-
Notifications
You must be signed in to change notification settings - Fork 239
/
peakfit.c
605 lines (521 loc) · 17.6 KB
/
peakfit.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
/* The MIT License
Copyright (c) 2013-2015 Genome Research Ltd.
Author: Petr Danecek <pd3@sanger.ac.uk>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#include "peakfit.h"
#include <stdio.h>
#include <gsl/gsl_version.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_multifit_nlin.h>
#include <htslib/hts.h>
#include <htslib/kstring.h>
#include <assert.h>
#include <math.h>
#define NPARAMS 5
// gauss params: sqrt(scale), center, sigma
typedef struct _peak_t
{
int fit_mask;
double params[NPARAMS], ori_params[NPARAMS]; // current and input parameters
struct { int scan; double min, max, best; } mc[NPARAMS]; // monte-carlo settings and best parameter
void (*calc_f) (int nvals, double *xvals, double *yvals, void *args);
void (*calc_df) (int nvals, double *xvals, double *yvals, double *dfvals, int idf, void *args);
void (*print_func) (struct _peak_t *pk, kstring_t *str);
void (*convert_get) (struct _peak_t *pk, double *params);
double (*convert_set) (struct _peak_t *pk, int iparam, double value);
}
peak_t;
struct _peakfit_t
{
int npeaks, mpeaks, nparams, mparams;
peak_t *peaks;
double *params;
int nvals, mvals;
double *xvals, *yvals, *vals;
kstring_t str;
int verbose, nmc_iter;
};
/*
Gaussian peak with the center bound in the interval <d,e>:
yi = scale^2 * exp(-(xi-z)^2/sigma^2)
dy/dscale = 2*scale * EXP
dy/dcenter = -scale^2 * sin(center) * (e-d) * (xi - z) * EXP / sigma^2
dy/dsigma = 2*scale^2 * (xi - z)^2 * EXP / sigma^3
where
z = 0.5*(cos(center)+1)*(e-d) + d
EXP = exp(-(xi-z)^2/sigma^2)
*/
void bounded_gaussian_calc_f(int nvals, double *xvals, double *yvals, void *args)
{
peak_t *pk = (peak_t*) args;
double scale2 = pk->params[0] * pk->params[0];
double center = pk->params[1];
double sigma = pk->params[2];
double d = pk->params[3];
double e = pk->params[4];
double z = 0.5*(cos(center)+1)*(e-d) + d;
int i;
for (i=0; i<nvals; i++)
{
double tmp = (xvals[i] - z)/sigma;
yvals[i] += scale2 * exp(-tmp*tmp);
}
}
void bounded_gaussian_calc_df(int nvals, double *xvals, double *yvals, double *dfvals, int idf, void *args)
{
peak_t *pk = (peak_t*) args;
double scale = pk->params[0];
double center = pk->params[1];
double sigma = pk->params[2];
double d = pk->params[3];
double e = pk->params[4];
double z = 0.5*(cos(center)+1)*(e-d) + d;
int i;
for (i=0; i<nvals; i++)
{
double EXP = exp(-(xvals[i]-z)*(xvals[i]-z)/sigma/sigma);
double zi = xvals[i] - z;
if ( idf==0 ) // dscale
dfvals[i] += 2*scale*EXP;
else if ( idf==1 ) // dcenter
dfvals[i] -= scale*scale*sin(center)*(e-d)*zi*EXP/sigma/sigma;
else if ( idf==2 ) // dsigma
dfvals[i] += 2*scale*scale*zi*zi*EXP/sigma/sigma/sigma;
}
}
void bounded_gaussian_sprint_func(peak_t *pk, kstring_t *str)
{
double center = pk->params[1];
