-
Notifications
You must be signed in to change notification settings - Fork 6
/
main_nfm.py
245 lines (193 loc) · 8.47 KB
/
main_nfm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import os
import random
import logging
import argparse
import itertools
from time import time
import torch
import numpy as np
import pandas as pd
from tqdm import tqdm, trange
import torch.nn as nn
import torch.optim as optim
from model.NFM import NFM
from utility.parser_nfm import *
from utility.log_helper import *
from utility.metrics import *
from utility.helper import *
from utility.loader_nfm import DataLoaderNFM
def evaluate(model, dataloader, user_ids, K, use_cuda, device):
n_users = len(user_ids) # user number in test data
n_items = dataloader.n_items
n_entities = dataloader.n_entities
test_batch_size = dataloader.test_batch_size
train_user_dict = dataloader.train_user_dict
test_user_dict = dataloader.test_user_dict
model.eval()
item_ids = list(range(n_items))
# itertools.product 求多个可迭代对象的笛卡尔积
user_item_pairs = itertools.product(user_ids, item_ids)
user_idx_map = dict(zip(user_ids, range(n_users)))
cf_scores = torch.zeros([len(user_ids), len(item_ids)])
if use_cuda:
cf_scores = cf_scores.to(device)
n_test_batch = n_users * n_items // test_batch_size + 1
# 进度条库tqdm
with tqdm(total=n_test_batch, desc='Evaluating Iteration') as pbar:
while True:
# itertools.islice 对迭代器做切片操作
batch_pairs = list(itertools.islice(user_item_pairs, test_batch_size))
if len(batch_pairs) == 0:
break
batch_user = [p[0] for p in batch_pairs]
batch_item = [p[1] for p in batch_pairs]
feature_values = dataloader.generate_test_batch(batch_user, batch_item)
# print('feature_values.shape', feature_values.shape) # ([1048576, 184166])
if use_cuda:
feature_values = feature_values.to(device)
with torch.no_grad():
batch_scores = model.predict(feature_values) # (batch_size)
cf_scores[[user_idx_map[u] for u in batch_user], batch_item] = batch_scores
pbar.update(1)
# cf_scores 得到一个和所有特征交互的可能 (1000, 24915)
# .cpu? && 这里没理解
cf_scores = cf_scores.cpu()
user_ids = np.array(user_ids)
item_ids = np.array(item_ids)
precision_k, recall_k, ndcg_k = calc_metrics_at_k(cf_scores, train_user_dict, test_user_dict, user_ids, item_ids, K)
cf_scores = cf_scores.numpy()
precision_k = precision_k.mean()
recall_k = recall_k.mean()
ndcg_k = ndcg_k.mean()
return cf_scores, precision_k, recall_k, ndcg_k
def train(args):
# seed
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
# 保存模型运行日志(模型超参数等)
log_save_id = create_log_id(args.save_dir)
logging_config(folder=args.save_dir, name='log{:d}'.format(log_save_id), no_console=False)
logging.info(args) # 输出到控制台
# GPU / CPU
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
n_gpu = torch.cuda.device_count()
if n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
print('device', device, 'n_gpu', n_gpu)
# load data
data = DataLoaderNFM(args, logging)
if args.use_pretrain == 1:
user_pre_embed = torch.tensor(data.user_pre_embed)
item_pre_embed = torch.tensor(data.item_pre_embed)
else:
user_pre_embed, item_pre_embed = None, None
user_ids = list(data.test_user_dict.keys())
if args.n_evaluate_users and 0 < args.n_evaluate_users < len(user_ids):
sample_user_ids = random.sample(user_ids, args.n_evaluate_users) # 随机采样
else:
sample_user_ids = user_ids
# construct model & optimizer
model = NFM(args, data.n_users, data.n_items, data.n_entities, user_pre_embed, item_pre_embed)
if args.use_pretrain == 2:
model = load_model(model, args.pretrain_model_path)
model.to(device)
logging.info(model)
optimizer = optim.Adam(model.parameters(), lr=args.lr)
# initialize metrics
best_epoch = -1
