|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Análise com SQL Avançado\n", |
| 8 | + "## U.S. EPA Food Commodity Intake Database (FCID)\n", |
| 9 | + "### [https://fcid.foodrisk.org/](https://fcid.foodrisk.org/)" |
| 10 | + ] |
| 11 | + }, |
| 12 | + { |
| 13 | + "cell_type": "markdown", |
| 14 | + "metadata": {}, |
| 15 | + "source": [ |
| 16 | + "Ativando uma conexão de banco de dados em memória usando o SGBD H2:" |
| 17 | + ] |
| 18 | + }, |
| 19 | + { |
| 20 | + "cell_type": "code", |
| 21 | + "execution_count": 1, |
| 22 | + "metadata": {}, |
| 23 | + "outputs": [], |
| 24 | + "source": [ |
| 25 | + "%defaultDatasource jdbc:h2:mem:db" |
| 26 | + ] |
| 27 | + }, |
| 28 | + { |
| 29 | + "cell_type": "markdown", |
| 30 | + "metadata": {}, |
| 31 | + "source": [ |
| 32 | + "# Importando Tabelas do FCID" |
| 33 | + ] |
| 34 | + }, |
| 35 | + { |
| 36 | + "cell_type": "code", |
| 37 | + "execution_count": 2, |
| 38 | + "metadata": {}, |
| 39 | + "outputs": [], |
| 40 | + "source": [ |
| 41 | + "DROP TABLE IF EXISTS Crop_Group;\n", |
| 42 | + "DROP TABLE IF EXISTS FCID_Description;\n", |
| 43 | + "DROP TABLE IF EXISTS Recipes;\n", |
| 44 | + "DROP TABLE IF EXISTS Intake;\n", |
| 45 | + "\n", |
| 46 | + "CREATE TABLE Crop_Group (\n", |
| 47 | + " CGN VARCHAR(2),\n", |
| 48 | + " CGL VARCHAR(6),\n", |
| 49 | + " Crop_Group_Description VARCHAR(80),\n", |
| 50 | + " PRIMARY KEY (CGL)\n", |
| 51 | + ") AS SELECT\n", |
| 52 | + " CGN, CGL, Crop_Group_Description\n", |
| 53 | + "FROM CSVREAD('../../data/food-intake/basics/FCID_Cropgroup_Description.csv');\n", |
| 54 | + "\n", |
| 55 | + "CREATE TABLE FCID_Description (\n", |
| 56 | + " CGN VARCHAR(2),\n", |
| 57 | + " CG_Subgroup VARCHAR(6),\n", |
| 58 | + " FCID_Code VARCHAR(10),\n", |
| 59 | + " FCID_Desc VARCHAR(55),\n", |
| 60 | + " PRIMARY KEY (FCID_Code),\n", |
| 61 | + ") AS SELECT\n", |
| 62 | + " cgn, CG_Subgroup, FCID_Code, FCID_Desc\n", |
| 63 | + "FROM CSVREAD('../../data/food-intake/basics/FCID_Code_Description.csv');\n", |
| 64 | + "\n", |
| 65 | + "CREATE TABLE Recipes (\n", |
| 66 | + " Food_Code VARCHAR(8),\n", |
| 67 | + " Mod_Code VARCHAR(8),\n", |
| 68 | + " Ingredient_Num TINYINT,\n", |
| 69 | + " FCID_Code VARCHAR(10),\n", |
| 70 | + " Cooked_Status TINYINT,\n", |
| 71 | + " Food_Form TINYINT,\n", |
| 72 | + " Cooking_Method TINYINT,\n", |
| 73 | + " Commodity_Weight DECIMAL(5, 2),\n", |
| 74 | + " CSFII_9498_IND TINYINT,\n", |
| 75 | + " WWEIA_9904_IND TINYINT,\n", |
| 76 | + " WWEIA_0510_IND TINYINT,\n", |
| 77 | + " PRIMARY KEY(Food_Code, Mod_Code, Ingredient_Num),\n", |
| 78 | + " FOREIGN KEY(FCID_Code)\n", |
| 79 | + " REFERENCES FCID_Description(FCID_Code)\n", |
| 80 | + " ON DELETE NO ACTION\n", |
| 81 | + " ON UPDATE NO ACTION\n", |
| 82 | + ") AS SELECT\n", |
| 83 | + " Food_Code, Mod_Code, Ingredient_Num, FCID_Code, Cooked_Status, Food_Form, Cooking_Method,\n", |
| 84 | + " Commodity_Weight, CSFII_9498_IND, WWEIA_9904_IND, WWEIA_0510_IND\n", |
| 85 | + "FROM CSVREAD('../../data/food-intake/recipes/Recipes_WWEIA_FCID_0510.csv');\n", |
| 86 | + "\n", |
| 87 | + "CREATE TABLE Intake (\n", |
| 88 | + " SeqN INTEGER NOT NULL,\n", |
| 89 | + " DayCode TINYINT NOT NULL,\n", |
| 90 | + " DraBF TINYINT,\n", |
| 91 | + " FCID_Code VARCHAR(10),\n", |
| 92 | + " Cooked_Status TINYINT,\n", |
| 93 | + " Food_Form TINYINT,\n", |
| 94 | + " Cooking_Method TINYINT,\n", |
| 95 | + " Intake DECIMAL(13,7),\n", |
| 96 | + " Intake_BW DECIMAL(13,10),\n", |
| 97 | + " PRIMARY KEY(SeqN, DayCode, FCID_Code, Cooked_Status, Food_Form, Cooking_Method),\n", |
| 98 | + " FOREIGN KEY(FCID_Code)\n", |
