|
21 | 21 | <tr><td colspan=3><h3>Preprints</h3><hr></td></tr>
|
22 | 22 |
|
23 | 23 | <tr><td valign=top align=right>P12.</td>
|
| 24 | +<td valign=top> <a href="https://www.biorxiv.org/content/10.1101/2024.09.10.612244v1">Solanum pan-genomics and pan-genetics reveal paralogs as contingencies in crop engineering</a><br> |
| 25 | +Benoit, Jenike et al (2024) <i>bioRxiv</i> https://doi.org/10.1101/2024.09.10.612244</td> |
| 26 | +<td valign=top> <a href="https://www.biorxiv.org/content/10.1101/2024.09.10.612244v1"><img width=50 height=70 src="thumb/2024-pansol.jpg"></a> </td> </tr> |
| 27 | +<tr><td></td></tr> |
| 28 | + |
| 29 | +<tr><td valign=top align=right>P11.</td> |
24 | 30 | <td valign=top> <a href="https://www.biorxiv.org/content/10.1101/2024.07.31.605654v1">Complete sequencing of ape genomes</a><br>
|
25 | 31 | Yoo et al (2024) <i>bioRxiv</i> doi:10.1101/2024.07.31.605654</td>
|
26 | 32 | <td valign=top> <a href="https://www.biorxiv.org/content/10.1101/2024.07.31.605654v1"><img width=50 height=70 src="thumb/2024-t2tape.jpg"></a> </td> </tr>
|
27 | 33 | <tr><td></td></tr>
|
28 | 34 |
|
29 |
| -<tr><td valign=top align=right>P11.</td> |
| 35 | +<tr><td valign=top align=right>P10.</td> |
30 | 36 | <td valign=top> <a href="https://www.biorxiv.org/content/10.1101/2024.05.20.595044v1">MEM-based pangenome indexing for k-mer queries</a><br>
|
31 | 37 | Hwang et al (2024) <i>bioRxiv</i> doi:10.1101/2024.05.20.595044</td>
|
32 | 38 | <td valign=top> <a href="https://www.biorxiv.org/content/10.1101/2024.05.20.595044v1"><img width=50 height=70 src="thumb/2024-memo.jpg"></a> </td> </tr>
|
33 | 39 | <tr><td></td></tr>
|
34 | 40 |
|
35 |
| -<tr><td valign=top align=right>P10.</td> |
| 41 | +<tr><td valign=top align=right>P9.</td> |
36 | 42 | <td valign=top> <a href="https://arxiv.org/abs/2404.01519">Guide to k-mer approaches for genomics across the tree of life</a><br>
|
37 | 43 | Jenike et al. (2024) <i>arXiv</i> arXiv:2404.01519</td>
|
38 | 44 | <td valign=top> <a href="https://arxiv.org/abs/2404.01519"><img width=50 height=70 src="thumb/2024-kmer-guide.jpg"></a> </td> </tr>
|
39 | 45 | <tr><td></td></tr>
|
40 | 46 |
|
41 |
| -<tr><td valign=top align=right>P9.</td> |
| 47 | +<tr><td valign=top align=right>P8.</td> |
42 | 48 | <td valign=top> <a href="https://www.medrxiv.org/content/10.1101/2024.03.22.24304565v1">Integration of transcriptomics and long-read genomics prioritizes structural variants in rare disease</a><br>
|
43 | 49 | Jensen, Ni, et al. (2024) <i>medRxiv</i> doi: https://doi.org/10.1101/2024.03.22.24304565</td>
|
44 | 50 | <td valign=top> <a href="https://www.medrxiv.org/content/10.1101/2024.03.22.24304565v1"><img width=50 height=70 src="thumb/2024-watershed-sv.jpg"></a> </td> </tr>
|
45 | 51 | <tr><td></td></tr>
|
46 | 52 |
|
47 |
| -<tr><td valign=top align=right>P8.</td> |
| 53 | +<tr><td valign=top align=right>P7.</td> |
48 | 54 | <td valign=top> <a href="https://www.biorxiv.org/content/10.1101/2024.03.15.585294v1">Gapless assembly of complete human and plant chromosomes using only nanopore sequencing</a><br>
