-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathso_hwp.py
783 lines (718 loc) · 30.1 KB
/
so_hwp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
import numpy as np
import scipy.fftpack as fft
from spt3g import core
from spt3g.core import G3Units as u
class G3InputFrameList(object):
''' Start G3Pipeline from a list of frames '''
def __init__(self, frames):
self.frames = frames
self.first = True
def __call__(self, frame):
if self.first:
self.first = False
out = self.frames
if frame is not None:
out = out + [frame]
return out
elif frame is not None:
return [frame]
else:
return []
class G3OutputFrameList(object):
''' Collect output frames of G3Pipeline '''
def __init__(self, frames=[]):
self.frames = frames
def __call__(self, frame):
if frame.type != core.G3FrameType.EndProcessing:
self.frames.append(frame)
class Sim_Obs_Setup(object):
''' Start G3Pipeline with an Observation frame '''
def __init__(self,
obs_id=0, obs_start=0 * u.s, obs_end=10 * u.s,
**kwargs):
kwargs['obs_id'] = obs_id
kwargs['obs_start'] = obs_start
kwargs['obs_end'] = obs_end
self.info = kwargs
self.is_first_frame = True
def __call__(self, frame=None):
if self.is_first_frame:
self.is_first_frame = False
obsframe = core.G3Frame(core.G3FrameType.Observation)
for key in self.info:
obsframe[key] = self.info[key]
return [obsframe]
else:
return []
class Sim_Detector_Setup(object):
''' Add a Calibration frame which contains a list of detectors '''
def __init__(self, detectors = ['det1', 'det2']):
self.detectors = detectors
def __call__(self, frame):
if frame.type == core.G3FrameType.Observation:
detframe = core.G3Frame(core.G3FrameType.Calibration)
detectors = core.G3VectorString(self.detectors)
detframe['det_list'] = detectors
return [frame, detframe]
else:
return
class Sim_Scan_Prepare(object):
''' Add Scan frames with empty timestreams '''
def __init__(self, sample_rate=400 * u.Hz, interval=60 * u.s):
self.observation = None
self.detectors = None
self.interval = int(interval)
self.sample_rate = sample_rate
def __call__(self, frame):
if frame.type == core.G3FrameType.Observation:
self.observation = frame
return
if (frame.type == core.G3FrameType.Calibration and
'det_list' in frame):
self.detectors = frame
return
if frame.type == core.G3FrameType.EndProcessing:
assert self.observation is not None
assert self.detectors is not None
output = []
start = int(self.observation['obs_start'])
end = int(self.observation['obs_end'])
t0 = start
while t0 < end:
t1 = min(t0 + self.interval, end)
n_sample = int((t1 - t0) * self.sample_rate)
scan_frame = core.G3Frame(core.G3FrameType.Scan)
scan_frame['start'] = core.G3Time(int(t0))
scan_frame['stop'] = core.G3Time(int(t0 + n_sample / self.sample_rate))
data = core.G3TimestreamMap()
for n in self.detectors['det_list']:
data[n] = core.G3Timestream(np.zeros(n_sample))
data.start = scan_frame['start']
data.stop = core.G3Time(int(t0 + (n_sample - 1) / self.sample_rate))
scan_frame['det_timestream'] = data
output.append(scan_frame)
if t0 + self.interval >= end:
break
t0 = int(scan_frame['stop'])
output.append(frame)
return output
class Sim_HWP_Raw(object):
''' Append simulated raw data of the HWP encoder '''
def __init__(self,
speed = 2.0 * u.Hz,
count_per_rev = 50000,
sample_rate = 20. * u.kHz,
clock = 16 * u.MHz,
ref_offset = 0. * u.deg,
initial_angle = 0. * u.deg):
self.speed = speed
self.count_per_rev = count_per_rev
self.sample_rate = sample_rate
self.clock = clock
self.ref_offset = ref_offset
self.initial_angle = initial_angle
self.t0 = None
def __call__(self, frame):
if frame.type == core.G3FrameType.Observation:
self.obs_start = int(frame['obs_start'])
self.obs_end = int(frame['obs_end'])
return
if frame.type != core.G3FrameType.Scan:
return
assert 'det_timestream' in frame
start = int(frame['start'])
stop = int(frame['stop'])
det_n_sample = frame['det_timestream'].n_samples
det_start = int(frame['det_timestream'].start)
det_stop = int(frame['det_timestream'].stop)
true_angle0 = self.initial_angle + 360 * u.deg * ((
(det_start - self.obs_start) * self.speed) % 1.)
