From 2bdee8435e4d968d8b15e061fbf291777945a716 Mon Sep 17 00:00:00 2001 From: Hamed Babaei Giglou Date: Wed, 28 May 2025 17:00:23 +0200 Subject: [PATCH 01/21] :pencil2: minor to experiments --- .gitignore | 1 + .../images/confusion_matrix_vanilla_v2.pdf | Bin 15499 -> 15504 bytes .../images/confusion_matrix_vanilla_v2.png | Bin 119192 -> 185653 bytes experiments/notebooks/confusion-plots.ipynb | 107 -------- experiments/notebooks/plot-line-chart.ipynb | 209 -------------- experiments/plots.ipynb | 258 ++++++++++++++++++ 6 files changed, 259 insertions(+), 316 deletions(-) delete mode 100644 experiments/notebooks/confusion-plots.ipynb delete mode 100644 experiments/notebooks/plot-line-chart.ipynb create mode 100644 experiments/plots.ipynb diff --git a/.gitignore b/.gitignore index 8fe170b..b2f1d0d 100644 --- a/.gitignore +++ b/.gitignore @@ -3,6 +3,7 @@ __pycache__/ *.py[cod] *$py.class .idea/ +assets/models # C extensions *.so trashdir/ diff --git a/experiments/images/confusion_matrix_vanilla_v2.pdf b/experiments/images/confusion_matrix_vanilla_v2.pdf index 494fcbb535b1ff2b8d7f89e7aace8fb121c7bd4d..71220ca3d4971754481ed5a8faeea50101f8d7b9 100644 GIT binary patch delta 3091 zcmZWrc|25m8&AkJQX$;zA)08+IkTKI)+Enu_zdV z0T8E#!^0>%2m=hHkPnS{(wd?~*v6hY-VPATbYqqbIm=RRP~Ez(Wgg#rK~S64o$RD9%q}duQxyE){E7QOE^{4 zj!(LST=}&{;N5Jn@4c4 z$l{7&^0^}?02*ZHD2DO&r2e!O3FLozonpxuncg8oki*v>I6M~>r@c2U%4+hSJe(fEX{xr{N-kxUu_Q6+j~Md?WPMCc#=Z@CMnS9Ai#ls&e# z{N{DtH0^hYGi^rQ9omWiv&rHIFnVm8N4vjYr)) z+QJ`kL!#m|X3t&RbtvgPK_4acLifR^T)1fHy_wq$uR^*|q0V+8HWQ_>Xp~%}?Qdvm z%D(yVsPHMzygd8GOn1#5+x=eN(#L~FE0LFytaky+&W$=5#a~23=fNa>$$+?=>}Guv zr*^-7d0IzgPTlyh)woD15s@RI3K`+JB;ti#6?>K1|#Y zotvCE?BnLAi~D)suMH;{o-7As!y_6jW7mT6DxJ17bRQB&Op-Li6#5iwtdpDSy<@AY zWF>}ww4P2p(37PZZ6&8XDF?lf!DnQ?b!k^mR5YNU8p<2DUv%vE=(*y@J{u_3Pqz5@ z;ZpINC!Z?@Hwvy6xDx-&>B$KWN%ys8J3O7U)6;0=)^s}h<~tbEMYpBXbVlY<02#4Y za~7#)vz>0#3a5_-e{iIBwl`aTz~cJ>- z`64sp2g;h{db*4Adf6(O=1r5D==eD9%6&QTRu4KWDJ$hT{0oc0#Evo?(fY9;MbZcERk8`Gu#Yi4Hk9(~ z^OGWGHQ`GupL80c3H(!U}#s*(bq3a%v>i+jTN>MC|GKj#hSp_GcH&mTs*d|O+Vb=}yvq|5dy z1=nxxs_oOO=_$xNh~+YhiPDIVsm$PnVM|hOnT?hU{Wzh{k)<3vFH^Orr6To$+_axn zJ!MNn7_sSNUbsK)$_?tKXPY(C7h6&?gz#Q_7$Lf@aOg?f5LTwA zaIQKwVjJhFusU{dTg+>6N71_geBZG_$Fd>?)YQO!^#I!Gp|zp0>S}iAdNrl`a{1+j z6}5xi&dLS%R_B&7x$jEbjZ{@yUaFM(C+a(2=dAct-<^=8me;O#$LNk(8uusFm$9mx z;;UHIy=zsUocFnQm&}W{kBaozCIm;aA7qj5*o9LJDt{>=An`+oDxz|pv~{a8f3Z1o zZS)7lgSNIbNc+W>Yb93g3Rc##9|E}wvn;fiOZyUH{uGM!GUjDT^K=YWu;l{P7S zd}gK#Q98%8@JYJ^;b@8fnXfEXe)=5kYQ%`0ei&;$GEQ}GiaZnMT}uUl?bvZ$6LPZ2 zu`}mC1q5DfZtdq4c-{Jyq&+BRK3W75Kx$Wa@2Zbz$=B>-2xCCEl+~5k;Lg4>7IFYN;C?1Rn(QZKw`|dP?aNPwnQv(n1QL8#;Q;DvZ*ILu&yTH%5 z71aw5qEiqgM!2}*W(@dynz%4Zn1I4E?n5S;yf+e|XGSHt2l-F}%-w@XYJ1J~K{SX% z<9PoKcnpk2GeqE{BuEYYZK(yQAvQh$3;~A`jKMhm7#0m<1!4eNFb@Fnj8a%zmOmQ} zVj++*18dQ60DmD63&R329&i2_06~HRa9I949uxuO+lvPAxc`u){i7ZY5(E=57(ie% z28-t>h{oX20>Bsu&+jH0i~fJXv~R{^F%W^DArC{qG#r{B0F1*zf-zo$`Rn09LDF~} zfv10?^?#oMG#!0ZH7ptyK@ka}gryQ@Cd(wULs%3rYyw)5TFMeA@PL3M7Q!M8yX=aH z5Top%JW!NHOu#52vRe&^C?cC61q-AUeQ5jIugUx~^WA&yJ?H%H%w*D2={Hm)6d)pi z!4m-jgxA19SPTpka`Ysq%+_NLAtMB2YtQvwkmT`pq42?Nl!QPkakr$glCf09QlgI4 z>k{)%(X7GwfQ~)2Qw}dSZL9v(e|2;!OS2f$*0#R(qH5Ty_@vy+*4VCznV~&n3zuU? zWdoupre0grF8BBBcBJ9sG6HB$^tq`;$+iYT+TJ%WO&l?844DO0471oV%dlx$H`b0* zH-QcsoXUz}KjNmLYdNT>K|MX{VVdr}c%KWD1jiGcJ$ZXF1K8>&FSoVHp;%qoO`B9f z)tZ(F#550GEQ>Cb)zMQ^V|Y8OnzXUeEe75GqoC{Q*t6kZk&Uh0Iet##6_r&E}PvSGyg(HQ^4Ns4Cj0HW6jkhSub~!v?)i7!} z;|*XJtJ9gcQhvY3_kTRkr3ap{zMX;1Zf2OEVv&VT@o3+^%dGvvT6vz;dj3PuunU+qXQ z&ea|0ue4plW9jz3>w|B?71sb$nTuEIFNd>Qu~|~%i@6H~ zU4|Ev$N-k=GqLPPQu6Ny6--kxQ9i+8C~27-fN}8x*LTchHe)O=xrUQ`$ZDiJ`AZop zL!f-|d#+y$`>T9JodPE2L&7#@SY& zH1?Cc1OGy1H6_xwZ$rXVB)4p6h#O>{v3NYK^xBqYs2Ax<jB?Gr1>>ZgztE;{YXUmvmEqng4yhpPbrf{r*=YKjNTakTON`9_EADQ9ii;jH7 zcJn}N@M!z#HS$hpw1)C8?Pcvw-(T2{kV<*tpoiKqHKMd$o?W%g@IW~=zT5lWjy)}R zdD_2w$*H6S&|$uj%c49w{gK>t^zEj&F4Q!oy?Ztc-7Hj$L8*H(Ti45NPRoB78h>?; z`Rc9q>Z`A7*=7W51HJx-Zf<_xvx&Euc456X={uRq^YY^07$4_yBAvyBREK0w3n zgSL?c|B80jW`~e>p09-uuWU*qoZXjK(^GzcA?@*z1JRtPqr!S#zK9n7vDkjU{(LcN z`&8KatG>cvZ`*fx6uz@eBkXFXo{p&{Ba2BsKyBy(g+DJfbU0ohT30*0OHfDw0uGnl zy^}Nk(w+Qc1tpkP8c*9wQ01iDI1~n6lCg6}T26c@_e>8!DLFay9W%m&Y&pW4>D`{6 zNWB%hI-bOF8Wk4l_0BH7$rx%EkfLGq2Y=e|B9v!be@fr|YlC4>1S zV5M@xg_Hk86~D5tcK$hK+(uv*lIPH5b-uCoy4#O^o;Pdj-KMCXel^d^?+fz$irt5= zEu0WWY(pMzp>IDEcqc=B`Dw~Zj@L;-+UR_ladUCBB<{?O89zV$7kvpwLktUVC?5^I zJ6W{*L6zd1a4E&UdGa~&+ry<1onA5POyTtXRHjJ`{mhw_`3#kp^sy07cf)OeM6lnw z_cMl@WNIU8e2QHSUmsYFY%@2;#0V57(Z!|XWuZI2U(T;~;O>}>noH_}WryT6xF?E! z+Zm;Pvq4zf8bZ1~@~PYHzp()krQ;sQXmMKD%;)L_H|8*rrYK}z?Gu`;#5t$|Vq)uL zI?St$@whIIUC=I8nvh*HD;ZlceoD`@NpLMcp=-T0Oe{;-GWc;l!QcX zDX`NcEB{%X_t$*wNu?mgN9X6Or3G%g;<$U|E6K>ZBl=u}zRlIPcFg&E?JYLvtc-%B zy`R_Zd4Kl}6lluP90@TEz1 z`nidv03qKY@Q39f{FCDB<*M>ah@)s*k1_`*pjz{r}p(# zU#f86qiVlNWIw%Bx8UQJandX|V)gp(C(0@VHyw{~*%Ca@JYKZ9<&|r6p#CVOzi}S$ zDdek#czWp%Ls9N?Gac6$f}vww!HucDmuD7=9BdkYKb%-P-g9v%xw6c?sQjQ2<2cfS zRmfN-&sBt2`@JVo*1lU)ufKbJu<5+MX+g%^-tLf&TwlW~s*YFd+H7ZP;K|=qKW;wS zwSPg{C-{eOS`G`L@)bm^FF{CRBw-AcQwp2z-?-~a8(4<W|K?s7ybRZ0i7r2>3t4GXH50KqPS? z77K_i#^MN~0Rb$YBxa0-@uD;V9PsbL%+JJdSQsaoaD$I1VgL`2#EkJcSbPj7;YIf& zK;oeZcp_6=2;)J~#V|+^)4@1E6h8ptA+g3VLF||S7$*JY!TkH>1Bd`5hMI_j#7u}V zDAt%rB#0RkN&h$b$Abhx|0eyJKZ$@9YfOU0uz~2j40hlOC3j{$x^f*Bf jf&m>7)F6l>{yQN6fVhosH^NI*b(2L%aTI-v!WBcLKJfEcQ1D4}Dh z2}MLfA%KP+2*{xsN>ECoiGe#D&-bl$|APC&{bns-W-^(1%YOHM_OqYi@h!6(C%6Q- zKp@Zwn9+4h5a`G%2z2cF(Idc_tvU%^;E#Hkfqj@&AUq6lC&UwEdM7N%KQPSS$6YkS zGbGd}@E%lNU0(T;sCQUcP^gB2LcsrCARidwrEno*)*HCVu^=OdP!LG|;=#|M$WomM z&>;{Ac3sapvS6Kp2ooCn+53H^X;GY!keaHgI+%E}%)|I=A?ShbSCzwmfKMF-XE(ZC zJDQR4@MH<&o<^D7--iSdGsk;7J~oqCEDt^tCwLQqOvzl|ToEc<=zxZ9ju|_CWD${d zZ3N))|7|>WxC+VtIRJtD9~}jH``>o|=&4blN&ju9MJxXNpM8+H?k&#$J-B}V#mWCY zcm&cD{@;UBhY~dY_dxWI!{PsXpnLfL9s~@=^%u&k$9@lrXf%8oOQuksXz?#{yV-$2 z0&2epFBOGuLXBEj3c>~|F`Q9+AWd%% z%O15Q`Eux3Rm~v7v$y{MZm)Xx_t1-b!Q~()avNJPF5m!ppR+I+f|WnT1)DQw8j}bp zR|La>qrfQ?=Cl~uW>R_U)ET)5hD}udxw~))A5ItnCLrOHf$2nPl(xYiV|-8&Qa>&* zjYwX!&ay9O<h-?B=I23+s+)Ajc(kz z_|OAmdh`SxAV<9h>yx&pW*yJnDZ&sSTI)2MpJzl2tZ&%aD>_~#BBW3CvGKl@q3%vrDsLrrHqt&TTdpy3e z^)9tnnE+WqTo!2DD^)#LIl~`2>)l4+Fy-4F(O7%ELUcf_C}vGK56Il>THXwPyBd(90{g{p3xI_&| zOb+8k#gX1*-1CCHf)tkglN5#udyc6a^q&?_&(ECfALX_#$T)BXx`!|`Mgj*n-;!jeGiF{R-GvQ+ZH#?ovALKU@P;fksC2Fvn4Xrwb#Fv`o7lF(%W+hZ zGESeu-mQ?#N<(jy-hS^u$gr|C(P$PM?m!F6Q7vF{N>`9iF$geHhUx@^LgaF-YrpJw z27tqJly$oqpDr|{%kS%$g-S(T1ob|VMYuIY_m+j4x zFJ7UNupXXY1qZH9>JMYLg9Rfc1@)7pnsSKgK5s(Z%L&5~h6n5C&cJR+PvZOsl*?-~ z!&(VlnV%nK^-;^ek#Z--T5eeTL+;#w{mJ`Kv=6)YCZqwQN7L5HZ!0?&gXg-%BoR+q zp4xj@^VGTIi+X(dA&&wn>LCt2hv%gz+O2v7Ia{b#Dzh;ibJj!TPVsONZ7;5w&5uG; zUcKP)em)Fl_fzHuOEx!nV~a18i%$MJRH|_C8r1{@y1&a`s&LSBo}2#Wc+PBXj3C74 z5y7p<2bfEm>jupnCLlwNhN*~^H(S;l2iz`0u4EDF!WdJuy=KCGF=4YpRLHnx)5QxG zFEjKP&I8_O6m2$NGJXceQoD?qb|SI4xT(HiiUhWc;Ff7(Bw53{5Zyx=wysy&U~paQ zH5?>1XN5WDS?x*r*vpF*g48b;A%qT{lLnRXj%8r7V$6O}h&rie4NN%%xG%iL*wYhp13 zxGq9G`MzSbw0+IQ)x~TB)X50OaSGC>b^#p1FrdYCB=FvCG4UlXdC6P-h(qqL(ClK0 z`d3<6F|@d+3A`oTE3f`F`lkQd^AH^Xp^}x$ugXymBkDf%Mbh@#F&+?` zvLZ9cHq1qyYF(4kHcT;3pdl4K_0zbkKj2xynM@CXE29)HTb{Dlx_YO6IR4ppbcuF+ zhJ6*LV_84!^2!}v!}E}Yy=hr5b9r+HnMcrZebfoe)%_FafBTwiKkMGwxgsG{9>lPp zx)vfHMq2VQYnvgGHoWYt8!U^}%GH-%h?_#>psXfLylgD*1P?5xm9=;zE%Y_!&ub^^ za>6PI@go_EN=vjrW3sEIS&Sgxr&^R_vJhc_(qo%*V9eeRe|L7V5G`DBJFv=n+?a_a z#5Hw3NiP%=y9?dPy&nu@i99Oq3R;s3XgrKHYk^N>j@oo{^+C9daYL5%T%ivM=>x$} z(@;v}ViGaw?i71HmbT#yFXYYsMsd@7G-G8M1FHff6{wmp5u<1r=|)3w`OC{VQ=aNi z6n)Y&6jOS#uJLB~iHjx>Q>#<&x?X+pYkv7AbhZ3T8`-Q|yOhFv)lHaZJ;g!ZrzxT1 zO1Vj%m`?#F9h@4>sJu3$z~8Vr@h5M!?yOn2-zaynRVYWXc^k%)tN++=hOz@m5~Ur= zuz6ps0z{gWC7*boe@6|Bo*L&eb}D;))6xy$X8SN|20|rf^r*G5JkQfd%)9g3u+A&A z3Ahdcqv&c?FX<>V-NwpQr)#=k|1Lz#AS3hE@}#9)q9gKXb6H{b{&gKkptxb)_RsnK z-LySp?OvZ%;<_2kD^chkx=u?Z)Dzx?+G*iQh8vNU=a%kycyvO1ig}W0L5$E5XEkTi z2cBe9oHo&45T<6NadRGW`)r3C73CivH@L10W57dA`OFXu7U^l>mZ>5A7#=bB% zDdCIkSt|&eOer4v_N(Ce)E$(3PGigKDsYn{=^|=xkv6v+WhQB)p`cpsYzNCVi8dv9 zpjQ55{S0V@J7qkZ0D@bbYPN?Sv z5{y)aDpJC&3|`7#Q!1QjhSMKo_<0VuOm(iX+Fq8sHUkjL4=WIh5hzooEn98TK2GZEZXU`gLg> zJcF#pr0btVSlv2V(_q9ez=yMTHi4NNYbXx-n44(4rP!?me|0biAeaK$Vfq)*SPAE51i-SPsIRq&m^E;RKU`Sga=9??uag2r$?A}BxBJ>_BBRwQ z2{|uU_->!fr1f!ubhH2SC8>bp#F~GY51c_>Q(So^8paiR`!n34Yse=}POkSbvAPMv z&zr4yeEU9T;rK1r?-|N{B;*OT>r}ez)mPp)qs=a{jT_G$W^LK;ZQmF1g|zBbQQeo^ zL^8ts^_kd(2{;{hb(i-TlyFPWVI=mj49f_w!p;6wpSxVsuXXdp_C;7-o&!N>xe<+- zfQ0vN7l@xdUh8I8-*N#2`tT}t|MUUAyxsH6x41&&x<%(V8<<*>kcrxayPyz>hFa!} z4ubmCy;z^5`IxcNF~u=OY8vUO!nX7fJi&Z$C35XSz0FHhSUtLMk;cs*pehYS5I8** z)m0aNbbPA`za9h=EcbSUU`vL(RZwZ>-c^}9SWGTBHEX8>qrzqT^`ySMeRk-i1M%1+Zy}5KSDZlAZSK(}F8T+* zi`c&tR)Xp=0pJZOtRJ5Te}5e$Ab0u49~{LaE2uIf$CqEc8WIzRv9B<4;DDMhD)G99 zR)9Ipy7q52CtCdW4}Ms5oj0yxH#I@c)2haPnoKmF>F_RvSSjMfxaOSveLLw7OrUZ6 z9D%j8jOE5IJd2kj?`<=eTgi6ZgI@ps&RgG(L{1tPvWV5Wn64YYI*6wTsPWNFANQWyQ967DR|)#5vbM)+>ZNaD2l z^Qlsl8ES_g)?rx?ib-Jq*vpx3r`!FAd+G+mgY$!wn(?9h9Njw~#X>JtOrGGiOB8Yi zQ|(X}!Wfm8m^03#)2O(YLR~?9qjukFiU zs!lf(<5b06Xiy||z@kkL>1#+M&o?P@2(`dM7y=xS^F7MBJMkz9^c19_E|_Oe5_{Ev z1&6D)mlWnZh`=}>3f=qa`drXN2D|-3jTUE=mvK)RKmpypludmz^(kWBKc*x3qdyrV zsOBn3OcsExuE1C(%*%_}8-xC9{*q@|ohM}*@V2C%v^Z}qF$#BR7$V-NyT7R(d1C)A zoB}PFP1h&SWi>iA%O0h4^ip)f7_yLEyHhfJtfud$U^P~a3K@-Agt=VP1GuRDkrEij z5Qc1EU+gG>K!V`k8R$Zo!#=J;I!jR-f6K%sJ3 z!cP;#zJAH_DV$H9$NSlldhCy?gv;WErVt9)Ck>5shwppAZ+M>u&>Q&vpKc6w92*Ehf}MR)8tOM%50mPaV(s)H`mY-oFr2y>K- zxR8w1P*j3V*@ytSjnK78vr}sn0fF*les?kI4!nl9Q*!ue>}J5T#PdFByO+q9&OD#u zLls%o$D7L(V}oQ@RV_}D5;<~I4w5qK7|SImywbhUCzs>07HFY7u1WHlFtUT*hi^|Y zQE=4}A`m_1o=*X8#^wb!DG}0_=TI5acwP~A2Ih4z?Y?-tVJk}~r0sIE`IiZ?WX2%U zI5SUBB%c)Z9e3hl7#Zz8XdsLW%VRWXKz%#0DLlqtQxJdc6bSSm zGqh+jt=#vFCxGuGsiUFb-VpjL9In6m^Bf$`nKzXPr@u(Bac?m;Zc$pWqwQJzx$-PU z0M>_Rc^C*mDckkc-Z<~PAyjs{O}ZTK`swggOfa0Di7xbn4{m=#OjhEPvb+8w&|wHS z^8L8AXfbZt7p^CK=6Z?M50L!R3@!!Fywiw%YivA!wy^*TCekogESV&<*Fh+EJeHf1 zuTNf+brOgOH6YBClcX@rcCu>srU$^;K>k}XsM=W9Ue{g2nL0 zh=V}Y>Hh_IlSx-U%UfoOGSpr(wH5b#Q2?FqcRgAO#-iCxj}}zMH}fTWC~ld`MkF-X z+xgfjXVNyDuKTR?*xFD)4u(_zfRnXOV|2Qv!2k)Ql9+ptYX&vi|;V zF?<|b0X+n|tu<=BuM2o)(5D|5r-01#Gtq6v{D%$NNSmB>vi3e|qm(%*(sNvPbj}EO zTmU>?hU6@;#xTwLhn7Q&OD6=%`8)>_WmBRRL((LAfEeP!!DqX-6$u@2H{(fVEHqPec(S7pXlw z$&Ru|vCyVsjHy*4kO#&$ZyS5uxxnILo%i$AbLlL~O41h5*C$)mxcgODFI|9Oy|gCS zcJnb~8xX1oR4@Q;ho1T*@p^drIG39+*&Kl6@aI#e@a7h@O4%5|0xL&j`wb3;SXZ7@ z^J&$x(c!LI1pY;(eZ;N${(lg(y=3OcQxNC5CdfjeN7ivbVRZ7z^J;&Jl?{=e(q^KD{}bp*2ghITfe!PLr$Cj!V3m zG2S}a$41?SYsyFsAf6@I+@t;?6ZbY~+c+WSG1&gCkPi)o=#4M5;&Q?yQ56+t{b647 zb%6;|Kp!?^_?{xz6M6=(=A4=188oB-K4H5Wr19Ahm6nDyB0aGWVkBWCXOIzQI3g4g zKS_+p2=h5oo(m(Z(Zygka5@�@m7~{gf%?0=~XrN=&<7;R-qA-e3l8D2;TcmVA3tmm8`X{Yes(r0cnn^m?1u+TK8f4+eE z^6wsYUzJ-s$3nIihsb^;n~}s&_W)P3WeU}7R?Pko#sI#32`fHeV#53InVsz92u%=5 z7$qtl(>esQ-~2DWm46i5kjsgR>WH0|8Ek+VPm1yb0O0V7!DHHGFijqv2Qhg11()KxYOu~J?bRpJ9K}45L_vY9Q9@qXx?Z3fn z7m_tp6Y2&K+b^)<|JF(}%-zb=o2?oozW)i8wW;U6B_j()I<-%YhA>WZaqIVkDSmJR zN>4xKhOve-wFkcs#Z}u`ja_s()>yNBl~3slZU0$VXr5Jc-qf=Cjwb9NJtxC7#MU*S z(^lP`(T`;yl-!N0pYD!b*LvXG%F?8D<|oV%%}IEBydreL^c;%0}cMt{x~T3jxALy{^feRA^> zRS32(y;U%)jJpWYQo!1L@KNifR}<9Dd*W&UezJ1En1(J_%;@mr&CXxv35n%iY8Kz^ zs-(13)`o&9XG2WweTXX*HcM#vewnmO)a*7Gc?