-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
369 lines (313 loc) · 15.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
from __future__ import division
from models import *
from utils.logger import *
from utils.utils import *
from utils.datasets import *
from utils.parse_config import *
from test import evaluate
from detect import draw_bbox
from itertools import cycle
from terminaltables import AsciiTable
import os
os.environ['CUDA_VISIBLE_DEVICES'] = ' 0,1,2,3,4,5,6,7' #0,1,2,3,4,5,6,7
import sys
import time
import datetime
import argparse
import torch
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision import transforms
from torch.autograd import Variable
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
from utils.fda import FDA_source_to_target
def adjust_learning_rate(optimizer, epoch):
# use warmup
if epoch < 5:
lr = opt.lr * ((epoch + 1) / 5)
else:
# use cosine lr
PI = 3.14159
lr = opt.lr * 0.5 * (1 + math.cos(epoch * PI / opt.epochs))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
print(lr)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--epochs", type=int, default=100, help="number of epochs")
parser.add_argument("--lr", type=float, default=5e-5, help="learning rate")
parser.add_argument("--batch_size", type=int, default=16, help="size of each image batch")
parser.add_argument("--gradient_accumulations", type=int, default=2, help="number of gradient accums before step")
parser.add_argument("--model_def", type=str, default="config/yolov3-rot-c6.cfg", help="path to model definition file")
parser.add_argument("--data_config", type=str, default="config/custom.data", help="path to data config file")
parser.add_argument("--pretrained_weights", type=str, default="weights/yolov3.weights", help="if specified starts from checkpoint model")
parser.add_argument("--n_cpu", type=int, default=16, help="number of cpu threads to use during batch generation")
parser.add_argument("--img_size", type=int, default=416, help="size of each image dimension")
parser.add_argument("--checkpoint_interval", type=int, default=1, help="interval between saving model weights")
parser.add_argument("--evaluation_interval", type=int, default=1, help="interval evaluations on validation set")
parser.add_argument("--compute_map", default=False, help="if True computes mAP every tenth batch")
parser.add_argument("--multiscale_training", default=False, help="allow for multi-scale training")
parser.add_argument("--use_angle", default=False, help='set flag to train using angle')
parser.add_argument("--uda_method", default=None, choices=['minent', 'fda'], help="select the domain adaptation method")
parser.add_argument("--train_data", default=None, choices=['theo_cep', 'imagenet'], help="use the flag to overwrite default parameter or when using UDA method")
parser.add_argument("--warmup_iter", default=0, type=int, help="specify number of iterations to train before starting with UDA")
parser.add_argument("--beta", type=float, default=0.01, choices=[0.1, 0.01, 0.05, 0.005], help="factor to select size of mask. Should be between 0 and 1" )
parser.add_argument("--circle_mask", type=bool, default=False, help="to select the circular mask. Default mask is square")
parser.add_argument("--augment", type=bool, default=False )
opt = parser.parse_args()
print(opt)
logger = Logger("logs")
gpu_no = 4
device = torch.device(f"cuda:{gpu_no}" if torch.cuda.is_available() else "cpu")
if device.type != 'cpu':
torch.cuda.set_device(device.index)
print(device)
os.makedirs("output", exist_ok=True)
os.makedirs("checkpoints", exist_ok=True)
# Get data configuration
data_config = parse_data_config(opt.data_config)
train_path = data_config["train"]
valid_path = data_config["valid"]
train_annpath = data_config["json_train"]
valid_annpath = data_config["json_val"]
class_names = load_classes(data_config["names"])
if opt.uda_method != None:
targetdomain_path = data_config["target_domain"]
if opt.train_data == None:
if train_path.find('custom') != -1: ### flag to use same mean and std values for evaluation as well
train_dataset = 'theodore'
print('Training on Theodore Dataset')
elif train_path.find('fes') != -1:
train_dataset = 'fes'
print('Training on FES dataset')
elif train_path.find('DST') != -1:
train_dataset = 'dst'
print('Training on DST dataset')
elif train_path.find('coco') != -1:
train_dataset = 'coco'
print('Training on COCO dataset')
elif train_path.find('cepdof') != -1:
train_dataset = 'cepdof_light'
print('Training on CEPDOF dataset')
elif train_path.find('mwr') != -1:
train_dataset = 'mwr'
print('Training on MWR dataset')
else:
raise FileNotFoundError('Invalid Dataset')
else:
train_dataset = opt.train_data
class_count = len(class_names)
if len(class_names) == 80: ### To indicate it is not coco dataset
class_80 = True
else:
class_80 = False
# Initiate model
model = Darknet(opt.model_def).to(device)
model.apply(weights_init_normal)
# If specified we start from checkpoint
if opt.pretrained_weights:
if opt.pretrained_weights.endswith(".pth"):
checkpoint = torch.load(opt.pretrained_weights, map_location=lambda storage, loc:storage ) #map_location=f'cuda:{device.index}'
if opt.pretrained_weights.find('opt') != -1:
model.load_state_dict(checkpoint['model_state_dict'])
else:
model.load_state_dict(checkpoint)
else:
model.load_darknet_weights(opt.pretrained_weights)
optimizer = torch.optim.Adam(model.parameters(), lr=opt.lr ) #0.001 weight_decay=0.0001
#### Load optimizer state dict if available
if opt.pretrained_weights.find('opt') != -1:
print('Loading Optimizer State...')
