-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplayer.py
435 lines (359 loc) · 16.1 KB
/
player.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
import numpy as np
from simulator import Simulator, State
from policy import *
import ipdb
from copy import copy
from tqdm import tqdm
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from plot import plot
# np.random.seed(32)
def expand(states):
for s in states:
s[0].print()
# runs an episode with given policy in the given env, returns total reward for that episode
def episode(env, policy):
state = env.reset()
state, reward, done = env.check_after_init()
while(not done):
action = policy(state)
state, reward, done = env.step(action)
return reward
# returns average reward on running acc to greedy policy on a given q-function
def test(env, num_episodes, q, epsilon):
total_reward = 0
for _ in range(num_episodes):
state = env.reset()
state, reward, done = env.check_after_init()
while(not done):
action = greedy(state, q)
state, reward, done = env.step(action)
total_reward += reward
return total_reward/num_episodes
def monte_carlo(env, policy, first_visit, num_episodes):
# size of v = (rawsum, number of distinct trumps, dealer's hand)
v = np.zeros((61,4,10), dtype=float)
num_updates = np.zeros((61,4,10), dtype=float)
for _ in tqdm(range(num_episodes)):
# print("====================== NEW EPISODE ======================")
states = []
state = env.reset()
state, reward, done = env.check_after_init()
if done:
# no actionable state encountered in this episode so no update
continue
states.append(copy(state))
while(not done):
action = policy(state)
state, reward, done = env.step(action)
states.append(copy(state))
if states[-1] != None:
raise Exception("last state in episode is actionable, CHECK")
states = states[:-1]
for s in states:
if s.category=="BUST" or s.category=="SUM31":
raise Exception("states within an episode are not actionable")
# updating value function
if first_visit:
states = list(set(states))
for state in states:
transformed_state = state_transformation(state)
v[transformed_state] += reward
num_updates[transformed_state] += 1
v = v/(num_updates+1e-5) # not replacing nan with zeros to know which states were not updated
return v
def k_step_TD(env, policy, k, alpha, num_episodes):
# size of v = (rawsum, number of distinct trumps, dealer's hand)
v = np.zeros((61,4,10), dtype=float)
for _ in tqdm(range(num_episodes)):
# print("====================== NEW EPISODE ======================")
states = []
state = env.reset()
state, reward, done = env.check_after_init()
if done:
# no actionable state encountered in this episode so no update
continue
states.append(copy(state))
# take k-1 steps
for _ in range(k-1):
action = policy(state)
state, reward, done = env.step(action)
if done:
break
states.append(copy(state))
if not done:
assert(len(states)==k), "number of states not correct"
if(not done):
while(True):
action = policy(state)
state, reward, done = env.step(action)
if done:
break
assert(reward==0), "reward is non-zero for intermediate states"
# update S_t, remove from states list and add S_t+k to the states list
initial_state = state_transformation(states[0])
final_state = state_transformation(state)
v[initial_state] += alpha * ( reward + v[final_state] - v[initial_state])
states = states[1:] + [copy(state)]
assert(states[-1]!=None), "states[-1] is None"
# if states[-1] != None:
# raise Exception("last state in episode is actionable, CHECK")
# states = states[:-1]
for s in states:
assert(s.category=="GENERAL"), "states within an episode are not actionable"
