-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathcompute_bps_encoding.py
168 lines (131 loc) · 8.16 KB
/
compute_bps_encoding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import argparse
import torch
from torch.utils import data
from tqdm import tqdm
from preprocess.preprocess_train import *
from loader.preprocess_loader import PreprocessLoader
from utils import *
import smplx
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', type=int, default=20, help='input batch size')
parser.add_argument("--num_bps", default=10000, type=int, help='# of basis points')
parser.add_argument("--cube_size", default=2.0, type=float, help='size of 3D cage')
parser.add_argument('--smplx_model_path', type=str,
default='/mnt/hdd/PROX/body_models/smplx_model',
help='path to smplx body model')
parser.add_argument('--dataset_path', type=str,
default='/mnt/hdd/PROX',
help='path to prox dataset')
parser.add_argument('--preprocess_file_path', type=str,
default='/mnt/hdd/PROX/preprocessed_encoding',
help='path to preprocessed bps features')
parser.add_argument('--scene_name', type=str, default='BasementSittingBooth', help='current preprocessed scene name')
parser.add_argument("--split", default='train', type=str, choices=['train', 'test'])
parser.add_argument("--auge_per_sample", default=4, type=int, help='# of augmentations for each sample')
# parser.add_argument("--id", default=1, type=int, help='id of different augmentations of the same scene')
args = parser.parse_args()
# test scene: ['MPH1Library', 'MPH16', 'N0SittingBooth', 'N3OpenArea']
# train scene: ['BasementSittingBooth', 'MPH8', 'MPH11', 'MPH112', 'N0Sofa', 'N3Library', 'Werkraum', 'N3Office']
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if __name__ == '__main__':
proxd_path = os.path.join(args.dataset_path, 'PROXD')
cam2world_path = os.path.join(args.dataset_path, 'cam2world')
scene_mesh_path = os.path.join(args.dataset_path, 'scenes_downsampled')
smplx_model = smplx.create(args.smplx_model_path, model_type='smplx',
gender='neutral', ext='npz',
num_pca_comps=12,
create_global_orient=True,
create_body_pose=True,
create_betas=True,
create_left_hand_pose=True,
create_right_hand_pose=True,
create_expression=True,
create_jaw_pose=True,
create_leye_pose=True,
create_reye_pose=True,
create_transl=True,
batch_size=args.batch_size
).to(device)
print('[INFO] smplx model loaded.')
if not os.path.exists(args.preprocess_file_path):
os.makedirs(args.preprocess_file_path)
##################### get body verts for all samples #################
dataset = PreprocessLoader(scene_name=args.scene_name)
dataset.load_body_params(proxd_path)
dataset.load_cam_params(cam2world_path)
dataset.load_scene(scene_mesh_file=scene_mesh_path)
bps_dataloader = torch.utils.data.DataLoader(dataset=dataset, batch_size=args.batch_size, shuffle=False,
num_workers=4,
drop_last=True)
body_verts_list = []
with torch.no_grad():
for step, data in tqdm(enumerate(bps_dataloader)):
[body_params, body_pose_joint, cam_pose, scene_verts] = [item.to(device) for item in data]
body_verts = gen_body_mesh(body_params, body_pose_joint, smplx_model) # [bs, n_body_verts, 3]
body_verts = verts_transform(body_verts, cam_pose)
# save valid data (if the body vertex is within the scene)
for i in range(body_verts.shape[0]):
if np.max(np.abs(body_verts[i].cpu().numpy())) <= np.max(np.abs(scene_verts[i].cpu().numpy())):
body_verts_list.append(body_verts[i].cpu().numpy()) # each element in list: [1, n_verts, 3]
print('[INFO] body mesh ready.')
