-
Notifications
You must be signed in to change notification settings - Fork 36
/
knapsack 01
43 lines (34 loc) · 902 Bytes
/
knapsack 01
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
// A dynamic programming based
// solution for 0-1 Knapsack problem
#include <bits/stdc++.h>
using namespace std;
// A utility function that returns
// maximum of two integers
int max(int a, int b){ return (a > b) ? a : b; }
// Returns the maximum value that
// can be put in a knapsack of capacity W
int knapSack(int W, int wt[], int val[], int n)
{ int i, w;
vector<vector<int>> K(n + 1, vector<int>(W + 1));
// Build table K[][] in bottom up manner
for(i = 0; i <= n; i++)
{ for(w = 0; w <= W; w++)
{ if (i == 0 || w == 0)
K[i][w] = 0;
else if (wt[i - 1] <= w)
K[i][w] = max(val[i - 1] +
K[i - 1][w - wt[i - 1]],
K[i - 1][w]);
else K[i][w] = K[i - 1][w];
}
} return K[n][W];
}
int main()
{
int val[] = { 60, 100, 120 };
int wt[] = { 10, 20, 30 };
int W = 50;
int n = sizeof(val) / sizeof(val[0]);
cout << knapSack(W, wt, val, n);
return 0;
}