-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_render.py
447 lines (381 loc) · 18.5 KB
/
train_render.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
import os
import re
from typing import List, Optional
import argparse
import click
import dnnlib
import numpy as np
import PIL.Image
import torch
import legacy
import torch.nn as nn
import pickle
import operator
from training.networks import *
import torch.optim as optim
#from render_loader import *
from torchvision import transforms
from PIL import Image
from torchvision.utils import save_image
import cv2
import math
import json
import random
from render_loader import get_loader
from torchvision.io import write_video
from tqdm import tqdm
def get_images(args,img_path):
target_mask = ['skin','hat','nose','hair']#,'nose','right_brow','left_brow','top_lip','bottom_lip','beard','glasses','facewear']
img_size = 512 #320
resize = transforms.Compose([
transforms.CenterCrop(img_size),
transforms.Resize(1024)
]) ##centercrop???
toTensor = transforms.Compose([
transforms.ToTensor(),
transforms.CenterCrop(img_size),
transforms.Resize(512)
]) ##centercrop???
preprocess = transforms.Compose([
transforms.ToTensor(),
transforms.CenterCrop(img_size),
transforms.Resize(512),
#transforms.Normalize([0.5,0.5,0.5],[0.5,0.5,0.5])
])
id = '0'*(6-len(str(args.id)))+str(args.id)
image = id+'.png'
seg = id+'_seg.png'
i_path = '../han_ori/neutral/lighting.0189.jpg'#turntable_v02.0006.jpg'
#'../han/aligned2/1_facial_expression.0001_0.jpg'#sample.png'#args.dataset+'/'+image
seg_path = '../han_ori/neutral/mask/lighting.0189.jpg'#turntable_v02.0006.jpg'#lighting.0189.jpg'#
#'../han/mask_eye/1_facial_expression.0001_0.jpg'#'sample_seg.png'#args.dataset+'/'+seg
with Image.open(i_path).convert('RGB').resize((512,512)) as full:
ori = resize(full)
ori.save(os.path.join(img_path,str(args.id)+'_ori_'+'.png'))
img_full = preprocess(full)
with Image.open(seg_path).convert('RGB') as mask:
img_masked = np.array(mask)*255
#img_masked = (img_mask == target_mask[0])
#for cl in target_mask[0:]:
# img_masked += (img_mask == cl)
#print(np.max(img_masked))
#img_seg = img_full*img_masked
inv_mask = ~(img_masked)
img_masked = toTensor(img_masked)
inv_mask = toTensor(inv_mask)
img_ori_masked = img_full*(img_masked)
img_ori_masked = transforms.Resize(1024)(img_ori_masked)
save_image(img_ori_masked,os.path.join(img_path,str(args.id)+'_masked'+'.png'))
img_inv_masked = img_full*(inv_mask)
img_inv_masked = transforms.Resize(1024)(img_inv_masked)
save_image(img_inv_masked,os.path.join(img_path,str(args.id)+'_invmasked'+'.png'))
#inv_masked = img_full*inv_mask
return img_full.unsqueeze(0), img_masked.unsqueeze(0), inv_mask.unsqueeze(0)
def train(args):
img_path = os.path.join(args.save_path,args.name,'img')
ckp_path = os.path.join(args.save_path,args.name,'checkpoints')
os.makedirs(img_path,exist_ok=True)
os.makedirs(ckp_path,exist_ok=True)
ori_vid_path = os.path.join(img_path,'ori_vid.mp4')
resume = args.resume
if args.resume > 0 and not args.overwrite:
with open(os.path.join(ckp_path,'commandline_args.txt'), 'r') as f:
args.__dict__ = json.load(f)
args.resume = resume
else:
with open(os.path.join(ckp_path,'commandline_args.txt'), 'w') as f:
json.dump(args.__dict__, f, indent=2)
device = torch.device('cuda')
with open('ffhq.pkl', 'rb') as f:
saved = pickle.load(f)
G = saved['G_ema'].cuda() # torch.nn.Module
G.eval()
G.requires_grad_(False)
if args.dis_loss or args.blend_loss:
D = saved['D'].cuda()
D.eval()
D.requires_grad_(False)
m = G.mapping
g = G.synthesis
w_dim = 512
img_resolution = 1024
img_channels = 3
s = SynthesisNetwork(
w_dim, # Intermediate latent (W) dimensionality.
img_resolution, # Output image resolution.
img_channels, # Number of color channels.
