forked from petsc/petsc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpetscdmtypes.h
295 lines (234 loc) · 9.99 KB
/
petscdmtypes.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
#pragma once
/* SUBMANSEC = DM */
/*S
DM - Abstract PETSc object that manages an abstract grid-like object and its interactions with the algebraic solvers
Level: intermediate
.seealso: [](ch_dmbase), `DMType`, `DMGetType()`, `DMCompositeCreate()`, `DMDACreate()`, `DMSetType()`, `DMType`, `DMDA`, `DMPLEX`
S*/
typedef struct _p_DM *DM;
/*E
DMBoundaryType - Describes the choice for the filling of ghost cells on physical domain boundaries.
Values:
+ `DM_BOUNDARY_NONE` - no ghost nodes
. `DM_BOUNDARY_GHOSTED` - ghost vertices/cells exist but aren't filled; you can put values into them and then apply a stencil that uses those ghost locations
. `DM_BOUNDARY_MIRROR` - the ghost value is the same as the value 1 grid point in; that is, the 0th grid point in the real mesh acts like a mirror to define
the ghost point value; not yet implemented for 3d
. `DM_BOUNDARY_PERIODIC` - ghost vertices/cells filled by the opposite edge of the domain
- `DM_BOUNDARY_TWIST` - like periodic, only glued backwards like a Mobius strip
Level: beginner
Notes:
This is information for the boundary of the __PHYSICAL__ domain. It has nothing to do with boundaries between
processes. That width is always determined by the stencil width; see `DMDASetStencilWidth()`.
If the physical grid points have values 0 1 2 3 with `DM_BOUNDARY_MIRROR` then the local vector with ghost points has the values 1 0 1 2 3 2.
See <https://scicomp.stackexchange.com/questions/5355/writing-the-poisson-equation-finite-difference-matrix-with-neumann-boundary-cond>
Developer Note:
Should `DM_BOUNDARY_MIRROR` have the same meaning with `DMDA_Q0`, that is a staggered grid? In that case should the ghost point have the same value
as the 0th grid point where the physical boundary serves as the mirror?
.seealso: [](ch_dmbase), `DM`, `DMDA`, `DMDASetBoundaryType()`, `DMDACreate1d()`, `DMDACreate2d()`, `DMDACreate3d()`, `DMDACreate()`
E*/
typedef enum {
DM_BOUNDARY_NONE,
DM_BOUNDARY_GHOSTED,
DM_BOUNDARY_MIRROR,
DM_BOUNDARY_PERIODIC,
DM_BOUNDARY_TWIST
} DMBoundaryType;
/*E
DMBoundaryConditionType - indicates what type of boundary condition is to be imposed
Values:
+ `DM_BC_ESSENTIAL` - A Dirichlet condition using a function of the coordinates
. `DM_BC_ESSENTIAL_FIELD` - A Dirichlet condition using a function of the coordinates and auxiliary field data
. `DM_BC_ESSENTIAL_BD_FIELD` - A Dirichlet condition using a function of the coordinates, facet normal, and auxiliary field data
. `DM_BC_NATURAL` - A Neumann condition using a function of the coordinates
. `DM_BC_NATURAL_FIELD` - A Neumann condition using a function of the coordinates and auxiliary field data
- `DM_BC_NATURAL_RIEMANN` - A flux condition which determines the state in ghost cells
Level: beginner
Note:
The user can check whether a boundary condition is essential using (type & `DM_BC_ESSENTIAL`), and similarly for
natural conditions (type & `DM_BC_NATURAL`)
.seealso: [](ch_dmbase), `DM`, `DMAddBoundary()`, `DSAddBoundary()`, `DSGetBoundary()`
E*/
typedef enum {
DM_BC_ESSENTIAL = 1,
DM_BC_ESSENTIAL_FIELD = 5,
DM_BC_NATURAL = 2,
DM_BC_NATURAL_FIELD = 6,
DM_BC_ESSENTIAL_BD_FIELD = 9,
DM_BC_NATURAL_RIEMANN = 10
} DMBoundaryConditionType;
/*E
DMPointLocationType - Describes the method to handle point location failure
Values:
+ `DM_POINTLOCATION_NONE` - return a negative cell number
. `DM_POINTLOCATION_NEAREST` - the (approximate) nearest point in the mesh is used
- `DM_POINTLOCATION_REMOVE` - returns values only for points which were located
Level: intermediate
.seealso: [](ch_dmbase), `DM`, `DMLocatePoints()`
E*/
typedef enum {
DM_POINTLOCATION_NONE,
DM_POINTLOCATION_NEAREST,
DM_POINTLOCATION_REMOVE
} DMPointLocationType;
/*E
DMBlockingType - Describes how to choose variable block sizes
Values:
+ `DM_BLOCKING_TOPOLOGICAL_POINT` - select all fields at a topological point (cell center, at a face, etc)
- `DM_BLOCKING_FIELD_NODE` - using a separate block for each field at a topological point
Level: intermediate
Note:
When using `PCVPBJACOBI`, one can choose to block by topological point (all fields at a cell center, at a face, etc.)