true_angle1 = true_angle0 + 360 * u.deg * (
(det_stop - det_start) * self.speed)
true_angle = np.linspace(true_angle0, true_angle1, det_n_sample)
true_angle %= 360 * u.deg
true_angle = core.G3Timestream(true_angle)
true_angle.start = core.G3Time(det_start)
true_angle.stop = core.G3Time(det_stop)
frame['hwp_sim_true'] = true_angle
if self.t0 is None:
self.t0 = start
initial_count = (self.count_per_rev *
(self.initial_angle - self.ref_offset) / (360 * u.deg))
self.e0 = (initial_count +
(start - self.obs_start) * self.speed
* self.count_per_rev)
self.eref = self.count_per_rev * (
np.floor(self.e0 / self.count_per_rev) + 1)
self.eref -= self.e0 - (self.e0 % (1 << 16))
self.e0 = self.e0 % (1 << 16)
self.c0 = 0
self.t1s = (int(self.t0) // int(u.s) + 1) * int(u.s)
clocks = core.G3VectorInt()
encoders = core.G3VectorInt()
clock_at_ref = core.G3VectorInt()
encoder_at_ref = core.G3VectorInt()
time_at_1s = core.G3VectorTime()
clock_at_1s = core.G3VectorInt()
n_sample = int((stop - self.t0) * self.sample_rate)
for i in range(n_sample):
clocks.append(int(np.int32(self.c0)))
encoders.append(int(self.e0))
dt = int(1. / self.sample_rate)
t1 = self.t0 + dt
c1 = self.c0 + self.clock / self.sample_rate
e1 = self.e0 + self.speed * self.count_per_rev / self.sample_rate
if t1 > self.t1s:
c1s = np.interp(self.t1s - self.t0, [0, dt], [self.c0, c1])
c1s = int(np.int32(int(c1s) % (1 << 32)))
clock_at_1s.append(c1s)
time_at_1s.append(core.G3Time(self.t1s))
self.t1s += int(u.s)
if e1 > self.eref:
cref = np.interp(self.eref, [self.e0, e1], [self.c0, c1])
cref = int(np.int32(int(cref) % (1<<32)))
clock_at_ref.append(cref)
eref = int(self.eref) % (1<<16)
encoder_at_ref.append(eref)
self.eref += self.count_per_rev
if c1 >= (1 << 32):
c1 -= (1 << 32)
if e1 >= (1 << 16):
e1 -= (1 << 16)
self.eref -= (1 << 16)
self.t0 = t1
self.c0 = c1
self.e0 = e1
frame['hwp_raw_clocks'] = clocks
frame['hwp_raw_encoders'] = encoders
frame['hwp_raw_clock_at_ref'] = clock_at_ref
frame['hwp_raw_encoder_at_ref'] = encoder_at_ref
frame['hwp_raw_time_at_1s'] = time_at_1s
frame['hwp_raw_clock_at_1s'] = clock_at_1s
return
def unwrap(x, nbit=32):
''' Unwrap overflow '''
nrev = np.cumsum(np.append(
0, np.diff(x.astype(np.int64)) < 0))
return (nrev << nbit) + x
class Decode_HWP(object):
''' Calculate HWP angle from raw encoder data '''
def __init__(self,
count_per_rev = 50000,
ref_offset = 0. * u.deg,
remove_raw = True
):
self.count_per_rev = count_per_rev
self.obs_start = None
self.obs_end = None
self.remove_raw = remove_raw
def __call__(self, frame):
if frame.type == core.G3FrameType.Observation:
self.obs_start = int(frame['obs_start'])
self.obs_end = int(frame['obs_end'])
if frame.type != core.G3FrameType.Scan:
return
assert 'det_timestream' in frame
det_n_sample = frame['det_timestream'].n_samples
det_start = int(frame['det_timestream'].start)
det_stop = int(frame['det_timestream'].stop)
clks = np.array(frame['hwp_raw_clocks'], dtype=np.uint32)
clks = unwrap(clks, 32)
encs = np.array(frame['hwp_raw_encoders'], dtype=np.uint16)
encs = unwrap(encs, 16)