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
##### Use lr scheduler to drop lr after desired number of epochs
# scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[7,10,15], gamma=0.5)
# Get dataloader
dataset = ListDataset(train_path, augment=opt.augment, multiscale=opt.multiscale_training, normalized_labels=False,
pixel_norm=True, train_data=train_dataset, use_angle=opt.use_angle, class_num= class_count,
uda_method=opt.uda_method, beta=opt.beta, circular=opt.circle_mask)
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=opt.batch_size,
shuffle=True,
num_workers=opt.n_cpu,
pin_memory=True,
collate_fn=dataset.collate_fn,
)
print('Loaded Training dataset')
metrics = [
"grid_size",
"loss",
"minent",
"x",
"y",
"w",
"h",
"angle",
"conf",
"cls",
"cls_acc",
"recall50",
"recall75",
"precision",
"conf_obj",
"conf_noobj",
]
if opt.uda_method == 'minent' or opt.uda_method == 'fda':
# Get dataloader for target domains
target_dataset = ImageFolder(folder_path=targetdomain_path, train_data=train_dataset, augment=True)
targetloader = torch.utils.data.DataLoader(
target_dataset,
batch_size=opt.batch_size,
shuffle=True,
num_workers=opt.n_cpu,
pin_memory=True,
)
print("Loaded Target dataset")
targetloader_iter = enumerate( cycle(targetloader) )
for epoch in range(opt.epochs):
### Use lr_scheduler
#adjust_learning_rate(optimizer,epoch)
model.train()
start_time = time.time()
train_acc_epoch = 0
train_loss_epoch = 0
for batch_i, (_, imgs, targets) in enumerate(dataloader):
batches_done = len(dataloader) * epoch + batch_i
imgs = Variable(imgs.to(device))
targets = Variable(targets.to(device), requires_grad=False)
if opt.uda_method == 'fda':
_, batch_uda = targetloader_iter.__next__()
images_paths, images_uda = batch_uda
images_uda = Variable(images_uda.to(device))
imgs = FDA_source_to_target(imgs, images_uda, L=opt.beta, use_circular=opt.circle_mask)
loss, outputs = model(imgs, targets=targets, use_angle=opt.use_angle)
loss.backward()
if epoch >= opt.warmup_iter:
if opt.uda_method == 'minent':
_, batch_uda = targetloader_iter.__next__()
images_paths, images_uda = batch_uda
images_uda = Variable(images_uda.to(device))
loss_uda, outputs_uda = model(images_uda, uda_method=opt.uda_method)
loss_uda.backward()
if batches_done % opt.gradient_accumulations:
# Accumulates gradient before each step
optimizer.step()
optimizer.zero_grad()
print(optimizer.param_groups[0]["lr"], opt.lr)
# ----------------
# Log progress
# ----------------
log_str = "\n---- [Epoch %d/%d, Batch %d/%d] ----\n" % (epoch, opt.epochs, batch_i, len(dataloader))
metric_table = [["Metrics", *[f"YOLO Layer {i}" for i in range(len(model.yolo_layers))]]]
# Log metrics at each YOLO layer
minent_loss = 0
for i, metric in enumerate(metrics):
formats = {m: "%.6f" for m in metrics}
formats["grid_size"] = "%2d"
formats["cls_acc"] = "%.2f%%"
row_metrics = [formats[metric] % yolo.metrics.get(metric, 0) for yolo in model.yolo_layers]
if metric == 'minent':
row_metrics = [formats[metric] % yolo.uda_metrics.get(metric,0) for yolo in model.yolo_layers]
minent_loss = np.array(row_metrics, dtype='float').mean()
metric_table += [[metric, *row_metrics]]
# Tensorboard logging
tensorboard_log = []
batch_acc = 0
for j, yolo in enumerate(model.yolo_layers):
for name, metric in yolo.metrics.items():