|
49 | 55 | Koren et al. (2024) <i>bioRxiv</i> doi: https://doi.org/10.1101/2024.03.15.585294</td>
|
50 | 56 | <td valign=top> <a href="https://www.biorxiv.org/content/10.1101/2024.03.15.585294v1"><img width=50 height=70 src="thumb/2024-duplex.jpg"></a> </td> </tr>
|
51 | 57 | <tr><td></td></tr>
|
52 | 58 |
|
53 |
| -<tr><td valign=top align=right>P7.</td> |
| 59 | +<tr><td valign=top align=right>P6.</td> |
54 | 60 | <td valign=top> <a href="https://www.biorxiv.org/content/10.1101/2024.03.05.583511v1">Uncalled4 improves nanopore DNA and RNA modification detection via fast and accurate signal alignment</a><br>
|
55 | 61 | Kovaka, S, Hook, PW, Jenike, KM, Shivakumar, V, Morina, LB, Razahhi, R, Timp, W, <b>Schatz, MC</b> (2024) <i>bioRxiv</i> doi: https://doi.org/10.1101/2024.03.05.583511</td>
|
56 | 62 | <td valign=top> <a href="https://www.biorxiv.org/content/10.1101/2024.03.05.583511v1"><img width=50 height=70 src="thumb/2024-uncalled4.jpg"></a> </td> </tr>
|
57 | 63 | <tr><td></td></tr>
|
58 | 64 |
|
59 |
| -<tr><td valign=top align=right>P6.</td> |
| 65 | +<tr><td valign=top align=right>P5.</td> |
60 | 66 | <td valign=top> <a href="https://www.medrxiv.org/content/10.1101/2024.03.05.24303792v1">Nanopore sequencing of 1000 Genomes Project samples to build a comprehensive catalog of human genetic variation </a><br>
|
61 | 67 | Gustafson et al. (2024) <i>medRxiv</i> doi: https://doi.org/10.1101/2024.03.05.24303792</td>
|
62 | 68 | <td valign=top> <a href="https://www.medrxiv.org/content/10.1101/2024.03.05.24303792v1"><img width=50 height=70 src="thumb/2024-1kgp-ont.jpg"></a> </td> </tr>
|
63 | 69 | <tr><td></td></tr>
|
64 | 70 |
|
65 |
| -<tr><td valign=top align=right>P5.</td> |
| 71 | +<tr><td valign=top align=right>P4.</td> |
66 | 72 | <td valign=top> <a href="https://www.biorxiv.org/content/10.1101/2024.02.22.581585v1">MaizeCODE reveals bi-directionally expressed enhancers that harbor molecular signatures of maize domestication</a><br>
|
67 | 73 | Cahn et al. (2024) <i>bioRxiv</i> doi.org/10.1101/2024.02.22.581585</td>
|
68 | 74 | <td valign=top> <a href="https://www.biorxiv.org/content/10.1101/2024.02.22.581585v1"><img width=50 height=70 src="thumb/2024-maizecode.jpg"></a> </td> </tr>
|
69 | 75 | <tr><td></td></tr>
|
70 | 76 |
|
71 |
| -<tr><td valign=top align=right>P4.</td> |
| 77 | +<tr><td valign=top align=right>P3.</td> |
72 | 78 | <td valign=top> <a href="https://www.biorxiv.org/content/10.1101/2023.08.24.554647v1">The genome of the Wollemi pine, a critically endangered living fossil unchanged since the Cretaceous, reveals extensive ancient transposon activity</a><br>
|
73 | 79 | Stevenson, DW, Ramakrishnan, S, de Santis Aleves, C et al.. (2023) <i>bioRxiv</i> doi: https://doi.org/10.1101/2023.08.24.554647 </td>
|
74 | 80 | <td valign=top> <a href="https://www.biorxiv.org/content/10.1101/2023.08.24.554647v1"><img width=50 height=70 src="thumb/2023-wolli.jpg"></a> </td> </tr>
