-
Notifications
You must be signed in to change notification settings - Fork 0
/
ipgtest_a2c.py
829 lines (707 loc) · 35.1 KB
/
ipgtest_a2c.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
# =====================================================================================================================
# Author: Sampo Kuutti (s.j.kuutti@surrey.ac.uk)
# Organisation: University of Surrey
#
# ipgtest_a2c.py tests the trained A2C agent in an IPG simulation,
# the CarMaker application should be initialised (go to Application -> Start & Connect) before starting
# the selected trained neural network model is selected by the MODEL_FILE parameter in the LOG_DIR directory, the
# chosen model file should be a valid tensorflow trainer checkpoint
# the script runs multiple tests with different lead vehicle maneuvers generated
# by traffic.py in different environments (e.g. road friction values).
# saves test results in csv format in LOG_DIR directory
# results can also be saved in IPG CarMaker format directly from the simulator,
# this should be done by going to the CarMaker GUI and choosing
# Storage of Results -> Mode -> Save all, in which case CarMaker saves all the simulation results which can then be
# exported to a csv file
# =====================================================================================================================
import numpy as np
import os
import tensorflow as tf
import ctypes
import csv
import random
import ipg_proxy
from collections import deque
import time
import datetime
import argparse
import pythonapi
timestamp = datetime.datetime.fromtimestamp(time.time()).strftime('%H:%M:%S')
fpath = 'S:/Research/safeav/Sampo/condor-a2c/test/' # use project directory path
# PARAMETERS
OUTPUT_GRAPH = True # graph output
RENDER = True # render one worker
RENDER_EVERY = 100 # render every N episodes
LOG_DIR = fpath + 'rl_models' # save location for logs
N_WORKERS = 1 # number of workers
MAX_EP_STEP = 200 # maximum number of steps per episode (unless another limit is used)
MAX_GLOBAL_EP = 120 # total number of episodes
MAX_PROXY_EP = 1000 # total number of episodes to train on proxy, before switching to ipg simulations
GLOBAL_NET_SCOPE = 'Global_Net'
UPDATE_GLOBAL_ITER = 80 # sets how often the global net is updated
GAMMA = 0.99 # discount factor
ENTROPY_BETA = 0.001 # entropy factor
LR_A = 0.0001 # learning rate for actor
LR_C = 0.001 # learning rate for critic
SAFETY_ON = 0 # safety cages, 0 = disabled 1 = enabled
REPLAY_MEMORY_CAPACITY = int(1e4) # capacity of experience replay memory
TRAUMA_MEMORY_CAPACITY = int(1e2) # capacity of trauma memory
MINIBATCH_SIZE = 64 # size of the minibatch for training with experience replay
TRAJECTORY_LENGTH = 80 # size of the trajectory used in weight updates
UPDATE_ENDSTEP = False # update at the end of episode using previous MB_SIZE experiences
UPDATE_TRAUMA = 16 # update weights using the trauma memory every UPDATE_TRAUMA updates
OFF_POLICY = False # update off-policy using ER/TM
ON_POLICY = False # update on-policy using online experiences
CHECKPOINT_EVERY = 100 # sets how often to save weights
HN_A = 50
HN_C = 200
LSTM_UNITS = 16
MAX_GRAD_NORM = 0.5
MODEL_FILE = 'model-ep-2500-finalr-18541.ckpt'
# Action Space Shape
N_S = 4 # number of states
N_A = 1 # number of actions
A_BOUND = [-1, 1] # action bounds
def get_arguments():
parser = argparse.ArgumentParser(description='RL training')
parser.add_argument(
'--lr_a',
type=float,
default=LR_A,
help='Actor learning rate'
)
parser.add_argument(
'--lr_c',
type=float,
default=LR_C,
help='Critic learning rate'
)
parser.add_argument(
'--gamma',
type=float,
default=GAMMA,
help='Discount rate gamma'
)
parser.add_argument(
'--max_eps',
type=int,
default=MAX_GLOBAL_EP,
help='Checkpoint file to restore model weights from.'