# if s.category=="BUST" or s.category=="SUM31":
# raise Exception("states within an episode are not actionable")
# else:
# s.print()
# updating value of states after reaching end of episode
for s in states:
initial_state = state_transformation(s)
v[initial_state] += alpha * ( reward - v[initial_state]) # last state is not actionable so its value is zero
return v
def k_step_sarsa(env, k, alpha, num_episodes, epsilon=None, epsilon_decay=False):
# size of v = (actions, rawsum, number of distinct trumps, dealer's hand)
q = np.zeros((61,4,10,2), dtype=float)
# actions = {"HIT", "STICK"}
episode_rewards = np.zeros(num_episodes)
for ep in tqdm(range(1, num_episodes+1)):
# avg_rewards.append(test(env, num_episodes=test_episodes, q=q, epsilon=0.1))
# print("====================== NEW EPISODE ======================")
# TODO : change decay rate suitably
episode_epsilon = epsilon/(ep**1) if epsilon_decay else epsilon
# best decay at ep**0.1
states = []
state = env.reset()
state, reward, done = env.check_after_init()
if done:
# no actionable state encountered in this episode so no update
episode_rewards[ep-1]=reward
continue
# states.append(copy((state,action)))
action = epsilon_greedy(state, q, episode_epsilon)
# take k-1 steps
for _ in range(k-1):
states.append((copy(state), action))
state, reward, done = env.step(action)
if done:
break
action = epsilon_greedy(state, q, episode_epsilon)
if not done:
assert(len(states)==k-1), "number of states not correct"
if(not done):
while(True):
states.append((copy(state), action))
state, reward, done = env.step(action)
if done:
break
assert(reward==0), "reward is non-zero for intermediate states"
action = epsilon_greedy(state, q, episode_epsilon)
# update S_t, remove from states list and add S_t+k to the states list
initial_state = state_transformation(states[0][0])
final_state = state_transformation(state)
q[initial_state][0 if states[0][1]=="HIT" else 1] += alpha * ( reward + q[final_state][0 if action=="HIT" else 1] - q[initial_state][0 if states[0][1]=="HIT" else 1])
states = states[1:] # + [copy((state, action))]
assert(len(states)==k), ipdb.set_trace() # "number of states in window is not k"
assert(states[-1]!=None), "states[-1] is None"
# if states[-1] != None:
# raise Exception("last state in episode is actionable, CHECK")
# states = states[:-1]
for s in states:
assert(s[0].category=="GENERAL"), "states within an episode are not actionable"
# updating value of states after reaching end of episode
for s in states:
initial_state = state_transformation(s[0])
q[initial_state][0 if s[1]=="HIT" else 1] += alpha * ( reward - q[initial_state][0 if s[1]=="HIT" else 1]) # last state is not actionable so its value is zero
episode_rewards[ep-1]=reward
return q, episode_rewards
def q_learning(env, alpha, num_episodes, epsilon=None, epsilon_decay=False):
# size of v = (actions, rawsum, number of distinct trumps, dealer's hand)
q = np.zeros((61,4,10,2), dtype=float)
# actions = {"HIT", "STICK"}
episode_rewards = np.zeros(num_episodes)
for ep in tqdm(range(1, num_episodes+1)):
# avg_rewards.append(test(env, num_episodes=test_episodes, q=q, epsilon=0.1))
# print("====================== NEW EPISODE ======================")
# TODO : change decay rate suitably
episode_epsilon = epsilon/(ep**1) if epsilon_decay else epsilon
# best decay at ep**0.2
# states = []
state = env.reset()
state, reward, done = env.check_after_init()
if done:
# no actionable state encountered in this episode so no update
episode_rewards[ep-1] = reward
