-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.py
181 lines (135 loc) · 4.92 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
from tkinter import *
import nltk
from nltk.stem.lancaster import LancasterStemmer
stemmer = LancasterStemmer()
import numpy
import tflearn
import tensorflow
import random
import json
import pickle
kk = "kushagra"
beta = "gama"
with open("intents.json") as file:
data = json.load(file)
try:
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
except:
words = []
labels = []
docs_x = []
docs_y = []
for intent in data["intents"]:
for pattern in intent["patterns"]:
wrds = nltk.word_tokenize(pattern)
words.extend(wrds)
docs_x.append(wrds)
docs_y.append(intent["tag"])
if intent["tag"] not in labels:
labels.append(intent["tag"])
words = [stemmer.stem(w.lower()) for w in words if w != "?"]
words = sorted(list(set(words)))
labels = sorted(labels)
training = []
output = []
out_empty = [0 for _ in range(len(labels))]
for x, doc in enumerate(docs_x):
bag = []
wrds = [stemmer.stem(w.lower()) for w in doc]
for w in words:
if w in wrds:
bag.append(1)
else:
bag.append(0)
output_row = out_empty[:]
output_row[labels.index(docs_y[x])] = 1
training.append(bag)
output.append(output_row)
training = numpy.array(training)
output = numpy.array(output)
with open("data.pickle", "wb") as f:
pickle.dump((words, labels, training, output), f)
tensorflow.reset_default_graph()
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
model = tflearn.DNN(net)
try:
model.load("model.tflearn")
except:
model.fit(training, output, n_epoch=1000, batch_size=8, show_metric=True)
model.save("model.tflearn")
def bag_of_words(s, words):
bag = [0 for _ in range(len(words))]
s_words = nltk.word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return numpy.array(bag)
def chat(inp):
while True:
if inp.lower() == "quit":
break
results = model.predict([bag_of_words(inp, words)])
results_index = numpy.argmax(results)
tag = labels[results_index]
for tg in data["intents"]:
if tg['tag'] == tag:
responses = tg['responses']
return random.choice(responses)
def Response(s):
s = s[:-1]
result = chat(s)
result = result + "\n"
chat_area.tag_configure("yellow",justify="left",foreground="yellow", font = ("Arial" , 10, "bold" ,"italic"),)
chat_area.configure(state='normal')
chat_area.insert(END, "Bot : ","yellow")
chat_area.configure(fg="white",font = ("Arial" , 10))
chat_area.insert(END, result)
chat_area.configure(state='disabled')
chat_area.see(END)
def Query():
result = text_area.get("1.0","end")
text_area.delete("1.0",END)
# print(result)
chat_area.tag_configure("right",justify="right")
chat_area.tag_configure("green",justify="right",foreground="light green", font = ("Arial" , 10, "bold" ,"italic"),)
chat_area.configure(state='normal')
chat_area.insert(END, "You : ","green")
chat_area.configure(fg="white",font = ("Arial" , 10))
chat_area.insert(END, result,"right")
chat_area.configure(state='disabled')
chat_area.see(END)
Response(result)
# result = text_area.get("1.0","end -1c")
# widget_width = 0
# widget_height = float(text_area.index(END))-1
# for line in result.split("\n"):
# if len(line) > widget_width:
# widget_width = len(line)+1
# text_area.delete("1.0",END)
# t = Text(chat_area,bd = 2,height = widget_height, width = widget_width , bg = 'light grey')
# t.pack(anchor=E)
# t.configure(state='normal')
# t.insert(END, result)
# t.configure(state='disabled')
# chat_area.create_window(window = t)
# Response(result)
root = Tk()
root.title('Satyam Bot')
root.geometry('400x500')
chat_area = Text(root, bd = 1, bg = 'grey', width = 20, height = 10,cursor = "arrow", state='disabled')
chat_area.place(x = 5 , y = 5 , width = 375, height = 440)
text_area = Text(root, bd = 1, bg = 'light grey', width = 15, height = 2)
text_area.place(x = 5 , y = 448 , width = 320, height = 47)
send_button = Button(root,text = 'Send',command=Query, bg = 'green' ,fg = 'white', activebackground = 'light green' , height = 5 ,width = 12, font = ('Arial' ,10) )
send_button.place(x = 330 , y = 448 , width = 65 , height = 47)
scrollbar = Scrollbar(root, command = chat_area.yview)
scrollbar.place(x = 382 , y = 5 ,height = 440 , width = 15)
chat_area.configure(yscrollcommand=scrollbar.set)
root.mainloop()