-
Notifications
You must be signed in to change notification settings - Fork 95
/
Copy pathdemo3.py
186 lines (155 loc) · 5.37 KB
/
demo3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
#!/usr/bin/env python
# coding: utf-8
import time
import numpy as np
import pandas as pd
from sklearn.metrics import roc_auc_score
from sklearn.model_selection import train_test_split
from lightautoml.automl.base import AutoML
from lightautoml.ml_algo.boost_lgbm import BoostLGBM
from lightautoml.ml_algo.tuning.optuna import OptunaTuner
from lightautoml.pipelines.features.lgb_pipeline import LGBSimpleFeatures
from lightautoml.pipelines.ml.base import MLPipeline
from lightautoml.pipelines.selection.base import ComposedSelector
from lightautoml.pipelines.selection.importance_based import ImportanceCutoffSelector
from lightautoml.pipelines.selection.importance_based import (
ModelBasedImportanceEstimator,
)
from lightautoml.pipelines.selection.permutation_importance_based import (
NpIterativeFeatureSelector,
)
from lightautoml.pipelines.selection.permutation_importance_based import (
NpPermutationImportanceEstimator,
)
from lightautoml.reader.base import PandasToPandasReader
from lightautoml.tasks import Task
np.random.seed(42)
print("Load data...")
data = pd.read_csv("./data/sampled_app_train.csv")
print("Data loaded")
print("Features modification from user side...")
data["BIRTH_DATE"] = (np.datetime64("2018-01-01") + data["DAYS_BIRTH"].astype(np.dtype("timedelta64[D]"))).astype(str)
data["EMP_DATE"] = (
np.datetime64("2018-01-01") + np.clip(data["DAYS_EMPLOYED"], None, 0).astype(np.dtype("timedelta64[D]"))
).astype(str)
data["constant"] = 1
data["allnan"] = np.nan
data.drop(["DAYS_BIRTH", "DAYS_EMPLOYED"], axis=1, inplace=True)
print("Features modification finished")
print("Split data...")
train_data, test_data = train_test_split(data, test_size=2000, stratify=data["TARGET"], random_state=13)
train_data.reset_index(drop=True, inplace=True)
test_data.reset_index(drop=True, inplace=True)
print("Data splitted. Parts sizes: train_data = {}, test_data = {}".format(train_data.shape, test_data.shape))
print("Create task..")
task = Task("binary")
print("Task created")
print("Create reader...")
reader = PandasToPandasReader(task, cv=5, random_state=1)
print("Reader created")
# selector parts
print("Create feature selector")
model01 = BoostLGBM(
default_params={
"learning_rate": 0.05,
"num_leaves": 64,
"seed": 42,
"num_threads": 5,
}
)
model02 = BoostLGBM(
default_params={
"learning_rate": 0.05,
"num_leaves": 64,
"seed": 42,
"num_threads": 5,
}
)
pipe0 = LGBSimpleFeatures()
pie = NpPermutationImportanceEstimator()
pie1 = ModelBasedImportanceEstimator()
sel1 = ImportanceCutoffSelector(pipe0, model01, pie1, cutoff=0)
sel2 = NpIterativeFeatureSelector(pipe0, model02, pie, feature_group_size=1, max_features_cnt_in_result=15)
selector = ComposedSelector([sel1, sel2])
print("Feature selector created")
# pipeline 1 level parts
print("Start creation pipeline_1...")
pipe = LGBSimpleFeatures()
print("\t ParamsTuner1 and Model1...")
params_tuner1 = OptunaTuner(n_trials=100, timeout=100)
model1 = BoostLGBM(
default_params={
"learning_rate": 0.05,
"num_leaves": 128,
"seed": 1,
"num_threads": 5,
}
)
print("\t Tuner1 and model1 created")
print("\t ParamsTuner2 and Model2...")
model2 = BoostLGBM(
default_params={
"learning_rate": 0.025,
"num_leaves": 64,
"seed": 2,
"num_threads": 5,
}
)
print("\t Tuner2 and model2 created")
print("\t Pipeline1...")
pipeline_lvl1 = MLPipeline(
[(model1, params_tuner1), model2],
pre_selection=selector,
features_pipeline=pipe,
post_selection=None,
)
print("Pipeline1 created")
# pipeline 2 level parts
print("Start creation pipeline_2...")
pipe1 = LGBSimpleFeatures()
print("\t ParamsTuner and Model...")
model = BoostLGBM(
default_params={
"learning_rate": 0.05,
"num_leaves": 64,
"max_bin": 1024,
"seed": 3,
"num_threads": 5,
}
)
print("\t Tuner and model created")
print("\t Pipeline2...")
pipeline_lvl2 = MLPipeline([model], pre_selection=None, features_pipeline=pipe1, post_selection=None)
print("Pipeline2 created")
print("Create AutoML pipeline...")
automl = AutoML(
reader,
[
[pipeline_lvl1],
[pipeline_lvl2],
],
skip_conn=False,
)
print("AutoML pipeline created...")
print("Start AutoML pipeline fit_predict...")
start_time = time.time()
oof_pred = automl.fit_predict(train_data, roles={"target": "TARGET"})
print("AutoML pipeline fitted and predicted. Time = {:.3f} sec".format(time.time() - start_time))
print("Feature importances of selector:\n{}".format(selector.get_features_score()))
print("oof_pred:\n{}\nShape = {}".format(oof_pred, oof_pred.shape))
print("Feature importances of top level algorithm:\n{}".format(automl.levels[-1][0].ml_algos[0].get_features_score()))
print(
"Feature importances of lowest level algorithm - model 0:\n{}".format(
automl.levels[0][0].ml_algos[0].get_features_score()
)
)
print(
"Feature importances of lowest level algorithm - model 1:\n{}".format(
automl.levels[0][0].ml_algos[1].get_features_score()
)
)
test_pred = automl.predict(test_data)
print("Prediction for test data:\n{}\nShape = {}".format(test_pred, test_pred.shape))
print("Check scores...")
print("OOF score: {}".format(roc_auc_score(train_data["TARGET"].values, oof_pred.data[:, 0])))
print("TEST score: {}".format(roc_auc_score(test_data["TARGET"].values, test_pred.data[:, 0])))