-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathfp16_utils.py
190 lines (156 loc) · 7.63 KB
/
fp16_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# https://github.com/NVIDIA/apex/blob/master/apex/fp16_utils/loss_scaler.py
import torch
# item() is a recent addition, so this helps with backward compatibility.
def to_python_float(t):
if hasattr(t, 'item'):
return t.item()
else:
return t[0]
class LossScaler:
"""
Class that manages a static loss scale. This class is intended to interact with
:class:`FP16_Optimizer`, and should not be directly manipulated by the user.
Use of :class:`LossScaler` is enabled via the ``static_loss_scale`` argument to
:class:`FP16_Optimizer`'s constructor.
Args:
scale (float, optional, default=1.0): The loss scale.
"""
def __init__(self, scale=1):
from apex import deprecated_warning
deprecated_warning("apex.fp16_utils is deprecated and will be removed by the end of February 2023. Use [PyTorch AMP](https://pytorch.org/docs/stable/amp.html)")
self.cur_scale = scale
# `params` is a list / generator of torch.Variable
def has_overflow(self, params):
return False
# `x` is a torch.Tensor
def _has_inf_or_nan(x):
return False
def update_scale(self, overflow):
pass
@property
def loss_scale(self):
return self.cur_scale
def scale_gradient(self, module, grad_in, grad_out):
return tuple(self.loss_scale * g for g in grad_in)
def backward(self, loss, retain_graph=False):
scaled_loss = loss*self.loss_scale
scaled_loss.backward(retain_graph=retain_graph)
class DynamicLossScaler:
"""
Class that manages dynamic loss scaling. It is recommended to use :class:`DynamicLossScaler`
indirectly, by supplying ``dynamic_loss_scale=True`` to the constructor of
:class:`FP16_Optimizer`. However, it's important to understand how :class:`DynamicLossScaler`
operates, because the default options can be changed using the
the ``dynamic_loss_args`` argument to :class:`FP16_Optimizer`'s constructor.
Loss scaling is designed to combat the problem of underflowing gradients encountered at long
times when training fp16 networks. Dynamic loss scaling begins by attempting a very high loss
scale. Ironically, this may result in OVERflowing gradients. If overflowing gradients are
encountered, :class:`DynamicLossScaler` informs :class:`FP16_Optimizer` that an overflow has
occurred.
:class:`FP16_Optimizer` then skips the update step for this particular iteration/minibatch,
and :class:`DynamicLossScaler` adjusts the loss scale to a lower value.
If a certain number of iterations occur without overflowing gradients detected,
:class:`DynamicLossScaler` increases the loss scale once more.
In this way :class:`DynamicLossScaler` attempts to "ride the edge" of
always using the highest loss scale possible without incurring overflow.
Args:
init_scale (float, optional, default=2**32): Initial loss scale attempted by :class:`DynamicLossScaler.`
scale_factor (float, optional, default=2.0): Factor used when adjusting the loss scale. If an overflow is encountered, the loss scale is readjusted to loss scale/``scale_factor``. If ``scale_window`` consecutive iterations take place without an overflow, the loss scale is readjusted to loss_scale*``scale_factor``.
scale_window (int, optional, default=1000): Number of consecutive iterations without an overflow to wait before increasing the loss scale.
"""
def __init__(self,
init_scale=2**32,
scale_factor=2.,
scale_window=1000):
self.cur_scale = init_scale
self.cur_iter = 0
self.last_overflow_iter = -1
self.scale_factor = scale_factor
self.scale_window = scale_window
# `params` is a list / generator of torch.Variable
def has_overflow(self, params):
for p in params:
if p.grad is not None and DynamicLossScaler._has_inf_or_nan(p.grad.data):
return True
return False
# `x` is a torch.Tensor
def _has_inf_or_nan(x):
try:
# if x is half, the .float() incurs an additional deep copy, but it's necessary if
# Pytorch's .sum() creates a one-element tensor of the same type as x
# (which is true for some recent version of pytorch).
cpu_sum = float(x.float().sum())
# More efficient version that can be used if .sum() returns a Python scalar
# cpu_sum = float(x.sum())
except RuntimeError as instance:
# We want to check if inst is actually an overflow exception.
# RuntimeError could come from a different error.
# If so, we still want the exception to propagate.
if "value cannot be converted" not in instance.args[0]:
raise
return True
else:
if cpu_sum == float('inf') or cpu_sum == -float('inf') or cpu_sum != cpu_sum:
return True
return False
# `overflow` is boolean indicating whether the gradient overflowed
def update_scale(self, overflow):
if overflow:
# self.cur_scale /= self.scale_factor
self.cur_scale = max(self.cur_scale/self.scale_factor, 1)
self.last_overflow_iter = self.cur_iter
else:
if (self.cur_iter - self.last_overflow_iter) % self.scale_window == 0:
self.cur_scale *= self.scale_factor
self.cur_iter += 1
@property
def loss_scale(self):
return self.cur_scale
def scale_gradient(self, module, grad_in, grad_out):
return tuple(self.loss_scale * g for g in grad_in)
def backward(self, loss, retain_graph=False):
scaled_loss = loss*self.loss_scale
scaled_loss.backward(retain_graph=retain_graph)
##############################################################
# Example usage below here -- assuming it's in a separate file
##############################################################
"""
TO-DO separate out into an example.
if __name__ == "__main__":
import torch
from torch.autograd import Variable
from dynamic_loss_scaler import DynamicLossScaler
# N is batch size; D_in is input dimension;
# H is hidden dimension; D_out is output dimension.
N, D_in, H, D_out = 64, 1000, 100, 10
# Create random Tensors to hold inputs and outputs, and wrap them in Variables.
x = Variable(torch.randn(N, D_in), requires_grad=False)
y = Variable(torch.randn(N, D_out), requires_grad=False)
w1 = Variable(torch.randn(D_in, H), requires_grad=True)
w2 = Variable(torch.randn(H, D_out), requires_grad=True)
parameters = [w1, w2]
learning_rate = 1e-6
optimizer = torch.optim.SGD(parameters, lr=learning_rate)
loss_scaler = DynamicLossScaler()
for t in range(500):
y_pred = x.mm(w1).clamp(min=0).mm(w2)
loss = (y_pred - y).pow(2).sum() * loss_scaler.loss_scale
print('Iter {} loss scale: {}'.format(t, loss_scaler.loss_scale))
print('Iter {} scaled loss: {}'.format(t, loss.data[0]))
print('Iter {} unscaled loss: {}'.format(t, loss.data[0] / loss_scaler.loss_scale))
# Run backprop
optimizer.zero_grad()
loss.backward()
# Check for overflow
has_overflow = DynamicLossScaler.has_overflow(parameters)
# If no overflow, unscale grad and update as usual
if not has_overflow:
for param in parameters:
param.grad.data.mul_(1. / loss_scaler.loss_scale)
optimizer.step()
# Otherwise, don't do anything -- ie, skip iteration
else:
print('OVERFLOW!')
# Update loss scale for next iteration
loss_scaler.update_scale(has_overflow)
"""