|
75 | 81 | <tr><td></td></tr>
|
76 | 82 |
|
77 |
| -<tr><td valign=top align=right>P3.</td> |
| 83 | +<tr><td valign=top align=right>P2.</td> |
78 | 84 | <td valign=top> <a href="https://www.biorxiv.org/content/10.1101/2023.03.24.534116v1">BEATRICE: Bayesian Fine-mapping from Summary Data using Deep Variational Inference</a><br>
|
79 | 85 | Ghosal, S, <b>Schatz, M</b>, Venkataraman, A (2023) <i>bioRxiv</i> doi: https://doi.org/10.1101/2023.03.24.534116 </td>
|
80 | 86 | <td valign=top> <a href="https://www.biorxiv.org/content/10.1101/2023.03.24.534116v1"><img width=50 height=70 src="thumb/2023-beatrice.jpg"></a> </td> </tr>
|
81 | 87 | <tr><td></td></tr>
|
82 | 88 |
|
83 |
| -<tr><td valign=top align=right>P2.</td> |
84 |
| -<td valign=top> <a href="https://www.biorxiv.org/content/10.1101/2022.10.09.511471v1">Differences in activity and stability drive transposable element variation in tropical and temperate maize.</a><br> |
85 |
| -Ou, S, Collins, T, Qiu, Y, Seetharam, AS, Menard, CC, Manchanda, N, Gent, JI, <b>Schatz, MC</b>, Anderson, SN, Hufford, MB, Hirsch CN (2022) <i>bioRxiv</i> doi: https://doi.org/10.1101/2022.10.09.511471</td> |
86 |
| -<td valign=top> <a href="https://www.biorxiv.org/content/10.1101/2022.10.09.511471v1"><img width=50 height=70 src="thumb/2022-panedta.png"></a> </td> </tr> |
87 |
| -<tr><td></td></tr> |
88 |
| - |
89 | 89 | <tr><td valign=top align=right>P1.</td>
|
90 | 90 | <td valign=top> <a href="https://www.biorxiv.org/content/10.1101/2022.07.07.499188v1">Modbamtools: Analysis of single-molecule epigenetic data for long-range profiling, heterogeneity, and clustering</a><br>
|
91 | 91 | Razaghi, R, Hook, PW, Ou, S, <b>Schatz, MC</b>, Hansen, KD, Jain, M, Timp, W (2022) <i>bioRxiv</i> doi: https://doi.org/10.1101/2022.07.07.499188</td>
|
|
97 | 97 |
|
98 | 98 | <tr><td colspan=3><h3>2024</h3><hr></td></tr>
|
99 | 99 |
|
| 100 | +<tr><td valign=top align=right>185.</td> |
| 101 | +<td valign=top> <a href="https://genome.cshlp.org/content/early/2024/09/06/gr.278131.123.abstract">Differences in activity and stability drive transposable element variation in tropical and temperate maize.</a><br> |
| 102 | +Ou, S, Collins, T, Qiu, Y, Seetharam, AS, Menard, CC, Manchanda, N, Gent, JI, <b>Schatz, MC</b>, Anderson, SN, Hufford, MB, Hirsch CN (2024) <i>Genome Research</i> doi: 10.1101/gr.278131.123</td> |
| 103 | +<td valign=top> <a href="https://genome.cshlp.org/content/early/2024/09/06/gr.278131.123.abstract"><img width=50 height=70 src="thumb/2022-panedta.png"></a> </td> </tr> |
| 104 | +<tr><td></td></tr> |
| 105 | + |
100 | 106 | <tr><td valign=top align=right>184.</td>
|
101 | 107 | <td valign=top> <a href="https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/btae493/7729118">ModDotPlot - Rapid and interactive visualization of tandem repeats</a><br>
|
102 | 108 | Sweeten, AP, Schatz, MC, Phillippy, AM (2024) <i>Bioinformatics</i> doi:10.1093/bioinformatics/btae493</td>
|
|
0 commit comments