-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun1_args.py
526 lines (490 loc) · 25.4 KB
/
run1_args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
import os
import torch
import random
import logging
from transformers import BertTokenizer, BertModel, AdamW, get_linear_schedule_with_warmup
import argparse
import numpy as np
from tqdm import tqdm
from data_process.data_processor_word import ACE05_dataset
from data_process.data_loader import DatasetLoader
from data_process.constant import eventType2id, id2eventType,all_slots
from data_process.constant import event_type as all_event
from model.model3 import Event_Model
import utils
import pandas
logger = logging.getLogger()
def seed_everything(seed=1029):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# some cudnn methods can be random even after fixing the seed
# unless you tell it to be deterministic
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def load_and_cache_examples(args, processor, data_type='train'): # 直接从文件中生成torch dataset
# Load data features from cache or dataset file
cached_examples_file = os.path.join(args.filepath, 'cached_{}'.format(data_type))
if os.path.exists(cached_examples_file):
logger.info("Loading features from cached file %s", cached_examples_file)
examples = torch.load(cached_examples_file)
all = 0
for e in examples:
type = e['event_type']
all += np.sum(type[1:])
print(all)
else:
logger.info("Creating features from dataset file at %s", cached_examples_file)
if data_type == 'train':
examples = processor.get_train_examples()
if data_type == 'dev':
examples = processor.get_dev_examples()
if data_type == 'test':
examples = processor.get_test_examples()
logger.info("Saving features into cached file %s", cached_examples_file)
torch.save(examples, str(cached_examples_file))
return examples
def get_question_token():
import pandas
question_df = pandas.read_excel(r'data_process/question.xlsx')
definition = question_df['definition']
tokenizer = BertTokenizer.from_pretrained(r"bert-base-uncased")
max = 48
tokens_id_list, attention_list, segment_list, padding_length_list = [], [], [], []
for i in range(len(question_df)):
id = tokenizer.encode_plus(definition[i].replace('\n', ''))['input_ids']
attention = tokenizer.encode_plus(definition[i].replace('\n', ''))['attention_mask']
segment = tokenizer.encode_plus(definition[i].replace('\n', ''))['token_type_ids']
padding_length = max - len(id)
tokens_id_list.append(id)
attention_list.append(attention)
segment_list.append(segment)
padding_length_list.append(padding_length)
return tokens_id_list, attention_list, segment_list, padding_length_list, max
def train(args, event_model, processor):
train_dataset = load_and_cache_examples(args, processor, data_type='train')
# stastics(train_dataset,"train.xlsx")
train_loader = DatasetLoader(data=train_dataset, batch_size=args.batch_size, max_length=args.max_length,
shuffle=False, seed=args.seed, sort=False)
device = args.device
# Total number of training steps is [number of batches] x [number of epochs].
# (Note that this is not the same as the number of training samples).
total_steps = len(train_loader) * args.epochs
optimizer = AdamW(event_model.parameters(), lr=args.learning_rate, weight_decay=1e-5)