continue
while(not done):
prev_state = copy(state)
action = epsilon_greedy(state, q, episode_epsilon)
state, reward, done = env.step(action)
if done:
break
assert(reward==0), "reward != 0 for actionable state"
assert(state.category=="GENERAL"), "states within an episode are not actionable"
# update q(s,a)
initial_state = state_transformation(prev_state)
final_state = state_transformation(state)
q[initial_state][0 if action=="HIT" else 1] += alpha * (reward + max(q[final_state]) - q[initial_state][0 if action=="HIT" else 1])
initial_state = state_transformation(prev_state)
try:
q[initial_state][0 if action=="HIT" else 1] += alpha * (reward - q[initial_state][0 if action=="HIT" else 1]) # last state is not actionable so its value is zero
except:
ipdb.set_trace()
episode_rewards[ep-1] = reward
return q, episode_rewards
def TD_lambda(env, alpha, lamda, num_episodes, epsilon=None, epsilon_decay=False):
# size of v = (actions, rawsum, number of distinct trumps, dealer's hand)
q = np.zeros((61,4,10,2), dtype=float)
# actions = {"HIT", "STICK"}
episode_rewards = np.zeros(num_episodes)
for ep in tqdm(range(1, num_episodes+1)):
# avg_rewards.append(test(env, num_episodes=test_episodes, q=q, epsilon=0.1))
# print("====================== NEW EPISODE ======================")
# TODO : change decay rate suitably
episode_epsilon = epsilon/(ep**0.5) if epsilon_decay else epsilon
states = []
state = env.reset()
state, reward, done = env.check_after_init()
if done:
# no actionable state encountered in this episode so no update
episode_rewards[ep-1] = reward
continue
while(not done):
action = epsilon_greedy(state, q, episode_epsilon)
states.append((copy(state), action))
state, reward, done = env.step(action)
if done:
break
assert(reward==0), "reward != 0 for actionable state"
assert(state.category=="GENERAL"), "states within an episode are not actionable"
episode_length = len(states)
for i in range(len(states)):
(s,a) = states[i]
gt_lamda = 0
for j,(s_,a_) in enumerate(states[i+1:]):
final_state = state_transformation(s_)
gt_lamda += (lamda**j) * q[final_state][0 if a_=="HIT" else 1]
gt_lamda *= (1-lamda)
gt_lamda += (lamda**(episode_length-i-1)) * reward
initial_state = state_transformation(s)
q[initial_state][0 if a=="HIT" else 1] += alpha * (gt_lamda - q[initial_state][0 if a=="HIT" else 1])
episode_rewards[ep-1] = reward
return q, episode_rewards
env = Simulator()
# # average reward for a policy
# reward=0
# num_episodes = 100
# for i in range(num_episodes):
# reward += episode(env, dealer_policy)
# print(reward/num_episodes)
# ========= Q3 =============
# ===== MONTE CARLO =====
v = monte_carlo(env, dealer_policy, first_visit=False, num_episodes=100000)
# ===== K-STEP TD =====
v = np.zeros((61,4,10), dtype=float)
num_runs = 100
for _ in range(num_runs):
v += k_step_TD(env, dealer_policy, k=1000, alpha=0.1, num_episodes=1000000)
v/=num_runs
plot(v, "graphs/td/k1000_run100_1m")
# for k in range(1,100):
# v = k_step_TD(env, dealer_policy, k=k, alpha=0.1, num_episodes=1000)
# ============ Q4 - PART 2 ===============
num_runs = 1000
num_episodes = 100
smoothing_window = 10
episode_counts = list(range(1,num_episodes+1))
# # ===== K-STEP SARSA WITH CONSTANT EPSILON =====
for k in [1,1000]:
sarsa_rewards = np.zeros(num_episodes)
for _ in range(num_runs):
q, episode_rewards = k_step_sarsa(env, k=k, alpha=0.1, num_episodes=num_episodes, epsilon=0.1, epsilon_decay=False)
sarsa_rewards += episode_rewards
sarsa_rewards/=num_runs
sarsa_rewards = [np.mean(sarsa_rewards[max(i-smoothing_window,0):i+1]) for i in range(num_episodes)]