)
parser.add_argument(
'--batch_size',
type=int,
default=MINIBATCH_SIZE,
help='Batch size. Must divide evenly into dataset sizes.'
)
parser.add_argument(
'--trajectory',
type=float,
default=TRAJECTORY_LENGTH,
help='Length of trajectories in minibatches'
)
parser.add_argument(
'--checkpoint_every',
type=int,
default=CHECKPOINT_EVERY,
help='Number of steps before checkpoint.'
)
parser.add_argument(
'--ent_beta',
type=float,
default=ENTROPY_BETA,
help='Entropy coefficient beta'
)
parser.add_argument(
'--log_dir',
type=str,
default=LOG_DIR,
help='Directory to put the log data.'
)
parser.add_argument(
'--store_metadata',
type=bool,
default=False,
help='Storing debug information for TensorBoard.'
)
parser.add_argument(
'--restore_from',
type=str,
default=MODEL_FILE,
help='Checkpoint file to restore model weights from.'
)
parser.add_argument(
'--hn_a',
type=int,
default=HN_A,
help='Number of hidden neurons in actor network.'
)
parser.add_argument(
'--hn_c',
type=int,
default=HN_C,
help='Number of hidden neurons in critic network.'
)
parser.add_argument(
'--lstm_units',
type=int,
default=LSTM_UNITS,
help='Number of lstm cells in actor network.'
)
parser.add_argument(
'--store_results',
action='store_true',
help='Storing episode results in csv files.'
)
parser.add_argument(
'--trauma',
action='store_true',
help='If true use trauma memory in off-policy updates.'
)
parser.add_argument(
'--max_norm',
type=float,
default=MAX_GRAD_NORM,
help='Maximum L2 norm of the gradient for gradient clipping.'
)
return parser.parse_args()
def calculate_reward(th, delta_th, x_rel):
if 0 <= th < 0.50: # crash imminent
reward = -10
elif 0.50 <= th < 1.75 and delta_th <= 0: # too close
reward = -0.5
elif 0.50 <= th < 1.75 and delta_th > 0: # closing up
reward = 0.1
elif 1.75 <= th < 1.90: # goal range large
reward = 0.5
elif 1.90 <= th < 2.10: # goal range small
reward = 5
elif 2.10 <= th < 2.25: # goal range large
reward = 0.5
elif 2.25 <= th < 10 and delta_th <= 0: # closing up
reward = 0.1
elif 2.25 <= th < 10 and delta_th > 0: # too far
reward = -0.1
elif th >= 10 and delta_th <= 0: # closing up
reward = 0.05
elif th >= 10 and delta_th > 0: # way too far
reward = -10
elif x_rel <= 0:
reward = -100 # crash occurred
else:
print('no reward statement requirements met (th = %f, delta_th = %f, x_rel = %f), reward = 0'
% (th, delta_th, x_rel))
reward = 0
return reward
def calculate_reward2(th, delta_th, x_rel):
if 0 <= th < 0.50: # crash imminent
reward = -0.5
elif 0.50 <= th < 1.75 and delta_th <= 0: # too close
reward = -0.1
elif 0.50 <= th < 1.75 and delta_th > 0: # closing up
reward = 0.1
elif 1.75 <= th < 1.90: # goal range large
reward = 0.5
elif 1.90 <= th < 2.10: # goal range small
reward = 1
elif 2.10 <= th < 2.25: # goal range large
reward = 0.5
elif 2.25 <= th < 10 and delta_th <= 0: # closing up
reward = 0.1
elif 2.25 <= th < 10 and delta_th > 0: # too far
reward = -0.01
elif th >= 10 and delta_th <= 0: # closing up
reward = 0.05
elif th >= 10 and delta_th > 0: # way too far
reward = -0.5
elif x_rel <= 0:
reward = -1 # crash occurred
else:
print('no reward statement requirements met (th = %f, delta_th = %f, x_rel = %f), reward = 0'