clk_ref = np.array(frame['hwp_raw_clock_at_ref'], dtype=np.uint32)
clk_ref = unwrap(clk_ref, 32)
enc_ref = np.array(frame['hwp_raw_encoder_at_ref'], dtype=np.uint16)
enc_ref = unwrap(enc_ref, 16)
time_1s = np.array(frame['hwp_raw_time_at_1s'], dtype=np.uint64)
clk_1s = np.array(frame['hwp_raw_clock_at_1s'], dtype=np.uint32)
clk_1s = unwrap(clk_1s, 32)
if enc_ref.size >= 2:
enc_ref_approx = np.interp(clk_ref, clks, encs).astype(int)
if (enc_ref_approx - enc_ref > (1<<16) - 100).all():
enc_ref += 1<<16
enc_ref0 = np.mean(enc_ref % self.count_per_rev)
self.enc_ref0 = frame['hwp_raw_encoder_at_ref'][-1] % self.count_per_rev
else:
enc_ref0 = self.enc_ref0
if clk_1s.size >= 2:
clock = (clk_1s[-1] - clk_1s[0]) / (time_1s[-1] - time_1s[0])
enc_time = np.interp(
clks - clk_1s[0],
clk_1s - clk_1s[0],
((time_1s - time_1s[0]).astype(np.int64)
- (clk_1s - clk_1s[0]) / clock)).astype(np.int64)
enc_time += ((clks - clk_1s[0]) / clock).astype(np.int64)
enc_time = enc_time.astype(np.uint64) + time_1s[0]
self.clock = clock
self.clk0 = clk_1s[-1]
self.t0 = time_1s[-1]
else:
clock = self.clock
enc_time = ((clks - self.clk0) / clock).astype(np.int64)
enc_time += self.t0
enc_speed = (encs[-1] - encs[0]) / (clks[-1] - clks[0])
enc_const = encs[0] + enc_speed * (clks - clks[0])
encs_err = encs - enc_const
det_time = np.linspace(det_start, det_stop, det_n_sample).astype(np.int64)
enc_angle = np.interp(det_time, enc_time, encs_err)
enc_angle += enc_speed * clock * (det_time - enc_time[0])
enc_angle += encs[0] - enc_ref0
enc_angle = (enc_angle % self.count_per_rev) / self.count_per_rev * 360 * u.deg
enc_angle = core.G3Timestream(enc_angle)
enc_angle.start = core.G3Time(det_start)
enc_angle.stop = core.G3Time(det_stop)
if self.remove_raw:
for key in frame:
if key.startswith('hwp_raw'):
del(frame[key])
frame['hwp_angle'] = enc_angle
return [frame]
''' Input values of HWP synchronous signals (HWPSS) for simulation '''
hwpss_frame = core.G3Frame(core.G3FrameType.Calibration)
hwpss_dict = core.G3MapDouble()
hwpss_dict['det1'] = 0.1 * u.K
hwpss_dict['det2'] = 0.1 * u.K
hwpss_frame['hwp_sim_hwpss'] = hwpss_dict
class Sim_HWPSS(object):
''' Inject HWPSS into detector timestreams '''
def __init__(self, hwpss_frame=None):
self.det_frame = None
self.hwpss_frame = hwpss_frame
def __call__(self, frame):
if (frame.type == core.G3FrameType.Calibration and
'det_list' in frame):
self.det_frame = frame
if self.hwpss_frame is not None:
return [frame, self.hwpss_frame]
if (frame.type == core.G3FrameType.Calibration and
'hwp_sim_hwpss' in frame):
self.hwpss_frame = frame
return
if frame.type != core.G3FrameType.Scan:
return
hwp_angle = np.asarray(frame['hwp_sim_true'])
cos4f = np.cos(hwp_angle * 4)
for det in self.det_frame['det_list']:
hwpss = self.hwpss_frame['hwp_sim_hwpss'][det]
hwpss_timestream = cos4f * hwpss
frame['det_timestream'][det] += hwpss_timestream
return
def G3pad(ts, pad, method='edge'):
''' Extend G3Timestreams '''
start = int(ts.start)
stop = int(ts.stop)
n = ts.n_samples
pad0, pad1 = pad
start2 = start - int((stop - start) / (n-1) * pad0)
stop2 = stop + int((stop - start) / (n-1) * pad1)