################### calculate scene/body bps representation ########
n_sample = len(body_verts_list)
cur_scene = o3d.io.read_triangle_mesh(os.path.join(scene_mesh_path, args.scene_name + '.ply'))
cur_scene_verts = np.asarray(cur_scene.vertices)
############# crop scene around human body ##########
scene_verts_crop_local_list, scene_verts_local_list, body_verts_local_list, = [], [], []
shift_list_1, rot_angle_list_1 = [], []
for itr in range(args.auge_per_sample):
for i in tqdm(range(n_sample)):
# rotate scene / body
scene_verts, body_verts, rot_angle = rotate_scene_smplx(cur_scene_verts, body_verts_list[i])
# crop scene, shift verts
scene_verts_local, scene_verts_crop_local, _, body_verts_local, shift = \
crop_scene_cube_smplx(scene_verts, body_verts, r=args.cube_size)
scene_verts_crop_local_list.append(scene_verts_crop_local)
scene_verts_local_list.append(scene_verts_local) # list, [n_sample*4, n_scene_verts, 3]
body_verts_local_list.append(body_verts_local) # list, [n_sample*4, n_body_verts, 3]
rot_angle_list_1.append(rot_angle)
shift_list_1.append(shift)
print('[INFO] scene mesh cropped and shifted.')
del body_verts_list
######################## calculate bps ##############
scene_bps_list, body_bps_list = [], []
scene_bps_verts_local_list = []
scene_basis_set = bps_gen_ball_inside(n_bps=args.num_bps, random_seed=100)
for i in tqdm(range(len(body_verts_local_list))):
scene_verts_global, scene_verts_crop_global, body_verts_global, _ = \
augmentation_crop_scene_smplx(scene_verts_local_list[i] / args.cube_size,
scene_verts_crop_local_list[i] / args.cube_size,
body_verts_local_list[i] / args.cube_size,
split=args.split,
scale=args.cube_size)
scene_bps, selected_scene_verts_global, selected_ind = bps_encode_scene(scene_basis_set, scene_verts_crop_global)
body_bps = bps_encode_body(selected_scene_verts_global, body_verts_global) # [n_feat, n_bps]
scene_bps_list.append(scene_bps)
body_bps_list.append(body_bps)
selected_scene_verts_local = scene_verts_crop_local_list[i][selected_ind]
scene_bps_verts_local_list.append(selected_scene_verts_local)
print('[INFO] scene/body bps representation ready (with augmentation).')
########################### save preprocessed data ##############################
# if run compute_bps_encoding.py multiple times for each scene
# use different prefix for saving each time (ex. 'BasementSittingBooth_1_...', 'BasementSittingBooth_2_...')
rot_angle_list_1 = np.asarray(rot_angle_list_1)
shift_list_1 = np.asarray(shift_list_1)
np.save('{}/{}_rot_list.npy'.format(args.preprocess_file_path, args.scene_name), rot_angle_list_1)
np.save('{}/{}_shift_list.npy'.format(args.preprocess_file_path, args.scene_name), shift_list_1)
del rot_angle_list_1
del shift_list_1
scene_bps_list = np.asarray(scene_bps_list) # [n_sample*4, n_feat, n_bps]
np.save('{}/{}_scene_bps_list.npy'.format(args.preprocess_file_path, args.scene_name), scene_bps_list)
del scene_bps_list
body_bps_list = np.asarray(body_bps_list)
np.save('{}/{}_body_bps_list.npy'.format(args.preprocess_file_path, args.scene_name), body_bps_list)
del body_bps_list
body_verts_local_list = np.asarray(body_verts_local_list)
np.save('{}/{}_body_verts_local_list.npy'.format(args.preprocess_file_path, args.scene_name), body_verts_local_list)
del body_verts_local_list
scene_bps_verts_local_list = np.asarray(scene_bps_verts_local_list)
np.save('{}/{}_scene_bps_verts_local_list.npy'.format(args.preprocess_file_path, args.scene_name), scene_bps_verts_local_list)
del scene_bps_verts_local_list
print('[INFO] preprocessed bps/verts saved to {} for scene {}'.format(args.preprocess_file_path, args.scene_name))