% (th, delta_th, x_rel))
reward = 0
return reward
# replay memory
replay_memory = deque(maxlen=REPLAY_MEMORY_CAPACITY) # used for O(1) popleft() operation
def add_to_memory(experience):
replay_memory.append(experience)
def sample_from_memory(minibatch_size):
return random.sample(replay_memory, minibatch_size)
# trauma memory
trauma_buffer = deque(maxlen=TRAJECTORY_LENGTH)
trauma_memory = deque(maxlen=TRAUMA_MEMORY_CAPACITY)
def add_to_trauma(experience):
trauma_memory.append(experience)
def sample_from_trauma(minibatch_size):
return random.sample(trauma_memory, minibatch_size)
# Network for the Actor Critic
class ACNet(object):
def __init__(self, args, scope, sess, globalAC=None):
self.sess = sess
self.actor_optimizer = tf.train.RMSPropOptimizer(args.lr_a, name='RMSPropA') # optimizer for the actor
self.critic_optimizer = tf.train.RMSPropOptimizer(args.lr_c, name='RMSPropC') # optimizer for the critic
if scope == GLOBAL_NET_SCOPE: # get global network
with tf.variable_scope(scope):
self.s = tf.placeholder(tf.float32, [None, N_S], 'S') # state
self.a_params, self.c_params = self._build_net(args, scope)[-2:] # parameters of actor and critic net
else: # local net, calculate losses
with tf.variable_scope(scope):
self.s = tf.placeholder(tf.float32, [None, N_S], 'S') # state
self.a_his = tf.placeholder(tf.float32, [None, N_A], 'A') # action
self.v_target = tf.placeholder(tf.float32, [None, 1], 'Vtarget') # v_target value
self.mu, self.sigma, self.v, self.a_params, self.c_params = self._build_net(args,
scope) # get mu and sigma of estimated action from neural net
# advantage function A(s) = V_target(s) - V(s)
td = tf.subtract(self.v_target, self.v, name='TD_error')
# Critic Loss
with tf.name_scope('c_loss'):
# value loss L = (R - V(s))^2
self.c_loss = tf.reduce_mean(tf.square(td))
# Scale mu to action space, and add small value to sigma to avoid NaN errors
with tf.name_scope('wrap_a_out'):
self.mu, self.sigma = self.mu * A_BOUND[1], self.sigma + 1e-4
# Normal distribution with location = mu, scale = sigma
normal_dist = tf.contrib.distributions.Normal(self.mu, self.sigma)
# Actor loss
with tf.name_scope('a_loss'):
log_prob = normal_dist.log_prob(self.a_his)
# Entropy H(s) = 0.5(log(2*pi*sigma^2)+1) see: https://arxiv.org/pdf/1602.01783.pdf page 13
entropy = normal_dist.entropy() # encourage exploration
# policy loss L = A(s,a) * -logpi(a|s) - B * H(s)
self.a_loss = tf.reduce_mean(-(args.ent_beta * entropy + log_prob * td))
# Choose action
with tf.name_scope('choose_a'): # use local params to choose action
self.A = tf.clip_by_value(tf.squeeze(normal_dist.sample(1), axis=0), A_BOUND[0],
A_BOUND[1]) # sample a action from distribution
# Compute the gradients
with tf.name_scope('local_grad'):
self.a_grads = tf.gradients(self.a_loss,
self.a_params) # calculate gradients for the network weights
self.c_grads = tf.gradients(self.c_loss, self.c_params)
# clip gradients by global norm
self.a_grads, a_grad_norm = tf.clip_by_global_norm(self.a_grads, MAX_GRAD_NORM)
self.c_grads, c_grad_norm = tf.clip_by_global_norm(self.c_grads, MAX_GRAD_NORM)
# Update weights
with tf.name_scope('sync'): # update local and global network weights