x = np.asarray(ts)
if method == 'hwp_encoder':
slope = sum(np.diff(x)%(360. * u.deg)) / (stop - start)
x2 = np.pad(x, pad, 'edge')
x2[:pad0] = slope * np.linspace(start2 - start, 0, pad0 + 1)[:-1] + x[0]
x2[pad0 + n:] = slope * np.linspace(0, stop2 - stop, pad1 + 1)[1:] + x[-1]
x2 %= 360. * u.deg
else:
x2 = np.pad(x, pad, method)
ts2 = core.G3Timestream(x2)
ts2.start = core.G3Time(start2)
ts2.stop = core.G3Time(stop2)
return ts2
class Pad_Frame(object):
''' Extend Timestream in each frame '''
def __init__(self,
target=['det_timestream', 'hwp_angle'],
pad = 4095, method='edge'):
if isinstance(target, str):
target = [target]
self.target = target
self.pad = pad
if isinstance(method, str):
method = [method] * len(target)
self.method = method
self.frame0 = None
def __call__(self, frame):
if frame.type != core.G3FrameType.Scan:
if (self.frame0 is None or
self.frame0.type != core.G3FrameType.Scan):
self.frame0 = frame
return
for key, method in zip(self.target, self.method):
if isinstance(self.frame0[key], core.G3Timestream):
ts2 = G3pad(self.frame0[key], (0, self.pad), method)
elif isinstance(self.frame0[key], core.G3TimestreamMap):
ts2 = core.G3TimestreamMap()
for det in self.frame0[key].keys():
ts2[det] = G3pad(
self.frame0[key][det], (0, self.pad), method)
del(self.frame0[key])
self.frame0[key] = ts2
frame0 = self.frame0
self.frame0 = frame
return [frame0, frame]
if (self.frame0 is None or
self.frame0.type != core.G3FrameType.Scan):
for key, method in zip(self.target, self.method):
if isinstance(frame[key], core.G3Timestream):
ts2 = G3pad(frame[key], (self.pad, 0), method)
elif isinstance(frame[key], core.G3TimestreamMap):
ts2 = core.G3TimestreamMap()
for det in frame[key].keys():
ts2[det] = G3pad(
frame[key][det], (self.pad, 0), method)
del(frame[key])
frame[key] = ts2
self.frame0 = frame
return []
for key, method in zip(self.target, self.method):
if isinstance(frame[key], core.G3Timestream):
if frame[key].n_samples >= self.pad:
ts0 = core.G3Timestream.concatenate([
self.frame0[key], frame[key][:self.pad]])
else:
ts0 = G3pad(self.frame0[key],
(0, self.pad), method)
if self.frame0[key].n_samples >= self.pad:
ts2 = core.G3Timestream.concatenate([
self.frame0[key][-self.pad:], frame[key]])
else:
ts2 = G3pad(frame[key], (self.pad, 0), method)
elif isinstance(frame[key], core.G3TimestreamMap):
ts0 = core.G3TimestreamMap()
ts2 = core.G3TimestreamMap()
if frame[key].n_samples >= self.pad:
for det in frame[key].keys():
ts0[det] = core.G3Timestream.concatenate([
self.frame0[key][det],
frame[key][det][:self.pad]])
else:
for det in frame[key].keys():
ts0[det] = G3pad(self.frame0[key][det],
(0, self.pad), method)
if self.frame0[key].n_samples >= self.pad:
for det in frame[key].keys():
ts2[det] = core.G3Timestream.concatenate([
self.frame0[key][det][-self.pad:],
frame[key][det]])
else:
for det in frame[key].keys():
ts2[det] = G3pad(frame[key][det],
(self.pad, 0), method)
del(self.frame0[key])
del(frame[key])
self.frame0[key] = ts0
frame[key] = ts2
frame0 = self.frame0
self.frame0 = frame
return [frame0]
