-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathutils.py
133 lines (118 loc) · 4.22 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
from torchvision import transforms
from PIL import Image
import os
from torch import nn
import torch
import glob
import numpy as np
import torch.nn.functional as F
def tensor2pil(t):
img = transforms.functional.to_pil_image(denorm(t))
return img
def denorm(t):
return t*0.5 + 0.5
def tensor_imsave(t, path, fname, denormalization=False, prt=False):
# Save tensor as .png file
check_folder(path)
if denormalization: t = denorm(t)
t = torch.clamp(input=t, min=0., max=1.)
img = transforms.functional.to_pil_image(t.detach().cpu())
img.save(os.path.join(path,fname))
if prt:
print(f"Saved to {os.path.join(path,fname)}")
def pil_loader(path):
# open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
with open(path, 'rb') as f:##Automatic closing using with. rb = read binary
img = Image.open(f)
return img.convert('RGB')
def check_folder(log_dir):
if not os.path.exists(log_dir):
os.makedirs(log_dir)
return log_dir
def freeze_model(model):
for p in model.parameters():
p.requires_grad = False
class TVLoss(nn.Module):
def __init__(self,TVLoss_weight=1):
super(TVLoss,self).__init__()
self.TVLoss_weight = TVLoss_weight
def forward(self,x):
batch_size = x.size()[0]
h_x = x.size()[2]
w_x = x.size()[3]
count_h = self._tensor_size(x[:,:,1:,:])
count_w = self._tensor_size(x[:,:,:,1:])
h_tv = torch.pow((x[:,:,1:,:]-x[:,:,:h_x-1,:]),2).sum()
w_tv = torch.pow((x[:,:,:,1:]-x[:,:,:,:w_x-1]),2).sum()
return self.TVLoss_weight*2*(h_tv/count_h+w_tv/count_w)/batch_size
def _tensor_size(self,t):
return t.size()[1]*t.size()[2]*t.size()[3]
def pil_batch_loader(root_path, bsize):
# Returns the list of PIL.Images at given path. Length of list is bsize.
flist = sorted(glob.glob(root_path, '*.png'))
flist = flist[:bsize]
result = []
for p in flist:
img = pil_loader(p)
result.append(img)
return result
class PSNR(object):
def __init__(self, gpu, val_max=1, val_min=0, ycbcr=True):
super(PSNR,self).__init__()
self.val_max = val_max
self.val_min = val_min
self.gpu = gpu
self.ycbcr = ycbcr
def __call__(self,x,y):
"""
if x.is_cuda:
x = x.detach().cpu()
if y.is_cuda:
y = y.detach().cpu()
"""
assert len(x.size()) == len(y.size())
with torch.no_grad():
x_lum = rgb_to_ycbcr(x)[:,0]
y_lum = rgb_to_ycbcr(y)[:,0]
# if len(x.size()) == 3:
# mse = torch.mean((y-x)**2)
# psnr = 20*torch.log10(torch.tensor(self.val_max-self.val_min, dtype=torch.float).cuda(self.gpu)) - 10*torch.log10(mse)
# return psnr
# elif len(x.size()) == 4:
mse = torch.mean((y_lum-x_lum)**2, dim=[1,2])
psnr = 20*torch.log10(torch.tensor(self.val_max-self.val_min, dtype=torch.float).cuda(self.gpu)) - 10*torch.log10(mse)
return torch.mean(psnr)
def rgb_to_ycbcr(image):
r"""Convert an RGB image to YCbCr.
Args:
image (torch.Tensor): RGB Image to be converted to YCbCr.
Returns:
torch.Tensor: YCbCr version of the image.
"""
if not torch.is_tensor(image):
raise TypeError("Input type is not a torch.Tensor. Got {}".format(
type(image)))
if len(image.shape) < 3 or image.shape[-3] != 3:
raise ValueError("Input size must have a shape of (*, 3, H, W). Got {}"
.format(image.shape))
r: torch.Tensor = image[..., 0, :, :]
g: torch.Tensor = image[..., 1, :, :]
b: torch.Tensor = image[..., 2, :, :]
delta = .5
y: torch.Tensor = .299 * r + .587 * g + .114 * b
cb: torch.Tensor = (b - y) * .564 + delta
cr: torch.Tensor = (r - y) * .713 + delta
return torch.stack((y, cb, cr), -3)
def clear(x):
return x.detach().cpu().squeeze().numpy()
def normalize_np(x):
x -= x.min()
x /= x.max()
return x
def pad(x, pad):
return F.pad(x, (pad, pad, pad, pad), 'reflect')
def crop(x, pad):
if pad == 0:
return x
else:
return x[..., pad:-pad, pad:-pad]