# Create the learning rate scheduler.
# lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=10,
# verbose=True, threshold=0.0001, threshold_mode='rel',
# cooldown=1, min_lr=0, eps=1e-08)
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[15, 25, 35, 45], gamma=0.5)
scheduler = get_linear_schedule_with_warmup(optimizer,
num_warmup_steps=0, # Default value in run_glue.py
num_training_steps=total_steps)
best_result = -1
for epoch in range(1, args.epochs + 1):
right = 0.0
total_right = 0.0
total = 0.0
total_p = 0.0
total_g = 0.0
argument_right = 0.0
argument_total_right = 0.0
argument_total = 0.0
argument_total_p = 0.0
argument_total_g = 0.0
total_loss = 0.0
notonly_pred = 0
notonly_gold = 0
all_zero = 0
event_model.train()
question = get_question_token()
for i, batch in enumerate(train_loader):
optimizer.zero_grad()
tokens, event_type, tokens_id, attention_mask, segment_id, entity_id, x_len, argument_id = batch
event_type = event_type.to(device)
tokens_id = tokens_id.to(device)
attention_mask = attention_mask.to(device)
segment_id = segment_id.to(device)
entity_id = entity_id.to(device)
argument_id = argument_id.to(device)
loss, loss2, index, argument_index, gold_onehot, argument_gold_onehot, score, score_t, slot_attention_event = event_model(
tokens_id,
attention_mask,
segment_id,
entity_id,
question,
argument_id,
event_type)
# utils.show_attention_heatmap(score.detach().cpu().numpy(), score_t.detach().cpu().numpy(),
# slot_attention_event.detach().cpu().numpy(), event_type.cpu().numpy(),
# gold_onehot.cpu().numpy(), argument_id.cpu().numpy(),
# argument_gold_onehot.cpu().numpy(), tokens)
# print(loss,loss2)
index = index.astype(np.long)
gold_onehot = gold_onehot.cpu().numpy()
argument_gold_onehot = argument_gold_onehot.cpu().numpy()
# print(loss,loss2)
(loss + 2*loss2).backward()
torch.nn.utils.clip_grad_norm_(event_model.parameters(), 5.0)
optimizer.step()
# scheduler.step()
# lr_scheduler.step()
for i in range(argument_index.shape[0]): # 对于一个batch
for j in range(argument_index.shape[1]): # 对于batch中的一个token,有36种可能的论元类型。
# print(argument_gold_onehot[i][j])
# print(argument_index[i][j])
argument_total += np.sum(argument_gold_onehot[i][j])
argument_total_g += np.sum(argument_gold_onehot[i, j][1:])
argument_total_p += np.sum(argument_index[i, j][1:])
for k in range(len(argument_gold_onehot[i, j])):
if argument_gold_onehot[i, j][k] == argument_index[i, j][k] and argument_index[i, j][k] == 1:
argument_total_right += 1
if (argument_gold_onehot[i, j, 0] != 1) and argument_gold_onehot[i, j, k] == argument_index[
i, j, k] == 1:
argument_right += 1
for i in range(index.shape[0]):
if np.sum(index[i]) > 1:
notonly_pred += 1
if np.sum(index[i]) == 0:
all_zero += 1
total += np.sum(gold_onehot[i])
total_g += np.sum(gold_onehot[i][1:])
total_p += np.sum(index[i][1:])
for j in range(len(gold_onehot[i])):
if gold_onehot[i][j] == index[i][j] == 1:
total_right += 1
if (gold_onehot[i][0] != 1) and gold_onehot[i][j] == index[i][j] == 1:
right += 1
acc = 1.0 * total_right / (total + 0.000001)
pre = 1.0 * right / (total_p + 0.000001)
rec = 1.0 * right / (total_g + 0.000001)
f1 = 2 * pre * rec / (pre + rec + 0.000001)
argument_acc = 1.0 * argument_total_right / (argument_total + 0.000001)
argument_pre = 1.0 * argument_right / (argument_total_p + 0.000001)
argument_rec = 1.0 * argument_right / (argument_total_g + 0.000001)