with tf.name_scope('pull'):
self.pull_a_params_op = [l_p.assign(g_p) for l_p, g_p in zip(self.a_params, globalAC.a_params)]
self.pull_c_params_op = [l_p.assign(g_p) for l_p, g_p in zip(self.c_params, globalAC.c_params)]
with tf.name_scope('push'):
self.update_a_op = self.actor_optimizer.apply_gradients(zip(self.a_grads, globalAC.a_params))
self.update_c_op = self.critic_optimizer.apply_gradients(zip(self.c_grads, globalAC.c_params))
# Build the network
def _build_net(self, args, scope): # neural network structure of the actor and critic
w_init = tf.random_normal_initializer(0., .1)
# Actor network
with tf.variable_scope('actor'):
# hidden layer
l1_a = tf.layers.dense(self.s, args.hn_a, tf.nn.relu6, kernel_initializer=w_init, name='l1a')
l2_a = tf.layers.dense(l1_a, args.hn_a, tf.nn.relu6, kernel_initializer=w_init, name='l2a')
l3_a = tf.layers.dense(l2_a, args.hn_a, tf.nn.relu6, kernel_initializer=w_init, name='l3a')
# Recurrent network for temporal dependencies
lstm_cell = tf.nn.rnn_cell.LSTMCell(args.lstm_units, state_is_tuple=True)
c_init = np.zeros((1, lstm_cell.state_size.c), np.float32)
h_init = np.zeros((1, lstm_cell.state_size.h), np.float32)
self.state_init = [c_init, h_init]
c_in = tf.placeholder(tf.float32, [1, lstm_cell.state_size.c])
h_in = tf.placeholder(tf.float32, [1, lstm_cell.state_size.h])
self.state_in = (c_in, h_in)
rnn_in = tf.expand_dims(l3_a, [0])
step_size = tf.shape(self.s)[:1]
state_in = tf.contrib.rnn.LSTMStateTuple(c_in, h_in)
lstm_outputs, lstm_state = tf.nn.dynamic_rnn(
lstm_cell, rnn_in, initial_state=state_in, sequence_length=step_size,
time_major=False)
lstm_c, lstm_h = lstm_state
self.state_out = (lstm_c[:1, :], lstm_h[:1, :])
rnn_out = tf.reshape(lstm_outputs, [-1, args.lstm_units])
# expected action value
mu = tf.layers.dense(rnn_out, N_A, tf.nn.tanh, kernel_initializer=w_init,
name='mu') # estimated action value
# expected variance
sigma = tf.layers.dense(rnn_out, N_A, tf.nn.softplus, kernel_initializer=w_init,
name='sigma') # estimated variance
# Critic network
with tf.variable_scope('critic'):
l_c = tf.layers.dense(self.s, args.hn_c, tf.nn.relu6, kernel_initializer=w_init, name='lc')
v = tf.layers.dense(l_c, 1, kernel_initializer=w_init, name='v') # estimated value for state
a_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=scope + '/actor')
c_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=scope + '/critic')
return mu, sigma, v, a_params, c_params
def update_global(self, feed_dict): # run by a local
self.sess.run([self.update_a_op, self.update_c_op], feed_dict) # local grads applies to global net
def pull_global(self): # run by a local
self.sess.run([self.pull_a_params_op, self.pull_c_params_op])
def choose_action(self, s, rnn_state): # run by a local
s = np.reshape(s, (1, N_S)) # reshape state vector
return self.sess.run(self.A, {self.s: s, self.state_in[0]: rnn_state[0],
self.state_in[1]: rnn_state[1]})[0]
# worker class that inits own environment, trains on it and updloads weights to global net
class Worker(object):
def __init__(self, args, name, globalAC, sess):
self.name = name
self.AC = ACNet(args, name, sess, globalAC) # create ACNet for each worker
self.sess = sess