%P@xTCc~10eZz5(GYO*FD_r%H_Ip zXo&4Q4 ze=3=4w%)9<0UfYGb5jc|a1Ub4TMUc2%^=a}4pFL?SozL}hBYq;vivs0)TM{$UqML6 zPJ6?JA?z!dI?a%RKl92AfQ;AAIOZmv^%soMt9=)qFLksv4)cX!I}wd<{Yab*V+3+( ze7@AmIs+Si2YkK(*{BuGxO&YJSrwF?6IPpWSp=92uHQ87qUriz-!ZXd*7K=)_n{l} zf!|C>RY1RvB8nBL>0-%hsGTZtGcO=Zupxa$jRUn0TPQ))TtCeybp6NG)CcPw#mn}& z&KhA1W6zcl+Fg#N+hu*IHTXlte=gHPDeTh-9euq=$QKy?5ogPn zx5xZmEzt%jY)`~~6CtqVMfUfuoIOVW7<}BGE`AvF!uvmDFumZDR%llZdq-~);0cMW z#0)=C$&H?o@G<+)kTQ6wTo+R^!}jFR^D@XA+4F?2EZ=D@2PfuevK;*D^myg~dax-_ zw+kV)8)qw-@8JG%40ny$nsO#ekPlJ!Oj&*L8~lBNiC9}qDxqtcmTaPNoz$OU#jS=L zHz;uYyOnhgvEPO%K}jSPj9ckBxB%5HssCY9v=fu%CG#BW#0M`@d>dH;1Npybord#O zt7I6y`q9Ya1)74fhMA@32Wbha4xEp#?5@TT4=gZQh*mSo`cd+&azx0f(6789r=b*cSFUH>3$03s49a8jtr6KC(lC^uW*a(oR7W_(1QeAXzjm~9m5y2~?0RVk^8;wQWNhOJ!Nj@g%$WpH-ZgP8~Xi7LM!OO%Elwq>a zTDkb)cB9t;c^*~(pgju1SvGEZ!kwNwIC0E{VrQn_G~~amAG;ywc%O~3oKyaElcezE zYOXu;DyBm^IqTIma{kuJVUVub|8UWScnRvqj2;PU9CXd~#r(d!Ptb>kCDfkti(tXk zld!pDAyy(fTxR+1nKqUc%FHrS{T&=dQ^aM3uFpYSGMBSW2G^fEGY#p)>g%KiAG2e! zde1W_<2>#>n0DamFKjjq_J4-S6;z5i+jIrf;bq}AH+N`M$vXbm9gt zzOn-Mp>Fqk=pP_a$^V9F$sIOuEo~RI(~fQ$Sh)|6$ix%_G`w1BfC`0sro)+JDwaHL z!u0$O&jJ{IF>1N7$T-Cden+-sb!|VKBSxsq9d$t!_jd?226+dboHvzeaBkH-F}JgT zZ`!M}gl4&FlUHu6p|hA5Go$5s{==@bJ+-IiiAGBAyolIFA(%Z(tbU#)jT+P^=Z74d z{C_u2ygAt#Z+TY}7Cl15FL_*r5}ZkLK4wv-^DK82zJ1#t{pggzYLC+^C=@|Qg36Pa z91cNUxQtr}75XO^RhA^=hZX(OA=TG8!O4bb`N2inczr(F%If1XUMdTDi0R@LuZH6OTytvhf)k!k#YJ5} zaKfe^3SGz_Zn)Mv_kn0Oyb|{aK5j??T-oux11p^TEhdmUhltlDb&(2QXJHfu*WWnz zUB=bI=?^jcCZXgom}GCitg0ie^V<9!4^ED%0`V1Ex{-#dUJ%OoF(#R~-lx9PaT5R{ z&yosAK+oayXXwP7D}#CH-OD(q?J>90>oQabl+{lhO5LE2-)^XzS_6t91+OhhI@^l2 zH}P!n*^YkzrmboER4jnxt)SCg6;K}``Dcyb#Ys=DKiEfdkE`M=p_(6wo!L82614P3 zrYuQzAF1-%Mn8@-7&c>AnwRwgbZr_+` zOSQYNYU?CxFU>4OYq`U9h9Z_q(K*1p!0C95B)AC{%2c6sUS?1wqFlN|iyzl(ZKxhr zklr13#A56Q*Q0<4LJyz$OiX$h8+M7-c)W+=B|ABAd3`yh2W$$^7-)wTf2Jyqui*@i zVU(vp6-%u1K92hv(+3_@!)Xq#-xc)(2w5 zvz_L*b|XNvKQ5qZ3Xm>EM<`PV{48iUm>~nz)FUmR(u_k_#ZV^|ap$@Et>bD%A38~3 zExTRVT96Z#r%3B%%zg9i4h);3RqgNmYJmnUem7LDad7J^ObVD?Qjx_qPXpl78IG!p zmN|K{IXe|-fH@lWoMN!x&2^YuNB~a=fZmXZ3e3Ndco=N@OxXk=R#zvllBIuKAOpDd zlPFLJUiZs+oHIq#`6B?#2GcEsoeu3JVgkW~x4z+S)qY8$(79~A?_ov1PTOJaTENk+ z)PVu`AcaDt-D2`Kpp?x?DL;h>(!q=z4}7fdEy9fC-+?-`!vs=ssppN z7PC{qE|S!ihKVEuIMw2oYh**hM0#37dMfY3;AxluK-S#T4zoQaRRr+~UtbBy#?(RN zo(_6A__xzhM|zioDiY=pceFEiimwhTI?3^7pVPY5?Kc<+5WW0dac2Co_8XHoyZ!FD z!Sunx6<>BGh)OCbn+2ds{GZApA(UYZ)wBip9T(SODiTsC%<_Ju01>9rpn{X;JbNWy zP7GMf=F2PMoZLN?F0RlRy>IcF*&5Y;^3-6c<~Rk%T@gzTbB04UI^u&zaUC{j$z#)|UeXn>RZk0NRQ~allKsn&q{sD^+bD#Q zPpmd34H~nV7dhtaV%}-Lv@Uybccb>ix>pgVxGiQ9=R(v4Gh}(P!TBz4N-7W7#uf;(KPOG##X{#r?T-el||~xr7s#q zXV^}#zKZX4v`aDvpr5PpM9JNMln*Mgmnb5P2?4U4z_ z;p*QOZ9uw==pq6&oVHDOf(0or!y`A(;gzG!0u5orjLNeD>NRBINn*(+aCZyRGMDWT zk5YYp?d>I?DA+}!EEXj6Nt+Y>Z^%Iw!nlRJgfK8g!@lWv@RbbOg zx8~|h$U~GHJQeZ4h#vmUUKy+$z(8LZ8|?D(c3{49YD( z7AoTccCmj)z59-`|7vI3SDNYoWm%-L<5y_8Myn8NEG*Ed|Hge~*Y3&&3M62a2GrtH zwmt>Uwy_)$@t-Nfx9aO=w7L2XJ8N!p2C{Y6Qn2N+PYZ@epzeOmDx3{Swu2Q}6st(#$0bF{%SBxs7#* z=2~&;6zIN0kLt|ozZy1yv(Pm;pFkKvDpEhl3RcLou4P*(`p{n5=NU$ti~b_UoFqlB zB?qA$Vqlsk2jZv%t&=e(zIC_FE0(!t&$-r!juuvZiSaJLG@!IY7}u)rOKU*=V zI@u>k>%5ZS^C#$&_ivj9-8Vu{m2^Dyo{4anH^Iv@Etz5`gX_f3KR(RG6aiJ zl_swkN8>+)9>`jrr2Qu@CM&+gou5;)f@7|D&+GznhK@&mOHZvpNpb0&iTT-h>J3%d??k2klhlss2yi z807^ohvC%*1|*Egy%gCkor}Q7FTUSNKWHexH=eULVxIr~9q@0&2om)jLz#s#hF=yP z1+KVt^M6hopM`8J(bBJLod!<7m^6M>bZ`d{;3h_m93^~eG3H<`St3=-M-P!j4grk6Y{+|>Uu-pGr5&ye{|IZi>hT;Fm#_(I|egA}A z{xb-<@`h#rso~~^V@_qY!DCxHYrpq-GJ`I7!-W;OiOQxi3-hzUXnor998kXVHgYge z-D)6L!OGLKw7=i6%A-7Ol|o2A^4HAG4RX`K+Vi=={PN(1&d;d#DNSM2Gb(=LH-$AK zth?gaDv=*U_b+d9QErm+@y=UO88+;Sn%N$GPoT>&5DPs)`xbIZ6es}MYw+G35eGz`Gaihtj z%M7;hs!ZXt0|R-w`{^G6PS3u63W)ytAt1(k;KIfz@zTzW0K)Xwy~H9xEpr7VyU?~8 z+aKL7%nBcMDc|^%A>B8%*~@73_B5Df{`pC{l@J%Tcb>VLVgc)Go{GCc*_w+Z=wHoSUG*J&u5EL+Fa9j+TzR0Rx%GQ;Q}9Y*^!QH=cERy2 zbr+E7bHZBnNPL+^F)}aAzppT2oWjsL)m@Fs$<1ARzfwH5J*-s~*qdfyYHIqm4PF+< zX8DyDCix6^B>UBMB(Eqh1GBL6|lse$(k1dl}d#A-tw^`%y&K7xU9ZnOkkqIq-OGOQ=qa)xh%2oS7bTRjXuEW);JX zRmDi_8EdZ&a9yt7Vol{KZTSqcSO2uBaRFv;WzWfHL@WK1gwy7;+~5Z{{~hoP8o~B; z*BcxPe9$ld6o=dBZ6iA@OXS3_M5+;RQ@Ojghh(lDmFTEzp2Tiu%TSmJ7%53Tizw!&tl#ggL98gbG|s)LD9>Dc$>#j}RExP3i(FBa+gb5Q z_8y>Z?4(bWF9y1UZlzD*;HyK^_Z~+Ja7?`Rlsz#MI}knW)PZ-7$I~mtiAUcseV3n} z$L}uZzbrDWI2fB%S%rzUx(>%iMOj&yFm`y?#P+au;mGc=4y#cjO{9E!v(v6n<9nG> zeThR`P;GDe54X_~BPH5#O)pbNDlOA;OSJVC}>bA-qt6ISCuJdM}Bm(1x|gw5FeQW~f_-q+W6Cw{_h#M}01PEOPK{lRAMAf3<^B58H& zhfWE7mT|*(TD2=i_K@z&ygUImZB@1j9=;IiVruQ`TDv{0ZsnF{CeQ0;JMP#MF=e2i zbgyQpkWk^mijYxIn0T3(qU^bKJyjTL2=yBJ;4`DM|2+vI#6RzjF@Hv_eC_1CV4K2+wy6hw+KDnv?Tp>AwXv(N**@iH~j*q?4Gwn$OkXqxKmgR3Mf z4$q*KFn+W6!sw05&Kvk$OP{K78Mmu$$0d;HM)Bam*9OcV^f|velf4qYnr*9uvqp(8 z(eeB8%ThXXRFU3*P583M4e(i*6bdrpQ14-Z#d5;V zI31~38}n;--II*BYZMd`xcdeQtH3Mm=BEl4A$-Lh3&EiL_6A*#k`E!ml~D0Q>#Q z+68V(v|#E_X4O$I>#DLc!(2D|04Af>g+K@l=XOGS{J1GP(vQoydfvbYU z%^KGomBR}!?lZHpwVSm+o~A>%`YQN=^Id`4{=Ly7O-fY)XmYd_j^XqA#%R9vf(YsX3vf@q6+mr>!5-)RY;PYOvJgjeH z(#msi!S2VPvvVz!#=Z(H^zK|}E_EkHXQBY|9pT*K>-us5v7W(^0A*g%(MQkc%9*Bm>1 zn9YsVPfiQoNY~oRka#Lm%oGQ$<>VY+_I^9ST^lp=GFxqpCWcqS6>A zwTOK^@&bRn&Gz_r8;Rw(-A+EU^I4xKb>)wW0SZJ2>df&{0wx(uQSiYK>?YK^5))oO z@iNw^98%c;10|e30t?DfsH~*uM%o8=h*R|uZY_sIwb<7#G*_fBrJEsSE0!wMk*HKGNAw^k+%QLd^uIZDT#OXq_>pjr2>_}+3BrMK8g z_~-cvdIpXj>>f^sfj&UutE3wag%ePa-vDaI?-1 z2j87@>!RL2gkQ~@TYKW>^18MLa1i_K;jXalnifwrACT#jiBa#Ji!JXs-2YD3Fp--! zbh5dDT2B3W1sm|~v{!}abQs~xnD1C;))C>jBty!6ZYzDWHxBjLH5_*%)%xc@n+s%e z_-2(}@?Q0<-*gzYw&X@(jlzYr^rI3TdljkzSCkiJUfemlx_TLhgs`~v9x8wFMaGJUNznhn-0h+)hjHoS%^x^+u_ zo0A_sB}{XD3XwLMVW)~e%~C{&l;2iyvUS%n2?xkTrtftdBfJaAluD0f zG^{D+Msx0t*HV4CtHdw??IKO(;&?#g22`$#d)m{A4`MaLTeQh#h`#Xjxx&U<7d!XN z^27XjDHw2$GIV#v4Up#3gD+DL6~oo ze>150icO`H5mQJ7;h=Bxd1?r=hdAF>b(|NqO2P1bQ%-jF>KpxZVrx1Ib>^A|$bqmw zOV}ODZJO@hY-0ooNBqdlgO&%cO9idz+_Uub{FQol!Z`+MCg!3#8>tnwMDg(|D1H6< zHIG+$#Ha4$uW9>xPIG2h$^^AAGtg%bG3T>DL+3pD^V81FDAsv7wBjAgLTU@yq60B` zV<~0j#uZs?8Q!sq?|q$|RKS>{U|^FK;C@8fxAE+?xO(5uh^;(d2OLV-&Ui$}*fpx< z{R7EL2cPYyy|kvDAk(-t>6#z45p$mtt$Mwe7`U-!!7*e;e0JwkMcfdVt@BvN5z0&#h_c~$^%@>O!#0IIeqUmK8JDoWzIq@KmE^b+>(a;XepOVEt>!D-!a4Iq z#fI6Fa+c(5aaGt!%?^h9L3r#XCvO-2jOu8U>PP?Q$5t+6@Fqasd4Cf+B>MTOk5%}v za8uPOa-&a`Nqng3Luh~T>0uo?#*c|FE)jE9E~;dyMJ|wcD|RlfDt>=$JUo56IiSif z4&m|;`b5p6H>_iKc`Z1AMcco4V%l>eAnkXBGfh zmKsS-JTl0wyU^smcgZw%cRoDb#Hnd~9B_tj&yQ8wH#u+RwKl5??%u+ocIF*l!Xc%; zg{>lm6W$yBJ5Ju!&R6VAyx!Z*`Al`<@Z1-kjs0LpXkEqz(7!%)|3lR8aCp<66xOS- zZw!@YbctXmg4n-C`gm+m(}-!%Q*8JQg6CkI&gNygN{Df`w~}Y#cluKe{}u8%SC56J{#ZbW~EO^tg)8- zE*99-^sg@F&iAj*JbPn<`C9c-rYbiIRACnmv?Z1jXyahvbnWY}6a}l6)cn0C4}qk$ zgGt(kZ6sfa@;{6_R9{k2TRT2x=Th=Sqpm7?%?-3{wuz<&`jYIZ2k)}DrxvI#T z%KtM_4Q_cG2a&dYlcQ|jbphV}@G~qxE9tKR4XO2pT^cN4&isdXmG=Fc7EDVNI^1Hb z5<5M^-gah&GJry}!~0DKL<5>)iHIkZy-j$#>SRJTwp4=!faR>~x7M`~Zs?Wo8b)Lj zk}gL~x*ST`fW!hE5u#|$Byy(ws7I~&nfPa}VT?rSVSmvBJ!U$uNEshM_tlRbqxTxN8d*?Q+l^IT4Td=0G7a-VA~XLgxJi89$99F1&YK|NL$7= z_Ewt-KA;c%uefKbjxF@o#csKwrmj$XijC)NRi{`l@%^O#9! zjNj$&_~n{uY?K2t|2&_m$?W^`(0x6JbV?;svT3R!*;cNgr8Zz{UAnT;zKX=x)=_up z;T;2)FG3s-K5+wbzE5wo<8!~Yrei!-Ri97I!k5FfS8K{W;JIMu1-R{|TRNQXT)16D zte!2@9IUQFAG}(DQGjTPQ~6-=sIX+rX%ydk<}AK*Z*_+iLHRl1vv~*3Fk-rrwgHW0 zJ?VQFYW7j;E+^D4i)yd#i28PgDQutrXp%AZ`Pd+XH*(TFzQa-F3n;#t#=&5n^dQ5J#G8UAgam*W_NK(;igR5QYdk~CeFnFF>@yIQ>b;g1 zxr0Th(Q)i1pF?T~4Ik&!t3}TfkSo@dEAPA?W^ci7RPFWcn!X*Vjdc#nx<;ah=fz*5 zKGsOrvHW&qpIdCcvr*tTD0U;$9A16}3hin6TG`V~Ez!$w95D=Vs&uKc%mFw?hp1A%YUiptxZKFs z^Cr6=8zI>fhgDD6*x2ZO9Ox&Xx#r~-)DXSntfQLZ*6v-R9jy~*egZloc0*#;g9G%_ z0-%rlYVqQ<@Lm3{_Uj$dyJk0eD@-H<<2+Ls>S_M&%Zt>;RG?*P8Y%milVJsV|34G<9=^1OGUKqlrH_tnTjoBpME9vS` zlHMo^mov$yswMlEXsM>uHSH7mLsg=eNd+rmTeTl;LNv2gtdd_Zua1;9MSPuxk@X#0 zLuxLt?>1jxhdr~c4G0;lI&^n_p0!EB9Bc9nN%HTgNz$;=n#P=(jo@gL^{M5=j_+MrmUTgbaCi-+!Kt`>Hoe>!|!Z(~+I7Ibt4t6TU zAvR3j=k@!t_u9U1eQTEu>59KsfNu;a0jPJ!iHKij9gPF`hoVD9g^(HnkKqdPc2NdR zJ8j8NQ`7BRuYX({8B*O#G$V)# z>z>`+SbWT!qqG2d_)AX{m$<=Q-)9T)Uj<*CR=Aoq8u2x=4|C-#NZ=mn-7)+^*S-Uz z)pOt(p2i*Tn_X8G3YX+`2$*gfQS<2g`p@yOS=8vhi%^t^}e&RG_|2wnwmQ?N5g?LCoc3ZQ&Su{a4YTMEL^EMQk;mGiUS0j zT5eGwQ6zH$f;o_!Jnuf=-}8HZe?EUd&xhlH!-I9n^}fdII$!5`z9N#Et|Hlc;V;mm zs}9jOn?ni!u;uT$M*EwIVYXnb?>&awlieqLo2pOwDd$9)RDD@9ObMRwb5;`_=5EXnSHQmiwEiI6v;VS#9r?Ae$1-*MJ{3} z6r5u1)|6IZIY!Azgatd=SVwP~oSwbwi^*z}oVw2Q%w=!JuG5XCZiesi$~b*sbsX(J zKv#gWd8PF-;&-2ueaofOq);;oI7A9_yHBgvK-l5v}IL5O8e9 zgljF>#5b%0YX?LZ%wk=OK3ghakRkk>KKsg;v*2-kB+G&FGBW7fKg0n&Rw;j5eq_L z9PwP+dR;kbqb=ZeyJVMSLPe;WZ)6Ap0B7le?UP#feh;2_g3Ov$&Y)YkWtRb)ahXbn ztKliNKfUzF$_P0SpHI+jatj*;uYc~bfeRGb286#Zo>whsIlM^PDIQn) zvm0A$Uw1}R66+TloQjH4fX?zlW-rUWY-kX$D^%i!Rcp6>d0`CU)ktX#v$ASBzhAeV z;$757eKpD-NROJYN*z@c4(8wekc7j}Zn0t)(F={Yt$CD)oJ`2v*0}_lRNJR~>iycFpK01^{^gu>x&>3sYqYpNUqmWrAFuVg!#PSVnE~Lt z>)*arm|ZU2jAN};WYAZQe*Gt<`EW$Ug~^E7Kxl=2{0&dvCn{Sr)OT4E*m|0;n0$|1 zwnhx)Y2!i)0vouIppCI*?Z6x;rNkr|&doSyGmv3>rM99l`XcXXI&db1Zfu~n?=AP@ zMtt)tWDv8r2y;MYFc}v23nB13I{XJBUT7--Rk{;F{BgKQUK$u{R68ABfr%S?OEVT7 ztMH%K9II(;-76DYy}l6o+Bb0>?;F2TO}*&uxByofg_C_Zwp@r&V`jbGbl)qUaFeCc zafM!Y6fit`?LFLqEQe=_F(@@EC~#4JuV42PCG_Gi%gto0!$&>Jf$gxe18{S>}%8(OfX=dpwP@oy{fyZcuS>LMVqrA?r za3E`7IXI)C_>SUgt3+y?JEVa9uJriHfoqry0L%LkSKs<@AuH%ersS5=M4kp%98fA7 z94xKFqVUp&PL=nS|LL8-0e-<@U{f%pi;c|+3{@8KOv;|mBPDU}1@HXY;pxg~SOhnG z(rM_qrRTW-TD9Y|pdsk9K!!o-OB*D<304IRB<%9DkZPVxJ;Gsa<0uSHaqxz}XEJHp z?~aBx98-K2fz%3L3@}g+NJ}Gfy|-dM-@ss!m^rmR{x7y;$Nt6z^cCHFzy9yi=f&7x ztlM#XfT-jqw%X|)AdV9Fi z3j$=|kaYIb2*1LF+HJu=DLouZoV*4C)8ms>;1o*xP=R0!8_E3{rR3TWi~9rhSNHEX z(z{T_{S&Bsku0>LU>Py~rQv-6}t*lEDH>mRU0PhifO)cuu>pCdjEE-I)k#Dw6__1mg)23%w=wd8xY z+|`9P3XS>9^NBb&A9yOsy~)&pk01RZ3G$nb}63=`fU2em9{gB86*i)bCq%F0?_hPOMx3xs!tD~%0W|2C+Q zJt!+}YxKV`t`hBex05k@VLxU#wAuZqVzZ7O#m`hL|8&kSh*{MGu65g(m;0sKU+w>- zUs*p6UFo*uaJ@HVB8O9jElwXs58^uFx3Ub^ewQ}Vf{DFN^ca^VgbD(|58;1Y?k^`s zt}RXD=VoUC=+c4PcG&!l#QpNp@@jjpE3pl2<*UNZeC~!f{5y)3dACS&-GI1Q5w4y1 zd6!%3zcyp)Fy|6y86A59FToKAB~Zqg+mtZtxP?8bo9)Zme4=Dn;q^zJ`y8No&9~!? zRV=(LUR<@x&-9yCeb?^jqbLDs9pIxVuKowgqEtd}Z!jW|^j79_=-+d#Ng6 z>hYe~&4v*vgYYV7;%&dH>jm>0E|qYv`uUCO1s3Os(r zAb@;va7;o{BK&6jw~~w~R%zUL{y556bLaCYVS#XP_yP`lc5C0E;cpd15)&y0ygx6$ z5E{G`(>t?hs|$dZ!tGfd>q0Gm#^i(ipxTChJ++S~e99ZO`0m~SduC|5eJ!YCYrdWn z44SI@#3vu@@5CALrzZK??>4vih=CWKGU(}USTX=SII-Ev*a0AYU+SG^U^5!j{s$U^*r~Vs8c}_+5z;}!P6s7Buvh#CA8K?OJ7_QB%y73oxz3VYynr&Z zAtyPJQm@HM?bM!_-j_iqh|88I668wyw)Ryu_Q4#joyxL%-qf6sYp>QTWxnckJ^+C@ z-<<~t6!DAkqIyd;jovzz?;aBH8ZpxmAKk!{zN zEz`6ikj>(Qm3T0p7xY>M;No6o4F$vV{J^013<*Tqa*53vT^-r+dPD{pjEu0G&pd{d z)o%E}GgL(7*W|kDf}!E9kptMmo69;?