or by field nodes (using number of components per field to identify "nodes"). Field nodes lead to smaller blocks, but
may converge more slowly. For example, a cubic Lagrange hexahedron will have one node at vertices, two at edges, four
at faces, and eight at cell centers. If using point blocking, the `PCVPBJACOBI` preconditioner will work with block
sizes up to 8 Lagrange nodes. For 5-component CFD, this produces matrices up to 40x40, which increases memory
footprint and may harm performance. With field node blocking, the maximum block size will correspond to one Lagrange node,
or 5x5 blocks for the CFD example.
.seealso: [](ch_dmbase), `PCVPBJACOBI`, `MatSetVariableBlockSizes()`, `DMSetBlockingType()`
E*/
typedef enum {
DM_BLOCKING_TOPOLOGICAL_POINT,
DM_BLOCKING_FIELD_NODE
} DMBlockingType;
/*E
DMAdaptationStrategy - Describes the strategy used for adaptive solves
Values:
+ `DM_ADAPTATION_INITIAL` - refine a mesh based on an initial guess
. `DM_ADAPTATION_SEQUENTIAL` - refine the mesh based on a sequence of solves, much like grid sequencing
- `DM_ADAPTATION_MULTILEVEL` - use the sequence of constructed meshes in a multilevel solve, much like the Systematic Upscaling of Brandt
Level: beginner
.seealso: [](ch_dmbase), `DM`, `DMAdaptor`, `DMAdaptationCriterion`, `DMAdaptorSolve()`
E*/
typedef enum {
DM_ADAPTATION_INITIAL,
DM_ADAPTATION_SEQUENTIAL,
DM_ADAPTATION_MULTILEVEL
} DMAdaptationStrategy;
/*E
DMAdaptationCriterion - Describes the test used to decide whether to coarsen or refine parts of the mesh
Values:
+ `DM_ADAPTATION_REFINE` - uniformly refine a mesh, much like grid sequencing
. `DM_ADAPTATION_LABEL` - adapt the mesh based upon a label of the cells filled with `DMAdaptFlag` markers.
. `DM_ADAPTATION_METRIC` - try to mesh the manifold described by the input metric tensor uniformly. PETSc can also construct such a metric based
upon an input primal or a gradient field.
- `DM_ADAPTATION_NONE` - do no adaptation
Level: beginner
.seealso: [](ch_dmbase), `DM`, `DMAdaptor`, `DMAdaptationStrategy`, `DMAdaptorSolve()`
E*/
typedef enum {
DM_ADAPTATION_NONE,
DM_ADAPTATION_REFINE,
DM_ADAPTATION_LABEL,
DM_ADAPTATION_METRIC
} DMAdaptationCriterion;
/*E
DMAdaptFlag - Marker in the label prescribing what adaptation to perform
Values:
+ `DM_ADAPT_DETERMINE` - undocumented
. `DM_ADAPT_KEEP` - undocumented
. `DM_ADAPT_REFINE` - undocumented
. `DM_ADAPT_COARSEN` - undocumented
- `DM_ADAPT_COARSEN_LAST` - undocumented
Level: beginner
.seealso: [](ch_dmbase), `DM`, `DMAdaptor`, `DMAdaptationStrategy`, `DMAdaptationCriterion`, `DMAdaptorSolve()`, `DMAdaptLabel()`
E*/
typedef enum {
DM_ADAPT_DETERMINE = PETSC_DETERMINE,
DM_ADAPT_KEEP = 0,
DM_ADAPT_REFINE,
DM_ADAPT_COARSEN,
DM_ADAPT_COARSEN_LAST,
DM_ADAPT_RESERVED_COUNT
} DMAdaptFlag;
/*E
DMDirection - Indicates a coordinate direction