)
s.load_state_dict(g.state_dict())
s = s.to(device)
for i in s.parameters():
i.requires_grad = False
z = torch.randn(args.n,512).to(device)
w = m(z,None)[:,1]#truncation_psi=args.trunc
del m
del G
if args.root is None:
img_full, img_mask, inv_mask = get_images(args,img_path)
img_full = img_full.to(device)
img_mask = img_mask.to(device)
inv_mask = inv_mask.to(device)
k = 1
else:
dataloader = get_loader(args)
k = len(dataloader.dataset)
res = 4
i = 1
w_i = 0
basis = None
rgb = False
from render_criterion import Energy
energy = Energy(args,k).to(device)
s_basis = dict()
rgb_w = w[:1,:]
layers_n = 26 if args.all_rgb else 18
c = layers_n*args.c
if args.c == 64: c -=32 + 32*args.all_rgb
while res <= 1024:
name = '.conv'+str(i) if not rgb else '.torgb'
rgb = True if ((res ==args.rgb_layer or args.all_rgb) and i == 1) else False
attr = 'b'+str(res)+name+'.affine'
fc = operator.attrgetter(attr)(s)
w_o = fc(w)
if args.trunc < 1:
w_m = w_o.mean(0,keepdim=True)
w_o = w_m+args.trunc*(w_o-w_m)
print(attr,w_o.shape)
if args.no_segment:
basis = w_o if basis is None else torch.cat([basis,w_o],1)
else:
w_o = w_o.view(1,args.n,math.ceil(w_o.shape[1]/args.c),-1)
s_basis[w_i] = w_o
#print(w_o.view(args.n,int(w_o.shape[1]/args.c),-1).shape)
#print(attr)
if i > (0 + 1*args.all_rgb) and (args.all_rgb or rgb == False):
res*=2
i=0
else:
i+=1
w_i+=1
if args.no_segment: basis = basis.unsqueeze(0)
if args.resume > 0:
weight = torch.load(os.path.join(ckp_path,str(resume)+'.pth'))
else:
#weight = torch.randn(k,args.n*args.c,1,requires_grad=True,device=device)
#w = torch.randn(1,size)
#s = torch.split(w, int(size/18),1)
segment = 6560 if args.no_segment else c
w_avg = np.random.normal(0,1,[k,args.n,segment])
#weight = nn.Parameter(weight).to(device)
weight = torch.tensor(w_avg, dtype=torch.float32, device=device, requires_grad=True) # pylint: disable=not-callable
optimizer = optim.Adam([weight],lr=args.lr)
softmax = nn.Softmax(dim=1)
resize = transforms.Resize(512)
if args.blend_loss:
mask_resize = transforms.Compose([
transforms.ToTensor(),
transforms.Resize(1024)
]) ##centercrop???
normalize = transforms.Compose([
transforms.Resize(1024),
transforms.Normalize([0.5,0.5,0.5],[0.5,0.5,0.5])
])
#with Image.open('sample_eroded.png') as mask_eroded:
# mask_eroded = np.array(mask_eroded)*255
mask_eroded= img_mask
#print(np.min(mask_eroded),np.max(mask_eroded),np.mean(mask_eroded))
mask_eroded = mask_resize(mask_eroded).unsqueeze(0).to(device)
#print(torch.min(mask_eroded),torch.max(mask_eroded),torch.mean(mask_eroded))
ori_tensor = normalize(img_full)
noise_mode = 'random' if args.random_noise else 'const'
proj_inp = None
for epoch in range(max(0,args.resume+1),args.max_epochs):
#proj_inp = None#####
for idx, data in enumerate(dataloader):
img_full, img_mask = data
img_full = img_full.to(device)
img_mask = img_mask.to(device)
optimizer.zero_grad()
weight_soft = softmax(weight)
X_full = None
X = None
start = 0
bs = img_full.shape[0]
batch_s = idx*bs
batch_end = batch_s+bs
X_inp = None
x_inp = None
#print(epoch,idx,batch_s,batch_end)
for i in s_basis:
end = (i+1)*args.c# if i < len(s_basis)-1 else -1
#print(i,s_basis[i].shape,weight_soft[:,:,start:end].unsqueeze(2).shape)
#print(s_basis[i].shape,weight_soft[batch_s:batch_end,:,start:end].shape)
#x = s_basis[i]*weight_soft[max(batch_s-bs,0):batch_end,:,start:end].unsqueeze(2)
x = s_basis[i]*weight_soft[:,:,start:end].unsqueeze(2)
x = x.sum(1).flatten(1,-1)
#print(i,x.shape)
start = end
#batch_s = batch_end
if False and not args.no_inp and k > 1:
if i == 0:
x_inp = s_basis[i]*weight_soft[batch_s:batch_end,:,start:end].unsqueeze(2)
else:
X_inp = torch.cat([X_inp,x],1)
X_full = x if X_full is None else torch.cat([X_full,x],1)
X = X_full[batch_s:batch_end] #X_full[-bs:]
rgb_ws = rgb_w.repeat(bs,1)
if not args.no_inp and idx==0:
with torch.no_grad():
X_inp = X_full.mean(0,keepdim=True)
energy.x_m = X_inp
#X_inp = x_m.repeat(bs,1)
proj_inp = s(X_inp,s=True,rgb=rgb_w,noise_mode=noise_mode,rgb_res=args.rgb_layer,all_rgb=args.all_rgb)
proj = s(X,s=True,rgb=rgb_ws,noise_mode=noise_mode,rgb_res=args.rgb_layer,all_rgb=args.all_rgb)
X_full = X_full[max(0,batch_s-1):batch_end]
r_loss, c_loss = energy(X, X_full, proj_inp,img_full,proj,img_mask)
if args.dis_loss:
p_logits = D(proj,None)
loss_d=torch.nn.functional.softplus(p_logits).mean().mul(args.d_weight)#composite blending loss?
loss+=loss_d
else:
loss_d = torch.zeros(1)
if args.blend_loss:
blend_mask = transforms.Resize(1024)(img_mask)*1.0
blend = blend_mask*ori_tensor + (1-blend_mask)*proj
b_logits = D(blend,None)
loss_b=torch.nn.functional.softplus(b_logits).mean().mul(args.b_weight)#composite blending loss?
loss+=loss_b
else:
loss_b = torch.zeros(1)
#save_image(blend.add(1).mul(0.5),'blend_tensor.png')
#render_loss = r_loss(img_full,proj,img_mask)
#consistency_loss = c_loss(X,X_inp,proj,inv_mask)
loss = r_loss+c_loss
loss.backward()
optimizer.step()
if idx % args.print_every == 0:
msg = 'epoch: {}, iter: {}, running loss: {:.4f}, r_loss : {:.4f}, c_loss : {:.4f}'.format(epoch, idx,loss.item(), r_loss.item(),c_loss.item())
if args.dis_loss or args.blend_loss:
msg+=', D_loss : {:.4f}, B_loss : {:.4f}'.format(loss_d.item(),loss_b.item())
print(msg)
"""
for i, data in enumerate(dataloader):
ks, img, mask = data
weight_soft = softmax(weight[ks[0]:ks[1]])
X = weight_soft*basis
X = X.sum(1)
proj = s(X,s=True,rgb=rgb_w)
"""
if epoch % args.save_every == 0:
torch.save(weight,os.path.join(ckp_path,str(epoch)+'.pth'))
if k == 1:
img = (proj.detach().permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
img_pil = PIL.Image.fromarray(img[0].cpu().numpy(),'RGB')
img_pil.save(
os.path.join(img_path,str(args.id)+'_'+str(epoch)+'.png'))
img_array=np.array(img_pil)
img_array=cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR)
ori_array=img_full[0].permute(1, 2, 0).cpu().numpy()*255
ori_array=cv2.cvtColor(ori_array, cv2.COLOR_RGB2BGR)
ori_array=cv2.resize(ori_array, (1024,1024))
#print(img_mask.squeeze(0).permute(1,2,0).cpu().numpy()*1)
#mask_array = cv2.resize(img_mask.squeeze(0).permute(1,2,0).cpu().numpy()*1,(1024,1024))
mask_array = 1.0*img_mask.permute(0, 2, 3, 1)[0].cpu().numpy()
#1.0*np_mask#transforms.Resize(1024)(img_mask)).squeeze(0).permute(1,2,0).cpu().numpy()
mask_array = cv2.resize(mask_array,(1024,1024))
kernel = np.ones((1,1),np.uint8)
#print(mask_array.shape)
mask_array = cv2.erode(mask_array,kernel,iterations = 30)
mask_array = cv2.GaussianBlur(mask_array,(5,5),0)
#cv2.imwrite(os.path.join(img_path,'sample_eroded.png'),mask_array)
blend = mask_array*ori_array+(1-mask_array)*img_array
cv2.imwrite(os.path.join(img_path,str(args.id)+'_'+str(epoch)+'_blended.png'),blend)
torch.save(weight,os.path.join(ckp_path,str(epoch)+'.pth'))
else:
with torch.no_grad():
img = (proj_inp.detach().permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
img_pil = PIL.Image.fromarray(img[0].cpu().numpy(),'RGB')
img_pil.save(
os.path.join(img_path,'inp_'+str(epoch)+'.png'))
ori_vid = None
proj_vid = None
for idx, data in tqdm(enumerate(dataloader),desc="Creating videos"):
