cos2
fviz_pca_biplot(data.pca, col.var = 'cos2',
gradient.cols = c('blue', 'purple', 'magenta'),
repel = TRUE, axes=0:dim)
# Biplot & cos2
fviz_pca_biplot(data.pca, col.var = 'cos2',
gradient.cols = c('blue', 'purple', 'magenta'),
repel = TRUE, axes=c(1,2,3))
# Biplot & cos2
fviz_pca_biplot(data.pca, col.var = 'cos2',
gradient.cols = c('blue', 'purple', 'magenta'),
repel = TRUE, axes=2)
# Biplot & cos2
fviz_pca_var(data.pca, col.var = 'cos2',
gradient.cols = c('blue', 'purple', 'magenta'),
repel = TRUE)
fviz_cos2(data.pca, top = num_vars, choice = "var", axes = 1:2)
# Summaries type by type:
corrplot.mixed(cor_matrix_quant_cont_disc, tl.col="black", tl.pos="lt")
# Pairs in each type:
cor_matrix_quant_cont <- cor(do.call(cbind, quant_cont_list))
# Plotting
corrplot.mixed(cor_matrix_quant_cont, tl.col="black", tl.pos="lt")
## Summaries
summary(quali_nom_list)
## Summaries
summary(train_without_id)
?write.xlsx()
install.packages(xlsx)
install.packages("xlsx")
library(xlsx)
## Summaries
summary_train <- summary(train_without_id)
write.xlsx(summary_train, file = "train_summary.xlsx")
summary_train
library(openxlsx)
## Summaries
summary_train <- summary(train_without_id)
write.xlsx(summary_train, file = "train_summary.xlsx")
## Summaries
sd_train <- sapply(train_without_id, sd)
print(sd_train)
write.xlsx(sd_train, file = "sd_train.xlsx")
typeof(summary_train)
typeof(sd_train)
View(sd_train)
myv <- c(1.5, 2.7, 3.9, 4.2, 5.1)
write.xlsx(myv, file="myv.xlsx")
library(writexl)
write_xlsx(myv, path = "myv.xlsx")
write_xlsx(sd_train, path = "test.xlsx")
write_xlsx(data = list(myv = myv), path = "test.xlsx")
write_xlsx(list(myv = myv), path = "test.xlsx")
write_xlsx(data.frame(myv), path = "test.xlsx")
write_xlsx(data.frame(sd_train), path = "sd_train.xlsx")
summary_plot <- function(data, variables, summary_fun = mean, y_label = "Valor", error_bar = TRUE) {
# Calcula as estatísticas resumidas para cada variável
summary_values <- sapply(data[variables], summary_fun)
# Extrai as estatísticas relevantes (por exemplo, média e desvio padrão)
means <- summary_values["Mean", ]
sd <- summary_values["SD", ]
# Cria o gráfico de barras
barplot(means, ylim = c(min(0, min(means - sd)), max(means + sd) * 1.1),
xlab = "Variáveis", ylab = y_label, main = "Resumo das Variáveis",
col = "steelblue", border = "black", names.arg = variables)
'
# Adiciona barras de erro (opcional)
if (error_bar) {
arrows(x0 = seq_along(variables), y0 = means - sd, y1 = means + sd,
angle = 90, code = 3, length = 0.05)
}'
}
summary_plot(train_without_id)
train_without_id[1:]
cols(train_without_id)
col(train_without_id)
colnames(train_without_id)
summary_plot(train_without_id, colnames(train_without_id), 'mean')
summary_plot(train_without_id, colnames(train_without_id), 'mean')
summary_plot(train_without_id, colnames(train_without_id))
summary_plot <- function(data, variables, y_label = "Value", error_bar = TRUE) {
# Calculate the summary statistics for each variable
means <- sapply(data[, variables], mean)
sd <- sapply(data[, variables], sd)
# Create the bar plot
barplot(means, ylim = c(min(0, min(means - sd)), max(means + sd) * 1.1),
xlab = "Variables", ylab = y_label, main = "Summary of Variables",
col = "steelblue", border = "black", names.arg = variables)
# Add error bars (optional)
if (error_bar) {
arrows(x0 = seq_along(variables), y0 = means - sd, y1 = means + sd,