epoch_list = []
precision_list = []
recall_list = []
ndcg_list = []
epoch = 0
# train model
for epoch in range(1, args.n_epoch + 1):
time0 = time()
model.train()
# train cf
time1 = time()
total_loss = 0
n_batch = data.n_cf_train // data.train_batch_size + 1
for iter in range(1, n_batch + 1):
time2 = time()
pos_feature_values, neg_feature_values = data.generate_train_batch(data.train_user_dict)
if use_cuda:
pos_feature_values = pos_feature_values.to(device)
neg_feature_values = neg_feature_values.to(device)
batch_loss = model.calc_loss(pos_feature_values, neg_feature_values)
batch_loss.backward()
optimizer.step()
optimizer.zero_grad()
total_loss += batch_loss.item()
if (iter % args.print_every) == 0:
logging.info(
'CF Training: Epoch {:04d} Iter {:04d} / {:04d} '
'| Time {:.1f}s | Iter Loss {:.4f} | Iter Mean Loss {:.4f}'.format(
epoch, iter, n_batch, time() - time2, batch_loss.item(), total_loss / iter))
logging.info(
'CF Training: Epoch {:04d} Total Iter {:04d} | Total Time {:.1f}s | Iter Mean Loss {:.4f}'.format(
epoch, n_batch, time() - time1, total_loss / n_batch))
# evaluate cf
if (epoch % args.evaluate_every) == 0:
time1 = time()
# precision 预测结果中正确的比例, recall 所有正确结果中预测的比例, ndcg 累积增益,每个推荐结果相关性的分值累加
_, precision, recall, ndcg = evaluate(model, data, sample_user_ids, args.K, use_cuda, device)
logging.info(
'CF Evaluation: Epoch {:04d} | Total Time {:.1f}s | Precision {:.4f} Recall {:.4f} NDCG {:.4f}'.format(
epoch, time() - time1, precision, recall, ndcg))
epoch_list.append(epoch)
precision_list.append(precision)
recall_list.append(recall)
ndcg_list.append(ndcg)
best_recall, should_stop = early_stopping(recall_list, args.stopping_steps)
if should_stop:
break
if recall_list.index(best_recall) == len(recall_list) - 1:
save_model(model, args.save_dir, epoch, best_epoch)
logging.info('Save model on epoch {:04d}!'.format(epoch))
best_epoch = epoch
# save model
save_model(model, args.save_dir, epoch)
logging.info('Save model on epoch {:04d}!'.format(epoch))
# save metrics
_, precision, recall, ndcg = evaluate(model, data, sample_user_ids, args.K, use_cuda, device)
logging.info('Final CF Evaluation: Precision {:.4f} Recall {:.4f} NDCG {:.4f}'.format(precision, recall, ndcg))
epoch_list.append(epoch)
precision_list.append(precision)
recall_list.append(recall)
ndcg_list.append(ndcg)
metrics = pd.DataFrame([epoch_list, precision_list, recall_list, ndcg_list]).transpose()
metrics.columns = ['epoch_idx', 'precision@{}'.format(args.K), 'recall@{}'.format(args.K), 'ndcg@{}'.format(args.K)]
metrics.to_csv(args.save_dir + '/metrics.tsv', sep='\t', index=False)
def predict(args):
# seed
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
# GPU / CPU
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
n_gpu = torch.cuda.device_count()
if n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
# load data
data = DataLoaderNFM(args, logging)
user_ids = list(data.test_user_dict.keys())
if args.n_evaluate_users and 0 < args.n_evaluate_users < len(user_ids):
sample_user_ids = random.sample(user_ids, args.n_evaluate_users)
else:
sample_user_ids = user_ids
# load model
model = NFM(args, data.n_users, data.n_items, data.n_entities)
model = load_model(model, args.pretrain_model_path)
model.to(device)
# predict
cf_scores, precision, recall, ndcg = evaluate(model, data, sample_user_ids, args.K, use_cuda, device)
np.save(args.save_dir + 'cf_scores.npy', cf_scores)
print('CF Evaluation: Precision {:.4f} Recall {:.4f} NDCG {:.4f}'.format(precision, recall, ndcg))
if __name__ == '__main__':
args = parse_nfm_args()
train(args)
# predict(args)