def work(self):
global global_rewards, global_episodes
total_step = 1
buffer_s, buffer_a, buffer_r = [], [], []
# scenario array
arr_scen = []
# Define proxy environment
#proxy = ipg_proxy.IpgProxy()
# Initiate API connection to IPG CarMaker
pythonapi.api_setup()
pythonapi.subscribe_quants()
pythonapi.ApoClnt_PollAndSleep() # poll client
trauma_counter = 0 # count how often to update from trauma memory
# loop episodes
while global_episodes < args.max_eps:
# initialise rnn state
rnn_state = self.AC.state_init
self.batch_rnn_state = rnn_state
# set states to zero
b = 0
v_rel = 0
v = 0
x_rel = 0
a = 0
t = 0
t_h = 0
ER_buffer = [] # experience replay buffer
trauma_buffer.clear() # clear trauma buffer
# empty arrays
arr_a = [] # acceleration array
arr_j = [] # jerk array
arr_t = [] # time array
arr_x = [] # x_rel array
arr_v = [] # velocity array
arr_dv = [] # relative velocity array
arr_th = [] # time headway array
arr_y_0 = [] # original output
arr_y_sc = [] # safety cage output
arr_sc = [] # safety cage number
arr_cof = [] # coefficient of friction
arr_v_leader = [] # lead vehicle velocity
arr_a_leader = [] # lead vehicle acceleration
arr_rewards = [] # rewards list
# lead vehicle states
# Here we have two methods for creating lead vehicle states
# Option 1: Create new random trajectories from the traffic.py module
# T_lead, X_lead, V_lead, A_lead = traffic.lead_vehicle()
# Option 2: Use pre-generated trajectories (allows comparison to other tests performed using same trajectories)
T_lead = []
X_lead = []
V_lead = []
A_lead = []
# read lead vehicle states from the corresponding traffic file (generated by traffic.py)
with open(fpath + 'traffic_data_sl/' + str(global_episodes + 1) + '.csv') as f:
reader = csv.DictReader(f, delimiter=',')
for row in reader:
T_lead.append(float(row['t'])) # time
X_lead.append(float(row['x'])) # long. position
V_lead.append(float(row['v'])) # velocity
A_lead.append(float(row['a'])) # acceleration
print('\ntest no. %d' % global_episodes)
# load test run
# Option 1: Use random coefficients of frictions
#scen = random.randint(1, 25)
#arr_scen.append(scen)
# Option 2: Use a pre-determined list of coefficient of frictions
with open('./traffic_data_sl/' + 'scens.csv') as f:
reader = csv.DictReader(f, delimiter=',')
for row in reader:
arr_scen.append(float(row['s'])) # test run id
scen = int(arr_scen[global_episodes - 1])
cof = 0.375 + scen * 0.025 # calculate coefficient of friction
pythonapi.sim_loadrun2(scen)
# Run training using Ipg Proxy
ep_r = 0 # set ep reward to 0
ep_nr = 0 # set normalised ep reward to 0
# start simulation
pythonapi.sim_start()
pythonapi.sim_waitready()
# read host states
t = pythonapi.get_time() # time
v = pythonapi.get_hostvel() # host velocity
a = pythonapi.get_longacc() # host longitudinal acceleration
x = pythonapi.get_hostpos() # host longitudinal position
# lead vehicle states
t_iter = int(t // 0.02) # current time step
v_rel = V_lead[t_iter] - v # relative velocity
x_rel = X_lead[t_iter] - x # relative distance
if v != 0: # check for division by 0
t_h = x_rel / v
else:
t_h = x_rel
inputs = [v_rel, t_h, v, a] # define input array