double d = pk->params[3];
double e = pk->params[4];
double z = 0.5*(cos(center)+1)*(e-d) + d;
ksprintf(str,"%f**2 * exp(-(x-%f)**2/%f**2)",fabs(pk->params[0]),z,fabs(pk->params[2]));
}
double bounded_gaussian_convert_set(peak_t *pk, int iparam, double value)
{
if ( iparam!=1 ) return value;
double d = pk->ori_params[3];
double e = pk->ori_params[4];
if ( value<d ) value = d;
else if ( value>e ) value = e;
return acos(2*(value-d)/(e-d) - 1);
}
void bounded_gaussian_convert_get(peak_t *pk, double *params)
{
params[0] = fabs(pk->params[0]);
params[2] = fabs(pk->params[2]);
double center = pk->params[1];
double d = pk->params[3];
double e = pk->params[4];
params[1] = 0.5*(cos(center)+1)*(e-d) + d;
}
void peakfit_add_bounded_gaussian(peakfit_t *pkf, double a, double b, double c, double d, double e, int fit_mask)
{
pkf->npeaks++;
hts_expand0(peak_t,pkf->npeaks,pkf->mpeaks,pkf->peaks);
int i, nfit = 0;
for (i=0; i<NPARAMS; i++)
if ( fit_mask & (1<<i) ) nfit++;
assert( d<e );
pkf->nparams += nfit;
hts_expand0(double,pkf->nparams,pkf->mparams,pkf->params);
peak_t *pk = &pkf->peaks[pkf->npeaks-1];
memset(pk, 0, sizeof(peak_t));
pk->calc_f = bounded_gaussian_calc_f;
pk->calc_df = bounded_gaussian_calc_df;
pk->print_func = bounded_gaussian_sprint_func;
pk->convert_set = bounded_gaussian_convert_set;
pk->convert_get = bounded_gaussian_convert_get;
pk->fit_mask = fit_mask;
pk->ori_params[0] = a;
pk->ori_params[2] = c;
pk->ori_params[3] = d;
pk->ori_params[4] = e;
pk->ori_params[1] = pk->convert_set(pk, 1, b);
}
/*
Gaussian peak:
yi = scale^2 * exp(-(x-center)^2/sigma^2)
dy/dscale = 2 * scale * EXP
dy/dcenter = 2 * scale^2 * (x-center) * EXP / sigma^2
dy/dsigma = 2 * scale^2 * (x-center)^2 * EXP / sigma^3
where
EXP = exp(-(x-center)^2/sigma^2)
*/
void gaussian_calc_f(int nvals, double *xvals, double *yvals, void *args)
{
peak_t *pk = (peak_t*) args;
double scale2 = pk->params[0] * pk->params[0];
double center = pk->params[1];
double sigma = pk->params[2];
int i;
for (i=0; i<nvals; i++)
{
double tmp = (xvals[i] - center)/sigma;
yvals[i] += scale2 * exp(-tmp*tmp);
}
}
void gaussian_calc_df(int nvals, double *xvals, double *yvals, double *dfvals, int idf, void *args)
{
peak_t *pk = (peak_t*) args;
double scale = pk->params[0];
double center = pk->params[1];
double sigma = pk->params[2];
int i;
for (i=0; i<nvals; i++)
{
double zi = xvals[i] - center;
double EXP = exp(-zi*zi/(sigma*sigma));
if ( idf==0 ) // dscale
dfvals[i] += 2*scale*EXP;
else if ( idf==1 ) // dcenter
dfvals[i] += 2*scale*scale*zi*EXP/(sigma*sigma);
else if ( idf==2 ) // dsigma
dfvals[i] += 2*scale*scale*zi*zi*EXP/(sigma*sigma*sigma);
}
}
void gaussian_sprint_func(struct _peak_t *pk, kstring_t *str)
{
ksprintf(str,"%f**2 * exp(-(x-%f)**2/%f**2)",fabs(pk->params[0]),pk->params[1],fabs(pk->params[2]));
}
void gaussian_convert_get(peak_t *pk, double *params)
{
params[0] = fabs(pk->params[0]);