angle = 90, code = 3, length = 0.05)
}
}
summary_plot(train_without_id, colnames(train_without_id))
summary_plot <- function(data, variables, summary_fun = mean, y_label = "Value", error_bar = TRUE) {
# Calculate the summary statistics for each variable
summary_values <- summary(data[, variables])
# Extract the relevant summary statistics (e.g., mean and standard deviation)
means <- summary_values[, summary_fun]
sd <- summary_values[, "sd"]
# Create the bar plot
barplot(means, ylim = c(min(0, min(means - sd)), max(means + sd) * 1.1),
xlab = "Variables", ylab = y_label, main = "Summary of Variables",
col = "steelblue", border = "black", names.arg = variables)
# Add error bars (optional)
if (error_bar) {
arrows(x0 = seq_along(variables), y0 = means - sd, y1 = means + sd,
angle = 90, code = 3, length = 0.05)
}
}
summary_plot(train_without_id, colnames(train_without_id))
# Create the bar plot
barplot(means, ylim = c(min(0, min(means - sd)), max(means + sd) * 1.1),
xlab = "Variables", ylab = y_label, main = "Summary of Variables",
col = "steelblue", border = "black", names.arg = variables)
summary_plot <- function(data, variables, y_label = "Value", error_bar = TRUE) {
# Calculate the summary statistics for each variable
means <- sapply(data[, variables], mean)
sd <- sapply(data[, variables], sd)
# Create the bar plot
barplot(means, ylim = c(min(0, min(means - sd)), max(means + sd) * 1.1),
xlab = "Variables", ylab = y_label, main = "Summary of Variables",
col = "steelblue", border = "black", names.arg = variables)
# Add error bars (optional)
if (error_bar) {
arrows(x0 = seq_along(variables), y0 = means - sd, y1 = means + sd,
angle = 90, code = 3, length = 0.05)
}
}
summary_plot(train_without_id, colnames(train_without_id))
warnings()
<
summary_plot <- function(data, variables, y_label = "Value", error_bar = TRUE) {
# Calculate the summary statistics for each variable
means <- sapply(data[, variables], mean)
sd <- sapply(data[, variables], sd)
# Create the bar plot
barplot(means, ylim = c(min(0, min(means - sd)), max(means + sd) * 1.1),
xlab = "Variables", ylab = y_label, main = "Summary of Variables",
col = "steelblue", border = "black", names.arg = variables)
# Add error bars (optional)
if (error_bar) {
for (i in seq_along(variables)) {
if (!is.na(sd[i]) && sd[i] != 0) {
arrows(x0 = i, y0 = means[i] - sd[i], y1 = means[i] + sd[i],
angle = 90, code = 3, length = 0.05)
}
}
}
}
summary_plot(train_without_id, colnames(train_without_id))
summary_plot(train_without_id, colnames(train_without_id), mean)
summary_plot(train_without_id, colnames(train_without_id), 'mean')
summary_plot(train_without_id, colnames(train_without_id), 'ean')
summary_plot <- function(data, variables, y_label = "Value", error_bar = TRUE) {
# Calculate the summary statistics for each variable
means <- sapply(data[, variables], mean)
sd <- sapply(data[, variables], sd)
# Create the bar plot
barplot(y_label, ylim = c(min(0, min(means - sd)), max(means + sd) * 1.1),
xlab = "Variables", ylab = y_label, main = "Summary of Variables",
col = "steelblue", border = "black", names.arg = variables)
# Add error bars (optional)
if (error_bar) {
for (i in seq_along(variables)) {
if (!is.na(sd[i]) && sd[i] != 0) {
arrows(x0 = i, y0 = means[i] - sd[i], y1 = means[i] + sd[i],
angle = 90, code = 3, length = 0.05)
}
}
}
}
summary_plot(train_without_id, colnames(train_without_id), 'ean')
