-
Notifications
You must be signed in to change notification settings - Fork 0
/
proxy_model.py
71 lines (37 loc) · 1.66 KB
/
proxy_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import tensorflow as tf
NUM_INPUTS = 5
NUM_OUTPUTS = 1
HIDDEN1_UNITS = 100
HIDDEN2_UNITS = 100
HIDDEN3_UNITS = 100
# set up weight variable
def weight_variable(shape):
initializer = tf.contrib.layers.xavier_initializer()
initial = initializer(shape=shape)
return tf.Variable(initial)
# set up bias variable
def bias_variable(shape):
initial = tf.constant(float(0.1), shape=shape)
return tf.Variable(initial)
# define hidden layer output
def hidden_layer(inputs, weights, name):
return tf.nn.relu6(tf.matmul(inputs, weights), name=name)
class SupervisedModel(object):
"""implements the supervised learning model"""
def __init__(self):
# placeholder inputs and labels
self.x = tf.placeholder(tf.float32, shape=[None, NUM_INPUTS], name='x')
self.y_ = tf.placeholder(tf.float32, shape=[None, NUM_OUTPUTS], name='labels')
# fully connected layer 1
self.W_fc1 = weight_variable([NUM_INPUTS, HIDDEN1_UNITS])
self.h_fc1 = hidden_layer(self.x, self.W_fc1, 'fc1')
# fully connected layer 2
self.W_fc2 = weight_variable([HIDDEN1_UNITS, HIDDEN2_UNITS])
self.h_fc2 = hidden_layer(self.h_fc1, self.W_fc2, 'fc2')
# fully connected layer 3
self.W_fc3 = weight_variable([HIDDEN2_UNITS, HIDDEN3_UNITS])
self.h_fc3 = hidden_layer(self.h_fc2, self.W_fc3, 'fc3')
# output layer
self.W_y = weight_variable([HIDDEN3_UNITS, NUM_OUTPUTS])
self.b_y = bias_variable([NUM_OUTPUTS])
self.y = tf.matmul(self.h_fc3, self.W_y) + self.b_y # no activation function