$7m%Nq#MEd1^757JRKbn@Mmvv%$h#%uJYui z7I%B|W_*bo#9%Ac)W#h8u>^=mrh9zW!)7!Lw$?lt(VI8n{_gGpb5qcbxzRo7l^)3_ z*yxS9iU#=4x^ebM)hfiMliI6|@{3C_(5GPGBB_kWq0G5g`vP?9LY(bOlxthB_U6xe z9;;B#1Nk7&rASNDsMSunK;-fAx$o|O6ZpN~)$t33bo-AA3JQ4MQ={sbrR@58 z>V;8p{h#M?LHTPWbL2`!hK%rtO+@vkb80%-mpp8Ggmz|8=d$Q{O-~ZF31}2mY9^2eeJ3b)~D)u zHplxgDA6x=FbfZ?f-K>|C93{u(@LcSLktIuMvr5km$Iflgj^(%7XlZ+q%RfSHa|4o zRJ*Z-{K3Cy7zY1?Y>;<<)O*2w`#TSXhiyojufHPr9o{=@5@`Dk;G@^sgzuY1sC_zk zWcP1Z#KrabHOH;D`(d89@!OTZkvZatT9(Wnl?b2l&GRt36114LYE;CugZK68_#35u zs+2G3@;SwA^Y43yYn>(*^s1{viH53cg~$S3>#><*#tt{_?B2F}AmAR~x+iTnbDK_T z$$xY`+F^OYd5BA7rVpR%)-Bv|svs%p0Cag&dD6nOaH(NP>&_h2zc%0sC}RF~eFBXU z*^kG*z259hSX~sr)I3^@HT`=2YAvDi;^wOe3vtF!0vs(EyFr+5B5a3tw>!SN-A=5P zo{kVdfB!Ehh*Q8yY4hi-wy_B8SxQyEFM#2NJHa3vPQ`Y{FlozH?Vu>@FnlDU?rA|x zYK{E1aFclj(X0e{7P5of2KadHr@$b8U_GY`wLyb<(x+Y`cEhiZwBhL%T{QG~}Er6-;-=IDv*a;g_U#VtqF(5pNkHI`6#kl$~NSz25(|>Yu*z`ewnS*Ja#0h0$#Wp%2CjTP~p!JNjH} z70te=c?6BtJDLU4&Q2w5N@*v60hnEE%w(UIiLJqUak*_lJuehHo&aChle}@c^kZdZ zXF8I*#>%h0n2s=@M-TL|)#YQ1`XWI55s$4%y-T&20B%6< zrdHc|m+nZJ47#(LdnTnNl%{H(xNwGY-1s_>MOnXLk3-@21V&|QUEs4^M@~;HT7YjY z)Sj!29JM8%eTSfla>t_t_-6A|ySn;HSOG`YDwJ^>>{Xr%i}^S?q|j>WaGS<5J+l{>2vJsARKjAeI@N-B)QXfA3RS6ysBFEViH zASqq^Z5ISX?zaJ*p5!PiXLv!{Pv|>$%7x#t-tQH+|X7) z=bVG=3}EQh)SY-q5H+j}2ST&eEEJccC8x}qxDtT~{5VNt5YJIw@C?87_*$?fVATYv zT3-94^Osga{)joalcp#5;8OKIi1TJW(%`h?PwtM%F$3Ykchieaexu$=!f`yAR%5@=#_DF$HUhB(tb00OhaTFC+x7X#!C)u1mO-aC_i5l~G{j94Fr_{}0y_q@8V zheO~7V?D?mkvkuHo}M?{%s{ONZ%Mh%GPina5P`DSIgJ%cUarmDXQL9UcAFM}E5;Dm z{--kkeQaMySWjTo9jz z{~c`fWnZwRe3_B}qWhTR?Yrx!*Q$mS^M&cTD}6x*VP}1OM*%vCJqOfVDlap`Yh5@m zwL_DmP!)15e1bz#(AS<=JP4@CrgL4NV}=Q4i^}#e`2rrVU#C%cg_TjF(qO&szGx4< zdg{p(#v)v}TN!)qiug@Kb-bWcT$XvL%tei`cUGvMU`C~?58P0_z)VnrSO4JLQBe*a;0!5AEk}>W z;1Gg-i0)C&PW)Z?`$aBv0_dHl5%bq0r}j*%=nwnLDzi>S^<%c(8vCrGuXHmME3Pyc z_td1KKBv0yx*Y^U`!H}XU@82;QPFJb{gI%x@3h0_O8~`+6M~)EK1%|3I!i5fGbZT( ziL#`Dw^8!eq5CUx=>QIPR5)weZ{w5q8@d{GKI*)(H5&$w3H?}apu<59>-Z-IN4f5L zPE}JSUTbezNqU1V(v3>9xxy}PX$op$+BI+Lh8%q_jRGKeY};#(uag63FU0LHzNFf| z)QsQkV$Q^Gz0qrcf8DY11;=d}>ia{uk^#p zHC8b@aDWuSK0g>#{2|<`lfnNO-v1f*hsb+%pN#!L=#C>DFH8HVz`bv6ed)_Gze8>k zyYRo5^r8iBrf!Y?*lO*?kViQHt5VFsAxFxl;x=UoMRIFo{T&ur%sKYLgoj!nt=+hu z26FGU&|rSNJx-HTz`-pCbzh3tRHFIrVEEZ3z=kE))fwj68>kO{@!;bTur4(UL+H2L z%-`BjO7wBZFJ-|YJq2f~f+v`tDPdI|g=$qiuMa`;3}+@h6*|um;DG>3-1gN$tK>gA5B&pZjJ-jOM1n7@?>ewDN7l)hKsL(1+_hD<-43*#i|Us zJy%rZ$v_iqNojg*(rkK|wz>EXcGsR?6y0|H+FG}E_c8zNmi~IFxDK;#A@J3)U~J90 zh=$2cNr{6&HW`irwdz8oX`ZX8(Svtc5!eff)6Qk6q5AV!7u}Rm7qTy0wnEv=_rutm*|;~)U@=(p8VJY${(Tl9$VXc+_&k)!>osJFQT6Xy`Pa0wKM3u z%ctHRPU3L*c9U=9i(H&dl;=y|bd!LNr7%NkAnVY~HY=0Z=ibockt zS~r-|ZJFq=ibLd3es%3z%?)@#- z<-QV$?R!0Zh2?ds7_gc#gGV z)p0S?MPxPaVe3}0+to^3Yi>}XPtF2iBQL(!*4_-P3tq?M8mO>NfQwo;KH?R>6f#dE z`<#E_%-cj4ETW3gXEYi}$ft^0Oxk-xTc@xezey-TZ=moZA)mvWtUqZKc*vnHtgZ-U zpdeHJuXs0p{N+mf#o52K^v))>=IgLrj?p5i2}Q8sl`?;99Bgyv){+?@Izs8p(JO;2 zx7NOYz|X%^udW5hd3^%WPLj&@%FjzQH&wfxRlH~(#{hqdg#idsUh~C`oL@ljveN0j z7e+9Y$w=GcU_vs~MDAaFb8qTFo{`#ie+y!BRyL^llZ~FB6_7+F{2m_-4e~9&E@rzK zasc3oi){~*^7M5R5iJDXR#7AX@|n`S?oF7if7vtJfrG~NhQNi7(kmegIerH`Dq8Il8RLy z5QM!w&S1O=u0I_N(p!B;@0qc1t0{i-^PGj4t-L=lZ5al7tF|GihfWFE1BE();eu9Q zovY;R{m;tr8!1-%q6B8%%7feG^rJcXmiX&r8DAYs^0hr1BY}UOg^(P2wWYKXT4`-UKM5;{~JKmWJ4ssXi}} z%6`u{aa!VrT(K@QItV)Y@yWpm`UOQckTyUu1Xj>M|M9Wb^+{1$xkrMa+cL52mST5}haXZ(FT7KVK zSO0JT^}Co5>9t9UXOgy3s+Fk$zy7H}qhgla*OMz!X?_Bs$~&$(lI1 zv-M1+PK>`xj{qtKkP5?J(mQ~^vn}!O8FES=dftA`7JQH zmshwggAnP6<(?UGqMfy_X&m~itU2N&<*Dc8|$|_>;Z;D4T8AK*sg75QxhEYhgf;FWBmu?6@GU0mkI_V zU&DKenk`E7SZJ5nW@az|7LsNk@sir|uKOMyaa(d)p+BR03!MlLy+1tMga6Ui@JBew z#R=~5=SM7i-5Uo=o*dK)81`HLL5#}yr~w8oR#eQr{G`D=Iz?ERVKpJfOGdY2lGphQ z*wfdWsqY`;S6SwyIyyU-Pj~0Q21}l-hpkAi&kxx;+P(64ngD1EIZ-svqESV0k(fq+ zPV7H1g>5`@%VZ3BLW1ANRCAt9bg$}u|2AN#j9}rOT@}EU!gwwbk6CY-9&DFUE{i5$ zpy?#~Pcx%$(P9Qqc_k!*Y-S^E3{Z{S<>f3?(ZoJcA}7a{f?Uf1!pq#oi&7jQ6a#N% z!rA3PX&W&e!0LH_EV_RK&#f0U^M|i89&AJK-q<}jz z!(b$#J-|0#$%O^aM!mK0oQBXW_MnqJGgn>{)V}$QiGDo}hMac+1Nou86CRpZ$p%PX z5_?U%!QhCTJ;Xfra#HINJD?Z>(${j`<3s;&IInNU(fH{f9>JP;d=qk`7_}P}^v1WzrM#&#ZjX!fASy43oI1cvS+f|b zuz3N4F-ebBPm;W@cDR$`b4dkP)X}i)i=HTji9^q`8sbdJn!e6|iY(=W+13C0 z6o5hYi)db-ZiCs_7H4ltTrR3Rtc7=?Onj)G8%*eocz`yF8xRKDlhWZ`vZp7*Ap> zXQH!k7}rj4JIjnei-wH?u~V{ItCf-A_T!zss;&Z_LBz;3WbXbhaaHAc_cvw52{8B2LRA-}ox ztbckdP5al*pI(xQNSl21F8thZ7qne}I`NRn+{V1>Ee{m-d zoLVK;kH@!*7%QQbtN9f<=hzR@ec68!Q};hG8o{0QvDo~EJ2=k`UsB;_eA*xJ8s&A4 z;VSMaf1yTZ9X?!aO-I|#QZHEgpL1(%vhem*8v@X@A=o4d;-u|vxAShBGgg)MRo4?7 zV6^hp`^;-m5v>G(>_+Zw9xt~wT5}OMxYuqNEhM50j5%ytd%Kw7)TOPJOb1FWbQP`o zC)>Sj6fzXI&{q2A-3`9IR&j}7@QbHn3^y~`gc>pZpXR|`fLjY7EgS-rMaH|H%9Wjv zBUZP1B@|OE*-Z5+_-ru!PQJl#6z$P)xusxl?}t3?q3nHIjt0%6?hdAgWvyO_N;VFC z-9`t_Bb4bdIQN3;du2tXB)>k5Q3dP#d_5wv=N7aX)GHy+9X#%Qb;tL6fpOgYw#rg4 zYq-31FaIt!mELrd;9M3!DY*ets>T8OkYlwq11&M#xI0d!2b(m>)iIiUF4;}GIi#$X z>sD>ueHeE>sJyFMO2x~eY#Obs?QPdeg4QWjP1{_P~yKe4E{Q%Iya1pD`fS~S$5(H}x|00#uc(-iECuq1H zstBLgHU`)m7r+13cFJjOQPX2-Hdhj8BrymEQd` zJpCe(pV#PKS$;rw2xT%T(o_;*`hUMFa<}F$_EHbS%v|ap{+0jz z>_Cg%f2tPz&lCSOp7_%b|35aK_-}Pa;QAZ?uc`w7nG^pV4FBnd|E>&wy5axzV0b@f zz}5q5QK13}2V?B^-M{kAx;gzn_E)T7jKi>l$bEiSo)fI(Kl|0Ot%V!^^}+hjF#E3$ z)_=O;{}^Y#5vx3XQ0>q8$=@Nv1clMC1tR2q$6nn!>yWpS4m)=o20bu7WqkkUwK(v# zzlh$k*zyy)bst)OjK^ho+;JuLY;<-}dE;4)1UHt&%!Zy{|6l>p;f^IFYC&`Pkch~= z9S{D;tL{&`@AvHfe=7QlNdEo5T<-q7@}IIyOTizx=%BS(A?A-0^&@lXSgS)M6~RTdg`H(E<6BQUQa(xi70y8s*F6 z70$O8n-jthHu`kR_Cnh{;{->kV5Z2;9D50G?Mh2cc;Ks&bKp=5@N)|3>Y}oQj}P{n<42>%9&V!&=&&3O>_aT^ELztmCvodTp|@MnN2D5%x8UYboo^ zwvY{9u!UukQ&@b;Qj!HuxBW(bm#aEWoq*$fGIop34Lhm~Nes(huvt{Mqr2ZMd9!&KGlqvG>(1MO zU1JLP;=8W_^Zx#$;hcUCwB56as7%|9n6h)8t1So5E}1`1r^xkPwx2DCe!UKdl~z{1 zKe(A}X~E~t13VuXla()*1F)hSGk04bA2cf!;I);Xsm8qK?PXNU1# zBB{(#n%vue3^Zh>8=UX3QaXKGE}cmqetdi@*kxaVcFCi4oF#SDg@krbVKZ8r($(?ki{G3!!9z3_t78CoLJ_1Vlf{J&O^g2d>~fCY#`RVB(wGn+S{ z%*0at!gbXL5Ah!w13shs-WnBZg8qHk7gQl*;F7*MeFzs&=sejP`c54*^PKeOz8*+F z15Ko%yT*xXsO>a4hL>a!=$e__xaDH#yQ{S1q$GQxY!F;1TESjbP9K5_*IaC^wmqp~ zkHj{ep)nps_pgGQ3k>TUWbt=e+{zXA!V?`c2a8pEfe{xYI|F|BuJlS zBvSu{M%g12I%u1N_295KsvvwtpEU5T>(Q@xu?ec;hWD9umK~A%kE6mz!Ot2g48KD+ zeci6zoHa8!!C!b;yDdY8GeU_Gv!e(3A8hm4(U~GYR-P>y?A*&5i)7b{;TJaF1`Nvo z=CI$}SZmigI548aj2NqQwOGM3{w=mbEhe%at8)Je4n}w z-wK8bHc$3?5tM7TAN>1I<)@IR>gBm8PbA1Z;PeGo`&^U(QpYk6hGDSjA`_pEXQ)=S zqhyg9@?R|ID*pMXkxj21P8>3+l}B2aZ+(o4o@~`j+;lL9J4kr*yF|UUZYY8z2K z1G5Nyw;V%t%c4G?!+Y5_kM<9r@TP*7`1CK_D_dFsf`J(US#Qk zZCzm;mHu4yb2enaLVfB4=N1xgx#YPo@f~jU%es`qmln^=g$3In$BhP`lov=XQ}PRB zTJ|vZ={uEIE00l<*Vo!LIwFvbI$wvn<);@sU?A5FR3aS@_ zlj`RY*Vb=sOKsKPc~l=c9WYy%U}5##p`xi*Yi2-JN)MG^+ShW6xY8$t);iQC+J8}) zzrJ(R`S@7_e#P0WH-B$dkFDS1g14#Rqt^EN@B{qs&)WA=n$@c{%$wu9UKwu0lqP!SmemlSSXignr8lua69Z!G@$wh_ zt!AQu=p3wEsixfKxyr;HCr_rlk}c4>0lr%E8DpCx$G~)*V)Ub<0y>s1V*2|WJa1JY zC2kLwnIxsnWmSDB$OHAYhs8&6dsN67UYMG9OrQ<7wou!kXIK( z;*wVu`m^^kgyE3XL&s6dswzXe2b%->x&nh3(BcxLMwwz~Rmes}s@$-t%$B`($Cn$N z5u?NY>`U>Vca&^y5Q=Ztl#e=a1wK4&N>y zA!V~7aOyMHVBD4G>0Qa{Gq=E{@}ikXAUO%zB2KDT)jO;*74Mz2Fsw3M+Rd)j?0Dmc z5e<@xzE`4925G~agTQ2B$7_K+6o&Cp5|w&`?w96B+{tUWhY^z=82R!K*!vlOxBzkG zgPkF4JOH{Vpf!eViFL+_8*Y@Dit(x|goz}4BR0NrtSTtnfG=2vcfj8Y*G4n)u~DQ= z6KvuY_wYn0#7C+-PAJITyK)yT9FHk{y2|?T+cOw{=i&C^u-|EccyTD6{g@;*QbBnz zsizz{S0}6Daq`vhX-yM^e%$lY_>po0{HDLC2tLz%~^#ck_)fQ1~IwVO%!+%&w0g^<1OFYe*6imEEPi@iMVWy7gRPox*~UA1k2!Y3~KtWOS8?Y6(P_2L(w6g39fUVR_i+y;Wo zo*Xd|6zBqzD@%g^^L7b;?#r`)9wzCg|B0&6e`4%{#YJ!$ACC{=W`^QVc!MmYWLO`L zd*_*h^ak9k3Ge^CT(6*#y;6#LvV?M2p}CTec=tR8$#$0^#V8--P#GxO>KH7cT8zv^ zHr^oHB6S??1aaOym2^=x`3i8JU&?+X+L4?4@bJ465`TA(6K!?3mt`c)rb31M3MCL- zkUdEl>4uLT6^b24jfTv$Q9x{DXQOZF!me2fQvq$Uv_N;$X{6peJ$Q3=lznAe2fCH6 zs}(mvmlEW;x7=>%@cjLp^oA9GFMiU*3>}obQoONmAQ}!UDA(_=vWm$iHs1u2=4O9d z9Qo{-mUSN8%%l7sHNpUk2~)hg3AV{C(%TvKVo@C*cpEFV5nS-9l4BF*`A9A{>Ot)~ zvj^D!!S&9uto$qxt5D6!@n=4JDa23I4t+}Seb+z>-2YWczHRlP=Uh4j)lO_3`0`JT zl@!JGMJS0z!RfEEhRw>IWKif|Lu|m3;gvuAC3oY;Wp!1z3{&`v-!8lK{O%~4jhKb& zqVErXe18=SLpyHqqq5Q~B4>`VsE}FwPy;m~WymCtIU3VQAys^m-zgGAJbtIhnG8WDs#T$J zKxNe?EN=A@EXXW|{NC^kQ;5C+mXr1lunKW|QcX&qRDhmhod$2SRP!y@$Bt(x74Nvz zF_%l|huGit855R2V^Y$f+SrszOT`ox_JKhH1UldKZAhWH9aZu(Z^$gTdmL>UjBuTv zCLwBr37aj&>xj9v3+(Wp(Dj9>1t%BB!<+9FvNE$-oB2gFYR$=_rO%Hq7w9D3GY{Hv zH$LT6A&G5XwC|8^`z3e%umjMOS)JfdZ(J8c68zI5XZA*Iv?SO*2u_GeE8Tp2U4QrG zQ5sxP04ZT!&v6Cf+1hU(4F1l;MG$x~lafXCnV(&t2#a45mqfH|I?U6prG85MO<3l7 zWywt8(5f=}U)SuGcu|u6QAabxH+{G&WP=^6sQk;tJh{1ZU(7hDw|!1$GyH1N%cLDG z-N#u*Iikz0UPLa=D-%cC;;=)XU2aetQ;#W(Ugcxf2c?Q?rPBP zjs~WQrUoysvQ~aK@Eofg zBwLZyXitVAYcsU$?W?aSZ+rM)ptmtwpy3?UYNB;-1C^>}UGGx(ufHUWyBo$`rqZ={ zbToc&+wcQROiTAzWkeueGyR;H-F{R$1cTGHWM5$Ev{wUuE_!baAD9yo$#znPbzvPm zzoBES)PDAvvw?SQ^a5U%&W}X--gRFcFCKkOyoVvZY5iOgcyD19c=JqVp_i~utMdN8 zPOH$r44XcB`Ju`?Gr{@ye%F zLBCB!v_O!P4Cu3HuKo%iJGwId2C&tEp9XbRdi&Pfj*J8Ae8XLLbFP(Zom1-`lEf#F z?>Y3-?f^`|WmJLv=BgbOuUFBLbzelP9i7I-d}>>j+Ya0IB^tmA;&xU4E#q^Nbzd+e z3G3QaIgMLhYwJzp1k4`0kW@Wk7v1dapB6_yVHx%K$^@@KM3~KRt9UZJ_wS24;i*I2 zo?cPeMtaiC&>-C-9j|4PPvegEX0F_4`t$R)$!_^U7{w&dl+kOEi9tsQUYMq10ZBc~VlrG^PkMdas{Z2`Q`kT+1*aim(!_wtZeWbo|RnAH0ZrGBI5)<;LOl>Ne&lHk1#4IU@$ z%4Yocr$u~(HF2F>WA4WJWM;c!7&8Pm2n4do^>5k#X9a!moI3SBZ zl9kDNBu8D#1R^U=%k==y!F|P{Y^stIVwJutIOHmzgk-eZe-yQL_<4jYFph#!Nds8) zv@>Um>}6_pLfbMG%Ri0|=b6tcaddq#*dfCmEm*UBts;XTt22_Eezg`OR|qn%tV0>p zwU7vpJ5Hl$pmF-~L%^p^s$$&uG>Y*8_WR+@I}=;k`znV@^5T4ob^aRGwkfh)8jnAd z*@ztfP%m>d$mF9*Vkg#O{aWGHk5zr(}?ii2bjVeT$? zoHJ@EPxOTDfpOKS^m~TjD;K`$D?-~)>bDvtl7wqA0^geXXJwutdHysh z>=+l5PQ>==ueRt`9ZOZiJJ6uic2!YJB!>V-H?dGV4ZI z=RaNyx3cvb`%KhFqy|xcbSo=Kgl&_l9{aO?!f@m-UbHu>nt)wIn;tocao$-|tdzZyjcalw=X*~3BW*B22>z*?HfOVKcK0Ku zrxdC5`TKrUB(CX3-;uX)gQIaTnD1WswS(Rt)%DQwe73@g`0;ymqDJUscq0_<)>E{^fECSgZk%}7U}AJJ}$ov5ZL z!e2<2h`oESqI_Rkh1%#_n)JZ7f83JgNg7G##EV-v3LQJnOZWm{R#Ae~*_3;=YZNaC&2L(- z>m$qPW&vFPBSEky;97BQc8a<|ih7ikcjC)N_rl^2$w=8(5!fqn!PeQ0W5*jP$HSkg zcjz6}ju^k7oNo?Ncn+#?d?Q_%O22GDQm!;?pz;uhIqe{B$zOceoSl0N1jB+;QfIxb zivOKYhL2%{4#IOg`jg%mJ19$cWGZaVtnkPd&0dM~4<-}VOx7nE8PJoju;tcobaAaQ z6TNSmr~x7O@z>XXhrBou10D4PbzK|r2273y2?_XMeY6G;9Xvd|#rk$aHSK(zf8xeD zTu^q6A$RC{Kq;cLJYZ6?GJl;z4dC2CUCyxj4RrTKAy60;IBJyjIegwx>1E(n!G1a! zCv&+^`69&{tCNzMGwzG|Rp3qsowYLQ$D>qEa9_4xYZXo z@lEvnUk6St#Wq)PE5GD|0#e@3>z{Dn}(`=;d$C!~-YK=Qqi(9J*?J>91kRL-m>6;BEzmLjQK4 zI>q^=8yFCyd!?%5=q{aZ8_6gWPm>Sx!kL6Vzzx=%A>%a_6@TioA7;yrq&(bl!doiV zCjVAqXLk)w^eoNpQ&hS9g6%nd`2^?AgeJcJxNGMYe^q~+b@cUKwsk~AW?`!z^5>+I zgXj2KQF>#dB~*A|H@0|S?H5(w#IJHECXh4I>hztvhcjHdPrqwM)t4#$<6j9GpOqe` z(jyC5dE7qQY(T=UH`*I3l9n<)2&09UFX;gE^ERzs(P-KBIV>hdXBX8fDr-*xC z{Rk^{^j!nLZkV0;vxX$pqQ&DIU8JLQ+R|xi2@6&YiQV54t_MtJJG_}SGNOzGqpXg9 zr@te|T#qa)SL?1W*?Yf371TA?jyTQ>hi-KOJ_M&nTOalW^&=X(>>@W#?79{(8R91v zk!i5()SIi?g`rq7*H)QI26l+!OwBpcP{w2gcafAXA^^ezm2=mN)BdhR7Z@vJ56EL) zYC*{TNUFt>?ZZ)LvZHs3aF_6A4EDKnNJ`a`f0=qY4z=hsEb4y$sG}aza8aMDjm4H8 zp%=#TtIwp)ViLcowW?>Evd^?n(v<9rsr$XH>QSc?zrYLf*&6MWSWb)4sp5Rq+~T(h zN}9y&O9)(Hymwym*)V$6$S>8&FmoG+FNRp@t%)wJP@?!;Qgl@_6q~80a!?P zk@LdvLHO~O>Qq*D{mNi}etg%tLw7M7{U=c30h3$L|`(Tg+5F7!9PKqp#5+pHJ*SBd9j^ic(}q+c&j)uIPu zHwDl9+n7mBkajPO9Avldi3y>hX9;dJJfVws1y6@6BzLb| zbixz(>T8Mi&}?