diff --git a/docs/index.markdown b/docs/index.markdown index 1b46fd4..a84a5ed 100644 --- a/docs/index.markdown +++ b/docs/index.markdown @@ -25,7 +25,8 @@ I am a bioinformatician working in (single-cell) epigenomics and cancer. Current * Müller, F., Scherer, M., Assenov, Y., Lutsik, P., et al. (2019). RnBeads 2.0: comprehensive analysis of DNA methylation data. Genome Biology, 20(1), 55, doi: [10.1186/s13059-019-1664-9](https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1664-9). * Scherer, M., et al. (2020). Quantiative Comparison of Within-Sample Heterogeneity Scores for DNA Methylation Data. Nucleic Acids Research, 48(8), e46, doi: [10.1093/nar/gkaa120](https://academic.oup.com/nar/article/48/8/e46/5760751). * Scherer, M., et al. (2020). Reference-free deconvolution, visualization and interpretation of complex DNA methylation data using DecompPipeline, MeDeCom and FactorViz. Nature Protocols, 15, 3240-3263, doi: [10.1038/s41596-020-0369-6](https://www.nature.com/articles/s41596-020-0369-6). -* Bianchi, A., Scherer, M. et al. (2022). scTAM-seq enables targeted high-confidence analysis of DNA methylation in single cells, Genome Biology, 23, 229, doi: [10.1101/2022.04.11.487648](https://doi.org/10.1186/s13059-022-02796-7). +* Bianchi, A., Scherer, M., et al. (2022). scTAM-seq enables targeted high-confidence analysis of DNA methylation in single cells, Genome Biology, 23, 229, doi: [10.1101/2022.04.11.487648](https://doi.org/10.1186/s13059-022-02796-7). +* Scherer, M., Singh, I., et al. (2024). Somatic epimutations enable single-cell lineage tracing in native hematopoiesis across the murine and human lifespan, BioRxiv, doi: [10.1101/2024.04.01.587514](https://doi.org/10.1101/2024.04.01.587514). For a full list of publications, see my [Google Scholar](https://scholar.google.com/citations?hl=en&user=_Tp4E-4AAAAJ) account.