argument_f1 = 2 * argument_pre * argument_rec / (argument_pre + argument_rec + 0.000001)
print("epoch {} -----------------------------------".format(epoch))
test_f1 = eval(args, event_model, processor)
if test_f1 > best_result:
torch.save(event_model.state_dict(), os.path.join(args.filepath, "argument模型.pkl"))
best_result = test_f1
out1 = 'train事件类型:Total Sample:%d, Total Pred: %d, Total Right_pred:%d, Right Pred_evt: %d, Total Event: %d\n' % (
total, total_p, total_right, right, total_g)
out2 = 'train论元:Total Sample:%d, Total Pred: %d, Total Right_pred:%d, Right Pred_evt: %d, Total argument: %d\n' % (
argument_total, argument_total_p, argument_total_right, argument_right, argument_total_g)
out1 += '事件类型Accurate:%.3f, Precision: %.3f, Recall: %.3f, F1: %.3f' % (acc, pre, rec, f1)
out2 += '论元Accurate:%.3f, Precision: %.3f, Recall: %.3f, F1: %.3f' % (
argument_acc, argument_pre, argument_rec, argument_f1)
print(out1)
print(out2)
print(all_zero, notonly_pred)
def getSpan(argument_pred,argument_gold):
import copy
def span(matrix):
current_slot_span = []
for i in range(matrix.shape[0]): # 对于一个batch
for k in range(1,len(matrix[i][0])):
left,right=0,0
while right < len(matrix[i,:,k]):
if matrix[i,left,k]==1:
while right<len(matrix[i,:,k]) and matrix[i,right,k]==1:
right+=1
tmp=[[left,right-1],all_slots[k]]
current_slot_span.append(copy.deepcopy(tmp))
left=right
else:
left+=1
right=left
return current_slot_span
predSpanAndType=span(argument_pred)
predOnlySpan=[p[0] for p in predSpanAndType]
goldSpanAndType=span(argument_gold)
goldOnlySpan = [p[0] for p in goldSpanAndType]
intersection=0
type_intersection = 0
for p in predOnlySpan:
if p in goldOnlySpan:
intersection+=1
for p in predSpanAndType:
for g in goldSpanAndType:
if p[0]==g[0] and p[1]==g[1]:
type_intersection += 1
return len(predOnlySpan),len(goldOnlySpan),intersection,type_intersection
def microF1(index, label,pred,gold,inter):
for event in range(1,index.shape[1]):
for i in range(index.shape[0]):
if index[i,event]==label[i,event]==1:
inter[event-1]+=1
pred[event-1]+=np.sum(index[:,event])
gold[event-1]+=np.sum(label[:,event])
return pred, gold, inter
def eval(args, event_model, processor):
test_dataset = load_and_cache_examples(args, processor, data_type='test')
# stastics(test_dataset,"test.xlsx")
test_loader = DatasetLoader(data=test_dataset, batch_size=args.batch_size, max_length=args.max_length,
shuffle=False, seed=args.seed, sort=False)
event_model.eval()
device = args.device
optimizer = AdamW(event_model.parameters(), lr=args.learning_rate, weight_decay=1e-5)
with torch.no_grad():
right = 0.0
total_right = 0.0
total = 0.0
total_p = 0.0
total_g = 0.0
argument_right = 0.0
argument_total_right = 0.0
argument_total = 0.0
argument_total_p = 0.0
argument_total_g = 0.0
identity_right = 0.0
identity_total_right = 0.0
identity_total = 0.0
identity_total_p = 0.0
identity_total_g = 0.0
notonly_pred = 0
micro_pred = [0.00001] * 33
micro_gold = [0.00001] * 33
micro_inter = [0] * 33
notonly_gold = 0
# e = ErrorAnalysis()
all_zero = 0
average_len = 0
num_notO = 0
question = get_question_token()
for i, batch in enumerate(test_loader):
optimizer.zero_grad()
tokens, event_type, tokens_id, attention_mask, segment_id, entity_id, x_len, argument_id = batch
for iii in range(len(x_len.numpy())):
if event_type[iii][0] != 1:
average_len += x_len[iii]
num_notO += 1
event_type = event_type.to(device)
tokens_id = tokens_id.to(device)
attention_mask = attention_mask.to(device)
segment_id = segment_id.to(device)
entity_id = entity_id.to(device)
argument_id = argument_id.to(device)
_, _, index, argument_index, gold_onehot, argument_gold_onehot, score, score_t, slot_attention_event = event_model(
tokens_id,
attention_mask,
segment_id, entity_id,
question, argument_id,
event_type)
# utils.show_attention_heatmap(score.detach().cpu().numpy(), score_t.detach().cpu().numpy(),
# slot_attention_event.detach().cpu().numpy(), event_type.cpu().numpy(),
# gold_onehot.cpu().numpy(), argument_id.cpu().numpy(),
# argument_gold_onehot.cpu().numpy(), tokens)
index = index.astype(np.long)
argument_gold_onehot = argument_gold_onehot.cpu().numpy()
# print(index,gold_onehot)
gold_onehot = gold_onehot.cpu().numpy().astype(np.long)
micro_pred,micro_gold,micro_inter=microF1(index,gold_onehot,micro_pred,micro_gold,micro_inter)
for i in range(index.shape[0]):
if np.sum(index[i]) > 1:
notonly_pred += 1
if np.sum(index[i]) == 0:
all_zero += 1
# e.update(tokens[i],index[i],gold_onehot[i])
# if not (index[i] == gold_onehot[i]).all():
#
# print(tokens[i])
# print(index[i], gold_onehot[i])
# total_different_gold += (gold_onehot[i]!=index[i])+0
# total_different_pred += gold_onehot[i]
total += np.sum(gold_onehot[i])
total_g += np.sum(gold_onehot[i][1:])
total_p += np.sum(index[i][1:])
for j in range(len(gold_onehot[i])):
if gold_onehot[i][j] == index[i][j] == 1:
total_right += 1
if (gold_onehot[i][0] != 1) and gold_onehot[i][j] == index[i][j] == 1:
right += 1
# if (index[i] != gold_onehot[i]).any() and (index[i][0] != 1) and (gold_onehot[i][0] != 1):
# print(index[i],gold_onehot[i])
argument_total_pred,argument_total_gold,intersection,type_intersection=getSpan(argument_index,argument_gold_onehot)
identity_total_p+=argument_total_pred
argument_total_p+=argument_total_pred
identity_total_g+=argument_total_gold
argument_total_g+=argument_total_gold
identity_right+=intersection
argument_right+=type_intersection
# for i in range(argument_index.shape[0]): # 对于一个batch
# for j in range(argument_index.shape[1]): # 对于batch中的一个token,有36种可能的论元类型。
# argument_total += np.sum(argument_gold_onehot[i, j])
# identity_total += np.sum(argument_gold_onehot[i, j])
# argument_total_g += np.sum(argument_gold_onehot[i, j][1:])
# identity_total_g += 1 if (argument_gold_onehot[i, j][1:]).any() else 0
# argument_total_p += np.sum(argument_index[i, j][1:])
# identity_total_p += 1 if (argument_index[i, j][1:] == 1).any() else 0
# if (argument_gold_onehot[i, j][1:] == 1).any() and (argument_index[i, j][1:] == 1).any():
# identity_right += 1
# if (argument_gold_onehot[i, j][0] == 1 and argument_index[i, j][0] == 1 and not (
# argument_index[i, j][1:] == 0).any()) \
# or (
# (argument_gold_onehot[i, j][1:] == 1).any() and (argument_index[i, j][1:] == 1).any()):
# identity_total_right += 1
# for k in range(len(argument_gold_onehot[i, j])):
#
# if argument_gold_onehot[i, j][k] == argument_index[i, j][k] and argument_index[i, j][k] == 1:
# argument_total_right += 1
# if (argument_gold_onehot[i, j, 0] != 1) and argument_gold_onehot[i, j, k] == argument_index[
# i, j, k] == 1:
# argument_right += 1
for i in range(1, 34):
assert micro_inter[i - 1] <= micro_gold[i - 1]