_&DNhVeIdK~!8j^Fn zzYDjaU;=6D%TS#5Jv9q?(}3u~I)!>xZbEJny)k^@ZejHm=0>8V1zzpimRXAWIVj)} zow};zd5#qd**pC8xHldw#e!^JlZlE0=F=PNIECJt z-#m!PkqQ6NQe5Yf!{q0E6o%XDHZAlxg@UVW?_&};E)Jry&xmU*?GK3;l-B|9xc?MQkz$nI|X;(DeRr2Hm z?qHAY>ryqWCYTCfWs>dCGL~f%jGLCw1^gt7+bQ@)D@vuI3Vg67nEjfi|4on_lMf%V zG}_0A^0ce!i=B!~i0*FL#nSXHDP38xe8zfn7R2HE!?fajvYWW7H|_je$r+Qw6;S*+ zvEb5WQ@EWQGQ_k9(MB{5>2;IbHrji0*G@Q26Jig61>vHuQRyCF>Qsd+MeKI3um8r~nli(F0gLWI4xHpxQ?rfyvvNH8sV769)$CMV)522y>gaA) z*_=pT`g;um?|B12^Qy7iUZ#QK;rH6(=K6;_+&%~pZv5WUq4M+!+YW%(T$~GjFpU1`sYVZna^e$+HsewNyTpkO zf5N60dp?W&zCQf=qCjTa&Ys)m{haCnWqa|<8PJEzKR!n#X&rwQFA?`bs`SEK3FGyv zE(1s@aa`0x@lNpJPH)|L&&&JN5^U6VGR-Cgy)<#bIDD@<)+TUSS$?S9z_XeI$JJR$ z<`=*on;4tytY9=?-C==~r>A0maEUZ#`4!8tFS&=Pr892x!#|p$8soz_j+C{;-i;QX z_F({QBMY34QanF!nGF6vh0D;9M38fLvRr%x=mwtX>l>IStP0}Gjg`*M(E!8 zbVj~ZB<9D_nqPNdB-+n1H_tqj!g|wllFrEsz}C2phKNq@#N)G$OQUVQjTY|43zwt* z)+ru@9ZXVtR)tx|Szp4RNFO2BSfPczux7enQGUfpI_e6`(ecQlw6#sy)Ik`+AT9Wk z%3EMme0pdBrtwZJ!tY#?+O2`KQdLq&6TkW5EG$=!I(2D$SMm9yUKz{Ojc_P!JDK2Zt8fj|YTsyQ}xpGkL-@^WJ43*R9tm1|w1m zL(RbuX^lWc6`39JN^0^?LxJ;R3ID|Q`r*RriHE!Ac$e*(6_+y|Mn!c7{d>lV_N3bwNs6gJCO^x_(=GoBEaDCOnP1mdA|>ipMon6w*UnN z1a{qXa@!q1N$?xNXzsj&HQ&su@6vU-lDjZnn-1+;RGt*UDhgWe*-!iO^YRMyk-s`* zB10BM^7M;}2Mp`#!M-D{gzzY<5A5~1hq(2bTQudP5i5S*2TlO7h1Y4An+Gjwy@=xW zsCYhKGg%QEi|y+?b+`su<<0<3@L&w?`h3b_Q6fIf9!R}3N#l)WMsH$UZwB|dqi{RF zJ)P^f&IS`BJ0i-K)5hpBw(9;;1=_? zC(WlY_ty?a5Lh%pKaMs%-AYFQcH#Gact?R|c3w!+=XiX9gljr<6o+6dP$`F~*VU~M z;U3t#pc=BHFFxy$G=%CL4ZvjvrA-#;8)-=D<`2PNUbhFsuseuXJShNU4C{o{91;Kf zu;VzrKeWm~^k+Tfb9#W|&LGWKNni7CaM8&bJvCV%pY^8g+BsTH8 zyC4_ux6cEXuwno7oDspyH0o=PRqzk8W2_}&I&@_rNEhlrE_@n_7*Ui0HRT%EG!^K( z(6V`)ecQ|0T^8k;9p5}esF_dEiU2{gJ1D>&B`6Uae2>MwKnJ(TVt2E8Zc29o`(ZWR zbL6E8%FH~8NbS&D80i?}5dZ+<49kB*Cu{%14Ufov*Zr+q@`~49$B zXtNKfyGcruKW_|L4;7{J>ao6-(xNtY%N~i%g}X52s6u>ol}jNBH}{S81ae2TnBV6|uMKeVR1i9vv3^lOiJSr10XKTrXwiF|?||M9GW+dj zVAM}R*XH}!G0-NUXuPfrC zdY?f4MxT!In7rIi<><4Z!#Xzk@Ik`t=s~n>zl=Arh?yw^0k6W$0od}GyD4E+fEHCC zddy2Ef+DU0z@n8O2B4J_1=ed--=i*HpE>p#qXp-X1-{@lKs0G_54C*OaMX+p%a~x} z)%WV%(IAPcBsB$u)w)tlZOZPVEY%A%Wq&3Uge}Y_=4#fFvW?~h45cd8_NpY$Q~v=S zRGeCor2=e9H)%}uD^2t$DKJyAjIBQ=amAzIVWLFzmbswGnN~MRxMwjx^}_&7kt1eo zY)q9T=M@dho*23uY)xhuqJK0l<6gf?v1@S>7Kwcv%%V=HE&eQ3*Bk@zaLm9)zlXca znNi%d1ZT-r*K69Qpl)sLA!PH7_6G6dyyCxH$>cy^J||9!CBK*|xZRw;t>ts)srWyo z!$%hA^WxL;oW}!^`m9d7elQkt*n?jW*!`iVO%@RKwz2`;y2QJR5=gnuu7!6LerMpg z?)D}Qyb@sd^rB-p+l<}CsTl#fW&{$@N*FY+3&H=+=;91u>HGZd^2GHLS$t(wj;!wL z#}w>d)|45jYCF4I=kfgUWk~jU$sGLLXb{# zP4Qmhj@t&I0h3)HP&TNks5RziQ&y_Wd1<9P_als_8ucnf4LjfWWbwyE*KpkFQHLHX zs8-kK?IXKyv+tKKjPb|4`2EM8SrMGDaj?r=Yh|cdQaL2p=scGF%>c_vdXlm>_$P?) zh*CAOEa2M4Kn>XfbZ>=<*sx{0UTg6nYmp^*!ZD%m-XwdswQx5jIfal&7W?3Jq-j%O zP*sr#9VYp$ZD<0*42gpDSHR6xgjiOhQt;DW3b*wUI)2eLn4)njlNDZSz>cstiz7H!JHq!J=!P6|X;AS#?5dk-o`l^WF7eD2FpQ1fV$^ zWj5o%N0Zcus?MuGaTK14x-1QV!kxh2 zQl*thN12l3nLB^-Cl2JnXD;t9S3pNDPHI~Y{xA^N*cez3xbH>HMn`VP*KADaw+ZJz zdblp7HNX>m)iN_L=6UfRKofa;>i#-+840}%iG9d9*j3^^hh2Lmtf-(|Q|i`z;>ZkQnp|e+<||f1=!^tz+p?c& z%4$_~BVW}t=inY9i;Cf?4Y}&AsaC>M6?mG~P*@pFP~}3*@g}MhT%1 zoe%0#*Zkkh&3S`dXI$oB({CGrcaO2HsE+yV3%4~k>qe-f_N!-WRQMw1{nEyUcY?xY z^g|5Z+XObehK|yV@R{98(cApEW%f5)`aI~76K!OXwmiWtcK--0s1gtpz<+&esB$M? z)pL{aPM(R`ob4FXdm0*HT!LMTHCz~Oe)0?g2;{PH7u@!l!nq36=2xQ0cGc6CwJZ;C zqmD^UOnWJwO*f2vDP`Ie=~k`sI66DSxfTcng*W#z9P9ZYLgx&Y`UP}DKzy#5yf3}s zR119&2#>M#h8Jp?!d;K!v;H7r-iD@r04ccZ(a(%XxU9{u>V z(*4@92|yucZnQbuHsn$-GjimqsB@m$30vY0dU*1z#mr*>FYzs07kzS@!`ohIEGf7n z-tL1=Uieqg%fde5X=onqb-i?Q6DcU^o+q)ElmWt85iZtD%OX}@K5&jrYmm=%_7Af> z?l$!ETPJ>j+Fn3UU0d_4i9rF$@24x3Ka|~TU5jP)ktNXU6g{sM1h4K~B~ZqH=0OCG zzH7eL##~Gd?cbRZn`<&;KVj?bFkfzP7v6c9_=;ffyi?k`NA6102!}N$7XRb%@OqL2 zr{j0ZS|W$eRD2f7_EDY$CUkMkI%7~|iBAicG(rEUtTUA;=n?t~2OPEb`l&8uTy)rJ zX^msyY<9hB1{c^OrOkcNh_!!xuNVc@0=7^3*(%D+RN?ivXC(K*lUaGr@VX-pb+6wQ zV=u^Jm2El6K2{x_t(K2qmb7#&{Y@?}J`VGMfygae3>=Za3*XRqC0Dr&cpKk5k98 zb|PGLKiXP9MP8m8%?aY9_bNX0S7kZdpx=&+3q1<8RE=-~=7I6QZXN(LOOgH_#7!>&eVKQ17fLQQRsTkXJ0%qRMUa6xOx;|7y~yudD@8=UzH|a|`=J z-7{$$mU$CfGfj9{BBS^0DIjJ#GHD1z4u)4tWhS}p2DFhrELEV9pZ42Ve9Bf>p^aRu z0O)>tzW$KS>i2AStFiK2vd_pCLe(EUME_wf zBgv`d$f(dG2V|EQ8se4o{zFe;xAe}+jOHY`h2(nqBKr%*QR*^EGD~V@AL)$gD^jA&7Ku2A4i!hnM5Tz2UQRsvma7#PR4YG zq^vRX+3x&TJGN3ke<_FAQ_c(l;Wj&xa_kzJkw4l>d0XATInyDh*OS26>G;9p^2{rt zF+2^Y3-fjf#A(4ws;^eRu^t_IHnuMi;=?8b6l3V{dOeIW>#0#0tdzV+1_OH9k&DXL zUWE*e;c8rZwdq6Q$D90mS}hef&7P6#15X406iea-m)|zHglQ#VYV~r+L_3)e8&e2~ zIr)UM*T}UgYsVOH!Cfxs0|&!-{XgS|FEVk{G)e6RL@fZ+++z5DC~J2WaEh855T>5k zhHtOS7O?WT#Kgef+g5g#fNokaJc%D0;~uxPSU6y*xtZ@JHs{4YyEBNJ;c0}W;dG>0 zy9mL3E~s8SBwiBKeE*;*QT0#wEE~=u`ZRXp%t!_FE1Hz$R?KpvBf<3CA@1Wtfr##*Z z6cJ;(2J{%WK7*kF21-})Sw>2{o-c1RLl9Hx^g*|GNc$?xWhtU{R@fnVXwCP-i)^LA z*OPBMHRvWQz0cg2`eajnLCW`c$4B3mqsj7DOG@Ulb%HTI1MBS*PH0btR!W`Z+2@8l zbNIv*5+qi4$d>(M-9B_Mwcy31N*un#@fHH?JrWd4280>B3lkTwOI3QbrwqLL*AV^v z9~3$Q8dmuU+2?C#!r`LvNbN^HcB^dxTg=^Q?Pr$!rr!*caUW2i2aXyqnitkWN2RYR z=SYu4-_-;(gJP(zMKgM%e@dMv>3OEd3OPB-!5zG^{s3>8uEaMI_1~&nB^$AU8XgMwInBA5>=z$Y0F+n z^rWW5#-4G?;j)p;F4YazsoOgHf|!BHXX&;cOcz!-)lyPH`lZq@hH5KQshU*u=Q?U~ zD^8B7^uEdaKK!Vo#W@3+$Bh>+=PzvhS*#MRjBE4oM)N9?~(VAA~G1IRc0863^# zLSUe)!l1-Zx2;wL2@7sI&IS7*{~4zG;Vc6MVv~shcI>n1hdz~d#kV^ts7<+QXW`yI zv8gRmiJn6BTt8Oqd7&aq=UgQNk?XJH`Pyc@c(&zfKq8WQr%}@t!SH|!cBlUN_~9?V zm`bSk8Q!%0Vu1<}PPfW;INya&vWqcW#G@F=W2XtVpNqnZK;G<(_MrNC8;-C%ur1;ACVbx*mK%f{5d)Wet(zrsEYW(H*cOZQXK z>mx=0bYCKgek*KCVf-z|no?K9=a;q;&2*mJ3EOr{Z-QncM>&64FEydY83T{+-wI4P zo0ivXY_@KmN&qVj*mVxQC9U4X+iJjQz2f8!_PO8 zV}=52;$qN zmq#PKURrp@HBYe8>V0=g-SVYjzXL>I$k=vc1bmV#lyYBFf03`15s;8vkAJ8mqp^G@z?TReOGi2s$H!8yQv3K@aP(sCPp$`z4}-P z_JZ@CFO+7F3Dg4sePKkAHm?8#$94rp(M(a^I`&eSn<_G0_tPWw5#dkS_ z57IdFWcucOf(XI=6j%A!B6{Ga@acr-P4tCt9|j^(jnCP)bsd^=)lB#C5Cj{@W*wX) z@WZFM%1bb=Ofm17UCfCGKK=Mj7|E@^V>Cv7K;(D9Uz6Rt?6b6P-vmA`-r?-P=9IeC zgLzQ{JYIWTzBnTH7$q10V7COeJtQyNO~Xvde;h~3r-r!k5C{jrQ%2&0Gsxr+#7fP| zJuiz=q_uPj`FGYm{jD8b0P7X7WYY8hRBC?>90a!j>VfGPHN*galYT5dD<7Z5Oj5JF zQKfA*kPfeR?C81X)hFbYv>6kBWfuQuA5pEsV8D#Pq@6^h+umzV5E_ouqTNEMm8K#G zWp)gS0hhcE@o6b%mo9q7>i3paeL^}kag-W%PVaYpyqTOnLC|Myg+e&Dk&PjT;{f;Y zJtMqo3qb+-ky3ZG;K(@BTrA&BEQ*SS&O@{8s6fUQ@mWa zs-GryF8Lm;s5oh#_$=OQ@oaK(EvuRc0LLw@@XG0oSAc+~7hNf%#oxgwK&|I|!wRl5 zB6OOxU4`*KnR~;vZxj2SRvcgyxf@oE;9;uY4p)eDYGqBh7T}2{;7U@r-Kv zh+d!Cr@7Dwr+He_7+9|?Be3l}-;7X=E)d@rv@iNHRNI{N1ancv|`d217 zO-`9Qx@HLlOH-}i9Su8j7XS$=f(3$ox5XJ1e|*DVU>aA}&wzlof;0_$&2}faG2#P~ zXYaMIY4#~Red#QehB(QrspOX$?D=A~-_7t;nv?grJ!3wSOKcWcg!B{xxj{DEp8MQqNa_ciepu+)*n(D}S87My0*ePiRD0qe-EJYnos zoAwQn(_A-u2y%lqU1uu{yie1&Ertd4B=0|F`VB;~W}e;v zG;KoEJQyhItH{Nk4%qK@pF?m6d>PR(0%VH7MW@x_x=p*Uyy=5eg)@8VCKf^?PUQR_ zZU6_NQQo%S7qf;jQJe}MBzWgMY|uy=`EFz>^008_H+V#o*cyJVQ%THA#xh+RN&^Jj zzKE3d$XEmtgwN7M)Xlo;lL6iEPn?Q>$)dqwAEXY!<5pomzs#JuS>+Xp+eyOr(RqST z8X4w@P^V6FeAXl)%(Um-{JbFqaJ73<+9LqcC4%*|pU$jm+Y*jn%a5|}RC+srAQ|5^ zx|StPq0}~$#*8udAKj0ulahuD+;UUxZl11@{k&sDBwmTnE|Lf zV+lp+MEbQef}+Ld){+(DHCH@@{XqtFxL(wIiN{*o7A?LOVwGhpR|iiaqkgkovAdFY zR8R15k?;5Q4AV-^QWs?8cm` zM{s}gU9UcXQ-`Bt3>#6_JI}e%o9yJ`jZE^qKh?)~>^Do-S9WQto+rRU5_p@;HqT<^ zmg8R~#&x)z9=7Tv5<>wB(o%1IbGiw&k#J0ZpKv8u6->o61U>#O2SDCsJ-a}!$if#; zf}cAuf1Hue^eJf^c|hM`FK=RZx2HsY429c`iTm=|k)8ap^XS7pl|G(-q@tQeiZjJ3 zfy7aqKFK2O1u&0%CB8ifOa2nEh77*iSJP_V*-H^csAO!AbtRl{0x9};Vbk~S<6&q_ z1U}1p)-~i4B_44>xO_eH{Ja^)C?+HHJtizhJf);|jeo3d0e{ZD(VhTDuxrjTH4d~Z zycbr$u1>G+KY=nkGsgYntwg7wApl$+%k(TCnLUK@%P9Q-u*T)TacSAPzx=#brZ;t& zc;6e~_lybs)HC9=z773`U>?@?i`d4=AGwj6sbkrl7P^3tZAyFIzb{T}ai-})kjvoN z?Dd6;eO+~_>QtrX_``Id?K16~5X>*X=p7vF??7?lu1RdKrj#%#d~B^&=ax|Y(C!EO zPi6NO`}V2<5+XUO0T9o{cX|h8h}1XjQ`es-iSk2)(lTX_R&|?{>b+*2JbNuh% zxfuN4l-HX%vzK7qe1W|cnGjX3LZ^po=ApYcDAW$OH^8wPNcZoEx)<>HO<&=-TeEk~ zz~cqIxwD7D+p)JNgCKvmLvasj?^135i4&^(YohJVEqV%{P3lGGR=UH5$4y!!01+xOpX0D6yj&%74tNrCHh*(O=>F6V`_AKBHiIh7EbqK4K5=-yr3#O{gJqEM8lX4&xbuC| ztaU8mIDODANTU7)_qn&NU+o~w4gSczVq@&RXlqu`O<&mk-?_ER!IN9=I6WvjpBd0h z3LNBZrX-I>WN$2l>-zXbB`=Pf(X#cN3mz*eDhzLQj&A@OxDEE3rR!#QPH=51w3k~n zS$PzewRx1Rrz{{(Cp0=TeYyeVz}vjCH}gRx)MZk@jj+uqxx-#AO+JeRKt;9RoZ-pp zk>=q_HU~6E>^;I@QCr{^+Nng5<2_ zC>-<)#`h6puNG?g6Esmnrfp0YxVr#th;OE{YMlV|Ml_6c?A#eV*g%^5^Op-De;wUN zhJKaE%9RH zWV~n?)K^7M>a%#fMZis|k*k^>2lccadu5NAnOC-YP6ApRnod0UV_0V0qr}B3&VaJr zNYf3hy4^HUTEQt~$hJrMqOFz3D*(gv|BZ$8%uj7ne_!;UrTFhc{C7ui{r716&nEcqLj2z@#LJKw%4b0b+LRB-gLPI(fY=+IcRn3vmMfy;1M4?|<*P|Fg^fyAc0fi2nwk|JegvpU&ZF zK<*kxseYa%5BqNFus-V|gTJM8Ue+wWWKK~YNYY#XMN=S!UkMMJ5{~`nWqbz?Gq(b| zu<1RM>FA<8xT3O(o%>zHbSff!swi1qFVyjV^waTW6w6l5 ze^h(@DzT>j!IQ#$KfYh*G^(S90o#Tq@v*j70}>Np|6^Y!pWYNMP66tftas%z%!VI1 z>wxjfi`=)nNpD^eKG1T?y>30#)wFaNmp%46S(d3C_rnFcIX$WE$08g~Vd!p2lqb@o zt32?vVXM)&&_P}pi5(vs<&ekZt6XD6*th>k;4ppjHe+e+9?k$P1|u27z32d=5`tL8 z8LHXyk86C}zhHNs$Srw`^`0Fd-iT${=V4-p;nwBkxDUkqR2)2!y~Z5AK$`cIjB$cQ zZ6>-zafu}Cc*Y7{G7bNzMzq-4^zH4{OaK<%brZ!~5l`J`W#y8U!0nDc`1cD;eE47*S7`?ypl^KGH-H;s5+{~G<`ghVLr ztU?I(?~leijN@Dg4Q3+a;1MdH)`zRxidU|7Yc73As6y{EN2+U9zB zDrSmyXQVmn(_`@DRQ*&$2FyP0KT*4%uO)AB` za6qWu%Fd*wsFpNVamtTj3=)hKU`>LfoCC+v*4*sCt(LD~rbAYshcq>wD;V8G3j3$5 z|8>}#cN@)~s}4}w&j;gGoi5qt+0s-~Py#66^v%3ZM1JZ<8b+%<$YfzSI2U;h@uK@O zsY4o;Im_z)eHThg+|(>JN>aNa15u@hf{18U%KfAWE5Z!mgmA4<|CZgy*bnA&$4>Z| zgXO6_pwwdxMdvRgR16x>(_SK^*R{v=a{$$qTY6rNx89Zl)U);<^WOB6r%N&_Ru?BP zxaQ@^=nNG6RI+b221cw#ghBX4xuijQO@Sos;HyhpmloYE+*`r0e^$PjKun?86%9Vh z?n{zJtkE{_;wgAVj8k8;f{K9$t!3juln@u+!^T#3PXoqFv&6&+iPzE!TIX%w(^^Kb zdHSwy;;3I($%oIUQ=j%qXl!ES4)RcwY!eKgjWn9XmS_fl$oh0hV1C|zK4TNiSQ;F| zct0!d39n&0zpAhtdGs^uL7PC~t@dUkabP}!oy!y5og=DJ)FLkL;$$^(G-he3e6aEa zV#D+$Y}YK(fj|VBUC@|eDFa1Sd{%-?GD5?~&KMg`$Zj`7NdA2HU0=08*5g*lI6Ovk2|UEQE-Yu=g7q8-=s102^@*G{Ik*3 z_;B0$gM<_zU_SI>4a(6!d(^I5!T%01+1m6dN+J$V%~YU6dtZ0*q`1MTC4tb4X03du zyr_k}r~qx@;)YKy)}G-h#jTVDuVr=6+q_lqsM%?d zdCjx^@254!uEAE$?pW&LPx?uj=MfN|${U4zUxe-?Q3KEraWfe&3lmVWls>>Zp9Vc4 ziHJrVcouGg9lYdiKBl7JY==N@0VKf&=|6TpfVx}(b|u4HMzf-0OKMIb0>7y0NeBQP zMr4B)FHjuglx5(4Njjb2rFMckp-2WI>z}LUQ-x{V7594*IifCOCC5OWcsX}AJz%XB zjivc9oJ>p!SwWWKN_%0mXQ>60YGT`TUBFUx&j8u5-3{f|1+!gG>xno5C>TYCG5)3s zm%`^W0nX+CdK^*+Yx$=k#`((=w)OHj;PMw27qhnq33OpEJ(&UK4?@=~ORAI00?GN< zwJ*K_#9N?{T8ZYhP?MdvAzeh5Ch~bH;?mo9n8jFn^+o-#bjmY9FOA0*5BNO*r#Mge z_6sMK3JaNu5?@cWYul%65g5vzF@;^C)QnUnBc?A*KKODhWlc&h|4dkpTtWEzlq+MS zvRseHae=8mI0oU#%=0vjWPOgAWg8PLXyORWgUqi6qN#y5Re8J;GRVG0DShx(N0Ufs=r%d5P|?EqCaee7mVf3J z3siZcG|f5u?#qD;2ja%Z2YBIQPK5g)hH3V>iuV|;Vet4MIO-E7tPs;!fs8@0l?U@- zOc~Qi+=X}_xKjGaIZ~&nmsRFv)25q*RYbN6l*a{{;0kT&KAqKKZ&yoh4ncUR8-XKDuz^D{ z&@YW5fLR<(`66-rc%x1a&tX69x3p$s>}s($b|-Z%^6sA_aICa>ViWB+HkPX$GU}$a zIIgY4*fq7V9Ih3F%uT<%;MKiMcg&h+{wnrIg)NRm-NtPg1}_TM&9zDLV>d*LlFsr5 z$2xMo!vwA$f&UHg{+gfGAgepiul?yt(f93$KTSP@y_*Wq(NbLGmgq9!CD-2BpKA}{ zJIfsg3aVYXQStxU4^N6ZJinOz$0C~;Jo2q@F(W<0kM^}dY|aGo*fRMVmX+N|ExaSA z>%4)^XWX#ad}4E|{06Kwb=%|ibqe?B|1W18M_Q&28gd_vyG5v7<5ky8m7DZ})FGVA zA}t9p#4R(k^bId@hG>-@DegWqIfWKRQtO=c=E(1Arw>_RTR)cyB zzl(;~PIIafk(^zkxHRKwN8B4Al%U+!d(LDYZ(1fU^XjOie3$Amec#IJ`k#DZ_be=NC=Zm{FbSo9dOB(|gT!Y_NuMr0) z(`i4)tNnBM0#4oC-SS9y^C*or)u@2fiUWKnZ@@gZcCq!y!h^T*S?>^7$04VmfTM&o zFGDd~fy&)Jycpow8drrGC5`o;C+(Q!>o2zItn(WW{2%5tfhThg08Q85>&JeKO9H$m zkyuZPQQGgz(%sRxhgNPNu|Wjw|7Azxmo8G1%EVlGkn8DQ>O3D50=UuGO?#aYm=m?^ z9doXF=w=+RnC5D&A8c!Tt77%u>Jb}lANX2^7TW#cuTRWhzeOJ3d%({lQU@8=f=&_+ z8+h9e4T)UQ{UqFj!Gx_|rA__LDL<#CX^G?0EArUo`IWCqiLyjxIvP9{f3RRG?qQvJ zXpxYD&S|(ibhV&vVZkr?>f+76oUwJBCuQbzD(q_sxdk|Cz;ZZ7cxh*V>Aquzn5qPunirmJngoqldr>d-0_3O(|#?IT2 zkN$t#!6>}jz>-&~_^isU7wZz9PotfMaVnIJ=XccbH$m9XsB#yAn}Gi*%7&tKYG^

