-
Notifications
You must be signed in to change notification settings - Fork 28
/
ex1_burgers.py
139 lines (116 loc) · 5.33 KB
/
ex1_burgers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
from libs_path import *
from libs import *
def main():
args = get_args_1d()
cuda = not args.no_cuda and torch.cuda.is_available()
device = torch.device('cuda' if cuda else 'cpu')
kwargs = {'pin_memory': True} if cuda else {}
get_seed(args.seed, printout=False)
data_path = os.path.join(DATA_PATH, 'burgers_data_R10.mat')
train_dataset = BurgersDataset(subsample=args.subsample,
train_data=True,
train_portion=0.5,
data_path=data_path,)
valid_dataset = BurgersDataset(subsample=args.subsample,
train_data=False,
valid_portion=100,
data_path=data_path,)
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True,
drop_last=True, **kwargs)
valid_loader = DataLoader(valid_dataset, batch_size=args.val_batch_size, shuffle=False,
drop_last=False, **kwargs)
sample = next(iter(train_loader))
print('='*20, 'Data loader batch', '='*20)
for key in sample.keys():
print(key, "\t", sample[key].shape)
print('='*(40 + len('Data loader batch')+2))
if is_interactive():
u0 = sample['node']
pos = sample['pos']
u = sample['target']
_, axes = plt.subplots(nrows=4, ncols=1, figsize=(15, 10))
axes = axes.reshape(-1)
indexes = np.random.choice(range(4), size=4, replace=False)
for i, ix in enumerate(indexes):
axes[i].plot(pos[ix], u0[ix], label='input')
axes[i].plot(pos[ix], u[ix, :, 0], label='target')
axes[i].plot(pos[ix, 1:-1], u[ix, 1:-1, 1],
label='target derivative')
axes[i].legend()
with open(os.path.join(SRC_ROOT, 'config.yml')) as f:
config = yaml.full_load(f)
test_name = os.path.basename(__file__).split('.')[0]
config = config[test_name]
config['attn_norm'] = not args.layer_norm
for arg in vars(args):
if arg in config.keys():
config[arg] = getattr(args, arg)
get_seed(args.seed)
torch.cuda.empty_cache()
model = SimpleTransformer(**config)
model = model.to(device)
print(f"\nModel: {model.__name__}\t Number of params: {get_num_params(model)}")
model_name, result_name = get_model_name(model='burgers',
num_encoder_layers=config['num_encoder_layers'],
n_hidden=config['n_hidden'],
attention_type=config['attention_type'],
layer_norm=config['layer_norm'],
grid_size=int(2**13//args.subsample),
)
print(f"Saving model and result in {MODEL_PATH}/{model_name}\n")
epochs = args.epochs
lr = args.lr
h = (1/2**13)*args.subsample
tqdm_mode = 'epoch' if not args.show_batch else 'batch'
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
scheduler = OneCycleLR(optimizer, max_lr=lr, div_factor=1e4,
pct_start=0.2,
final_div_factor=1e4,
steps_per_epoch=len(train_loader), epochs=epochs)
loss_func = WeightedL2Loss(regularizer=True, h=h, gamma=args.gamma)
metric_func = WeightedL2Loss(regularizer=False, h=h)
result = run_train(model, loss_func, metric_func,
train_loader, valid_loader,
optimizer, scheduler,
train_batch=train_batch_burgers,
validate_epoch=validate_epoch_burgers,
epochs=epochs,
patience=None,
tqdm_mode=tqdm_mode,
model_name=model_name,
result_name=result_name,
device=device)
model.load_state_dict(torch.load(os.path.join(MODEL_PATH, model_name)))
model.eval()
val_metric = validate_epoch_burgers(model, metric_func, valid_loader, device)
print(f"\nBest model's validation metric in this run: {val_metric}")
plt.figure(1)
loss_train = result['loss_train']
loss_val = result['loss_val']
plt.semilogy(loss_train[:, 0], label='train')
plt.semilogy(loss_val, label='valid')
plt.grid(True, which="both", ls="--")
plt.legend()
plt.show()
sample = next(iter(valid_loader))
node = sample['node']
pos = sample['pos']
grid = sample['grid']
u = sample['target']
with torch.no_grad():
model.eval()
out_dict = model(node.to(device), None,
pos.to(device), grid.to(device))
out = out_dict['preds']
preds = out[..., 0].detach().cpu()
_, axes = plt.subplots(nrows=args.val_batch_size, ncols=1, figsize=(20, 5*args.val_batch_size))
axes = axes.reshape(-1)
for i in range(args.val_batch_size):
grid = pos[i, :, 0]
axes[i].plot(grid, node[i, :, 0], '.', color='b', linewidth=1, label='f')
axes[i].plot(grid, u[i, :, 0], color='g', linewidth=2, label='u')
axes[i].plot(grid, preds[i, :], '--', color='r', linewidth=2, label='u_preds')
axes[i].legend()
plt.show()
if __name__ == '__main__':
main()