class Trim_Frame(object):
''' Trim Timestream in each frame '''
def __init__(self,
target=['det_timestream', 'hwp_angle'],
trim = 4095):
if isinstance(target, str):
target = [target]
self.target = target
self.trim = trim
def __call__(self, frame):
if frame.type != core.G3FrameType.Scan:
return
for target in self.target:
if isinstance(frame[target], core.G3Timestream):
ts = frame[target][self.trim:-self.trim]
del(frame[target])
frame[target] = ts
elif isinstance(frame[target], core.G3TimestreamMap):
ts = core.G3TimestreamMap()
for det in frame[target].keys():
ts[det] = frame[target][det][self.trim:-self.trim]
del(frame[target])
frame[target] = ts
return [frame]
NFFTlist = np.array([2,3,4,5,6,8,9,10,12,15,16,18,20,24,25,27,32,40,45,48,50,54,64,75,80,81,96,125,128,135,160,162,192,243,250,256,320,375,384,405,486,512,625,640,729,768,1024,1215,1250,1280,1458,1536,1875,2048,2187,2560,3072,3125,3645,4096,4374,5120,6144,6250,6561,8192,9375,10240,10935,12288,13122,15625,16384,19683,20480,24576,31250,32768,32805,39366,40960,46875,49152,59049,65536])
def getNFFT(n):
''' Find good length for FFT '''
if n <= NFFTlist[-1]:
return NFFTlist[np.searchsorted(NFFTlist,n)]
else:
return 1 << int(np.ceil(np.log2(n)))
def firwinc(numtaps, cutoff, width=None, window='hamming', pass_zero=True,
scale=True, nyq=1.0):
"""
Modification of scipy.signal.firwin to support complex window.
"""
from scipy.signal import get_window, kaiser_atten, kaiser_beta
cutoff = np.atleast_1d(cutoff) / float(nyq)
# Check for invalid input.
if cutoff.ndim > 1:
raise ValueError("The cutoff argument must be at most "
"one-dimensional.")
if cutoff.size == 0:
raise ValueError("At least one cutoff frequency must be given.")
if np.abs(cutoff).max() >= 1:
raise ValueError("Invalid cutoff frequency: frequencies must be "
"greater than -nyq and less than nyq.")
if np.any(np.diff(cutoff) <= 0):
raise ValueError("Invalid cutoff frequencies: the frequencies "
"must be strictly increasing.")
if width is not None:
# A width was given. Find the beta parameter of the Kaiser window
# and set `window`. This overrides the value of `window` passed in.
atten = kaiser_atten(numtaps, float(width) / nyq)
beta = kaiser_beta(atten)
window = ('kaiser', beta)
i0 = np.searchsorted(cutoff, 0., side='right')
pass_bands = ((i0 + np.arange(cutoff.size + 1)) & 1) ^ pass_zero
pass_nyquist = pass_bands[0] or pass_bands[-1]
if pass_nyquist and numtaps % 2 == 0:
raise ValueError("A filter with an even number of coefficients must "
"have zero response at the Nyquist rate.")
# Insert 0 and/or 1 at the ends of cutoff so that the length of cutoff
# is even, and each pair in cutoff corresponds to passband.
cutoff = np.hstack(([-1.0] * pass_bands[0], cutoff, [1.0] * pass_bands[-1]))
# `bands` is a 2D array; each row gives the left and right edges of
# a passband.
bands = cutoff.reshape(-1, 2)
# Build up the coefficients.
alpha = 0.5 * (numtaps - 1)
m = np.arange(0, numtaps) - alpha
f = fft.fftfreq(numtaps)
h = np.zeros(numtaps, dtype=np.complex)
for left, right in bands:
h[(f * 2 >= left) * (f * 2 <= right)] = 1.