Dl%}Q zW^Y=3j!8RA)=+2_olUw)iDbSubF={rgN^P1=?Im@F(|A<^zcZY9%y&B%+_QZ?f`i) z_!7L z{$0Ed_nndFsqR9&ag^5uhEZyvg!P$KDk)4@Z}j381#K5-|hd01%u8FF%MS!t^X zX#$Khqf!vE=HQ^D(SW4p4x!VpZqolxpBFp5nwh~W471=Cv&O1L{yLmgVsvd#e^dYE zk*~2*=x-+%cMEdF|5klp^(5Gz{Clxbq5+gheg#*Od~hZsjhbF?qvxBOY6ksp|J|H- zXHZ)HAC%7pk)^K*$8fiK>s9ur9Ot_8erG6WtS)lr$;<%jh2Mg$+__SpP2oHT|;a#J1;ug+w1f0|hj_auUA9KPasB#MT*a;K-_E-a9n z4gKCwIw%{Z?-va>9_*jY+nKnCyqLYhH8nq=K*oDUKe!k37HP~ao4%=kx3#FK=vk1I znv5lob#JEyy4AbKGq+x7WNaq>>B(SP@dZ(Q0jD{xFBgEFDCA}Jw!xhMSz8`-8h&vV zEzN=uYVcXV%0v&{MguK^7ix-bZ^f<~%sWGAt$;yWKVS*P!&Y>K#sZ>VOb9+JEa2yh z9dXrq(w`Rfe;NG@y_LWu5MNz2C$&TeBWZ<+WQx~R&amU+ijqQC@6e*{Jlfj*TI$x# zDl6tv=uY&|w7ju)Z_~hBtpP!uUDG}7qA;71z+U-aNEOP4pSi-7z zg*0}v-bzG|RLA;i?VacO!gk=QY>Z%uz&Cd5_mBF&u;0X37;t7afis&@_s&GJtbAd& zxf;;$DyS+AXAWLn1_HxFDQS`4;T(sRX>FupuqZ>|)xGt~4$h_|}T zXf#7psUa|rzE}El`_QJSS~U8Ynz8=*#tsPrTJjn;!yD0-4nVNuRvc0 z9v%LX)xR^#OLJ*j`y8?q1lL$7e{@XzdGMO4`C5k=IXRuC^7+2COD2jA1L+ z-fiy%8`#;Uo)8cFI;w8#SmUYK*Gm+%X4$)nlDE_N^{B1SWaVGKNC0dlZDpy)L6V?d zCxQqRJvip(Wl@PtojvA6qo7nkge82|c~Wfn%rBgx^=E19G%WwBg7!fmV&}5FVwC#~ zSa}MRGYNDTXySpSb-tRJ<3z55Fnm@hh?A-@hI;%S*#!}{=~xv6QBdkXqnp%x5;0o0 zx$37Ws{%XK512o}OSuFgZhY32h!}p^NP&4!WRc45!OG!AP^;Afq}kan#J|~N&%a(u z6?$WB+BzpK<79EZvZCaLBr3@Q4hXTBnk^0Yqw?$4UOT#g_YpRX=_`ABhJwgsNkw+q zb`Yr*NV#xZy&1dgvs_}cKGA=%jn%7TOT{Lh;##X`7)Q?BSue8;xw^eD;#-*ASXIFD zr#*V!y`RkZtM=O3;-3dvanHW^2IHzWQ5oV_R!Bh0QQm_WiBhktTq)6|>g`JbgX|l? z*Btn5jNxp9wLTodOatH{(nU{XjbWrc5G_UEeG1tR7MlYQt8SB95?8jp1Ko>9C2=vo zuIOr6osNmUf#EL0`-H?bWU{`xSjvHHZHIJM7xgv)R1Heb;N|J@#W4_0Yz@E|NusP# zpQ(iQKi>JR6ZPqwwO&)u$Zovh5}9sj50oheG$4B9zQ_v=a`EDRdabZJBufeK^$df< ztck=yL^6gXG`NjsHAyxsM7=t`r!@UdP6(ir;phU<+M z#3O56SE#dy*Pn8AfxG-(eZNU#k{2{y6bgIY0vz!y6hL;+2)oRDMT-8Olc_Eq%*>fu z>H`Cgc#qPrK2en#+@uFnK=H`ZUC-fSNeceD&&BgB8S1<^qg`P5KulDyCb0&`D#TU;amcXy&4tEn zl{1HTB6g>7WDOST%_eh+{^N5;N;yM~tK7}Iq-1yPeS)KhQ)J=&?e2M$|I!w5B*0xu znd8{f6u734Xl-TN^x?PXFe2yPLTgW^>U6?CLDKz&in z^P175F}Y;5UKy5ox}kZ3Q)^}2t^ARy!R;D#UOV&njJCR)`9yU1HiwUE^Y^xa^2qt( zhfh|4R&fCSYD|>+$HTRm$ZQWHhoiy*?#-V_ULiOLgK7bJjlE6LV5T=U0T$(8^Y1{7 z4wnPEs=-0>>Q3R{vo}L!)^_V!;_hOO_t2hL8@;CO0cA5&D@S@qN>wI1b8j2>dTl+r zC%cJO&Zo~L0tx4$v%h~ue$=u=db*Q`v$gI#BY;?44BSeq1QP#1$7LzaBOnET5#75M zH<_bjl4V95CD{nyFWN!VDH&oUB)f~|rwMmZ(B2WcAOT4V~REuV~epQc3wpUm2 zqWHy{7DgZmV&PceB)1x&sFD1VWm%s-aryG7s;GfxRGU43KfX9?T~HKnZ|G?2(f{Vo zuv_EM9l2a|eg|G&R;A6!iwihmE9bn?lio=??u1bRW2s6#!=sX>V@e9>>Bk7)BU)fVYt4~rR1KKGmjSSOKCF=*&!%suo0C!FiFTV89CghUi zdo#_qya@p%aJJlEQ{teFQ?AL6=}y~RcuM3rGy2sfmxul53!;FKyw zXMPFD^5r{8YhO$PcO~ttqh`3vV+&e$o@zyw{JZiKO}-|0C7Vq&NvZqoB`e>U!T$&- z8%Bb^Kj6J`?>Tm35tR`*rUV#64^38A(ZG!ls@s^$5CE(BIj;{zPeuGT?C~RA@3{4* zhUmhjaYBz&L$EGr4f%CNQTG;b=X+LER2k(?`gBHM*1ywwSZt1UDKxxz0!}yJ5 zf(@bqYyd;&v3htSfalab47)%4>sXn*8m4qp$cT2bT<=pv%{M4Csk?#X6F>YG)A(6v zJp*a3^m;%OKLHe!snT8+RnfzIZ33@;WvSs!v7c*xzS|-|b6xRS3Y8Yj_bSwTpkPwi z#ZwuwR7u3jCH!8&RaCu5*c3MMZc_90eB6;|-SOmW`Hrs`PJ34kJniGb>T5_9eMiC| z0HIc4dIQQ2-n`Qs?P0@XSE>>#)aRTJ8xA*257u#^hzDBAB+|AWYLo2S5sH z_VSe-_=-wo?4=0FY&G;Du&W6wCG zpJf`1`;9gy0K^p9v4sTg=j=-LKW6HfFcI_l8Wo@y)BpbKm{w4>hiiee(G1!EY59#O zc`w+IV4GU)Ge>`Vn`B01mdUk8>TuSUcS@V%4ETT)m%G?;A`IUqDV z4vw;a38?{SipskdwrhJ7So*y0su_q$f5G=|qj(=v4fA*jKX6{J*1B}8L{99=R706f zfeN}`1{Whv*0V3$3Z}{zG)2^uR*#hc`KY1_%3VZA+esI-Ta!Wt6Gj+F-N~oV| z8;qd9WjQ4j{RD~X*@lfsD!@D_C@T!DznMg<*8mpOzV78)c`Yr#x0J(Toe^L{ob_OI z^cLhR$G{#?8~25j#kk9IxJLZa{#BRbnapw>*lL|9}LBuM^rgmPQ7ndjOIzl2;PN_DZowspt!c z+rOulA6#7n_VHG=2y7 z@}B>sBt+7fFlHIrp17BSa<`nHI|yP*mpF*M(Z)A4l7co3hlGZ~fH#1nZz3iP^mbmt z=3VLKvT2M9p&p;LJ_{=N#Nn*@f!>(z+LzO`58<uf4azF` z7M#9Oi+q!;Cf9xX`J^OnyI#%b6=o~`c9(sJORo&=9bhEs?$vjC?a&8?+=1W=RQSGQ zMxe(pr|Z7^mKpW<(+986sTF4T2^Z~dTst_VCUxy}lq1_T4e-g^81_j|*G|dJOlUBF zbcp)etao!_IXSyY=dXmQ_nZ@|ZXKhj=Q&JXCJ9LC$}4|ZYxItO^JffUj}(T6lc_(s z#ai29=e=n^KmPd~lDL%z`+wMb?{~J}_kEmds|(K#)l&4?Qmd%iTL&6ykJyTe5u+86 zTA{n8Xk+gcd!$6D80j)<3ld@#B~4<~CK0}mzTWTm_xSz+pP#;;ca9?t$3Yx&-?^{* zy3X^u&hu9pH`rGN!~~$5OP<`GSB24%pJ<&$*W;`uVE>5)j@nk^}d%5fK7g-BIibuy z;WJCDqg|rZgOE=j4J@_o%`WTD4IA(hpW05$wZzs7kJPNZcZlOTCRV;+^;5;;J`ALL z4-cB*rdfC6SzM-=C;ZtD-}zW7=&VerVj(|+@K!8mNXLeimcBb{ZE zv|;lelX(ZAbcN@jYdir)#AIM3?E}3q=Ljos$0o0vC`=Sf1RI03hf$ zEG#s3V=~Xd-fQoSwz|dDSGp`)ofpc@+rOGnp1Ke2%dCoQLNJq*eWq?Zb6>KQXLFV6 zGHm5W1XgVOD&k^dNNwb);1%pZEsXtOO z^72Eop;%|Z)6o=3St(MISEQ8-Z~BfVj!v`_6|$8b@WqR~j<<|(-}H&Dz^aBfL0YJp zi?SNmY$aR~h~!%uQIoIYhig(0qPiM?eYEAlHno1d-#`qO#$%F@d zka+YcM(b9|ste}L;hw$b>pll(;tzwoy0EH~`%QrrokcBLcTn3lp)b)>!1;oP{lKpE zXGWR#z)2KU@z9kdUon#)AGLsWzF@ZNF_u)TWPg7QI*F)t2!bkN`RWU=+ukMWR=z(MqJ8D@{NQnvXgR2VX)Y6iY z&M_K0mRCWc>N82$kw!z&zpp6fwlhI=o}Tla09Wgr5?Y#I!D!ENod7hQlCeF)O=%2e zKb_l1@mHQ5E+<`9aw!sTb6`G)_4l_H`l{}_O@T#An=6M){G!Uc&4YzBZfA4zu1k$) z;!G-{cJpoLxDNfh>B$BDKneUS-=M{MXi|Nz8|*y!#w-~}s#a+4c^~{xe^3lGRgqfk z2qkMkU$yCeA{pCMcAmKXU-}KNLQP{pj>Dhp>W`T>4I$=GV+4+T(#S_^6axsrC7-&ApJGRcp+RhHmup{b2( z1$YZf%SzD_4KVVO`o5Te!Q61gfw|#WU*(eAyTf|^^Shp6l5*Dvgtnaog4s6-my^Z( zT^nv=_LqzdcXzk7F0Sod@!XWhT7L?}nAsZur3iT_s>R5gB$qZP$$)*|`ADI|zCWpQ z{@J7v$}VW6BRfyK;kd0|>N$Ty)K9O@lPEuKk^BW|U#y?lCqLCVsIdJ1sv;Pz9Ur!b zx+Zz)r#SBA#xw+Zp2Go{yTPGnssHx71Ww)N*<$8StL)7j79R*I-a=jBFJ)o0WPI+B zyuRAUUQs%#WKMfqV`Nt8d?NqFs5h>^H1Sjo?-KFsB~NI`{Ob|YtI3zrvNGWN!ShC^ zRz_ZN{PS*Na!jYA?d5LRRv`F@Gof;L_oqj9#(dbCeBWy#SZC+{Z?1Rm0dU#+R`tsB z1c*PS!efQgX829zk?ANJ*4F}s-w-X>=rIUwI+-UJ9ofcl4Ln;BMuZn#}KuKLwuY(*AyfLbxq07;vteR&BeA4u>&6wCH_*Z9T3@zPAl z)gQaZ=YI-#uiT}c{Yc+EXwrYJp7P*G3~Jby?_MB@B7EY~smejmz|$pnzM(Er_uxIU zC**URlIt*^?$h2TKgH`Uap_5JEsYgLhWj4;^k6YNF-FyKdOq?DsB*SgZzlbIxcbA1 z$D1TwKq7i^sw`^~*ZsuY+Aa?${0+SCeo$b`c+I9>?a2N8_1>Y_1cd2#87a9SH!%)# zY|GdjaHJPZ)J7aw$V6N@tI0bd9@#-? zYd-f>=L_z54bK68Fg*KN?Vae_cC60@^8}-=%EIe%8hfD^9uKxQ$hC1&xTB}>+VI#;M7gWYchMfWR`k%GE2HH_Cy`r#c;MT?nK^pk zp}QtQun^5IOJWvZ8fV_Wc1mpH-4*(<=fDkd)v`&Q4TYM=@wLR+KV-k8qiKKsIV(`p z$o$M%Sqj~0&V^`Tlx&*rS~@Rqg@gL)vgGwkmn={k;lhC*l(c*5uK~bN#mW`X%BwM3 z=l>QqkgFw~7xJh#@?EmgG9|+PRhlD+dN`Z;Y)_A zgl#$GyZu=xTC+V1QPiGAoiLNLQ@0=A*fSAeCgB+BdR`Mub3nx4G|;$X42hVR#Q0N; zK`~}V7S_RaW+%1^o@wzf%uD~PuKa5&s5YzL<4{#CmoG5W_pQMs`Bp_M0E9x9a_G_* zJSawZY<$ONk=Q|nqst3Q>%hv63F83$?~|1u*lF_qWvW7Z+Ijx6BhH@hE=qWPmKZQ< zn|>B3mc0Ux$W~Yohx*5v{ftv66c-lBYtgW%iJDzuv#=zT)!}0gSgr23dz;z*Bm&&m z?kRr1DqD4A9JV{c^-qR}e6vx9%Z0t1;Qf%5(c%t_I=Q6MW92D+r?10Tv+j)~KsxWO z5FRCw!IU3g_q1fwwR>^vckR2;}T6bGRkH5d{PQ4BdLG39v+Iu*CAKsyC!KYZj}V&omloVc+cR|l06jBeb#zH-k_B;-$9{$L#cfNu&(k6t5tv`Wy!E0 z6|a(?1LVA(O09{U*~*qAtf>3Mv#<*Bz*@Z?JxzuKF;|_-asB?^xkQ&aDAP)SH7WTaHK5 z1ssW8%=oOl($dbwThleUia)o9yaLObwMvDHcqO~~hxRbpP-%@VO|iuqP8&DK zOCmhSZ83bOmfhbSM{IXD@^fATh1nBBT~?eePWRxyIW!@o@)fSx5Yti1$;0IZPs-3! zZt-7aOS%z7Q@+qD82z^Q)ce4gA1B4N9lBMvjgx{a(9k#qQR6T}q91h0;NWbW!dsL< zS7OSB-)^z8ENY|V-eFBHh4#9X;f9z7Hq33~ztja(Hau@Ae*Vf-35l!#R+)#|L6I`X>CCi7bB z#cboQF6BVQOf|0P2G`dAkY8c$-vRP#;=n7u_FoTs6Tr12LuLM|;aF#3JlHyz?F5Fp zSB+Gd>7buQOtaRC)2oKd!bMXJj{JP^XCf}K4nYmctsOd8GsCTD-&j;R83e0?>?gFo zY%g7rJV1NQFckdi79uyFn%Qr)UQ(B!rzG7T;c;%r|U_5v3lbyagavEthh%{07z48zH>c1MXsz6 zt%q3CN15VCeQ`gZ>;dJ_?f29v>(vuzEE@jdf;k7Z3;S$1JnAbj(=Y3js{pA&0|>kr z+~Vgn!LSmy@?td57}WQD^h@X+;=CK_2=Z*meCl5|1#XR)W@{eB0Tvh@O}~>HGjZxA z^o?X$OF(@1J&8WvmA@xHn*rd=#b@W zq7?+SwnjgWpK7b$tiXBp2Iba%dU1DCSfM^fkmDb9Ro9@HkmWzlyCMJ8TKmVUY<^*J z@Yz`F+rW1U8t%;pA?q`lTl25!lnMeRWbsVUBoTF{Wq-Jk8Ttyg{o1Pk06-A$p^xOb z*#m~c$;nJ)eBg9=UdF@v@&be3lwd}o-1AqOhn}4zu&f)KYL$S7Rh#kYEx63)W^4i! zXs?dn2FQ{e_qnr&h7bAvWy2ojXwiiD)@4>KSJ$>*p<~6_xcCl!i}p0$HD?QPP$G1^ z8mH2KVg0R^4DWW6xuqBveE;Szr?T^%{U|wLychGWM(G5J;?K|OZMp9AZhBk_#ROZm z0H8YjpfYn%-47Lp0Xow*XDsw%_6YIq0TqA>^(~t*Xwhq4>x)>FcuK z+xL?)#M{clA+=$UYckSZ7gMMI0!-JBBbx>XofVbv#v}GILuaxY?n-R>=NGaMy_;%v z#Trjzrkv+l9Ol#KO><{~d$DolfoGk!vpl<>wG1<~pZ?Y%t@CdUz*a`zW6d=6+t3lt zOUe&QZ#v@M+KHY-W|XBKtVbWcq+$8Zz-%D;j-j-|kEn(tCHjOOQn{WvHHFuB0(f90?degUR4@x`Dq=jHp$&}WBmup*#Yf`RF58_E|CYG`-g09zQO5yBJ zwgJe%r^~M4A%3LdqLVoICNbK-ens&fSG$PlYR#cDPw@s{9GXhp&9LKQ&R4z43GDO6 z%-6V(+F$AOBc1nAE7E0cfLg_A-|*T9E;to14XP!PLZsT=K^>jg*~jm+XyVYWD2vNJ zF!}E=57H>S%Vi~N$6=1vk+}jj+F1c6l$9QxMexJ^oHVUFa^0d)I!&K)VBCR zpx&P~zsRHAZJW8?znK?v8g3)&=VDP0A;RKI(mr0G zmS0}aY`VF_NI$r@bo!J!=dv;@Pa%1!6Nf=(Z#F`#V0|{m%m#E+2gzjuj9l<8Ltg<2 ziC2A4y0eeF-%{d|PI$#3=oM*S6cFK)(2F`ahZzEpR8`>$6JEJI&~FW!lU}y8Y+7)BQ_U;OdM-({e5dA zj&_N>9H?|1TH}jah1Vk4*!YC+42kq!@?Gd0r=HyX^d0NlV^2L2z^rS&;312Nn!6HN z@O)D>#uW_|r;;)Mc!STDCPq9dK}V~>CrmR~ZbS;qwyrqeJJj=|-*=f6=*xJ8+Z26R z91wZb``4|xI@U}_g@?~%w>QVwf2`MS{d!3!B9{i+y-v3-kB#xHBo)Z3q%w3BZRxC|uT-S`b1ve~$rjQh!W2iL@r|KVe&@&*-Z237=E!)nN}xYqKrrPztA>v1M!3 zee6_Lmid&mj|92OA%7P;YsEd^0L3W079JNPb4UA)1HZCj3c61X-+5dDVLJ#Q+1wQB z&#RkbJ==e`$D!t7etEgz{=TERUFofF2DHyt<411InLf}q=gU>!Cd|7#rZK@EfsW!O02p5%0?1Pp9dW!l(VRB!3GNiUig zm`;Y3lJjPy>2_!Aod;FYVd(fn(WF^uLSKOecl7m(s?E@08;)pO&j+B_r4<}X;r#sb z4miKJBxKEPC>TSmuX40@X?5ORqLg`nyx_m>3UVU3y+8kS^X+f|`A=1j2o+Qx;;54b zizum~#1nU7dH*v-#G%BsG%iqjke5%__4XdN0j7{l#N_EG{_BT-zxtp4J3sW_kIRPu zQI!9AL?8P*o%27BD|*0;{{KAQaQyF!{<9YUyAc2Vk@(+*_}_)#_&*aPqW*jk-~a*@ z=)=nj_AeRhpTwt2H>b_7Z2Y|z@Ok4DBqBgjsMR#6RMFuf3FGB ze4e*l_q+cM+Gve)94}GG6 zq7L{-==b+JlnLm%l=Y6oMC&wtfQiTD9cPpdV#|5OyRCgm9RnohdQfWC5N?`T4nf|K zooO5lU#^&D&o5sq>v#vyD!A!=-@d+s@$vn9h42;fPvm$*;LrwQn#jGQs60KLCVPiYEljn@gDT|`s=AqkGesPXfE_JM7BIK-_ z_I6%8-)_a;4ZQ9&{hPr_1IWSK>0=K-Ur3ue)QKH$-yxN>vD={M?wPS!u;+ypJRHL- zi!DrX9-{tI>1l2F=BIo*spfJKd%Z`g0Pz;s%)y=KN9pwky=3EDNX7@vP;;n=ksA+tFP*+?MLOzSUigbx13{@KK)%TDN9y_E$5x}zmjOtw#89C zAF9MLqU*oWJM~Md3EHSq*^)8qb3Pq0Qm&STc0%mH*#!2^>#Ba|d)JH+-ZzQd4{}Y9Gl}hlIWq z2}6Kv8BgeGIvNj-F(Nqb)dh`Fnf;L_iXL)CM_#@ZR8tD2yK;1<(CNPHnc`d@R=vLk zSRZ9Qod5h4Z-s7JO3b{mF4%sI^r`kvhe%bt_}ghOt8(z;8iQpGgR2Ok!s^MU3S%Fz zO%m99Q$R*}{kaeG0cHGnnSwx1W)-8l)rr9B)}{|P8n^47j8172bH=+y@z+CL6x-v4 z2V43sPfm%p|Pep@P@q9=B2 z*t5S4b@Rk92rrh&?_-31emHtzJ}Z(5P2j|-&Wp;9mrgR_@gEH=fyjkleE(fR?j+f7 z#H7EU)FGoHuDx7c7OPYo<>idnlLOA9+Hzwz?-VG}3qz{q8KeEAO*WcOYq@vEFPV%> z<3fxZkBT?m;uxs627?(>2dw0-2GvB~`B`2;wTDj%`?0=lmi~Nj$raciH2_^e4esJM z7lB1eXSYaQm+tzl#vwa&HbEyZ0W#cYE>gqrj@)`2%#c{Q8KgR?Gc#zAT^PX%aehRx zI6mKzjdIEO`St4+;ou!L;qX}>K`gnoD=@Wre7Rd7%BDL7Sv?-e#!W?0dp}Xn_vKbJ z?eB$0t}um$@G8+MjNi_9=#zd*QtCSJW(VG^cs3!tF;)m;Cr#LHyFY$AyU5|AN@)3X zhd2*o@YdWm12dI!EbzZ#o~q5A zIo8+L7)rbJ5b|71_(P!vCkN&IQ|H)C+#M*FJEOt&_rboZSrp+B<``5wyT;3v|0QHc z)*f6OsI!