img_full, img_mask = data
img_full *= img_mask
#img_full = transforms.Resize(256)(img_full)
weight_soft = softmax(weight)
X = None
start = 0
bs = img_full.shape[0]
batch_s = idx*bs
batch_end = batch_s+bs
for i in s_basis:
end = (i+1)*args.c# if i < len(s_basis)-1 else -1
#print(i,s_basis[i].shape,weight_soft[:,:,start:end].unsqueeze(2).shape)
#batch_end = batch_s+bs
#print(s_basis[i].shape,weight_soft[batch_s:batch_end,:,start:end].shape)
x = s_basis[i]*weight_soft[batch_s:batch_end,:,start:end].unsqueeze(2)
x = x.sum(1).flatten(1,-1)
#print(i,x.shape)
start = end
#batch_s = batch_end
if False and not args.no_inp and k > 1:
if i == 0:
x_inp = s_basis[i]*weight_soft[batch_s:batch_end,:,start:end].unsqueeze(2)
else:
X_inp = torch.cat([X_inp,x],1)
X = x if X is None else torch.cat([X,x],1)
rgb_ws = rgb_w.repeat(bs,1)
proj = s(X,s=True,rgb=rgb_ws,noise_mode=noise_mode,rgb_res=args.rgb_layer,all_rgb=args.all_rgb)
proj = resize(proj)
proj = (proj.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).cpu()
if epoch == 0: ori_vid = img_full if ori_vid is None else torch.cat([ori_vid,img_full],0)
proj_vid = proj if proj_vid is None else torch.cat([proj_vid,proj],0)
if not os.path.exists(ori_vid_path): write_video(ori_vid_path,255*ori_vid.permute(0,2,3,1),int(k/10)+1)
write_video(os.path.join(img_path,str(epoch)+'_vid.mp4'),proj_vid,int(k/10)+1)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--name', type=str)
parser.add_argument('--n', type=int, default=64, help="n basis")
parser.add_argument('--c', type=int, default=32, help="segments per layer")
parser.add_argument('--trunc', type=float, default=0.8)
parser.add_argument('--save_path', type=str, default='out')
parser.add_argument('--save_every', type=int, default=300)
parser.add_argument('--print_every', type=int, default=10)
parser.add_argument('--max_epochs', type=int, default=10000)
parser.add_argument('--resume', type=int, default=-1)
parser.add_argument('--lr', type=float, default=0.1)
parser.add_argument('--seed', type=int, default=-1)
parser.add_argument('--dataset', type=str, default='static_face')
parser.add_argument('--id', type=int, default=0)
parser.add_argument('--r_weight', type=float, default=1)
parser.add_argument('--s_weight', type=float, default=0.01)
parser.add_argument('--m_weight', type=float, default=0.0001)
parser.add_argument('--t_weight', type=float, default=0.0001)
parser.add_argument('--i_weight', type=float, default=0.1)
parser.add_argument('--d_weight', type=float, default=2)
parser.add_argument('--b_weight', type=float, default=2)
parser.add_argument('--no_segment', action='store_true')
parser.add_argument('--dis_loss', action='store_true')
parser.add_argument('--blend_loss', action='store_true')
parser.add_argument('--random_noise', action='store_true')
parser.add_argument('--all_rgb', action='store_true')
parser.add_argument('--rgb_layer', type=int, default=4, choices=[4, 8, 16, 32, 64, 128, 256, 512, 1024])
parser.add_argument('--root', type=str, default=None)
parser.add_argument('--mask_feature', type=str, default=None)
parser.add_argument('--batch_size', type=int, default=4)
parser.add_argument('--num_workers', type=int, default=2)
parser.add_argument('--crop_size', type=int, default=-1)
parser.add_argument('--no_inp', action='store_true')
parser.add_argument('--global_mean', action='store_true')
parser.add_argument('--overwrite', action='store_true')
args = parser.parse_args()
if args.seed >= 0:
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
train(args)