h *= np.exp(- 2.j * np.pi * alpha * f)
h = fft.ifft(h)
# Get and apply the window function.
win = get_window(window, numtaps, fftbins=False)
h *= win
# Now handle scaling if desired.
if scale:
# Get the first passband.
left, right = bands[0]
if left == 0:
scale_frequency = 0.0
elif right == 1:
scale_frequency = 1.0
else:
scale_frequency = 0.5 * (left + right)
c = np.cos(np.pi * m * scale_frequency)
s = np.sum(h * c)
h /= s
return h
class Demodulate_HWP(object):
''' Demodulate detector timestreams '''
def __init__(self,
target = 'det_timestream',
mode = [4],
bpf = [1.0 * u.Hz],
numtaps = 4095,
keep_drift = True
):
self.target = target
self.mode = mode
self.bpf = bpf
self.numtaps = numtaps
self.keep_drift = keep_drift
def __call__(self, frame):
if frame.type != core.G3FrameType.Scan:
return
assert self.target in frame
target = self.target
assert 'hwp_angle' in frame
hwp_ts = frame['hwp_angle']
n_sample = hwp_ts.n_samples
hwp_angle = np.asarray(hwp_ts)
start = int(hwp_ts.start)
stop = int(hwp_ts.stop)
diff_angle = np.diff(hwp_angle) % (360. * u.deg)
speed = (np.sum(diff_angle) / (stop - start)) / (360. * u.deg)
nyq = hwp_ts.sample_rate / 2.
n = self.numtaps
fftsize = getNFFT(n_sample + n - 1)
for mode, band in zip(self.mode, self.bpf):
pass_zero = (speed * mode - band < 0.)
bpf = firwinc(self.numtaps,
[-speed * mode - band,
-speed * mode + band],
nyq = nyq, pass_zero = pass_zero)
fbpf = fft.fft(bpf, fftsize)
exp_angle = np.exp(1.j * mode * hwp_angle)
if mode == 0:
out_ts = core.G3TimestreamMap()
else:
out_ts_r = core.G3TimestreamMap()
out_ts_i = core.G3TimestreamMap()
for det in frame[target].keys():
x = np.asarray(frame[target][det])
c = np.zeros(fftsize, np.complex)
c[:n_sample] = x
fft.fft(c, fftsize, overwrite_x=True)
c *= fbpf
fft.ifft(c, fftsize, overwrite_x=True)
c = c[(n - 1) // 2 : (n - 1) // 2 + n_sample]
if mode == 0:
c = c.real
sbtr_key = target + '_demod0_subtracted'
if self.keep_drift and sbtr_key in frame:
c += frame[sbtr_key][det]
out_ts[det] = core.G3Timestream(c)
else:
c *= exp_angle * 2
cr = c.real
ci = c.imag
sbtr_key_r = target + '_demod%d_real_subtracted'%mode
sbtr_key_i = target + '_demod%d_imag_subtracted'%mode
if self.keep_drift and sbtr_key_r in frame:
cr += frame[sbtr_key_r][det]
ci += frame[sbtr_key_i][det]
out_ts_r[det] = core.G3Timestream(cr)
out_ts_i[det] = core.G3Timestream(ci)
if mode == 0:
out_ts.start = frame[target].start
out_ts.stop = frame[target].stop
outkey = target+'_demod0'
if outkey in frame:
del(frame[outkey])
frame[outkey] = out_ts
else:
outkey_r = target + '_demod%d_real' % mode
outkey_i = target + '_demod%d_imag' % mode
if outkey_r in frame:
del(frame[outkey_r], frame[outkey_i])
out_ts_r.start = frame[target].start
out_ts_r.stop = frame[target].stop
frame[outkey_r] = out_ts_r
out_ts_i.start = frame[target].start
out_ts_i.stop = frame[target].stop
frame[outkey_i] = out_ts_i
return frame
def trend(x, mask=slice(None), method='linear'):
''' Return linear trend in the timestream '''
polyorder = {'constant':0, 'linear':1}[method]
t = np.linspace(-1, 1, len(x))
p = np.polyfit(t[mask], x[mask], polyorder)
return np.polyval(p, t)
class Subtract_HWPSS_Detrend(object):
"""
Subtract HWPSS using the stable component of
pre-demodulated timestreams
"""
def __init__(self,
target = ['det_timestream'],
mode = [4],
method = 'linear',
mask = None):
if isinstance(target, str):
target = [target]
self.target = target
if isinstance(mode, int):
mode = [mode]
self.mode = mode
if isinstance(method, str):
method = [method] * len(mode)
self.method = method
if mask is None:
self.mask = slice(None)
else:
self.mask = slice(mask, -mask)
def __call__(self, frame):
if frame.type != core.G3FrameType.Scan:
return
hwp_ts = frame['hwp_angle']
hwp_angle = np.asarray(hwp_ts)
t = np.array([x.time for x in hwp_ts.times()])
cosmod = {}
sinmod = {}
for mode in self.mode:
if mode == 0:
cosmod[mode] = 2.