-^l4L^)Uwl_2wAmXKSxRvJSi*#tEp^KJ|xLR|BI-AUn$(ISSxX z5q(2)I~ly%8mn0x|I|HPy*+ubJ&y20EL)aiqNom$)U}gWD{baXviDFbf$^ddq^QrP zf-PQbD3T;8MMDqux0sh?N46Si6si2qcRhH@1RD8&*H5!8<+a$;pQtXOGd|f73yp#b zF`K$iN!19@Q`7MlmCN-$;YIt(k&V^5VN~Fa#|e{U-Cj+Xn~ZNZ9mozWtd)l)WH*IX zAXR;yRtu?GYa98J8|1xHOKLO`#xh41@KyW{b=CJzl9PRAC^uyt9P8(pC5t4$7C0kr zL0Pok^Tfi%PioKS;FjsLR`VMdCwb{L&nje4h^`+S9@z` z{-53A)eE(L4I4BR z61h@lw)xFVXJ`o{Pr`~uf5575-iEpKT|G`yD%v(5k9XMKTQx`yoNg^#>~>|vYoyli;jWk5kI=|p9PluE zn|FYO&4tz0H@?mn;Pc6r(B=c-kQ>#gD>vk z*5La)-DkU|k#o3r{m1h>)k5y_@h~hhk3iaMncLzl>3$xG3LmxyZRNA&o=~G18TW@ za&&WZ&6BHrQYV2FZ!0XGW5Bj~XPR4iWr(7j*uIE(!>h6O;uthZxFSVKVa!~e_d%k|CvrUSf3)18hpe?I^Qc7==Sz{ey=Zohl!@A?ExhAY_%Z>j(M zXMX;rWlxn;HJzSxR+ZD+jTtOG?9;SOscFGA8}T(aT>mOK@;B>jHrM?uklAgM9iSV% z-f?7pK3#*qHbcNc6li_kZbtu1dKpY~bvd(hP(Iqo!Ew(%2Sm=jaYb&VZ7ESeEFwM5 zNFNnA`=iTJ18n1NcqbH9Yn|N!)?HHm7~HY-8gLEP9m?#8>ysXMfULGl^iygsGK(;Ixdi;tL$L0N8ERu+Nkzm&CA<%#lDOSUY^Pnp&Fj z_XqO22iCWDA4?Ut^rRFNxWnla;?&wkz*Hc3j+9|ZC~wTjx#A+0?^B}@e ztSWh<485KCt)JwSHuevw2}A)|3hefObpXYRwajOYXFZ3ebP_P^U(<#DC>MBNi)+7v zK8iOrw~=y(2mxWmO@3Gihl4b3*bID@J;9?~0T> z=T3ZY`2M3pX&GP5B*I2=V3}ir%jTt#o7P|(S{yjXSWP zq`j@KCy^Cq3q-9PpFoq5jFDB^Leuu|vPeFyx*v=)PArVUEjP$?6Q@#ON5b#?ey*19`~7;&Iu-p3tM29vaoi$)hOf@ni5F(_G>oC z@^)Td5B?rAd5vSH93zsgy1eDfFe?bvgSYzf+J&@`$pVGrN@V~cf{ zxFR;Wk~KHZc|{Q&&K)`b6G$9-;gL96E`~hw4Qh1&>{;o*+8W+p=v7j=9(Mil^ou8k zTN<838f+@;CZ)D5K?4PsksdWVuHclxU5+}r{sStfY})#2{E|iZV#U>XU2Xgc&%vJU zsbMB=Rk*8YGR${Fhx>1&sG2O;g>8P;Ml6oXNz0K&$os%)_aw*mYvq`SY#c9<($&@d zG1Z6->Gk!Oi9L{Ww6jLX3o{skoC9Yz8BV2EAr-=U^;HE%2U+z>Uj@at$I4|XP(7;f zxU*&*n9%pqA*J2&EEoP<8C3G~HmzLNzT)ZtAc1!Cq&qem0<=aRsrmYh)f3!jf`Rp4 zzk$sbi@Z#OC|?3RoZWXX_X$HtXijHEO^5x>W~aBe@DEvtWMH0s31w=|21csrlC+y3 zY>!`r2c2@;BzYqZy>1ir-W0VaE-d4NN@o`-3hI_5PExz|23~E;}ZB%%BKU56|a=yHDlJsP!1Qgqbs7;Jy9g5UaSzt>Ft~% zmw_n}VRpnXeJyZzUaJx{1mbYU%~jfq+B@+&7NI5+`KR*yOUo;Vs|fpL(lXK^NpXZd zNBU5p-V0n;4jfAUovm8@JvrSzv7{vlU6$x-BsuQ+YuUtwkE1c!i&zBQ;>Mx7JC(@} zEky-6g#`*eQyDL66%9&K*LHdo-m(q?O=m-&lAb`;cFJE~OpQO%v>^-FL=jt`u#cylLJNDJ6 zIy>S~(D=NUJnx5dS@9N^WHx3sN(O;wUur#u_Z4( zTk=31vwO`#R`+Uf720Jjx9N{U;V<2W8U9Z)9vuPihaHKZ?LwnK^7oi7M>jR~h>D*vloNC~S)+;8s=Z1!(+dtS%3Kx~VwiW^WX}`X z;S`e)!Yw7H>WpUK>UIY1sHF1pS@6gOpt_)s6MVQn^r^S}8IC&J#i!xtmq_B$Th6{w zUUC#6GgYIF*gS8Nfd%fuk)_0B$BpG#9!g*dWw}k8g&-XX-yXRtT3L$d#c%BvuW!>! z1|#P>7R|B=rZ8e>4_BSoVR|i<6GZsHCpd46*CSTJ7sK8BM1OD}66tw7S#25de)%Mb zY#i33E|B_pwCBFgg~xRfzTY3{)wHktigIb&uevz((Q@Cb!dP0n6Vb{2ydK1CK@-%e zAwAP7SWA!xT`eR7eP9%3K{V`Z{Ny8EGxosn9`h-B?vUAJ03cLOHShSGXtNR`LatrI;DH9h)UDS_r? zIeU*9ryQGIjLCsk_AmQArU`X+EMDmmpYRPEg52udNtfIPgND{D8@36X zjSK7gqS0uoNQ-Oi0ut{LK3X~`h*(R#QfU#=vf2eJFOP90!@mD+8Nr$zRA%c|Rt90a z>itOc2V<28GxPn@Joec0g>02Cc0R{Y85yscNx2rJZO zh9#Z*p3V5?DYW_El|4KWCUM?NB|}KRK+bP$#G4acW=!dD~*nYrDXg;72q_1NPQTrxHivb zLW2(|mv&)<(E`?VfU$=X$MF365!lAY)$PU609W%;W6VCNf^MF}TvI&mIhJ9P8ed!G zxbZbgbT}zBhvZ4#yC1$7<()|8)C;h&wf((K*ncZ61NF*uenjIJ{5bUUw{)^6Rwu&M z_`Li(85!EJ{p(AQtrJNe^D&-yMnAz!Qg^*upe*UjKYA4(0)bptG%w^SGP*?9r6@VG z3#h=qbyZ~T?@(@M;~nLNvBulN>eKsxD3;z5u}S65YKe>rEg#|7&h$+lF-4f# zm%{@N`gncbUFn4Y0AL`&i8o2Q6>@m!2Zv&U?;bVW80^Zjf-te^2- zmzI%%Z;J+6+vMHZ9bT8S%H@1cS1Bx;mudol7g()16VNdee zHN`03R}9zdwC4jlU&exk+&g|bJpOsm8wekK0yKiQysh5MLw|EWSn-5>bH`%e|KhfE#>n zcSwr|mg{NOg{g`{Ih_YTWq;=A2K$PU^dZcG4|Qj@Nu1Egrni95d}}Y%_T@d0%Tbt0JHPDtpX-Mf|Ov zbI=c$ir_t&xX5q22_i;UpKLXzw@A}EUu`L4wc7fN!#mWs?VVX+Ri{j+~TL^^>t0zY7BQ%(>rbo3;sSkeUJ;a$4Yj zEF|bZ3r&ZctXxQuQH}PVj=tPRYE-3}dRL#Ffbi14MQ7G=Js8-+BHt0vF1E25=`+`% z7IZ5;9F+sg(Y0nKah=jC+bZL=(+Q+qJ8!O4eA7nk<+?=9zkIOEqhRMBf*A&SXCcH`}XOl-YW1@B)rYz#pF7P&=SSfUK#xtS=od2DI?oC|6LH+s-? zFXJIZ7qxNsj@15@Kc*hM@kj0?qy|?4Fab|;?u^})A9Qu=n5aO?Va0J*q(4p@FhaDJ zE=v>)5F$oa5kp7y+OP)nQ3kMQUoet$NZpC3<6AOK0R zzrmlggy6SFc`v&3Tgdj0V@$1gw|02vzkDFT*PX=OKnbvJ+8JKSOIa96uy8S z->+kS@Zr zD_)AG0Ni^paNr2QN-2BpYdDAgF{L|M3$?02Qbio<-I|K!>{5sDTo(7>!V+l76ks~| zX@OO5Wo-K9`&MI-Lp@M=0ce4^-2D92p_Jc4{IVXAxY@1Hzv1>wSKyO{A%H1# z`@3DZgeY`O`A&`4w4kQ7_)B<6Nz;E7wL|esoZ(ppUE-Hr?XUkXC34GqI$`TB)yaJ0u^7(r!fg{4`lbP7CihV8k2kAR(4(j5V zVcXJipS;Z(t8AfddcLzr`E>-4<`F4{%osFxatGY7)A;OR2)M;ui2d z-UVk7D~TVkO%69gmEbO6jq|$pHTGu63%Roe9&Vc1b>X>a);7Swi*qlZ18+46P`w@X zhtGC!-mNMqa6%lcwtq@W?a0~pz@J$o5g7I{=zmg zYn{R6?O@2WQoZl&YvocsQRi$HSttEfu!#EpOVM#CG4f+@p^j6E!~5#?uQ<;zf8^d` z>%D&EKw_saV0@y_JaaayTe8jLDg$?y$Pd|a1{oR)%FrI| z+CP|)I<74~d5v~VQIo6=E`oISgc;*itoMXKs_ImFc7QtsZuZT)CBO!N1nfcJb{!%3 zO{`y!%6*$BN1fkV=88+~Dj&D1QLbalgSOF+vmd4?uRXbZD*^TF)6(p-5d8X{wxy1a z+F4Bdo2l&Jm9}v4B-gNmjSZR6=;yDmA)g}m3-LoXBcfFGKz&i^Xx-0czWUNv*^ARkVh;wMmJ( zTBNI0!}`2LX_<5VAW1^x*FqZjhVfL^ny&xEN1bZF&!*3DERk^P1|EQD>H=7k^7Cia zMl_f&tTvZK_wSqNwhHQ1C!g;?j0x0t55ebNk!lbHd(GcN+|0>W*o$e|XScKQgQS0x8 z-Q0Sg4o|_%fz}icp0$*FfdHX|?|UbDzxl-QJ)4@(GKQ2GQ4&)eaA$VNmUh|u zFrGn*4MDeV{{h_gPOK?6gO`Wa?-Bd7&wBYs)M>R?1S>-@6O}RLzBsCZw! z?RV2(2d}(02c~}b@^&2wD*G~@>uamK*R*ocDlN(|h+vMpn7n;9pPvx+~$*`0ls>SX_pPBO??_Ui0OpSpB6r!nO z+FlUdqzx}n>d}zK_MU*pGc%68-=5|#5sDu#28>nSJNXZ?YX5`#dsANuneNe6LYa`U zO)1y5nvmD3P=0*6>Wv!J7SttK@+F^;i<+l!#0@n{u0q_|r2Dm(Sj~e%UD9)hk`Mpj zP$Ip8L+jj}=L~)YOxqUs3-tW3jH~tNGJfkL&!@SNbj%m!A@M`}8qqJG&gztFzB#?uexdDt?Nt6! z@T-ZqZiv1^bjq4T%UOz!`UsZ??Y^1OoW_?KE$+;VcY>m?%V3P0&Q^bPUU1coxgBc| zi1ABFPv^XBSpk+MONg4r%5(>kO}XPV|1A&{rvUHswmpa{cY63RhoH*pn8cYw5SD1f zC;YW^;Vd4jeN~Hwi6<@P6|)3}NXV}m=9m5eOQcTrFh>R^ru=)O$dTQ2gpk0ClnqI< zAY@*V$Az$fNeNmvs4GJm0Eg0BWPKjxeR_?4`0Yi*;r-k+zU$jxt0JDF{dq(l)|a54 z2U+Apu8%=S{@g-F;xP{i8t@EBpC)t$eAQGDyAObj`lV;G#YOD`-ovUVdiF~wdJhbD z)6odDz3b(YfJ`OV29u2GKk@M2LyhJM&aF{SV;lWshGRmHpWldOEfT8#^$HP4pM91E z9O-HW0YJ4No>fsj77AcJ#NQW-|GQ025FGNKPB#Nc1c&!jaqGrAr_wv232a`A)api> zdEfUn@snq}G~lLA&+#y``{(;)Nk)VtPHrQ=4xH3 zUc}lsZm@pL{IYDU0XS%l7m${}X>dPTb<{I6&*K*IYoiLVpVsW?g*ST60WFeJ&0!Fx zcH-dg(-hN7YxE=Jvy1>pb`~sMRwpU_k89PP`JpEyDHVov_PO*b{aUj0YQWXOIHRn% zRA8D5$gV#5KA!;We|;fdYSc3&3*Xc1%|HaR^`HhxWcw5kWUCSu@Hm6YY5rQA(XDhj zi5r;gnFLyhgq4&YH}!Xt1$@$?aE{AG#7=F1k@1>+%^hbC<4q{8~ zDy_LZsqGt%rJ=u*>0PgM1Rxf-!vy zTUOqU4vWh{UCS8jwC;C1>q|kLdbeOGn<$Y4uGt<;IMcZ1amvqfhc(NHgE> z`?{HK%fsPNlu$w_#JPS?=%-T(Q$wa%(QkZ{yoX+GW@J3%X&GeIw_$#BWHbrnAhq%r z)6SaqGJEO~Q&|PB2OF&N%6EK3;YXdPnX7RPrOr*?ak-p%>P+vpg%`Dtzu}8oP8sBY zB;K9s7Y8B#9!5!123V421WL^uvj!!A0Gpe$0GKcGa`YWKR*Zey5>WDq>}z~5Am&|w z#&FlK+`vZudVU)!egsp~qrUz4Dl+AvNa_anNT1V$BT-DTiK4z8(rXGKnG!8fNMOd> zZdC$h;Mu67?glaRdh#2X6bwiG%F2X70?SqIje&?zNC*zykqy&aKHB5Q2Lb>p)5=ni zs|}hfSK}5JdW+EZ||>MCSenf@=YrjIBgqS2@&NuU>3uVBhiBnv$P`1=tZx z16y>|t9yEa7eOUn5q%G*qP9)gbmmHV?G>FW*53vWMigA;mIlX%onBB=sbR+s(4LT9 zr-v2le6JWuGsxC1ZlD}ta^lZ5kiq{Cd+#09RM)+Wf~cqnSP&IyN&?c=(2=4j5I{hB zM?pdfJrt#iyo#cLYywCJ3B3uSBgBRXBmqMSp$JlpA#`bh0C(g2edqjn|GVR!aejLY zG6roWd#=6aT5~?nGbi`CT-6^|<+D87tTMw5xUHvK7bQwd<-^@gMNw?&hohS7MT|&4 zt79O^X%v%z!rD2gyBM_6SwV+nL|0yf0qRNI-n!~m{^oNhK|p(%X7OH~*d$;5n7DYL zon1Gi8*ia!!(Y}X49{ZQ4wIni0NHp%xc~2h;|ZbW%UBVdta}Y6-G>nlRg-YXrV$d& zq}?A+n%a9O21H>tVC7nc5z>2Y;qu0VmZXhYhaL|cCorY-@flF4~IJ}EX;oAsqW>vn>xZDF1+H9wR8|X>c}D|yBE5g z_Rj=GFm$m>edq9lc|KU7QJ-w&s(?AVBeH62^N+)5rlf>GR+;m06i+ z(XNc61GK}DL}jW3VNQzim`t=TckIeUHN2q^fyyIl1Gb%HiwtqvEqUgj1{GqHB7P1D z>{brn%bI304uvW|$il#~P<@0?S4T(viOR4RJ9R522cyT+UIIEck-43mmc<`Zxl2>u zwShUqZtRKE8hiWfof4kCs}wMf33YHR4-b|Ycr7R})fK!*w%&*v*MX&Y?k^KJ+P?%? zFzTJ{Ytjup{`+m~;h?(_4o=&!jhE8R8=MjIEW*DD@Sd`oYi(0b({IB2u|~LZ`>D^t zj^rIM3Fy48dW)UkuY8~36ssEGxzuRAh^yH95gEfv*pd6$bU$C4{y`+6$3}ov*w!IT z^y>VKUr}b_0Fp^-P;}c~{}PyC0q&nj8Qi2G_j&dsm&f-;}$L;9IOI<>Q5}>JG{N z0`WslW%0T-gW++++b{AGO@rwL`C6=Bb1kV=17&|srEaqDffaM;idv+LE66YbX?JdU zW*hDz%?A+Fb-ANP9o0c7Xsh3ugaco{v47L!$+-!0%|uzIQ|K$KSS8crU6#R zQUX#z0?^#MCC7=wY=PCt@QbvEFjWH*_q3_UAelZ5vMO+2$Fzt|X(e{-ZZ8$Qs`}*< z2&9}If&3`@)6NUdhXcO9VJ-Rcx%D=(el|3L(4VqW`YibHV}%D@U%mv6bE&S^mOFMR z7jciLmF|CmdT%-3Z&x_^ui1rfEn>K!Ss+OnWDIrHx%6pETPs=S5Hc&xyHg=*mLQ}O zFks|;UqRq8f|_Ivt9ASMzOlwItL68^=Y+1=z)wihz-HL@Czu)9P<`D3{tU}&eOt-W zwGJ}x?6z}Ead6S6f2c7VbHzW^E(p$?`&+X; z0%e?1VE$kiiFA;Jk9xSUre~mLO>W~brGT-nw9vy)EdXDhj~SbG#jT}q-!kiBhyBt| z7v!+Q*ltt+qF)4Q{E80NdNH)j?V>a_VRs|O+UJmOIPEeB0g#h!l*vJP*O-L0I&X6m zwbe`;i8l-GRvoWePQi%aJ>P{1H&ii0p3!Ga)7nmk8bxBuLVSO0etdo6j>H8fxC!aUdeg z4`KTpV?#g)x_L4NXHq0nK&d*%B1ih-dfK%wPIVn}hKC12xxjLwzOCFuu}#j%HGx*~ zId~z(Pvb+`pTXH`Zp-591Gg8Vc)6Q7=!C3=1Q z88^`7>!n7udx{}DbF)|*TimU%b<8e{DU$vUW}MwdpJ&fr(2GvQ*Km%=(Xg_s(=n2@ zo?1>e!Yq&FTqgg;bsXkL6mcMlJ07a?vz#OFll57!WF`ERFN>y4eX`d;S=D{~MnnH1 z_99E|k?Pvyszb5r0mS+9cLOi^{a!5UEzZ9!KHuvg5}I0U+i@V7=hwdaWncF4C^UJ{ zTbx`ZsfgUMXhVzeDdyCN_M2C8VL+aPiKw24&wVg9>^obhw{?;bK7 zI1Ebk$6J3xK(3ULU(jbq!QRIoDTMVlZ^GHF>Cf(4p1-zju53Gl(4w)qIcL!&nafiB zx%cw}CQf$D=K6^hzq{Njcgsy+D|w}jO;ce9K^g^Rl$eVD*Kz`?`u4(nks7WWnTX~x zjwlrt0+41cfrK1hUzE}?4Y-xN=|LU!vaYg&X@i=Knix%i-gjWiq{62D77}NbS661~ zJ~AjRAv<2l44Ut+#$Z(fr0({#vB}+Ax>ASKxtUrY5B8^ja26c-TV?Tqz)^8lx5~q5 zlyD$IgjO)I_2fPRjJzTxK<0)vX-B!@A}H;-KyC|<+T!Lb-Hm>xZGUE8m*$puq@UG| z$d#aGkxt`p-YJ)Wn_-WJ!loM~}hiBD5oL zXXw00&TLHsCLWN0R_xQr=m3b>WTGlnfMfqH67X6S#urd4p`sUVS&@lhKPO$DPrT%ki9t3apzu)}NKmFGd|6{%XSmJ*S@jr(6zraUa zq1yHDJ4LU5($>IYp_<q#e_u2`_Pym}QD;O8JpIh&;W6cn zyJl;wk5gVLoMEYX8T9XqE@z4C|MIE-zc23cw;BRV?j6QW5@((lizdR&lvTLJ&GPR{ z6we!!%5?i8ab@wR4LnCToftY4_Qtw|8Cv%eQwa>~+laY8#WZB0y7S8f9(!KFE`VJuK`jK> zMH*@jw~=)RRT7)_KI(3%QG+k)l|u35#v}(oyR#vw9Z=A-fzra^s4SFBGv8b2RqRKA z_h9S-iWrwrsNfZyCXJT6T;KFfSy8EZn1vt&9$hq(uE3H4N-D%vLZ)mnV6VqGC) zw9Jfto;9t{`0@k{76KB-%foytWk3zV8;phuwNUZK+5<#f>s=vGIPfN}8RCpM4Y3Cb z`UXPtPjg`6lLKNg`Ox_vnq%rI0WFxL#HNZ8i%XrHKH;ShFM#_O5!7a2VzN+wOj;fE zd7JMhV??r0Nm$<>M`QQw_M`3F&OIY&;Jt!;WdLz3?Wb~wezRhyY1}O23U&&rCM1zP zm#KQK52f%{Mh#*wMY{su)}KxNbX5r6Y`eRN?84FGTo8wVb#%bvF#C;Ep>pS_F_}Q( z9k)`I_F4HGwcTE&_Jz`w7rgww2IffFnKFEd5-XOBx3I>mQ}e~)TaLB1wYUFC$jgalF$P85uGXxC@&*; zgPw}Lc);E+lV!Rkptgl^6TD8SB_`D zl_nm8b;Gb3Gwhspxz85QZ|iTRVG^7_j(8%)N-~)AfO_UOvng%N1!0f!ZMEpc^QNci zuQa|rN#zHF-Lr`5S+|RLPv1@KiNLJK2K&_prqOBkGBjzhal@l#15y}6_{Sya;tr)L*fR4mw|P#>)@k_OdUy2!l+1*i&szGGMU$xDNkm zxcLLfmcyR*chJ)K@DmCAkjF;d@ogO}SLQnKt;u-8|9<}(Yj0TZ{lhHZ&cj-?BWm4V zC#~jUw!u>OMDs)IvagN67HG`ke!eV-+I<97i7MFRUXU1@3@oIsKEWtvqDDNjuVB}K z_|#P-qb}GZQ-X$ITg}k0&s#{HifUV1^y#ZGCu6tuTJ&0OM|_^R#MIbXJ5KM9l{QuAGc(jiNTG z9s@xna4k^X1tY6HT#p>=8L)CpaWt)~MDAYGC&Ocs78^4!yT>wzb&k?-cu&QBsmC*q zNb*aF8qapC?bxlgio4=DLDhMbQ%%|}1}(3ezw;Kw*Ec5O=R6sYoq9Wf2x0fPsLE^a ze2n0ZsR6AX(Fuou1sL`uvFX8$@6F}t9Q!v0iD9;l4a`@~6OUhJLDgIk+lLoj6H}rI zp45OoX{yHw7M5E?<&J1}Zo%shAM9Lo&t%?d;<(NWSGnFkWt6yj`}d|apnYoxTh|`L zES^YPQ7oA^8N%t3`tmla>_}i2ROcm|r2Gg%%_eG$XN&T~=iXi!#4FVZDW}wql+c}UxNC8Ih_NghgQ@Jp2~H+-iLEO&3UeWHBB2W8c++-xE7WV-DJ4^QW3?a2{nb&Z5R(Kncv>o``=>vcud^n}_D>E)}wNHgOP+SjvOU|c|8=%bcuB8@kZb8EQ zjahvb&A~KlMaFr{kMi6pa21mBhK&T(m#8L9Q-WVO&@KQ`JC{-Sv@kFYqn3$EX!`Jc zuvtl?d!c&;xzg`e#hY0OIfh6P!wow2{&ScsR7+iW%Zobt$*giJGxRozTdSR#ZVi{{ zDC$}HQ&Cl( z7V`f|UU?ZxE(QWhISPV3o}(7Rp@o+yI-~|ZOEpZl@&*QsTnWzg-+Ba(sK|uYd7O?< zkrRGrf035A#pO$EUCgvaf2>IHKQAW=FbK?NZ8tvtA>AR$!$_4E7oPU38H7 zoE_zgdhO2Ru&wcX={2%x)-h7{vZz4N2L`R0ohz-_zbCa;xQ4{gZm72Dg{U zxFcS&e#F*{$?CnMUflZ4mg}SEhY`{}tMV;3SXg@b-)Rf52$$i@TTbcJ{8-2gl}-Ai zOwGQE730An#z2HnjC_F1_B`$!zlb{;;{d311SdJL*r(M3Gl6b~wQv z1trOum;^HvT%yA+thb@OgHmM7Pj5D=)Q8un*$?!7i-bvgxdB{EA$rY*>H-hO zRe~fz9wKC?Us*A~?av{is&!O*EvP@2T$I$nE*}_>sS&Jg$L|`EeE9Sv`*i6yN9_F{ zR#>#-Jyg=4h)!?T+}Vj}g1ERSw~3NY=);1tF;md_vXBKKyysKq@mvj6>ZhE7fU&A! z;!l~CNH#(5i8p;`_R&A9^+(d#J`hHAeEAg1OE@#cjv?ligmprJg)9 z>;$iEub@2Z4e}$k0vwAONl~X+e<}d$SHlS&Cp1f)=9dIlHdeBn$UiQ*mxN91Oqr!T z|5i7IAJv*3>26!uIkTujb*P}eSzm$K1}FFH>{3TAxmRF}X4s={?PBH6A{1^#e83y7 zL@r9qIF{W8esrx*(1+ypr^m?