p = micro_inter[i - 1] / micro_pred[i - 1]
r = micro_inter[i - 1] / micro_gold[i - 1]
f1 = 2 * p * r / (p + r + 1e-5)
assert p < 1
assert r < 1
assert f1 < 1
print("event_type:{} precision:{},recall:{},f1:{} ".format(all_event[i], p, r, f1))
# e.write_excel()
identity_acc = 1.0 * identity_total_right / (identity_total + 0.000001)
identity_pre = 1.0 * identity_right / (identity_total_p + 0.000001)
identity_rec = 1.0 * identity_right / (identity_total_g + 0.000001)
identity_f1 = 2 * identity_pre * identity_rec / (identity_pre + identity_rec + 0.000001)
argument_acc = 1.0 * argument_total_right / (argument_total + 0.000001)
argument_pre = 1.0 * argument_right / (argument_total_p + 0.000001)
argument_rec = 1.0 * argument_right / (argument_total_g + 0.000001)
argument_f1 = 2 * argument_pre * argument_rec / (argument_pre + argument_rec + 0.000001)
acc = 1.0 * total_right / (total + 0.000001)
pre = 1.0 * right / (total_p + 0.000001)
rec = 1.0 * right / (total_g + 0.000001)
f1 = 2 * pre * rec / (pre + rec + 0.000001)
out1 = 'eval事件类型:Total Sample:%d, Total Pred: %d, Total Right_pred:%d, Right Pred_evt: %d, Total Event: %d\n' % (
total, total_p, total_right, right, total_g)
out2 = 'eval论元:Total Sample:%d, Total Pred: %d, Total Right_pred:%d, Right Pred_evt: %d, Total argument: %d\n' % (
argument_total, argument_total_p, argument_total_right, argument_right, argument_total_g)
out3 = 'eval论元identity:Total Sample:%d, Total Pred: %d, Total Right_pred:%d, Right Pred_evt: %d, Total argument: %d\n' % (
identity_total, identity_total_p, identity_total_right, identity_right, identity_total_g)
out1 += '事件类型Accurate:%.3f, Precision: %.3f, Recall: %.3f, F1: %.3f' % (
acc, pre, rec, f1)
out2 += '论元Accurate:%.3f, Precision: %.3f, Recall: %.3f, F1: %.3f' % (
argument_acc, argument_pre, argument_rec, argument_f1)
out3 += '论元identity Accurate:%.3f, Precision: %.3f, Recall: %.3f, F1: %.3f' % (
identity_acc, identity_pre, identity_rec, identity_f1)
print(out1)
print(out2)
print(out3)
print(all_zero, notonly_pred)
return f1 + argument_f1
def evalAndShow(args, event_model, processor):
test_dataset = load_and_cache_examples(args, processor, data_type='test')
# stastics(test_dataset,"test.xlsx")
test_loader = DatasetLoader(data=test_dataset, batch_size=args.batch_size, max_length=args.max_length,
shuffle=False, seed=args.seed, sort=False)
event_model.eval()
device = args.device
optimizer = AdamW(event_model.parameters(), lr=args.learning_rate, weight_decay=1e-5)
with torch.no_grad():
right = 0.0
total_right = 0.0
total = 0.0
total_p = 0.0
total_g = 0.0
notonly_pred = 0
notonly_gold = 0
# e = ErrorAnalysis()
all_zero = 0
average_len = 0
num_notO = 0
question = get_question_token()
for i, batch in enumerate(test_loader):
optimizer.zero_grad()
tokens, event_type, tokens_id, attention_mask, segment_id, entity_id, x_len, argument_id = batch
for iii in range(len(x_len.numpy())):
if event_type[iii][0] != 1:
average_len += x_len[iii]
num_notO += 1
event_type = event_type.to(device)
tokens_id = tokens_id.to(device)
attention_mask = attention_mask.to(device)
segment_id = segment_id.to(device)
entity_id = entity_id.to(device)
_, index, gold_onehot, scores = event_model(tokens_id, attention_mask, segment_id, entity_id, question,
event_type)
# utils.show_attention_heatmap(scores,event_type.cpu().numpy(),gold_onehot.cpu().numpy(),tokens)
index = index.astype(np.long)