plt.plot( episode_counts, sarsa_rewards, label="sarsa"+str(k))
# # ===== K-STEP SARSA WITH DECAYING EPSILON =====
for k in [1,1000]:
sarsa_decay_rewards = np.zeros(num_episodes)
for _ in range(num_runs):
q, episode_rewards = k_step_sarsa(env, k=k, alpha=0.1, num_episodes=num_episodes, epsilon=0.1, epsilon_decay=True)
sarsa_decay_rewards += episode_rewards
sarsa_decay_rewards/=num_runs
sarsa_decay_rewards = [np.mean(sarsa_decay_rewards[max(i-smoothing_window,0):i+1]) for i in range(num_episodes)]
plt.plot( episode_counts, sarsa_decay_rewards, label="sarsa_decay"+str(k))
# # ===== Q-LEARNING =====
q_rewards = np.zeros(num_episodes)
for _ in range(num_runs):
q, episode_rewards = q_learning(env, alpha=0.1, num_episodes=num_episodes, epsilon=0.1, epsilon_decay=False)
q_rewards += episode_rewards
q_rewards/=num_runs
q_rewards = [np.mean(q_rewards[max(i-smoothing_window,0):i+1]) for i in range(num_episodes)]
plt.plot( episode_counts, q_rewards, label="q")
# # ===== TD-LAMDA =====
td_rewards = np.zeros(num_episodes)
for _ in range(num_runs):
q, episode_rewards = TD_lambda(env, alpha=0.1, lamda=0.5, num_episodes=num_episodes, epsilon=0.1, epsilon_decay=True)
td_rewards += episode_rewards
td_rewards/=num_runs
td_rewards = [np.mean(td_rewards[max(i-smoothing_window,0):i+1]) for i in range(num_episodes)]
plt.plot( episode_counts, td_rewards, label="td")
plt.legend()
plt.show()
# ================ Q4 - PART 3 =================
num_runs = 10
num_episodes = 100000
ks=[1,10,100,1000]
alphas=[0.1, 0.2, 0.3, 0.4, 0.5]
# # ===== K-STEP SARSA WITH CONSTANT EPSILON =====
for k in ks:
rewards = []
for alpha in alphas:
q, episode_rewards = k_step_sarsa(env, k=k, alpha=alpha, num_episodes=num_episodes, epsilon=0.1, epsilon_decay=False)
rewards.append(test(env, num_episodes=num_runs, q=q, epsilon=0.1))
plt.plot( alphas, rewards, label="SARSA_k"+str(k))
plt.legend()
plt.xlabel('Alpha')
plt.ylabel('Average Reward')
plt.savefig("graphs/q4_3/sarsa.png")
plt.close()
# # ===== K-STEP SARSA WITH DECAYING EPSILON =====
for k in ks:
rewards = []
for alpha in alphas:
q, episode_rewards = k_step_sarsa(env, k=k, alpha=alpha, num_episodes=num_episodes, epsilon=0.1, epsilon_decay=True)
rewards.append(test(env, num_episodes=num_runs, q=q, epsilon=0.1))
plt.plot( alphas, rewards, label="SARSA_Decay_k_"+str(k))
plt.legend()
plt.xlabel('Alpha')
plt.ylabel('Average Reward')
plt.savefig("graphs/q4_3/sarsa_decay.png")
plt.close()
# # ===== K-STEP SARSA WITH Q-LEARNING =====
rewards = []
for alpha in alphas:
q, episode_rewards = q_learning(env, alpha=0.1, num_episodes=num_episodes, epsilon=0.1, epsilon_decay=False)
rewards.append(test(env, num_episodes=num_runs, q=q, epsilon=0.1))
plt.plot( alphas, rewards, label="Q-Learning")
plt.legend()
plt.xlabel('Alpha')
plt.ylabel('Average Reward')
plt.savefig("graphs/q4_3/q-learning.png")
plt.close()
# # ===== K-STEP SARSA WITH TD-LAMDA =====
rewards = []
for alpha in alphas:
q, episode_rewards = TD_lambda(env, alpha=0.1, lamda=0.5, num_episodes=num_episodes, epsilon=0.1, epsilon_decay=True)
rewards.append(test(env, num_episodes=num_runs, q=q, epsilon=0.1))
plt.plot( alphas, rewards, label="TD(0.5)")
plt.legend()
plt.xlabel('Alpha')
plt.ylabel('Average Reward')
plt.savefig("graphs/q4_3/td.png")
plt.close()
# plt.legend()
# plt.show()
# ================ Q4 - PART 4 =================
q, episode_rewards = TD_lambda(env, alpha=0.1, lamda=0.5, num_episodes=1_000_000, epsilon=0.1, epsilon_decay=True)
v=np.max(q, axis=3)
plot(v, "graphs/q4_4/1m")