params[1] = fabs(pk->params[1]);
params[2] = fabs(pk->params[2]);
}
void peakfit_add_gaussian(peakfit_t *pkf, double a, double b, double c, int fit_mask)
{
pkf->npeaks++;
hts_expand0(peak_t,pkf->npeaks,pkf->mpeaks,pkf->peaks);
int i, nfit = 0;
for (i=0; i<NPARAMS; i++)
if ( fit_mask & (1<<i) ) nfit++;
pkf->nparams += nfit;
hts_expand0(double,pkf->nparams,pkf->mparams,pkf->params);
peak_t *pk = &pkf->peaks[pkf->npeaks-1];
memset(pk, 0, sizeof(peak_t));
pk->calc_f = gaussian_calc_f;
pk->calc_df = gaussian_calc_df;
pk->print_func = gaussian_sprint_func;
pk->convert_get = gaussian_convert_get;
pk->fit_mask = fit_mask;
pk->ori_params[0] = a;
pk->ori_params[1] = b;
pk->ori_params[2] = c;
}
/*
exp peak:
yi = scale^2 * exp((x-center)/sigma^2)
dy/dscale = 2 * scale * EXP
dy/dcenter = -scale^2 * EXP / sigma^2
dy/dsigma = -2 * scale^2 * (x-center) * EXP / sigma^3
where
EXP = exp((x-center)/sigma^2)
*/
void exp_calc_f(int nvals, double *xvals, double *yvals, void *args)
{
peak_t *pk = (peak_t*) args;
double scale2 = pk->params[0] * pk->params[0];
double center = pk->params[1];
double sigma = pk->params[2];
int i;
for (i=0; i<nvals; i++)
{
yvals[i] += scale2 * exp((xvals[i]-center)/sigma/sigma);
}
}
void exp_calc_df(int nvals, double *xvals, double *yvals, double *dfvals, int idf, void *args)
{
peak_t *pk = (peak_t*) args;
double scale = pk->params[0];
double center = pk->params[1];
double sigma = pk->params[2];
int i;
for (i=0; i<nvals; i++)
{
double EXP = exp((xvals[i]-center)/sigma/sigma);
if ( idf==0 ) // dscale
dfvals[i] += 2*scale*EXP;
else if ( idf==2 ) // dsigma
dfvals[i] -= 2*scale*scale*(xvals[i]-center)*EXP/sigma/sigma/sigma;
}
}
void exp_sprint_func(struct _peak_t *pk, kstring_t *str)
{
ksprintf(str,"%f**2 * exp((x-%f)/%f**2)",fabs(pk->params[0]),pk->params[1],fabs(pk->params[2]));
}
void exp_convert_get(peak_t *pk, double *params)
{
params[0] = fabs(pk->params[0]);
params[1] = fabs(pk->params[1]);
params[2] = fabs(pk->params[2]);
}
void peakfit_add_exp(peakfit_t *pkf, double a, double b, double c, int fit_mask)
{
pkf->npeaks++;
hts_expand0(peak_t,pkf->npeaks,pkf->mpeaks,pkf->peaks);
int i, nfit = 0;
for (i=0; i<NPARAMS; i++)
if ( fit_mask & (1<<i) ) nfit++;
assert( !(fit_mask&2) );
pkf->nparams += nfit;
hts_expand0(double,pkf->nparams,pkf->mparams,pkf->params);
peak_t *pk = &pkf->peaks[pkf->npeaks-1];
memset(pk, 0, sizeof(peak_t));
pk->calc_f = exp_calc_f;
pk->calc_df = exp_calc_df;
pk->print_func = exp_sprint_func;
pk->convert_get = exp_convert_get;
pk->fit_mask = fit_mask;
pk->ori_params[0] = a;
pk->ori_params[1] = b;
pk->ori_params[2] = c;
}
void peakfit_set_params(peakfit_t *pkf, int ipk, double *params, int nparams)
{
peak_t *pk = &pkf->peaks[ipk];
int i;
if ( pk->convert_set )
for (i=0; i<nparams; i++) pk->params[i] = pk->convert_set(pk, i, params[i]);
else
for (i=0; i<nparams; i++) pk->params[i] = params[i];
}