| 99 | + " REFERENCES FCID_Description(FCID_Code)\n", |
| 100 | + " ON DELETE NO ACTION\n", |
| 101 | + " ON UPDATE NO ACTION\n", |
| 102 | + ") AS SELECT\n", |
| 103 | + " SEQN, DAYCODE, DRABF, FCID_Code, Cooked_Status, Food_Form, Cooking_Method, Intake,Intake_BW\n", |
| 104 | + "FROM CSVREAD('../../data/food-intake/consumption/Commodity_CSFFM_Intake_0510-cropped.csv');" |
| 105 | + ] |
| 106 | + }, |
| 107 | + { |
| 108 | + "cell_type": "markdown", |
| 109 | + "metadata": {}, |
| 110 | + "source": [ |
| 111 | + "# Visualizando as Tabelas" |
| 112 | + ] |
| 113 | + }, |
| 114 | + { |
| 115 | + "cell_type": "code", |
| 116 | + "execution_count": 3, |
| 117 | + "metadata": {}, |
| 118 | + "outputs": [ |
| 119 | + { |
| 120 | + "data": { |
| 121 | + "application/vnd.jupyter.widget-view+json": { |
| 122 | + "model_id": "b89a3f80-02b3-4acb-bb7c-5d3d4f855e42", |
| 123 | + "version_major": 2, |
| 124 | + "version_minor": 0 |
| 125 | + }, |
| 126 | + "method": "display_data" |
| 127 | + }, |
| 128 | + "metadata": {}, |
| 129 | + "output_type": "display_data" |
| 130 | + } |
| 131 | + ], |
| 132 | + "source": [ |
| 133 | + "SELECT * FROM Crop_Group LIMIT 10;" |
| 134 | + ] |
| 135 | + }, |
| 136 | + { |
| 137 | + "cell_type": "code", |
| 138 | + "execution_count": 4, |
| 139 | + "metadata": {}, |
| 140 | + "outputs": [ |
| 141 | + { |
| 142 | + "data": { |
| 143 | + "application/vnd.jupyter.widget-view+json": { |
| 144 | + "model_id": "9b197073-9158-4939-8e60-adfcfb546c1e", |
| 145 | + "version_major": 2, |
| 146 | + "version_minor": 0 |
| 147 | + }, |
| 148 | + "method": "display_data" |
| 149 | + }, |
| 150 | + "metadata": {}, |
| 151 | + "output_type": "display_data" |
| 152 | + } |
| 153 | + ], |
| 154 | + "source": [ |
| 155 | + "SELECT * FROM FCID_Description LIMIT 10;" |
| 156 | + ] |
| 157 | + }, |
| 158 | + { |
| 159 | + "cell_type": "code", |
| 160 | + "execution_count": 5, |
| 161 | + "metadata": {}, |
| 162 | + "outputs": [ |
| 163 | + { |
| 164 | + "data": { |
| 165 | + "application/vnd.jupyter.widget-view+json": { |
| 166 | + "model_id": "10c6feb9-2454-4656-bba0-ece47f008442", |
| 167 | + "version_major": 2, |
| 168 | + "version_minor": 0 |
| 169 | + }, |
| 170 | + "method": "display_data" |
| 171 | + }, |
| 172 | + "metadata": {}, |
| 173 | + "output_type": "display_data" |
| 174 | + } |
| 175 | + ], |
| 176 | + "source": [ |
| 177 | + "SELECT * FROM Recipes LIMIT 10;" |
| 178 | + ] |
| 179 | + }, |
| 180 | + { |
| 181 | + "cell_type": "code", |
| 182 | + "execution_count": 6, |
| 183 | + "metadata": { |
| 184 | + "scrolled": true |
| 185 | + }, |
| 186 | + "outputs": [ |
| 187 | + { |
| 188 | + "data": { |
| 189 | + "application/vnd.jupyter.widget-view+json": { |
| 190 | + "model_id": "7840e179-1311-409f-9ecf-6689a574ee1d", |
| 191 | + "version_major": 2, |
| 192 | + "version_minor": 0 |
| 193 | + }, |
| 194 | + "method": "display_data" |
| 195 | + }, |
| 196 | + "metadata": {}, |
| 197 | + "output_type": "display_data" |
| 198 | + } |
| 199 | + ], |
| 200 | + "source": [ |
| 201 | + "SELECT * FROM Intake LIMIT 10;" |
| 202 | + ] |
| 203 | + }, |
| 204 | + { |
| 205 | + "cell_type": "markdown", |
| 206 | + "metadata": {}, |
| 207 | + "source": [ |
| 208 | + "# Métricas\n", |
| 209 | + "\n", |
| 210 | + "Considere que a tabela Intake registra alimentos consumidos por 1.489 pessoas. Considere as seguintes métricas para um alimento:\n", |
| 211 | + "\n", |
| 212 | + "| Métrica | Descrição |\n", |
| 213 | + "| --- | --- |\n", |
| 214 | + "| Popularidade | número de pessoas (dentre as 1.489) que consumiram o alimento |\n", |