=D~sP1;8kC1j0XY@5}CR47gwSy6}qd;)7MxhtLbZi zk*mQ`}=778fCcs{MxjwDW@t)H~QAZ76p^l^j&#a0v8gW2PV&%>)(Fx+AZze9e|xZcIk0LMUq$I(Bo{BO)%2D; zm%55gf~sYGy%-J|6Q=pYR7K)y&5vfH7BeVP1C`dO7kmr+T=6y8;0e_mQIIxx@m`o) zs7~`W>ZmP3!H7hxe(Q%&_@LZyi$G=tIi}!gOr!+ft<~~MRLA!H=gnRPFF*S74YyEq zTA+d7m7gFFHMqvKK;`MkwV1@r<~dso!wOc18>JX& z*o^Zv+T!Q#!xdGj!=tY1yh|$Zh-GFr zqWGnY`M=6pp?(EeixFuJ1Q`(u7RyMTANvR8*fnC3W92W~mF|9sJ&J@^Ph3@nZxpp) z^lU%z1+qLYe-XDr5i#R;P!u-(`G^11s4p?OTlTW!lrXFeC0CeMmn3A*lOpx-Y;D4% z&xu+455stG^eQ(r;>Pf0ng}DK^JyM+1u}LI5$TaD(^=V&5O(Z!y0Cp6^9U{&LbyA5 zxpxOWLSgwS&t8)pFAhZvlJVQ&mnBUAqEG4;ZDXIRRE!vlxm zJ^uu85Qo2+hR~JdONI!mfq9eLZ;SOgT@vm7&N>kZ|cAe zbZ!gQ5{vodHLVX$Z5dC-AvsB7wAAx6DOZjNx75YDB2+us6MZZ`gC}(E>GNW=cq>P( zq^sEc8ONUPQoreUlR3T;;dz48k6LJUZZQVm@(I0J}J zmg~gtlHT+@NwXJrZ)U#QLJvB~W7QzxmuM0LYR2z%NoN3cIqVqUUEI%=s88F|uG?aq z|JBtxQwm=n+;@%&0=Zu(!{;mRq~6-RzC-XdE}l#Nu!l5J?|0FF?oIk@vT^jrusy1R zjOhbu_7WOfCC`!;-whd=SW-t9h)rynD6MH#(+H8AW0-ITE!ad%ih z;;WtSmE}u}(1}N}i;l&KRbL`9Bp5e@gmgn}cU?Ieuup*nc`QQp#3dbo^NqEr5P!Hn z$pBiolpLl9w)<}Sk80QYD+a-`-m%b7Y@9F6|BS~!)7#R|EjA!o6Pqv`4yx1?_*OMTe%8U* z%k@hRVXowv|2q5e9V|nJ2F@2=wA8ZnlfdakYE69g#A?sYc5W3aFg7F~P?=AESlY@At!ZHvZ=Q^z zW@5mdsjwhaZMr`c2nr%fm->iNM@8Y>>6FN6SB;!=p&lSUh`#1wn~CZs%oPkNLxeVQ zb@5}-I2b62?1nWV*r>^;RG-XbW;i1jixqYTWk6{aYJng%aM9%#8R;c-c~&?Q8x4^qv5yl>6`jb!KJbM2?s;SIHyIh+L004|dl6f%<81Gq$e; zgm~^waWGs&1UZVL<2nC1CqZ*#^gsXj*ePzjq<$8sM7_T}D4d)SLIhny3^bbbpvbt_~OWGX|=bXLv75%E~MUd{C zFY4_1P6_y4L3y`L{$Q))qC&3x8xCh6_p& zVhELw2%(q^)Oq!Ky)6?Nddf%F@VmwF<6X=0dwk755bzxnC2wC5hv2i@S=kVG&;F{= z)9QQ1?OO(`G|CwfIFANY8arYD%`R32yn*C>-RWPva*IJ!)4||tJIhFro z&lgnG3VMVWx*MKp+|#yraD7D7{Q;lG;;L1^C(Nee(6JK5&KP=xX z3!%{iYf(72iAJi{_PBUSI9mt0i`$=DFj%`%{j~Jj-?&fVsp}PJ#%|6@>Rz+Y@iW1k z^QKT*o#yu+)lUPazG$!U^Is0Ry(})(A>I_tlM^IH+X_Go-dPqG8V?}K*D3||jzcSs zdFCX4t={t!e-#lN0h#!sd6ykZe2&-ke6d<1h6f1Q! zE_ToRih9tK>A!_i)09Wc>$!E2YPl=ie3OXvsX`39OV3kaOO*;HF4cZ#W`HO#HM0y9h6fV~zQnPG%n?&{ z=YO^am;fp+#mKu-AkUVIxsZ|>}=RM%3s z+K5kcae3{0VdI~-7Y-WdOtgj#ix*`KIWeNz?p%E1Uu!A#^b)|aSD_dD0dGdNv+u6{ zauo|c#-(eg3j}+2t0&3qUf+Umj*u~YZ-R&wuU8W^zhA88$$ozEukC$>3!PJXgw!2t zxE?P_H9Wvh#UEqtWew>Lx|dc&W&`Y-PddC(j9w(-@8``M3c0}Qn;`E;(@;OnOIZRc(Q~djJFqfZZk3ejsQ??QH zqxkwaX&f5Ut-7VgMKJ8x}l`U0FKKnmx9rKbjY1oKlH1d*Y z=?xa~BgA_eqxhgwRL^fU(k+-?!6vIP@P&%=jtj5YP5#;z^Q@kp@kp?P5qQ|~j?4Ja z#PY<(r(kfg6H z_$L_8%cO;L*wVX#%zx7-xWkkk3qG5L2KWz2}Nx0w7el7In?x_)V zuw0A^H6Pn3I$3KMq4~KF5mXwckeDt^-5|_4Q%74%28*Ja zExN0qo7tER{9F)2IDnA*MFtQ|s7s^}A$=*Mvb3`5J@WAb#qPHL@<(zn%6763Lif~- zV#ny}-;HB&NBZR-DnYC7{ayxR6h{fC;xL^43#JrlOD>2-_vPvCFyH2|!+D7-k+!NO zKhNnm?@RjVZF%#Gr1ygtR@j{RuGuVyhs6oJmVvHk)w%CCk)ZG_=+3$zQVRIz)smG? zhq*iyqh`XeodEI0nRx`F6;#7RJMk*wyDtr{gwO1ODIN|LgNO?3L|Y)up$CNW8Qh7gkRAc@5>dT-pn7P)? z-Q<9Ge9`WgKT5SrP7BxB-KZ8lqkEQ7cf882G$hv>F{ss6abfJ6smpMQl)FyLt`Wn~ z1Fj-pzv~vt;L7B4FF0SR51cm}(7Ue&ZUPptP`f(!;T7k-J$qm*AqnlFGa24RdUb+2 z8jY|J$Hkk*Rb^1T&cAx@#pRZYeIC^G=&kgRsQN~RhncM>!WnAMdl>}VrmZCURKP^u zHLQ<>y8V(gV%^uX(85BQ+J&FH$x!h3Er0krj72R>=%4=ESHUT2&~4U?5D0FcT`$J0 zA=ckALn?iA(+B>+Qf5zOHzfl@n!opjw9C=|knX1c^!peRkX&mN+fs!hwvvaCh);N~ zBqJ?#(a)yn!lp=2fT^@i5_5Nu9N77Mqt53I1)Mnxs|Ibs@zQ-{=7H(MypdB3I|>%- zyYQgoz%1XuRxGH}Hkl8R1Ooo?*xU6=UbXn$$S0ze@AEmTrFpO@sb=Y^{0l@zL_&Sw>tEftWQuT3PzApV(Xhe%WcG4+$|2fQ2M2x`*clMoFU*~%>2E~3BwI~T z7MwAOT6esMu$2G&z0~VFE_vuGvx&)A>ljyKLW*1$-sJqUvPNzA3m}+F=d1FD?p)#4l2u|S&XufVS@!Ei&?ENY z8Mp7epc*fbMHymRuR!(uB@`|*xa6JgVM&qunsj}wkqh85+2YxF>8TlFdt*O^cE?A*)P(tId|N^_ zs(I;h8A0#;(W;Z#^Fe6P=wMM8Q!QjV0WI|L2h4Yr4IXbRNsA7dZI-VMF9{RVa}FE& zHii0xH%!_CgpNaYbx1DO>2L~9%H;^2`#sG;`0AHu_Gb3N!EntpYZM;~RmwYo3BLu1u7H<4&RZn z2y6Z!PHcLm%_HUqcMHXkGNez`mZi;8Gm+jo)VjeH9EX> zL4d8vbS=d-POo~wUrxKS`Xtq=1w1T_#G-#q6#Jfdcb(=C$U$zADR9qLJVOZ54B^=a z2Wq}5H&F2E=-S}iO{s#{g`$VRjHY90S@b7mMKYdOztnnFdFbv*X5?sj!|f5-(XlKBv+YB|BcGH6o-+ZEF9R2Yl=(D_<>5{=kI#s+2`huT{D<^DbqKb)#HVyQ$mvG2cb zDQ>V}=|%N@_PZIZZ@X)8v(J9j&` zVG8qJ&jw%sxO+-gvz! zT{_-;sz6=eFg8ctCTHpKY9zc_ERGJrmM3;JNc?sB>u)C60*l^QbAu`Qhshvdt`=Yj z52=az3^vw+EKCe>?uoV+ap|SBU3;T|MFdb2WB2?m#Qh+fEyZBu()o5Vlyr-Qa->uC?bFY~=Q`{yRJnfQXIMN%x>ry>wN zy4%U_e*I)<<=xpgH{=JEU1{n(d%X&^v81t{j>z{0TwIe6{U@V0OGt z6mDIb^;P~8?6<$#?|6l4ih|~08aLxSL1_FKbyS-=iXt}oboCS-?`gz|4yMTKu!F}y zB!Mhu$)=fJwuD?ukUJbIH-lXBa|^A)gbsN1@NDQS2n$&Mg&EAjAVrUVIVd^JrQiA< zLQG#p#4IcWC3AgVUFtgBD|52X!B8&+)a@!-k|smqZNcL~Z4?q$zL}WosDQPTdOtFa z_q1fJrhMd)2dODJam2JEcD%#8qsod!;*$5kPI6fS64|c{`u1+W$g&>?Vba&0)aU%E z7^w?%o40;XvN#U8^KYDC$lvy#Y2)d>=GQpsYAl_UBcA!f*Q0s)e72b7r>p_krIOpQ z+aL@+`l@$7)bXe`T%5_93}9D&Ms_}4#6zg}z0hPH=a}%G(7h)7*zN_PzQvC8Nz+eg zK;X-f^&7WN;^_jzyHat^wgW8FJhf=DL}n{(+Kl^^%OfT6IQqfupIqSGM3CK3|Kge< zAPP%NU40<6^PmgwDGUD@U)H2|pA|d@nzRQ?#F;Wv3${p>hjqpsAnv#Bsb060q10LG zZMo(a=VL}Ls8lw+Y>kwK&z`)TElGQ0^|=1_RqWjrcleX+=eZKD;t_r;X8;GcIXGcX z5okLpvD=1PAb!nOwZ)g0VHTgox~fp$z8QG_Q1ZauI03JBLFEH}OMmMT(PO&xa*65h zt5@}@Ts^rVn94e1(Ud_))&dn5xtxXx_o)>mPqqxOP} zopbDtv9p`<9dts3N-PIg)OD}cNuY(U^qGlvRiW&rYKMZO%rXmj$U1SH3GT@4LmthSOkT@feR;MNXTR!m5Y$I!99}XpO zP&<6w!khVUCQP?{6k*N~rvFH;HZ2f_&3R)z?H;lpK^T0zCz0L`#Di=g-3YUeiGJU5_b)*=xRp$dR}Na;z|%U^(w5zf|T$#V)6FEKf-q6 z59^0GkRJD%5(?wJMlVF|o&6?z%~1?S7pI+v7buq}Wi}|U7B|G{-Y(xc0-9N=4}^vX zJA)sP-Nb0040_HY5F+?FQJ6k*=jG7&#NI!#;}&dKbCOr8ZPap}*MCx@N)PRjUN1kh z!Gcp)En#I1J=f}Q-FP_Ps|@_WJB>Xdk7(`g<~jcsAO1GiIRiej9PGaa2dW*f#03Sz z=w=-eO{dy|xi^9#&k4;tJCoeB^19B9+Alm4nymI5hIP|m#E?%Uk$0Y9rs zbuh~31JAeD;E%LulBQW+mSFZc4Ax?>EFLVADmRFakfoIj;adcp9?iw*saWk&H5_*J zEin0Lr!3LaGjxl5J@w)`eb2<10E0lHSGUE^v}*pYFf9bOUByi84|aC63Vz<&)}p_a z&I~>2u(|_EC9la}gk1m=kHrsfiu62saf&V86bh!0^ZTxkfswWnHC&5aMduUM&~kal zytypaU3LHbYRx4FskWo@NwaRt?+)|M3#NbEwwr3TDk_{FkKs7bV}BmW5%DY2*39%A z-A+j-!uKY@4Q~XA>w3p^SJ`$sYWoqf$(JuJK&^bU7Lod`!JJ|&MN@%WW>ES7!KBro z8f&Bd0;4AwiLH(n%-<99KwDZI*ZKo|dDW~#em>GIlpLboLfLJ(D>gi%K$hv_Rg|r5 zSMD7haiWgCL@2-`)Ry@ilfaX5#6{Y`#Jv|oz=0{~j@fdw3Y6ASQaN+Z)U2l`Lu~I+ zxiyyQ1~q)xI06=2<|AvVIpNqc^2@cP=v@uaF+N*fk!0s}Q)Y0?8t{u;y{)q%9swQa z$}E^GARD${03njb?|9Jx`Ex3~m=+x`AB8L)4J+-H$mqq=Mbv!+NFj>wE=%r@1Bhnx z<+#5RUeM!u9b4qT@O#OJAUC%z{URz+y{}@WfnCfnPFYj~Si1>#LDU;Wm|1f(C^kPQUQFZ49l@cb2oeS+E3yJ> zhetq&0Y7I77tt~za0kW8eNo=<^%NbJE^RFtxeZoTS-6JnfmWnA_Eeg+ITw`Z^cTEM zJ>|1-0aoh$d=jbuahk1=B5h(*u72c!)WP)-;Rpct#RvJ!du^*MGZOM>HNSXANYcz|dA1 zE_OH@XGLm9C^(YNuFMafXfKL-q#Gd@TG?0WVtcc+PAc;coRKylj}7m5LvbKB(X5q% zCAE@29%F(Dn^sR7SW3$0RvVslFHjl#x7Zl{C?{%gS^=Z9x( zyz)RYqql?GOH@9zww>A?9Lt`nr(_oK?gIj5E1a|QwuL$I@c}Nf0pW`qvQ2A91j#9v zK0AL8JJZFz-a3je>|&n~gKt6j55^O8n{`RDJbT;Wj#78-T{{g8S9=#8lQu81$8eO? z5U$rAjz*a*H8Sr#O^=9aoq-A2&u5M#w!svh&s>J%QfiIL8{3bwxPQ5q7AQYojq6o~caMdYD zIJ^!?`B5^>HcI#Rn+s!e9ua}Gx*{S|_iSMz%(3rb9&6##mo@U3*zLNxziLBU)5LVIs-x0e^dgo2ANvEmBu$LNk;=78NL_W-pR%WplE+xBYP z5Bg5Q$*NSFKc3E;QS~upLF=|@Y0~Cidfg5{kcm_8!+0jOTBb*L%Rs&HBI91Cd9{v} zXf$f}3|*w@?lMjm)FDeM^alEs8%9F{x#s?qgdJN)iZH#WGCWT;J5y&nem3I!(Cf?TMlX+OzQ|W^1a;39|4QRCUZm( zfN?b+$r<>s0$GpnnC7iF$Dwtq{4SUoSEi1(tccVR(W{x0X9KHxz}n#=*N&17K{&b! zPWg7PHXbB4ot;rNX#=UXljH?`1eTeaU8O%u&kU7GqSs%9LG2}Rh%dv3*DIDwFhY8K z{N}HTcrLI2PqW<%x@WC|EmS&nwGxBt3{GDId1O(v>qeClc(j(&RHO#V|Ap4vgWt~jW(LQC{X+G_#y(yOj9h{=6W0o@MYOT#Y1GrykK zD@nS&w0&&V)tf&(lGnK+FtJ7vrg6dZvrss~_qlNbkkVBoxtqlFeEsntZ5XV{EmyqV zE*OnIhXMH^_d88E2cHu@fvDqq{sHU_P=7V;diUvC${s~qQe9Wklyr3^+HQo0I(lK{ ze5k}tqhwtWl}@p`qT66d>a@*nVf9i^b;y)dt&J<@x-i22v@ z-v>^(J;Imks?T>{W{j8l!@H-+(U}4+W5Q|HI*bdGSu;8hQ@;iKdcXGBRtHx7(&_6g zZXn$@LlKO=Vk=r3tC){FOc>Vc7iL^{h_551&l~sR(Y$t_6%IbID)exe+K(U4xPBb$@nP4jp4fzU!fQhAGQ?yD(qd+ ztry~Q9Wn74xto+dEwJ^7X%hla>Br0)D5%=5q=oNF(Rit&L9h#wIfrY%auS;y`%$}3 zOT!oGVLp74ouMP=s#K_7MVr1x0TE@x=Tq*FOtS~?fGnQtK?Y0M*Q@WN{ureM+#=MY zWD4Y`W|hY^8LU^tx{G)gWHkDG;=}ZQwt#QywCy0J5sLi^r5)G4g8e*gDw>egU!85A zh2fr#4&`ot5`JVKC~{N4m!~pQMlF8LY9~3`YrHb$-}Izlo;&qv~iV)G#GYV zQeEwr71eH--qDUIU6d6%2Z9qVHMiB@sM|*P-j2qu4POIQc#je7_@ET-!L?&NkrFgx z#Et*RM&eu%edZaIQX3QZaGGtR>i!CLvjD4SP4{Vda`7afR|BM6ME_MLJwDz}vRF8O zIUW95MrA)YKmgk;q+_sWaQ7B(0D@Ps%xRtf4C|#Y73Z$99h|bdVZ5wHDLYBJz0YOE zx*){5sEu49BxOal*sXtuo!Fza(0#j0w<0GN(f{2A|f+6Q1sCzzlE{WRpdXTIz7XoRcmQY!3x{i z8`j8bCEBpYVhdb7Wx9uLUe-#Fa3W;(pH)Z(*=A9wRpR_}Fn70q-8c9;2md2z)X#OeF=pHk@u{lI9-_pa zlL!T~Q2UounxG+)(UsRI(TV*h;3Yc@wA22TVqAbe3SWoU_yAdbHnaW}5Yr^QzP}GJ zl9ZV>-2*qQsFQKSSZ$s7&p4WFQlQx2@5TAQfA-(E?`661ADN|`=6}_f|MO>mt@Zzv zL3&vW&~f_WbvacR(knSxSgfw!ackcH1drRz#a(U!$t`VqAXm!~=27t{qs;TWp13Jc zj(*@_BQ%(uHl1ffkB;L#%<{qc@03cV=!qjmtx^As;q_PU0qn>Mn6|^2&*pj*#ZE_d zr5XLY!Ktr>>AT4$gLnKj0sEG=dU(yvjJ~sI6Yo3z;lKsJE_<2@IXhq@#JA%SDp64W z`oSI~RE#3s`3pYi0dl3`m3RE_130L1>tM*nx#VLknu-O3!vWw2XX(`upJ9Xl82>0k z6>E~|gxWh64cN%eno+?U>^tTa(o#Lx>{s;F+9cV;(9nOHrO3dj#=9brIAqpuq9+dL z((^X}qLW?;-B0BJ?9!$a;JdG<7xNje5(RT<(?gIR!)q>Y!29yI0g^l_aC9>-aFwL* zue-8`mRBNE<*ez4+}FaWoYRE&hL z)V~UQLAoCYC}hPVviWtvZE=?*NGSKp>QT5u z$}}wBs^=>FN8R(jUzj@FXc}Bb-`@*hPr8mC#D6ePDo=SphqQ=Npq+;Blncpklh7s# z1}hDa3$l~_6!(GMqFTgphYX9cKS>7qHFs@b@C~Dt^4eXgdC#P2#{%?@M@4EJCW3`! z%Qa#DW_a~q4&{3%+0Z$oe>?lz{QS}k57I@Je4qx^)tM&oyCqZ-&wX`>P93lbK38B< zujda3W=1lvsa6yiYnUQiBcF#?p)HoyopP|T~K~~s15u){C{0)H`<2&%7zZkN%r7e)9!Vd3QF)RygFRL9W^Hp_Xc0T z8J;!Kqg?OAj__w^Kd7>yN2*-4s94*zp^Nn$BRgbHXP*q%cv_n>=t=zp&vrnzq8i!y zZCnRz5)4;{YxfkZt${`E;N#$2h=DjA%e^!+aYAVOc*&c81DDjRNY?Bx}b0B0E<-FzkUkqQ9*{fH;n$&41H4V79*NA zY_$C(;E;3Opk$I=|F5ll6}z5wui>8JIwCk`)>14aqd{3gt+N|h!J+Lw*8puQB~%Y2 zz4t?ZJ;Y-5>&X7@XfN_6%WRn|&nj`IEG*i(`@80cnuRund98F8(9braO|}`$_ot!i3SX1- z#Bq20ZEd#ct=Bq}fbyilxjH}ly%q;REr~yAP~A5eZ4zOp=dM^*p06id@#<)T##f0iTDC3vgS!1M{TIYE$t}1lY29u5D-s^vD zO1JRti`Y9icqO;;e1L|YzagLn7@TuDn*_YS+zBl}SH*qwEEY*ZM-00{8Ri?$Z0K3= z-TuOyd=;~vQP%hhO5Rl!+6){2_RWgGALj;^DXj6WPOm&b!smh}Qw&m{Az?|VKKntiE54OTRGMrn2 zbNAxK3k(cbY87Ir5XO&lDJTyctl~CSU)&}7YWX3SdnJ&6pX7nMTT>QZTsa!g3RcU| zHAn!KR6hQ*vO#Zu@&*MK6yfWJHSQVC^9Pz7#U6on2?`zKv>_j_4ISZ+uoHJ_NR0n} zV_Vd^jZm#Ywh=m4cGIImzEc)_tUpwjg74!F{rf)F>kF*$oIJ*_noYX2-3e}dZjp5q zctrZNxjW%gh!gPtu=nn9Nv7-js57o|rjs+PRc4;1iFC}tZfJ!;)vI`#W^%BI!2#Rm2J0dVvF68^JcrG%Ukg_C~{ z6T#5$O>Q+QO@|BWA(a%nQbVabo`NJ7 zR?4usdtne8MiPCzX1+M8Nt#&fh`4+C&jAE43P!8_V-TF*llTru3kU`7#xtT)LZQQo z#Ok4Uk2`EsVW(>PL;KI-`KLBZ)9#6+{b?R6&S~HlEoW_=s<)S5e+1+ITRr^QUy%Gq&3< zU3{1a*681x)v7W~Lg7ibbgn0yX~PJYVe;I>)P%$Mv@u=u%r|l;OW1rl=3#Ce6ka9j zfoM_eQieYDEWA~%0L&zK^RqdT5Zcs`y-yK@=eZl(W_#0o-IHL(Vbc4|oY0A{?oNzc zQ>O8%K?JZ0KMgR|&A-D*<*bo35x*CoQf2Zo@;Bp|&#=a*_|@Bi@|#=zNupZ~%05L> zoN<_9YQ^8(I8p%>b7LsXL^MNGK2gr-!bYGinreB(eRSiTXY7Dq8`mb8WtxUTaR%;X5XGsSN0op;ZTM=Q3^4r&e|g7cYMx?;*H#B)aJ z@VJZkN)KbS=I7CwjR$Q|tNZS}KNJGr{Urt*)=O&M007*9#1r_jjj=&6q}}r@{Kb2r zTnHRi7nUz1;yE9^duSA9rTxjd?(F0!boNsWlBBtf!e|Je zf)*3S6ucvp&cF3Gq66eqNK%;bj2Wybhtm?N&^@kqj#XK@V~zHdDWkdsS-t6_{JFO( z0cbIV^#Y`AyS3@rqlG+U zX0-J6Z3oBkeXyV*xZJ06j`ya4U4F5mH^^zh7N&n;kbiRi>hFf)r9HUYKWn=8}p?XbU9nO{Fa}R4bfI@ul z5B~$83PFBH;|&_@W}bjBoqi66+;VAAxh=!