void peakfit_get_params(peakfit_t *pkf, int ipk, double *params, int nparams)
{
peak_t *pk = &pkf->peaks[ipk];
if ( pk->convert_get ) pk->convert_get(pk, params);
else
{
int i;
for (i=0; i<nparams; i++) params[i] = pk->params[i];
}
}
peakfit_t *peakfit_init(void)
{
return (peakfit_t*)calloc(1,sizeof(peakfit_t));
}
void peakfit_reset(peakfit_t *pkf)
{
pkf->npeaks = pkf->nparams = 0;
memset(pkf->peaks,0,sizeof(peak_t)*pkf->mpeaks);
}
void peakfit_destroy(peakfit_t *pkf)
{
free(pkf->str.s);
free(pkf->vals);
free(pkf->params);
free(pkf->peaks);
free(pkf);
}
int peakfit_calc_f(const gsl_vector *params, void *data, gsl_vector *yvals)
{
peakfit_t *pkf = (peakfit_t *) data;
int i,j;
for (i=0; i<pkf->nvals; i++)
pkf->vals[i] = 0;
int iparam = 0;
for (i=0; i<pkf->npeaks; i++)
{
peak_t *pk = &pkf->peaks[i];
for (j=0; j<NPARAMS; j++)
{
if ( !(pk->fit_mask & (1<<j)) ) continue;
pk->params[j] = gsl_vector_get(params,iparam);
iparam++;
}
pk->calc_f(pkf->nvals, pkf->xvals, pkf->vals, pk);
}
for (i=0; i<pkf->nvals; i++)
gsl_vector_set(yvals, i, (pkf->vals[i] - pkf->yvals[i])/0.01);
return GSL_SUCCESS;
}
int peakfit_calc_df(const gsl_vector *params, void *data, gsl_matrix *jacobian)
{
peakfit_t *pkf = (peakfit_t *) data;
int i,j,k,iparam = 0;
for (i=0; i<pkf->npeaks; i++)
{
peak_t *pk = &pkf->peaks[i];
int iparam_prev = iparam;
for (j=0; j<NPARAMS; j++)
{
if ( !(pk->fit_mask & (1<<j)) ) continue;
pk->params[j] = gsl_vector_get(params,iparam);
iparam++;
}
iparam = iparam_prev;
for (j=0; j<NPARAMS; j++)
{
if ( !(pk->fit_mask & (1<<j)) ) continue;
for (k=0; k<pkf->nvals; k++) pkf->vals[k] = 0;
pk->calc_df(pkf->nvals, pkf->xvals, pkf->yvals, pkf->vals, j, pk);
for (k=0; k<pkf->nvals; k++) gsl_matrix_set(jacobian, k, iparam, pkf->vals[k]);
iparam++;
}
}
return GSL_SUCCESS;
}
int peakfit_calc_fdf(const gsl_vector *params, void *data, gsl_vector *yvals, gsl_matrix *jacobian)
{
peakfit_calc_f(params, data, yvals);
peakfit_calc_df(params, data, jacobian);
return GSL_SUCCESS;
}
double peakfit_evaluate(peakfit_t *pkf)
{
int i;
for (i=0; i<pkf->nvals; i++)
pkf->vals[i] = 0;
for (i=0; i<pkf->npeaks; i++)
pkf->peaks[i].calc_f(pkf->nvals, pkf->xvals, pkf->vals, &pkf->peaks[i]);
double sum = 0;
for (i=0; i<pkf->nvals; i++)
sum += fabs(pkf->vals[i] - pkf->yvals[i]);
return sum;
}
const char *peakfit_sprint_func(peakfit_t *pkf)
{
pkf->str.l = 0;
int i;
for (i=0; i<pkf->npeaks; i++)
{
if ( i>0 ) kputs(" + ", &pkf->str);
pkf->peaks[i].print_func(&pkf->peaks[i], &pkf->str);
}
return (const char*)pkf->str.s;
}
void peakfit_verbose(peakfit_t *pkf, int level)
{
pkf->verbose = level;
}
void peakfit_set_mc(peakfit_t *pkf, double xmin, double xmax, int iparam, int niter)
{
peak_t *pk = &pkf->peaks[ pkf->npeaks-1 ];
pk->mc[iparam].scan = 1;
pk->mc[iparam].min = xmin;
pk->mc[iparam].max = xmax;
pkf->nmc_iter = niter;
}
double peakfit_run(peakfit_t *pkf, int nvals, double *xvals, double *yvals)
{
srand(0); // for reproducibility