Values:
+ `DM_X` - the x coordinate direction
. `DM_Y` - the y coordinate direction
- `DM_Z` - the z coordinate direction
Level: beginner
.seealso: [](ch_dmbase), `DM`, `DMDA`, `DMDAGetRay()`, `DMDAGetProcessorSubset()`, `DMPlexShearGeometry()`
E*/
typedef enum {
DM_X,
DM_Y,
DM_Z
} DMDirection;
/*E
DMEnclosureType - The type of enclosure relation between one `DM` and another
Values:
+ `DM_ENC_SUBMESH` - the `DM` is the boundary of another `DM`
. `DM_ENC_SUPERMESH` - the `DM` has the boundary of another `DM` (the reverse situation to `DM_ENC_SUBMESH`)
. `DM_ENC_EQUALITY` - it is unknown what this means
. `DM_ENC_NONE` - no relationship can be determined
- `DM_ENC_UNKNOWN` - the relationship is unknown
Level: beginner
.seealso: [](ch_dmbase), `DM`, `DMGetEnclosureRelation()`
E*/
typedef enum {
DM_ENC_EQUALITY,
DM_ENC_SUPERMESH,
DM_ENC_SUBMESH,
DM_ENC_NONE,
DM_ENC_UNKNOWN
} DMEnclosureType;
/*E
DMPolytopeType - This describes the polytope represented by each cell.
Level: beginner
While most operations only need the topology information in the `DMPLEX`, we must sometimes have the
user specify a polytope. For instance, when interpolating from a cell-vertex mesh, the type of
polytope can be ambiguous. Also, `DMPLEX` allows different symmetries of a prism cell with the same
constituent points. Normally these types are automatically inferred and the user does not specify
them.
.seealso: [](ch_dmbase), `DM`, `DMPlexComputeCellTypes()`
E*/
typedef enum {
DM_POLYTOPE_POINT,
DM_POLYTOPE_SEGMENT,
DM_POLYTOPE_POINT_PRISM_TENSOR,
DM_POLYTOPE_TRIANGLE,
DM_POLYTOPE_QUADRILATERAL,
DM_POLYTOPE_SEG_PRISM_TENSOR,
DM_POLYTOPE_TETRAHEDRON,
DM_POLYTOPE_HEXAHEDRON,
DM_POLYTOPE_TRI_PRISM,
DM_POLYTOPE_TRI_PRISM_TENSOR,
DM_POLYTOPE_QUAD_PRISM_TENSOR,
DM_POLYTOPE_PYRAMID,
DM_POLYTOPE_FV_GHOST,
DM_POLYTOPE_INTERIOR_GHOST,
DM_POLYTOPE_UNKNOWN,
DM_POLYTOPE_UNKNOWN_CELL,
DM_POLYTOPE_UNKNOWN_FACE,
DM_NUM_POLYTOPES
} DMPolytopeType;
PETSC_EXTERN const char *const DMPolytopeTypes[];
/*E
PetscUnit - The seven fundamental SI units
Level: beginner
.seealso: `DMPlexGetScale()`, `DMPlexSetScale()`
E*/
typedef enum {
PETSC_UNIT_LENGTH,
PETSC_UNIT_MASS,
PETSC_UNIT_TIME,
PETSC_UNIT_CURRENT,
PETSC_UNIT_TEMPERATURE,
PETSC_UNIT_AMOUNT,
PETSC_UNIT_LUMINOSITY,
NUM_PETSC_UNITS
} PetscUnit;
/*S
DMField - PETSc object for defining a field on a mesh topology
Level: intermediate
.seealso: [](ch_dmbase), `DM`, `DMUniversalLabel`, `DMLabelCreate()`
S*/
typedef struct _p_DMField *DMField;
/*S
DMUniversalLabel - A label that encodes a set of `DMLabel`s, bijectively
Level: developer
.seealso: [](ch_dmbase), `DM`, `DMLabel`, `DMUniversalLabelCreate()`
S*/
typedef struct _p_UniversalLabel *DMUniversalLabel;
typedef struct _PETSc_DMCEED *DMCeed;
typedef struct _n_DMGeneratorFunctionList *DMGeneratorFunctionList;