summary_plot(train_without_id, colnames(train_without_id), 'means')
summary_plot(train_without_id, colnames(train_without_id), 'means')
summary_plot <- function(data, variables, y_label, error_bar = TRUE) {
# Calculate the summary statistics for each variable
if (y_label == 'mean') {
y <- sapply(data[, variables], mean)
} ifelse(y_label == 'sd') {
summary_plot(train_without_id, colnames(train_without_id), 'mean')
summary_plot <- function(data, variables, y_label, error_bar = TRUE) {
# Calculate the summary statistics for each variable
y <- 'y'
print(y)
if (y_label == 'mean') {
y <- sapply(data[, variables], mean)
} ifelse(y_label == 'sd') {
summary_plot(train_without_id, colnames(train_without_id), 'mean')
summary_plot(train_without_id, colnames(train_without_id), 'mean', TRUE)
summary_plot(train_without_id, colnames(train_without_id))
summary_plot <- function(data, variables, y_label ='mean', error_bar = TRUE) {
# Calculate the summary statistics for each variable
y <- 'y'
print(y)
if (y_label == 'mean') {
y <- sapply(data[, variables], mean)
} ifelse(y_label == 'sd') {
summary_plot(train_without_id, colnames(train_without_id))
ggsummarystats(
train_without_id, x = "dose", y = "len",
ggfunc = ggbarplot, add = c("jitter", "median_iqr"), position = position_dodge(),
color = "supp", palette = "npg"
)
library(ggpubr)
install.packages('ggpubr')
library(ggpubr)
ggsummarystats(
train_without_id, x = "dose", y = "len",
ggfunc = ggbarplot, add = c("jitter", "median_iqr"), position = position_dodge(),
color = "supp", palette = "npg"
)
ggsummarystats(
train_without_id,
ggfunc = ggbarplot, add = c("jitter", "median_iqr"), position = position_dodge(),
color = "supp", palette = "npg"
)
plotsummary(train_without_id, trim = 0, types = c("stripes", "ecdf", "density", "boxplot"),
y.sizes = 4:1, design = "chessboard", main, mycols = "RB")
plotsummary(train_without_id, trim = 0, types = c("stripes", "ecdf", "density", "boxplot"),
y.sizes = 4:1, design = "chessboard", main, mycols = "RB")
library(aplpack)
plotsummary(train_without_id, trim = 0, types = c("stripes", "ecdf", "density", "boxplot"),
y.sizes = 4:1, design = "chessboard", main, mycols = "RB")
plotsummary(train_without_id)
print(rnorm(30))
# Removing y for this analysis
temp_quant_disc_list <- quant_disc_list
temp_quant_disc_list$y <- NULL
cor_quant_cont_y <- sapply(quant_cont_list, function(x) cor(x, train$y))
cor_quant_disc_y <- sapply(temp_quant_disc_list, function(x) cor(x, train$y))
cor_quali_ord_y <- sapply(quali_ord_list, function(x) cor(x, train$y))
cor_quali_nom_y <- sapply(quali_nom_list, function(x) cor(x, train$y))
# Summaries in relation to y:
summary(cor_quali_nom_y)
summary(cor_quali_ord_y)
summary(cor_quant_cont_y)
summary(cor_quant_disc_y)
# Pairs type by type:
# Continuos X Discrete
cor_matrix_quant_cont_disc <- cor(do.call(cbind, quant_cont_list), do.call(cbind, temp_quant_disc_list))
# Continuos X Nominal
cor_matrix_quant_cont_nom <- cor(do.call(cbind, quant_cont_list), do.call(cbind, quali_nom_list))
# Discrete X Nominal
cor_matrix_quant_disc_nom <- cor(do.call(cbind, quant_disc_list), do.call(cbind, quali_nom_list))
# Summaries type by type:
corrplot.mixed(cor_matrix_quant_cont_disc, tl.col="black", tl.pos="lt")
corrplot.mixed(cor_matrix_quant_cont_nom, tl.col="black", tl.pos="lt")
source("~/GitHub/eda-porto-seguro-data-challenge/main.R")