pkf->nvals = nvals;
pkf->xvals = xvals;
pkf->yvals = yvals;
hts_expand0(double,pkf->nvals,pkf->mvals,pkf->vals);
if ( !pkf->nparams ) return peakfit_evaluate(pkf);
gsl_multifit_function_fdf mfunc;
mfunc.f = &peakfit_calc_f;
mfunc.df = &peakfit_calc_df;
mfunc.fdf = &peakfit_calc_fdf;
mfunc.n = nvals;
mfunc.p = pkf->nparams;
mfunc.params = pkf;
const gsl_multifit_fdfsolver_type *solver_type;
gsl_multifit_fdfsolver *solver;
solver_type = gsl_multifit_fdfsolver_lmsder;
solver = gsl_multifit_fdfsolver_alloc(solver_type, nvals, mfunc.p);
gsl_vector *grad = gsl_vector_alloc(pkf->nparams);
int imc_iter, i,j, iparam;
double best_fit = HUGE_VAL;
for (imc_iter=0; imc_iter<=pkf->nmc_iter; imc_iter++) // possibly multiple monte-carlo iterations
{
// set GSL parameters
iparam = 0;
for (i=0; i<pkf->npeaks; i++)
{
peak_t *pk = &pkf->peaks[i];
for (j=0; j<NPARAMS; j++)
{
pk->params[j] = pk->ori_params[j];
if ( pk->mc[j].scan )
{
pk->params[j] = rand()*(pk->mc[j].max - pk->mc[j].min)/RAND_MAX + pk->mc[j].min;
if ( pk->convert_set ) pk->params[j] = pk->convert_set(pk, j, pk->params[j]);
}
if ( !(pk->fit_mask & (1<<j)) ) continue;
pkf->params[iparam] = pk->params[j];
iparam++;
}
}
gsl_vector_view vview = gsl_vector_view_array(pkf->params, mfunc.p);
gsl_multifit_fdfsolver_set(solver, &mfunc, &vview.vector);
// iterate until convergence (or lack of it)
int ret, test1 = 0, test2 = 0, niter = 0, niter_max = 500;
do
{
ret = gsl_multifit_fdfsolver_iterate(solver);
if ( pkf->verbose >1 )
{
fprintf(stderr, "%d: ", niter);
for (i=0; i<pkf->npeaks; i++)
{
peak_t *pk = &pkf->peaks[i];
fprintf(stderr,"\t%f %f %f", pk->params[0],pk->params[1],pk->params[2]);
}
fprintf(stderr, "\t.. %s\n", gsl_strerror(ret));
}
if ( ret ) break;
#if GSL_MAJOR_VERSION >= 2
int info;
test1 = gsl_multifit_fdfsolver_test(solver, 1e-8,1e-8, 0.0, &info);
#else
gsl_multifit_gradient(solver->J, solver->f, grad);
test1 = gsl_multifit_test_gradient(grad, 1e-8);
test2 = gsl_multifit_test_delta(solver->dx, solver->x, 1e-8, 1e-8);
#endif
}
while ((test1==GSL_CONTINUE || test2==GSL_CONTINUE) && ++niter<niter_max);
if ( pkf->verbose >1 )
{
fprintf(stderr,"test1=%s\n", gsl_strerror(test1));
fprintf(stderr,"test2=%s\n", gsl_strerror(test2));
}
// recover parameters
iparam = 0;
for (i=0; i<pkf->npeaks; i++)
{
peak_t *pk = &pkf->peaks[i];
for (j=0; j<NPARAMS; j++)
{
if ( !(pk->fit_mask & (1<<j)) ) continue;
pk->params[j] = gsl_vector_get(solver->x, iparam++);
}
}
// evaluate fit, update best parameters
double fit = peakfit_evaluate(pkf);
if ( fit<best_fit )
{
for (i=0; i<pkf->npeaks; i++)
{
peak_t *pk = &pkf->peaks[i];
for (j=0; j<NPARAMS; j++) pk->mc[j].best = pk->params[j];
}
}
if ( fit<best_fit ) best_fit = fit;
}
gsl_multifit_fdfsolver_free(solver);
gsl_vector_free(grad);
for (i=0; i<pkf->npeaks; i++)
{
peak_t *pk = &pkf->peaks[i];
for (j=0; j<NPARAMS; j++) pk->params[j] = pk->mc[j].best;
}
return best_fit;
}