crash = 0 # variable for checking if a crash has occurred (0=no crash, 1=crash)
prev_output = 0
# loop time-steps
while pythonapi.sim_isrunning() != 0: # check if simulation is running
if t >= 0: # to avoid errors check that time is not zero
b += 1
# evaluate neural network output
# rnn state
rnn_state = sess.run(self.AC.state_out, {self.AC.s: np.reshape(inputs, (1, N_S)),
self.AC.state_in[0]: rnn_state[0],
self.AC.state_in[1]: rnn_state[1]})
# action
action = self.AC.choose_action(inputs, rnn_state) # estimate stochastic action based on policy
arr_y_0.append(float(action))
output = action
sc = 0
arr_y_sc.append(float(output))
arr_sc.append(sc)
# convert normalised output to gas and brake signals
if output < 0: # output brake command
gas = 0
brake = abs(output)
elif output > 0: # output gas command
gas = output
brake = 0
elif output == 0: # both outputs are zero
gas = 0
brake = 0
else: # something has gone wrong
gas = 0
brake = 0
print('invalid control signal, setting pedal values to 0')
# send commands to carmaker
pythonapi.set_gas(ctypes.c_double(gas))
pythonapi.set_brake(ctypes.c_double(brake))
# read new states
# read host states
pythonapi.ApoClnt_PollAndSleep() # poll client
t_ = pythonapi.get_time() # time
v_ = pythonapi.get_hostvel() # host velocity
a_ = pythonapi.get_longacc() # host longitudinal acceleration
x_ = pythonapi.get_hostpos() # host longitudinal position
# lead vehicle states
t_iter_ = int(t_ // 0.02) # current time step
v_rel_ = V_lead[t_iter_] - v_ # relative velocity
x_rel_ = X_lead[t_iter_] - x_ # relative distance
# enter variables into arrays
arr_a.append(a)
arr_t.append(t)
arr_x.append(x_rel)
arr_v.append(v)
arr_dv.append(v_rel)
arr_th.append(t_h)
arr_cof.append(cof)
arr_v_leader.append(V_lead[t_iter])
arr_a_leader.append(A_lead[t_iter])
# calculate time headway
if v_ != 0:
t_h_ = x_rel_ / v_
else:
t_h_ = x_rel_
# define new input array
inputs_ = [v_rel_, t_h_, v_, a_]
# calculate reward
if (t_ - t) != 0:
delta_th = (t_h_ - t_h) / (t_ - t)
else:
delta_th = 0
reward = calculate_reward(t_h_, delta_th, x_rel_)
n_reward = calculate_reward2(t_h_, delta_th, x_rel_) # normalised reward
ep_r += reward
ep_nr += n_reward
arr_rewards.append(reward)
# add to trauma memory buffer
trauma_buffer.append((inputs, action, n_reward, inputs_))
# stop simulation if a crash occurs
if x_rel_ <= 0:
crash = 1
pythonapi.sim_stop()
print('crash occurred: simulation run stopped')
if len(trauma_buffer) >= TRAJECTORY_LENGTH:
add_to_trauma(trauma_buffer)
# update buffers
buffer_s.append(inputs)
buffer_a.append(action)
buffer_r.append(n_reward)
ER_buffer.append((inputs, action, n_reward, inputs_))
# if buffer > mb_size add to experience replay and empty buffer
if len(ER_buffer) >= args.trajectory:
add_to_memory(ER_buffer)
ER_buffer = []
# update weights
if total_step % UPDATE_GLOBAL_ITER == 0: # update global and assign to local net
if t_ == 300 or crash == 1:
v_s_ = 0 # terminal state
else:
v_s_ = self.sess.run(self.AC.v, {self.AC.s: np.reshape(inputs_, (1, N_S))})[0, 0]
buffer_v_target = []
for r in buffer_r[::-1]: # reverse buffer r
v_s_ = r + GAMMA * v_s_
buffer_v_target.append(v_s_)
buffer_v_target.reverse()