# print(index,gold_onehot)
gold_onehot = gold_onehot.cpu().numpy().astype(np.long)
for i in range(index.shape[0]):
if gold_onehot[i][0] != 1:
'''有事件开始打印'''
sentence = tokenizer.convert_tokens_to_string(tokens[i][1:-1])
print("当前句子 :", sentence)
for k in range(len(gold_onehot[i])):
if gold_onehot[i][k] == 1:
print("该句子包含事件:", id2eventType[k])
for k in range(len(gold_onehot[i])):
if index[i][k] == 1:
print("探测出来的事件有:", id2eventType[k])
if np.sum(index[i]) > 1:
notonly_pred += 1
if np.sum(index[i]) == 0:
all_zero += 1
# e.update(tokens[i],index[i],gold_onehot[i])
# if not (index[i] == gold_onehot[i]).all():
#
# print(tokens[i])
# print(index[i], gold_onehot[i])
# total_different_gold += (gold_onehot[i]!=index[i])+0
# total_different_pred += gold_onehot[i]
total += np.sum(gold_onehot[i])
total_g += np.sum(gold_onehot[i][1:])
total_p += np.sum(index[i][1:])
for j in range(len(gold_onehot[i])):
if gold_onehot[i][j] == index[i][j] == 1:
total_right += 1
if (gold_onehot[i][0] != 1) and gold_onehot[i][j] == index[i][j] == 1:
right += 1
# if (index[i] != gold_onehot[i]).any() and (index[i][0] != 1) and (gold_onehot[i][0] != 1):
# print(index[i],gold_onehot[i])
# e.write_excel()
acc = 1.0 * total_right / (total + 0.000001)
pre = 1.0 * right / (total_p + 0.000001)
rec = 1.0 * right / (total_g + 0.000001)
f1 = 2 * pre * rec / (pre + rec + 0.000001)
out = 'Total Sample:%d, Total Pred: %d, Total Right_pred:%d, Right Pred_evt: %d, Total Event: %d\n' % (
total, total_p, total_right, right, total_g)
out += 'Accurate:%.3f, Precision: %.3f, Recall: %.3f, F1: %.3f' % (acc, pre, rec, f1)
print(out)
print(all_zero, notonly_pred)
return f1
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--filepath", default=r"./data", type=str)
parser.add_argument("--do_train", default=False, action='store_true')
parser.add_argument('--do_eval', default=True, action='store_true')
parser.add_argument("--do_predict", default=True, action='store_true')
parser.add_argument("--attention", default=True, action='store_true')
parser.add_argument("--slot", default=True, action='store_true')
parser.add_argument("--dynamic", default=False, action='store_true')
parser.add_argument("--static", default=True, action='store_true')
parser.add_argument("--entity", default=True, action='store_true')
parser.add_argument('--learning_rate', default=0.000018, type=float)
parser.add_argument('--seed', default=1234, type=int)
parser.add_argument('--epochs', default=100, type=int)
parser.add_argument('--batch_size', default=16, type=int)
parser.add_argument('--max_length', default=48, type=int)
parser.add_argument('--embedding_dim', default=768, type=int)
parser.add_argument('--hidden_dim', default=48, type=int)
parser.add_argument("--event_type_list", default=all_event, type=list)
args = parser.parse_args()
if torch.cuda.is_available():
args.device = "cuda:1"
else:
args.device = "cpu"
seed_everything(1024)
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
processor = ACE05_dataset(args.filepath, tokenizer, args.max_length)
model = Event_Model(args).to(args.device)
if args.do_train:
train(args, model, processor)
torch.save(model.state_dict(), os.path.join(args.filepath, "模型.pkl"))
if args.do_eval:
model.load_state_dict(torch.load(os.path.join(args.filepath, r"模型.pkl")))
eval(args, model, processor)