| 215 | + "| Intake_Sum | total consumido do alimento pelas 1.489 pessoas em gramas |\n", |
| 216 | + "| Intake_AVG | média de consumo do alimento em gramas |\n", |
| 217 | + "| Intake_AVG_BW | média de consumo do alimento x peso da pessoa |\n", |
| 218 | + "| Recipes | número de receitas (dentre as 7.154 receitas) que têm o produto como ingrediente |" |
| 219 | + ] |
| 220 | + }, |
| 221 | + { |
| 222 | + "cell_type": "markdown", |
| 223 | + "metadata": {}, |
| 224 | + "source": [ |
| 225 | + "## 1) Construa uma View que apresente essas métricas por produto\n", |
| 226 | + "\n", |
| 227 | + "* Veja exemplo em: `/data/food-intake/computed/commodity-profile.csv`\n", |
| 228 | + "* Importante: esta tabela foi feita com um número maior de registros, portanto os valores não serão iguais aos seus" |
| 229 | + ] |
| 230 | + }, |
| 231 | + { |
| 232 | + "cell_type": "code", |
| 233 | + "execution_count": null, |
| 234 | + "metadata": {}, |
| 235 | + "outputs": [], |
| 236 | + "source": [] |
| 237 | + }, |
| 238 | + { |
| 239 | + "cell_type": "markdown", |
| 240 | + "metadata": {}, |
| 241 | + "source": [ |
| 242 | + "## 2) Como você analisaria a correlação entre as métricas?\n", |
| 243 | + "\n", |
| 244 | + "* Por exemplo, produtos mais populares são mais consumidos (em número de pessoas ou em quantidade)?\n", |
| 245 | + "* Proponha uma ou mais queries para fazer esta análise" |
| 246 | + ] |
| 247 | + }, |
| 248 | + { |
| 249 | + "cell_type": "code", |
| 250 | + "execution_count": null, |
| 251 | + "metadata": {}, |
| 252 | + "outputs": [], |
| 253 | + "source": [] |
| 254 | + }, |
| 255 | + { |
| 256 | + "cell_type": "markdown", |
| 257 | + "metadata": {}, |
| 258 | + "source": [ |
| 259 | + "## 3) Podemos criar grupos de consumidores conforme um perfil?\n", |
| 260 | + "* por exemplo, consumidores podem ser agrupados por alimentos que comem predominantemente?\n", |
| 261 | + "* como você associaria grupos a classes?" |
| 262 | + ] |
| 263 | + }, |
| 264 | + { |
| 265 | + "cell_type": "code", |
| 266 | + "execution_count": null, |
| 267 | + "metadata": {}, |
| 268 | + "outputs": [], |
| 269 | + "source": [] |
| 270 | + }, |
| 271 | + { |
| 272 | + "cell_type": "markdown", |
| 273 | + "metadata": {}, |
| 274 | + "source": [ |
| 275 | + "## 4) Que métricas podem ser analisadas para a comparação de perfis?\n", |
| 276 | + "* escreva uma query SQL que calcule pelo menos uma métrica comparativa" |
| 277 | + ] |
| 278 | + }, |
| 279 | + { |
| 280 | + "cell_type": "code", |
| 281 | + "execution_count": null, |
| 282 | + "metadata": {}, |
| 283 | + "outputs": [], |
| 284 | + "source": [] |
| 285 | + } |
| 286 | + ], |
| 287 | + "metadata": { |
| 288 | + "kernelspec": { |
| 289 | + "display_name": "SQL", |
| 290 | + "language": "SQL", |
| 291 | + "name": "sql" |
| 292 | + }, |
| 293 | + "language_info": { |
| 294 | + "codemirror_mode": "sql", |
| 295 | + "file_extension": ".sql", |
| 296 | + "mimetype": "", |
| 297 | + "name": "SQL", |
| 298 | + "nbconverter_exporter": "", |
| 299 | + "version": "" |
| 300 | + }, |
| 301 | + "toc": { |
| 302 | + "base_numbering": 1, |
| 303 | + "nav_menu": {}, |
| 304 | + "number_sections": false, |
| 305 | + "sideBar": false, |
| 306 | + "skip_h1_title": false, |
| 307 | + "title_cell": "Table of Contents", |
| 308 | + "title_sidebar": "Contents", |
| 309 | + "toc_cell": false, |
| 310 | + "toc_position": {}, |
| 311 | + "toc_section_display": false, |
| 312 | + "toc_window_display": false |
| 313 | + } |
| 314 | + }, |
| 315 | + "nbformat": 4, |
| 316 | + "nbformat_minor": 2 |
| 317 | +} |
0 commit comments