buffer_s, buffer_a, buffer_v_target = np.vstack(buffer_s), np.vstack(buffer_a), np.vstack(
buffer_v_target)
feed_dict = {
self.AC.s: buffer_s,
self.AC.a_his: buffer_a,
self.AC.v_target: buffer_v_target,
self.AC.state_in[0]: self.batch_rnn_state[0],
self.AC.state_in[1]: self.batch_rnn_state[1]
}
self.batch_rnn_state = sess.run(self.AC.state_out,
feed_dict=feed_dict) # update rnn state, run training step
buffer_s, buffer_a, buffer_r = [], [], []
# update state variables
inputs = inputs_
t = t_
v = v_
a = a_
x = x_
v_rel = v_rel_
x_rel = x_rel_
t_h = t_h_
t_iter = t_iter_
prev_output = output
total_step += 1
# Run an update step at the end of episode
if UPDATE_ENDSTEP:
minibatch = trauma_buffer
batch_s = np.asarray([elem[0] for elem in minibatch]).reshape(TRAJECTORY_LENGTH, N_S)
batch_a = np.asarray([elem[1] for elem in minibatch]).reshape(TRAJECTORY_LENGTH, N_A)
batch_r = np.asarray([elem[2] for elem in minibatch]).reshape(TRAJECTORY_LENGTH, 1)
# Generalised Advantage Estimation GAE:
v_s_ = 0 # terminal state
batch_v_target = []
for r in batch_r[::-1]: # reverse buffer r
v_s_ = r + GAMMA * v_s_
batch_v_target.append(v_s_)
batch_v_target.reverse()
feed_dict = {
self.AC.s: batch_s,
self.AC.a_his: batch_a,
self.AC.v_target: batch_v_target,
# self.AC.next_s: np.asarray([elem[3] for elem in minibatch]).reshape(TRAJECTORY_LENGTH, N_S),
self.AC.state_in[0]: self.batch_rnn_state[0],
self.AC.state_in[1]: self.batch_rnn_state[1]
}
self.batch_rnn_state = sess.run(self.AC.state_out,
feed_dict=feed_dict) # update rnn state
self.AC.update_global(feed_dict) # actual training step, update global ACNet
self.AC.pull_global() # get global parameters to local ACNet
if OFF_POLICY:
for off_pol_i in range(0, args.batch_size):
if args.trauma and off_pol_i == 0 and len(trauma_memory) >= 1: # run one update from trauma memory
minibatch = sample_from_trauma(1)[-1]
else:
# grab N (s,a,r,s') tuples from replay memory
minibatch = sample_from_memory(1)[-1] # sample and flatten minibatch
# reset lstm cell state
rnn_state = self.AC.state_init
self.batch_rnn_state = rnn_state
batch_s = np.asarray([elem[0] for elem in minibatch]).reshape(TRAJECTORY_LENGTH, N_S)
batch_a = np.asarray([elem[1] for elem in minibatch]).reshape(TRAJECTORY_LENGTH, N_A)
batch_r = np.asarray([elem[2] for elem in minibatch]).reshape(TRAJECTORY_LENGTH, 1)
# Generalised Advantage Estimation GAE:
v_s_ = self.sess.run(self.AC.v, {self.AC.s: np.reshape(batch_s[-1], (1, N_S))})[0, 0]
batch_v_target = []
for r in batch_r[::-1]: # reverse buffer r
v_s_ = r + GAMMA * v_s_
batch_v_target.append(v_s_)
batch_v_target.reverse()
# create feed dict
feed_dict = {
self.AC.s: batch_s,
self.AC.a_his: batch_a,
self.AC.v_target: batch_v_target,
# self.AC.next_s: np.asarray([elem[3] for elem in minibatch]).reshape(TRAJECTORY_LENGTH, 3),
self.AC.state_in[0]: self.batch_rnn_state[0],
self.AC.state_in[1]: self.batch_rnn_state[1]
}
# update parameters
self.batch_rnn_state = sess.run(self.AC.state_out,
feed_dict=feed_dict) # update rnn state
self.AC.update_global(feed_dict) # actual training step, update global ACNet
self.AC.pull_global() # get global parameters to local ACNet
# reset lstm cell state
rnn_state = self.AC.state_init