if name != "grid_size":
tensorboard_log += [(f"{name}_{j+1}", metric)]
if name == "cls_acc":
batch_acc += metric
batch_acc = batch_acc / 3
tensorboard_log += [("loss", loss.item())]
tensorboard_log += [("accu", batch_acc)]
if epoch >= opt.warmup_iter:
if opt.uda_method == 'minent':
tensorboard_log += [ ( "minent_loss", minent_loss ) ]
tensorboard_log += [ ( "total_loss", loss.item()+loss_uda.item() ) ]
logger.list_of_scalars_summary(tensorboard_log, batches_done)
# Accumulate loss for every batch of epoch
train_acc_epoch += batch_acc
if opt.uda_method == 'minent' and epoch >= opt.warmup_iter:
train_loss_epoch += loss.item() + loss_uda.item()
log_str += AsciiTable(metric_table).table
log_str += f"\nTotal loss {loss.item() + loss_uda.item()}"
else:
train_loss_epoch += loss.item()
log_str += AsciiTable(metric_table).table
log_str += f"\nTotal loss {loss.item()}"
log_str += f"\nTotal accu {batch_acc}"
log_str += f"\nNumber of classes:{class_count}"
#log_str += f"Learning rate:{optimizer.param_groups['lr']}"
# Determine approximate time left for epoch
epoch_batches_left = len(dataloader) - (batch_i + 1)
time_left = datetime.timedelta(seconds=epoch_batches_left * (time.time() - start_time) / (batch_i + 1))
log_str += f"\n---- ETA {time_left}"
print(log_str)
model.seen += imgs.size(0)
# if batch_i == 10:
# break
#scheduler.step()
# Calculate loss for each epoch
train_acc_epoch = train_acc_epoch / (batch_i+1)
train_loss_epoch = train_loss_epoch / (batch_i+1)
# Logging values to Tensorboard
logger.scalar_summary("epoch_acc", train_acc_epoch, epoch)
logger.scalar_summary("epoch_loss", train_loss_epoch, epoch)
# Print trainin loss and accuracy for each epoch
print(f'Training Accuracy for Epoch {epoch}: {train_acc_epoch}')
print(f'Training Loss for Epoch {epoch}: {train_loss_epoch}')
if epoch % opt.checkpoint_interval == 0:
model.eval()
torch.save({
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'epoch': epoch,
'loss': loss,
},f"checkpoints/yolov3_ckpt_opt_{gpu_no}_{train_dataset}_%d.pth" % epoch)
if epoch % opt.evaluation_interval == 0:
if epoch >= 0:
print("\n---- Evaluating Model ----")
# Evaluate the model on the validation set
precision, recall, AP, f1, ap_class, val_acc, val_loss = evaluate(
model,
path=valid_path,
json_path=valid_annpath,
iou_thres=0.5,
conf_thres=0.5,
nms_thres=0.5,
img_size=opt.img_size,
batch_size=opt.batch_size,
class_80=class_80,
gpu_num=gpu_no,
train_data= train_dataset,
use_angle=opt.use_angle,
class_num = class_count
)
evaluation_metrics = [
("val_precision", precision.mean()),
("val_recall", recall.mean()),
("val_mAP", AP.mean()),
("val_f1", f1.mean()),
]
logger.val_list_of_scalars_summary(evaluation_metrics, epoch)
logger.val_scalar_summary("epoch_acc", val_acc, epoch)
logger.val_scalar_summary("epoch_loss", val_loss, epoch)
# Print class APs and mAP
ap_table = [["Index", "Class name", "AP"]]
for i, c in enumerate(ap_class):
ap_table += [[c, class_names[c], "%.5f" % AP[i]]]
print(AsciiTable(ap_table).table)
print(f"---- mAP {AP.mean()}")
#model.save_darknet_weights(f"checkpoints/darknet_ckpt_%d.pth" % epoch)
# #Save image detections
# draw_bbox(model=model,
# image_folder=valid_path,
# img_size=opt.img_size,
# class_path=data_config["names"],
# conf_thres=0.8,
# nms_thres=0.8,
# n_cpu=opt.n_cpu,
# out_dir='training')