forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnon_preemptive_shortest_job_first.py
111 lines (88 loc) · 3.41 KB
/
non_preemptive_shortest_job_first.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
"""
Non-preemptive Shortest Job First
Shortest execution time process is chosen for the next execution.
https://www.guru99.com/shortest-job-first-sjf-scheduling.html
https://en.wikipedia.org/wiki/Shortest_job_next
"""
from __future__ import annotations
from statistics import mean
def calculate_waitingtime(
arrival_time: list[int], burst_time: list[int], no_of_processes: int
) -> list[int]:
"""
Calculate the waiting time of each processes
Return: The waiting time for each process.
>>> calculate_waitingtime([0,1,2], [10, 5, 8], 3)
[0, 9, 13]
>>> calculate_waitingtime([1,2,2,4], [4, 6, 3, 1], 4)
[0, 7, 4, 1]
>>> calculate_waitingtime([0,0,0], [12, 2, 10],3)
[12, 0, 2]
"""
waiting_time = [0] * no_of_processes
remaining_time = [0] * no_of_processes
# Initialize remaining_time to waiting_time.
for i in range(no_of_processes):
remaining_time[i] = burst_time[i]
ready_process: list[int] = []
completed = 0
total_time = 0
# When processes are not completed,
# A process whose arrival time has passed \
# and has remaining execution time is put into the ready_process.
# The shortest process in the ready_process, target_process is executed.
while completed != no_of_processes:
ready_process = []
target_process = -1
for i in range(no_of_processes):
if (arrival_time[i] <= total_time) and (remaining_time[i] > 0):
ready_process.append(i)
if len(ready_process) > 0:
target_process = ready_process[0]
for i in ready_process:
if remaining_time[i] < remaining_time[target_process]:
target_process = i
total_time += burst_time[target_process]
completed += 1
remaining_time[target_process] = 0
waiting_time[target_process] = (
total_time - arrival_time[target_process] - burst_time[target_process]
)
else:
total_time += 1
return waiting_time
def calculate_turnaroundtime(
burst_time: list[int], no_of_processes: int, waiting_time: list[int]
) -> list[int]:
"""
Calculate the turnaround time of each process.
Return: The turnaround time for each process.
>>> calculate_turnaroundtime([0,1,2], 3, [0, 10, 15])
[0, 11, 17]
>>> calculate_turnaroundtime([1,2,2,4], 4, [1, 8, 5, 4])
[2, 10, 7, 8]
>>> calculate_turnaroundtime([0,0,0], 3, [12, 0, 2])
[12, 0, 2]
"""
turn_around_time = [0] * no_of_processes
for i in range(no_of_processes):
turn_around_time[i] = burst_time[i] + waiting_time[i]
return turn_around_time
if __name__ == "__main__":
print("[TEST CASE 01]")
no_of_processes = 4
burst_time = [2, 5, 3, 7]
arrival_time = [0, 0, 0, 0]
waiting_time = calculate_waitingtime(arrival_time, burst_time, no_of_processes)
turn_around_time = calculate_turnaroundtime(
burst_time, no_of_processes, waiting_time
)
# Printing the Result
print("PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time")
for i, process_id in enumerate(list(range(1, 5))):
print(
f"{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t"
f"{waiting_time[i]}\t\t\t\t{turn_around_time[i]}"
)
print(f"\nAverage waiting time = {mean(waiting_time):.5f}")
print(f"Average turnaround time = {mean(turn_around_time):.5f}")