self.batch_rnn_state = rnn_state
buffer_s, buffer_a, buffer_r = [], [], [] # empty buffers
# Update summaries and print episode performance before starting next episode
# update tensorboard summaries
summary = sess.run(merged, feed_dict=feed_dict)
writer.add_summary(summary, global_episodes)
writer.flush()
perf_summary = tf.Summary(value=[tf.Summary.Value(tag='Perf/Reward', simple_value=float(ep_r))])
writer.add_summary(perf_summary, global_episodes)
writer.flush()
perf_summary = tf.Summary(value=[tf.Summary.Value(tag='Perf/Norm_Reward', simple_value=float(ep_nr))])
writer.add_summary(perf_summary, global_episodes)
writer.flush()
perf_summary = tf.Summary(value=[tf.Summary.Value(tag='Perf/Mean_Th', simple_value=float(np.mean(arr_th)))])
writer.add_summary(perf_summary, global_episodes)
writer.flush()
# append episode reward to list
global_rewards.append(ep_r)
# print summary
print(
self.name,
"Ep:", global_episodes,
"| Ep_r: %i" % global_rewards[-1],
"| Avg. Reward: %.5f" % np.mean(arr_rewards),
"| Min. Reward: %.5f" % np.min(arr_rewards),
"| Max. Reward: %.5f" % np.max(arr_rewards),
"| Avg. Timeheadway: %.5f" % np.mean(arr_th),
)
print(b)
global_episodes += 1
#if args.store_results:
# always store results when testing
if not os.path.exists(LOG_DIR + '/results'):
os.makedirs(LOG_DIR + '/results')
# calculate jerk array
for k in range(0, 5):
arr_j.append(float(0))
for k in range(5, len(arr_t)):
# calculate vehicle jerk
if abs(arr_t[k] - arr_t[k - 5]) != 0:
arr_j.append(((arr_a[k]) - (arr_a[k - 5])) / (arr_t[k] - arr_t[k - 5])) # jerk
else:
arr_j.append(0)
# write results to file
headers = ['t', 'j', 'v', 'a', 'v_lead', 'a_lead', 'x_rel', 'v_rel', 'th', 'y_0', 'y_sc', 'sc', 'cof']
with open(LOG_DIR + '/results/' + str(global_episodes) + '.csv', 'w', newline='\n') as f:
wr = csv.writer(f, delimiter=',')
rows = zip(arr_t, arr_j, arr_v, arr_a, arr_v_leader, arr_a_leader, arr_x, arr_dv, arr_th,
arr_y_0,
arr_y_sc, arr_sc, arr_cof)
wr.writerow(headers)
wr.writerows(rows)
if __name__ == "__main__":
global_rewards = []
global_episodes = 0 # start from ep 2001
args = get_arguments() # get arguments
a2c_graph = tf.Graph()
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(graph=a2c_graph, config=config)
with a2c_graph.as_default():
global_ac = ACNet(args, GLOBAL_NET_SCOPE, sess) # we only need its params
worker = Worker(args, str('W_0'), global_ac, sess)
# tensorboard summaries
tf.summary.scalar('loss/policy_loss', worker.AC.a_loss)
tf.summary.scalar('loss/value_loss', worker.AC.c_loss)
tf.summary.histogram('mu', worker.AC.mu)
tf.summary.histogram('sigma', worker.AC.sigma)
tf.summary.histogram('v', worker.AC.v)
tf.summary.histogram('v_target', worker.AC.v_target)
tf.summary.histogram('act_out', worker.AC.A)
with sess.as_default():
with a2c_graph.as_default():
checkpoint_path = os.path.join(args.log_dir, args.restore_from)
saver = tf.train.Saver()
saver.restore(sess, checkpoint_path)
print('Restored model: %s' % args.restore_from)
#tf.global_variables_initializer().run()
# merge tensorboard summaries
merged = tf.summary.merge_all()
writer = tf.summary.FileWriter(args.log_dir, sess.graph)
# run A2C algorithm
worker.work()