else:
cosmod[mode] = np.cos(hwp_angle * mode)
sinmod[mode] = np.sin(hwp_angle * mode)
for target in self.target:
ts_subtract = {}
for mode in self.mode:
if mode == 0:
key = target + '_demod0_subtracted'
ts_subtract[key] = core.G3TimestreamMap()
else:
keyreal = target + '_demod%d_real_subtracted'%mode
keyimag = target + '_demod%d_imag_subtracted'%mode
ts_subtract[keyreal] = core.G3TimestreamMap()
ts_subtract[keyimag] = core.G3TimestreamMap()
for det in frame[target].keys():
data = frame[target][det]
for mode, method in zip(self.mode, self.method):
if mode == 0:
keys = [target + '_demod0']
else:
keys = [target + '_demod%d_real'%mode,
target + '_demod%d_imag'%mode]
for key in keys:
mod = sinmod if key.endswith('imag') else cosmod
demod = frame[key][det]
demod = trend(demod, self.mask, method)
data -= demod * mod[mode] / 2.
key += '_subtracted'
if key in frame:
demod += frame[key][det]
demod = core.G3Timestream(demod)
ts_subtract[key][det] = demod
for key in ts_subtract.keys():
ts_subtract[key].start = frame[target].start
ts_subtract[key].stop = frame[target].stop
if key in frame:
del(frame[key])
frame[key] = ts_subtract[key]
if __name__ == '__main__':
numtaps = 4095
def add_slope(frame, start):
if not 'det_timestream' in frame:
return
start = int(start)
t = np.array([x.time for x in frame['det_timestream'].times()], dtype=np.int)
for det in frame['det_timestream'].keys():
ts2 = np.asarray(frame['det_timestream'][det])
ts2 += (t - start) / u.s
ts2 = core.G3Timestream(ts2)
ts2.start = frame['det_timestream'][det].start
ts2.stop = frame['det_timestream'][det].stop
del(frame['det_timestream'][det])
frame['det_timestream'][det] = ts2
def print_frame(frame):
print(frame)
print('### Create simulation ###')
start = core.G3Time('29-Mar-2019:01:12:06.345958000')
end = start + int(179. * u.s)
pipe = core.G3Pipeline()
pipe.Add(Sim_Obs_Setup(obs_start = start, obs_end = end))
pipe.Add(Sim_Detector_Setup())
pipe.Add(Sim_Scan_Prepare(interval = 60.0 * u.s))
pipe.Add(add_slope, start = start)
pipe.Add(Sim_HWP_Raw(speed = 2.1 * u.Hz))
pipe.Add(Sim_HWPSS(hwpss_frame))
pipe.Add(print_frame)
out = []
pipe.Add(G3OutputFrameList(out))
pipe.Run()
print('### Done ###\n\n\n')
print('### Analyze simulated data ###')
pipe = core.G3Pipeline()
pipe.Add(G3InputFrameList(out))
pipe.Add(Decode_HWP())
pipe.Add(Pad_Frame, target=['det_timestream', 'hwp_angle'],
method=['edge', 'hwp_encoder'], pad=numtaps)
pipe.Add(Demodulate_HWP, mode=[0, 4], bpf=[1.0 * u.Hz] * 2)
pipe.Add(Subtract_HWPSS_Detrend, mode=[0, 4], mask=numtaps)
pipe.Add(Demodulate_HWP, mode=[0, 4], bpf=[1.0 * u.Hz] * 2,
keep_drift = False)
pipe.Add(Trim_Frame,
target=['det_timestream', 'hwp_angle',
'det_timestream_demod0',
'det_timestream_demod4_real',
'det_timestream_demod4_imag',
],
trim=numtaps)
pipe.Add(print_frame)
pipe.Run()