forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
163 lines (141 loc) · 5.75 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
"""
this is code for forecasting
but I modified it and used it for safety checker of data
for ex: you have an online shop and for some reason some data are
missing (the amount of data that u expected are not supposed to be)
then we can use it
*ps : 1. ofc we can use normal statistic method but in this case
the data is quite absurd and only a little^^
2. ofc u can use this and modified it for forecasting purpose
for the next 3 months sales or something,
u can just adjust it for ur own purpose
"""
from warnings import simplefilter
import numpy as np
import pandas as pd
from sklearn.preprocessing import Normalizer
from sklearn.svm import SVR
from statsmodels.tsa.statespace.sarimax import SARIMAX
def linear_regression_prediction(
train_dt: list, train_usr: list, train_mtch: list, test_dt: list, test_mtch: list
) -> float:
"""
First method: linear regression
input : training data (date, total_user, total_event) in list of float
output : list of total user prediction in float
>>> n = linear_regression_prediction([2,3,4,5], [5,3,4,6], [3,1,2,4], [2,1], [2,2])
>>> abs(n - 5.0) < 1e-6 # Checking precision because of floating point errors
True
"""
x = np.array([[1, item, train_mtch[i]] for i, item in enumerate(train_dt)])
y = np.array(train_usr)
beta = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose(), x)), x.transpose()), y)
return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2])
def sarimax_predictor(train_user: list, train_match: list, test_match: list) -> float:
"""
second method: Sarimax
sarimax is a statistic method which using previous input
and learn its pattern to predict future data
input : training data (total_user, with exog data = total_event) in list of float
output : list of total user prediction in float
>>> sarimax_predictor([4,2,6,8], [3,1,2,4], [2])
6.6666671111109626
"""
# Suppress the User Warning raised by SARIMAX due to insufficient observations
simplefilter("ignore", UserWarning)
order = (1, 2, 1)
seasonal_order = (1, 1, 1, 7)
model = SARIMAX(
train_user, exog=train_match, order=order, seasonal_order=seasonal_order
)
model_fit = model.fit(disp=False, maxiter=600, method="nm")
result = model_fit.predict(1, len(test_match), exog=[test_match])
return result[0]
def support_vector_regressor(x_train: list, x_test: list, train_user: list) -> float:
"""
Third method: Support vector regressor
svr is quite the same with svm(support vector machine)
it uses the same principles as the SVM for classification,
with only a few minor differences and the only different is that
it suits better for regression purpose
input : training data (date, total_user, total_event) in list of float
where x = list of set (date and total event)
output : list of total user prediction in float
>>> support_vector_regressor([[5,2],[1,5],[6,2]], [[3,2]], [2,1,4])
1.634932078116079
"""
regressor = SVR(kernel="rbf", C=1, gamma=0.1, epsilon=0.1)
regressor.fit(x_train, train_user)
y_pred = regressor.predict(x_test)
return y_pred[0]
def interquartile_range_checker(train_user: list) -> float:
"""
Optional method: interquatile range
input : list of total user in float
output : low limit of input in float
this method can be used to check whether some data is outlier or not
>>> interquartile_range_checker([1,2,3,4,5,6,7,8,9,10])
2.8
"""
train_user.sort()
q1 = np.percentile(train_user, 25)
q3 = np.percentile(train_user, 75)
iqr = q3 - q1
low_lim = q1 - (iqr * 0.1)
return low_lim
def data_safety_checker(list_vote: list, actual_result: float) -> bool:
"""
Used to review all the votes (list result prediction)
and compare it to the actual result.
input : list of predictions
output : print whether it's safe or not
>>> data_safety_checker([2, 3, 4], 5.0)
False
"""
safe = 0
not_safe = 0
if not isinstance(actual_result, float):
raise TypeError("Actual result should be float. Value passed is a list")
for i in list_vote:
if i > actual_result:
safe = not_safe + 1
else:
if abs(abs(i) - abs(actual_result)) <= 0.1:
safe += 1
else:
not_safe += 1
return safe > not_safe
if __name__ == "__main__":
"""
data column = total user in a day, how much online event held in one day,
what day is that(sunday-saturday)
"""
data_input_df = pd.read_csv("ex_data.csv")
# start normalization
normalize_df = Normalizer().fit_transform(data_input_df.values)
# split data
total_date = normalize_df[:, 2].tolist()
total_user = normalize_df[:, 0].tolist()
total_match = normalize_df[:, 1].tolist()
# for svr (input variable = total date and total match)
x = normalize_df[:, [1, 2]].tolist()
x_train = x[: len(x) - 1]
x_test = x[len(x) - 1 :]
# for linear regression & sarimax
train_date = total_date[: len(total_date) - 1]
train_user = total_user[: len(total_user) - 1]
train_match = total_match[: len(total_match) - 1]
test_date = total_date[len(total_date) - 1 :]
test_user = total_user[len(total_user) - 1 :]
test_match = total_match[len(total_match) - 1 :]
# voting system with forecasting
res_vote = [
linear_regression_prediction(
train_date, train_user, train_match, test_date, test_match
),
sarimax_predictor(train_user, train_match, test_match),
support_vector_regressor(x_train, x_test, train_user),
]
# check the safety of today's data
not_str = "" if data_safety_checker(res_vote, test_user[0]) else "not "
print(f"Today's data is {not_str}safe.")