`1WtYUt*dcZF+|>Iw>FL7weJ}k@^2ft z(!0;@;y)DIJV+uMf~QSkY7QeLaFa8bBY2@ktTYcc>GX$iBVr(7$tA!Uv2l~O!LGk= zgujzPLJZ8ZvcJ|gTooGkci$tghUDD&awv?y9EvTD{-lYEkGbm|3 z=@*)<=+|w!N0+|02^edP?C4e#LiG<2FE*S58{no>hXQY!&j^ zL0#9OkzkqdhiHo*xSNuMYUL?04M+eUcYaCqXFvR~n0=t~N2y!BIMCfV|MKrwy?d%* zqoU#HwdK3VyhnBAQ#F4fZXkH2Fy+MTr<278X1}5M7sUnPq2ya8D9nvNtPjH>BSl z)1}$neji*-u-r%AJgQ3r=}~lPVfW)i>*`F-vm*iM<9MWpv4PH=XVpCJd_IhcjPL1d z2&ZpFkVFCq-{1qm6~ETH-3kDcX%FMzV}i1;yyTIjgk!jkU}p{gj?3PNB0Ogi(hUlK zy~uv^-KQwbG<-@;KN$KC$|vpfaH^BLaa!1inN4gzWRz_@?<50mN$RhC8zdH-boR6) z1B|*cRH$eWjzuJ=Kt-YiLCg;UWrby@_ZrG`+~`?Jgo z510`z0WJ|xWnT#&+ql=UwVRnLC*c9$L+Wfbuika#*X z#gKkqeTxL({lSeV2el&=6C&TrileIvN^Y@7A+|M=gG z>6!H7a6uk|XOU+P>J3-p8Eu#sT)xk!+%O5oVx0gu{@Ib6mjmw}mmi9#%BH3a#k||} zlYA^^sRE+dn2_2Kj*!#zEU!DY<`;5q?p>$#@D+gb%1nW(GwvP7liFxU7y2L;fMpuF zMpILpOM|YL#SdqUV2y#ghg;o-5e$#I7=#tue%=`-uA&54zZQ;x=Tt$o2Ri`2)7S8# zRk`TnKL6{X;crzQb#RhMQn*mVlpQ09DjH}8lEkNMEZ}YbYzY5)(>zF@_y0}3KtZcm zXd8le8%aW02f#sixs6{W_}n}AaT%Yomu^mBs-o;Z*7}otJ)z8@s~qa zJMv5Z+b!u+u*TizP{Cx1zLnsq8X)(+gk95f>%ltdDBw*T&FNh*A9qV*(piDB z;c%x3eho^>jgeTNb&qqWjiiM<%Zsd@JcAQAO3=sL2`*q_7VoRd_2w-;qgb% zJq}nvbXWVQAV6D`?0CAI$0VN1gqW0{R>h^xJuagdO~BnMkE*F9|MQE6V!F3Ae6P}; zZUu--BRZ(ZaeDQSK|O!&%b~d%c5EFHbd*qHf^quC>QE$6U2WwiwX-8%xD2&3T?B6* zkGRB9J`#n-8x133blboO%Z4hVS^;+l(ry*g9!htK+z_YmGonWZUei}oEB+fe)ofYF zGm|tlWVbFdm@urbd#+<5z;>qoUvj@%Z$&j`t|*gp-=^Hrm<|UKw7cpjz!LwhMV-|K zRJIkp7jJq#zGn}NW*@!*yw&yJZ*4~K7@6(ouAT}CbeDcOGpw#wQ}q*tSq2jJ`s-@g zT`=YI%j;0Cofc9|&XBbz|=XYW4J;+=*sf2-z^by|Gz(fmKb0VIuZF;9Ov zQ2qawOa8BvwtnaQ@4j*Vy9@uH+=T~kE`J3Wb>!#}Y$Uc)RR7k#GIS;~(<-4SF4qp} zwTwHT7~MKe3rG=}C7qw$t7m|^X`ETNRE7+z-|EBIKUfxe^GT*9Qd}@Dd9yg4$Wm|l z)RQm#(3j@mWL~qH4@DHMZfD$%8#8Mg?|dJIqPDs zU_?okdEbkU$Tj&rE-PyGbhKa(i$phn#?vljc;;z0|>{5tTCBSCFF`zu3L<@yh} zj*>SQn-t=Z6H#zYr`5COw7C}nai5R0tkro4J5)*|$pni1BiW=h^tM@J-*X1mYnu~i z#4n06Z12qoL`~%Kv2uUA=@n9OuUvnnK{u9TQa2xtQR!?j^>-wTbq9s} zfA(IkgmzyJ4uhS%K=Nd%9ZEYsDf)+P0v^&$yTnM5-QcdEtLPdlT8;_b1*@|W5v1X= zt%I3a_hNZ)Pus6ww8%|89!Jz z^LGMCuj7&1Y#4SN?Y+wpD)nuBV{GYi6-7L%S8?HzlOz{Du=01Byf9|wzS~9>oeOrE6XvFyH9h&s&}uPzPvv6l;lX`1yFRy% zeoWdi_b;!#e(iN(rsbakb~ogcf<+Og7fqm11$Kmk9>`U{?BPkgZ%Pu(|%vz%*1`n zCl;3TTRejOKf% zH@s*`4A1e#7IEr9L4-RV@(*|8y^3R9h7_ib{Yej;yRngxU7hR1#2Mtom8-Q~r6Q<3 zg#HywzvGY5>f?eLh!G1Bv9<9J@18DLwE<^d2!wE-2WY^~;n$j($xCOuQ)_+P=`cR} zWSLh`^}KiTm1z%2r2G-r$-TEWNdm&f`lZH^E7P8J&u{63XPx%# zA9`}i3a7l@S8!mj?c^0#aMnKtB+l={IPFLo7*V~>zl#f`2}ChvB9k|d&Cb+3j5=l; z^=d~wg9fK3jxF6g?Gw1qDq^5-D=RpsLpfv7GT)_>T!3D7X3)prS57%eUXiyXUpz~n zO-i@~b~ts0W`A(G(sbY-2~h;^ME5vve4$1XeF$RVE_m$SGY`A_IUHLLR8d&mCA|2y zzT_7>fcS$D?$YCU6bpd~cpN{f49xc4<}N5~2)EzHY>eEH5Mx@}-T=y$Z+JY$D#QeZ ziOTc2q`L3jW0Bbo*v#Ia(!bpsH|`-`_h2CwPbUl=5c6ef)5=X9Djl+t|WI@ zx#8xFz(f*T5qd)2Axm4V?d+1u(7|9w1B$zACGE0@Yl8INxXviaw${6HgS$pYehzuis?h-2HFi0vZct=g=wM$;o=Mn*hobseQF2gFk@3ovQUoKcvoH`1b2cRd_y5!qJT# z>eaBesR;gqt4An0ioiEI+0>c@oz*sE@`l6js7)xT>|~daJHt4Qd%CEg~+q ziD%Jq&)x<{%P%P_;?1dhG}>oPF#0czESwLxIpZ>1?%>7(H92NPS%OVcmqz?}H|{p{n2N7IZkdCgmSWndU{mpb#QJd|oJr+u~6G|6T%bZ~7}Qa(fCU-2z!XHBMV zn#YGqXL1-OK?#>>;yW=BA7B0ny&Jfm-#%S`ySjD)-c3`krc95q`|n%e!Wu`y$6Rh+ zhSg0S)tM0n%Ps`1KF(RO6EDRS{!-zz+{znBkvOmy29-U&9fo}Qhcr205JJbBW0NL@ z!S~2TDuS!a^4|0Nn)b5CkG#i%if&x7~1U&DacsJ_#jne}VBf}AA`d<|09VDr32+`z$ zY#ge`2TbzvfXKhPi+RNl;T+;BZ4DtHWt^WcBwxUX$me++m%DzMYj$*#%!@wAKoV2d zT#bv@**EeNy?hXnEjXE(xmHc6TfV2fyqO}8ceEn;Wg8jJLtPU^5Zq6tTQEieyEc>( zQl>E$%b$N(V=~qZQ4_Ys&z~ZSC^77;i|o%*c9={()t@2;4}G5jhbfRKPL(8$|44>@ zZi@&V<6=yMrSr~$PkV(MttX3T2l9zIRGz#=v8<8Y01v|cUewf4pnoiJRQhMq$oFod zNY$VLTu1)ci5ZeS<(nn@))s0M$^Wy?(+!y$&}@QbTA3I(!h_Q8tJ zDDZAOv8Y>e9-uxSFD27fBLP|yDrg^dW>h}A)It_BFj@QVKdjF8?!iWGP@9+_gt8I5 zDImHdNzk3efS-FpQPP;Q@rLV#=vKX=dmN2Y0_iB_(#E(WcrA!u2UFIF;00eGX`-AT zG3}d}vNoW2@vF#y%Jjc`k|aq`q;H+!O&viwqyS?}+R4Frn9bbq@GAauc)|C`oYnpkzGpJ?3kVoCtkEl~WWeP~Nd| zzjoeCw!gWC?t7HoV_tRO%7P-IK*@EAA}1~JEThLi;HW9{Q*PliS-#6}#reUix^Db~ zXYXDKFQ`C1=$xUAI!jJx|9ZXEyp#Z#PVj77+E>X`Ut}U`e847;S?0X0uy}ISI0h7DdxHKZs>X%S@Cm!$3!enYzeOP)OKu>wj$TN5rw`YE_de6m zb7A|xoL1hrO2=|>+TPC3@Xv({bAt9wz50^jw==Y!GuwyER#f=Q!SXOHK0;($9Pz_C zxz}FhD;$8`)$vQ(a+)Nvr7-s>v>r0;t>{|G))Ga<0d>0{=(33*hG$&QA)r+Q!^q^p z^jcb8(eu?3h1K5l?b_m-=*9R*FzzF(Am?iPh(T(};>3HXZ6M2=X{&NPqdQM_0s(eo_fP zacsNMwzV@tHnMttuu&m)C?Q;P9vLUSWU%)czF+v1d-`GhxbK9op9~PR zS6{gphf!7vtwl4y*wQ&qX3FH=J>*Qsa(|(YyD^bZy*!J5*ns6tI?-)l%;T2UqpaZv%$Dmg6YJFcdh-dW~yC17Xfb)*#=nZ8_35p zsyqA=CnnHrDp;|33Txsl3BWhZsQE!v`#I4DQ<@_=IcS4@FJ>5%RhprlVCGi7;~VIO zXuM`d4MQSIrk=xd6JmZUT|DLfWP&!?Rsk%jF$)QvW~GbPfAFw_OKVA`gdG~O{kuyE z3`mPL9Xv6Tz!9#i^d*pT!`#VX$wSnjX=%X-RT;g+BY4vaIn|I3PeCq#P*^kid|(Ks z1SoSgAzKGA)FARNJ=12^t=Q_Ku}UfDq<&&mM=*uhI8y9rxPr|0Wc8qfFdst55diXb zV^_FaeTF*f%@?$kEy9*fS z{0BEsm|yWtO9{S)EjILg{EDK2cer<7k`Mm2hcUI2?!w!oLp~-DR6EJ7tm$o;YZN5> z`P+B$z0U{b(A&!PpP{b&ws)H@yA7Vfbu`XHgGdzAnQw}t*H&YtUGm@pSg%=uu1ZN> z+haS~xJqr2iipI)@}<;nC(JQS%G~>il}PylTyV4%nMS61hxY9=MRp58iOX3H*^4n`fO;Y zl-|xSPNpi)krJ-lKB0M-wb(P6pPw$4@P?^DM5mrZsXy1s zC?_x(<|M6E<#3_$+?FX>k>rht8SLEMF>iKzF=9P+4cd%rUy@9YsS<42mj`QP>N_op ze4(IZouMtzdfxTwC(xtk<&vMPsPnS7ZA1}pYXT;Jk(qcDuimOul{CC)PmEdP<7rcV zc%bm)dLs*mXIm#-CbgF~nU}UZ($THf!w@!n-S;(&(7Nn^nt+huafk74TFX!xAuf?5 zDqrfF>xK{JnW19v8IW~dq}K0b;PhI@%9d-}j7uGz#7f&S7pD zEN-&~Ub-i5cWG`EtoF0$4#7#!z=3ymv?WVF!A~J^CiUj}LBc6wIG|X<$b~lOs--zD z|Gok>VaZ;bagLwepz2L%I?hNR$p{@Kz(&CF7ZL&+Uso1MN-nlXGhjn1iNr*B3%(Y2 ze8Fkz4@DjG0#r4KUWe@s_2k`|pRa}MetxILof_F3fgVO!p~Z{iX#PrHfn7ZtxnA^2 z+EuAZJy?wubc$(#oDna`-R}IhIBIfDnrj^&zD$!>_vN!x+;W@o^V2CyI_#c?NQL6* z+d%|U5?D9aV^Y1#hw3Y?cMHNFCpzsP(@_t3{U7P5_1gtJ2~91^9q51E(oAfO%Dk+( zkj#i4b6!eqUG@kF%JO+wpMvl>vYf@qNNrxe-|(#^uq+r#y_?ELU`1^6EtQnXY!2|% z4B`v2Z+hrsYYBoe1n(?LJpKzwJ6QwR$D*tTdOeKe!4pOX-$wSoVXL`7QeSG+c&U4cZ4T8QtTH31SQ$>25BdPcMp|lR@#7ei~1eG z&g=%sZ_;Pt?l2^#niBN$(C4!d!^>s~wc{^us=igt*{TSt$;+tJ(`KVpXP05j`njqC$C5$>e*`M*ZYZ&jD*Voa%%VaEz0l z-wrBZ(UzNC7+;S^%k?bJy?EJ|-}LD|PsStn_S;SnwgO(`n5an9WF?R4P+=?o>csc` z$Ck*xU65_ui((EaDmxrV+O`upyOyAnH(~m(Uz8eaAiC=0fggt&ve(e=O+48@fWOi$ zVjj9cRR72M7>{=f+ZEp};a$K|Q03k8EsQok+z^h>DW#;$p6!DRt}73>22B=mJ~h0c zL+ok@meq38j{85AUd-l9Q}a522wu8ffqJtYzg9_z3nhsnJhd`GrwE>A^*vmF=A3g@ z=yWtWqRe`4{6VGTjd(4Hoe3Q@)<*BKS$gjfK`ZZqSilpW>g|q0@3cAB0hw?<3^gh~ zxE-7+JcPV7yf#ohl2g3Y2MLA?BnNhFPJVx`H$m8#W3lGgUC<(o>r2Ds0aBJ-YM$&L zd2=TIy;aczE$66m7ifVI-M*6i0M#zI+Af((t$Y3hS^LjFw|8;7i3jT#-a3N@4|07m zAKZ$aoN73$3|uw6G6?(Yq-@rflUJ$XoJooV%PG)u?iCW_FVVzV7Gbk}+ODn2n-)%0 z@G&?p#ofI9!>yRk0T@C`?5{e|ri z3lhcY7d%a4Dh%*5$ihKJt-Ot9?je}*?m^;HoJiCynM{0nIWV~xys#`TE|t{fbnt16 zvj8_FdJ0HE{pDrcI#O|DM>Sb9$9o%SPjomsU6-DJ@LUS*vr;SK?i*S~^Ui)9u){J=dB(tt-zlmd`=}|nWsWv4|+?Mq8 zf`Pr0^3qenETS^xw+p7F9Djo=u^HAYnW2;I(j+MwPVYxeI`0Q^MNYiMT+4Mudy-J_ z##M8++JWEGL2h=$$)+RiB*chvX5PA<0mnI-;egnn8^6dCF0fXVrf=UTEx5pYOI5To zx3R^Mdg1!JWxVR%S6YD&*veVo7Ew0y`u7qqVi6fDy)Er0<8t9C3-u#dx!y+WfomF2 zvoCzj;2m2>W+RYBbXBb(f+q~@9{6anr190}i3C=moic&k4}jdbxBzciVSn}2?f*Dt zi{B0HqozKfq3+zDp9scXbLaa-%S&TUurRPbA?T8DH`XdSt!iipcU#Wq_^Jok?uE4_ zwW3AI&;m?T^nzIBd%P|PFYdUe8B^7kOkK8E)qM&#vTN`i1Fkj2@(c@jE)BL#jgxb{ zm%Rk_rUhF;bIH10=KQb5VK*TR-f)WGr#qA+Ji9caA|(Oe=~fpSMWV1#sjY{{BVjh~ zbrJZGcX^@*kbEPlzwyin;683S*lc081uKRC%x}%0(mvvvxZBy0l9Ai582%Zf76$fW zZOkZ6(qtk47&tTDyv3>B!0%w{?;me`9+`>N;p|{cKrQS)eVhA6bem3?$>}YJU-7aD ziWzQSs_$63Qb@$fg@Wtq#5cuJ&#!MtQULzWnTYnxue@41apT+VbwGUr+_g`?kAF-d zS5I~wXbGp2*lq03?*(^+v;Dm}v`;PLIF%xaH^v^h^lGzbk)vIv5quyIS)DbJi1Q8- zj7Vu~^b@|s%nVec%sqf>u863G7)^#e7+(Q8>!1%#va zz4ZKKYaDP5Wr623Ab=|ubU8UgBWm=DY+L{yyt-!vBm22G*(G`7JCvaxXY!WoX?H(c zQYoCZ$V`dHt0PHNl^*KXrWvFKJTA$2rUXKS#ig)}d-q9Wjb~zkbKjXYQNgp}atr!2n1s+q=Dt0$c`h3o! zf2V(RZb-23DX5Zo@i*$j`+LT`uAIUud)eWyvUVy=-X@O45ZA$^^n-jdbHnCj^T)AW z^SB=Ea@CXmtj$n`wnhYH*r!*Mrkc=S8Y~k9t^DK6cv6t4ebeP^`BVA+-kswGh}enr?fR|ezk{vz$Q=s=#Q%f zE3_hyz?3Psh?y6aU5jqGUxAoqPQ;=4uqOIRzT(_ins9P}#*yjDvST6!#*3P=;q6m? zejr_r1z7(APV~H;vIZk-=-_&&Y%la8)jVj%r^;tDiOP%F!89&)uAXRrKscMQ5?e8y zi2Z18H~XF?Io~F{>mZgro37%A5*g3ie|m{^A|$TcV_W z5BK~>K~?8=f`zalx9z}ReEWz-d;|AyQw$|D{Fj|lqlu;kii0LF3ADB~xGBLntT394 z) zPu{z1aHf?6Yy(NNdl<{$#*1p2EvVO01uq9DuinqKr*NS%uCprgR^8*(BJ@&buxeS; zZZRw^;@uC~RRJOW){A7VR5lA(L)2~h(}(6J~L#Cbucns9By0dM?eG$sjQb(=Yt zIH4(P0pd&!aR2c$>S&I1GxY-JT{-45LM`YAN<=&gko@pj3l?OD#|(76H=A$yN9ZX7 z2d5vQ5!OLNJ0OW5qr~Ca<=lT(*W(@QnaQA)Tl-dgGPNi#v>U?Bz!;k@G5x6AO+D*M zsZ~e9_(O7V^kKGYh~LmJvy*60eHEUGxRHpopbtMfF43vJK3>>WT<6F}Yw2@U;5`;l z`SqhT7HOwxmwNm<7c5|t%D)uCB42~|<%(kVTD+5TX{!30Ev88EIFi5iF~WKNZQ^sO zs%KKZICk76wPAhLSQCj1z(Ic!rbs5xG1XKtZX`wc9G4g?vSz*p0)J8aa$HpW9jm#>lG^=jDEI+(yLh?FOGH$Zn$b2njFo7jfh|UYmns$#EY}s|H z$X5%nx0kQW7Y+lN(`kI)>xioET8Ju)ME1Bsz%tj@&pQSxLr(krJNx|IvhGG!jd=45dM) zE|XF?=gszgNXYZm2+`kXQ&k{sJiiJRtDgLQL?h zt?ybME}OuxHU*oFs#>N$FuyzdCuLy4M4WWq;OUOC<2~E_t67i!+SoWT%Ug+b;Qyrq z2;Wz}>^!^pb^2v<%v1)yT=hJ;_j@>9iF=wHT zjf||A-LoMf199%=jyhoUh+r#ZV{vVO?waM?;*t4p8wc!p;Uvl^XhPdk6fpYJw-4*g8}LPhQrxH7fkJ889B~ zVPAwYXE0y)R>Ly0d4o3b%umY+AyF;Z z?8*Y`_=^`h1U^Vyuy7O_dVr2T`ktGXOr;s! zF4{BbaAV9Fs@^2WuQZJZOTLTlT&Hka7Q=8D2^0N!Vv=P620u9LlY;Vy&jBT9Gt<6J zRk;&hN)TmU9I9;jb0RcjQ6xhF2Hb5ll69OKQ_f8v+5ig*LMlYZr0kN?>;qME~rakAS0lTD-6GNnn3V&T61|&dGnMq8-@F{>T3jb^#+aNT$3~_sRp}M|+C|Zj@O!Yw+%$=(h?JT!siZGvB!MRb ztkaBv3L2vt=idt0ehB}?RWa)0kNI`;<@DTMi={Tw%0kEq`Fh#WJ?ORc_i1P{S~{>0 zqFy+Yl&}W`bfadnIfvF$_aeRZ=44@seB$>MJR2mj$arjryD|LOJBJgi!FagY0&wJ$ z=B42(?7Url)WaE*HpT-7M}RusqZ!$}m_>)oln(#FAxLo0P{QrDYCfBoc^TI@KAIPQxJR|HbP95dieuu-rybpceFj31)-(b6AM{ z2gBdorm7~!(VK@j4~=4=RkUrR#ry;nHS&{*N*`$Tg8A)5gXIdOGt|K-CH!RNDfJaH zGjC9N=>k!#mpC4~cw75%CAoD!D-acx(HLn`{QwwTE)I1&%_D>97;5;B`dH4%+@GIE zz^>KKB<)xiiq6gbBO$Q$aDFjRaFYQ@oErABMYbg+z#1Ch&zchtPc!wIiW8-dIne9D!%H1xshLxV}-P0P`|F3{1 zf1xK#Or}h}ovIa^l@2WjgDBGN-IMQboEr373!yFqaqfLXbbozjO3Ild8GY-BtcGbH z1JMJ&tB9jV&2v73RID76EtRahiIn$36+vk`^LL+%jhD5sKqwU-L5DAJTvX-zV3t5V zY!|&&$QvXq94<(?I3XBmaw><*VI2pJVq`<)Tfc2Sgz8w6GU7z1eZ}X2-(v>YMp9)v z9v={L84M#Q@qMQy^b!?r=%uTC_iJkG=ObFPXd_&?+t@9gXo41PZeOvz`5_z-SpiVp zzojt4B=Hnd5$}8E6Fs_LXP;d?LD1QdEq179+N<8Cf&mb)ZO4&zFD82f&5y6!(8^`7|d>C#Ez;3i6=Y3W6~m*$}F64QK2w9n6u9s!hUf}j`D;U0%2QM%o{ zT9sG>B4;=fV__&-;1*Jtj~F@z*Fe`jOuPh2)NkaDmf+zvIEWOCkh!`i5d|8IdyWv9 zA!~^tgof~K(FLJoh(wmxqw_2L?d8{K}DwJ2vjgu`pgl{g^&m*9t`q^tlt&}h4j77Im+{SD>gw#b~=}`|t^=NhwJ#9vQfsanpT}_&M z3+&ZZ?<^N3r1g_?e}j+(VJtZ1w|6v z&)ai!M)PgeCjKXpI9zWHx#E1dF?M9 z2g64i#P$Am^wD{{PGoFtIKEqS0rbzBbS}nZLTuAZ9@_YLnA|`ofG(-!<2=6PQN!1d zMfj?Bv!iep!r6I~wOP;i^HO0F5QW~VZtA{2C5s%hB87RREws%$OvjwOW#xrmGg}8P z>H`mNgpGKj#&cqn0-_x_M56P~SNPpC>6v%?dCub70iQd@#)3LVHdb=$V=&Q0t#TjC zU5tXux@J^VGXur!V=HkC<`Wn&&>?Kp;fx!!N3P;3APmfOQ=A;CdACCIVbVIu#>aBU zq{}E;;joWCbnIeV)EB2Ut!sC#O%%e=!r5-UfKSzQx(7C=19*&k1;Arm&Zd=l=4Uf7 zpL_jcU+w5F5%-!?AzvgtCD@}(PupJR*u~6#n=wa|>V_{S?ox;qn0vnNKSox!*lPs> zGbi{(SotWZ58_^oC6f<3)d2Iaxe@kbh~4My2EAbS3!@BFs}~zbcKRh{Wm!eOD_Lil zTDZ$?@lzYP+>f`-7q`FJM;8Wvdc4jrrU|<>=5{eE)qp^_$#ri9vY45SH4ZC>FkphG z5DkcSAHvjtOrgc!=p^2!xlEk>y2%RP9=(etI*C*OeP^&CJej(mo;dH&OK#H!J&iI9 zo;ZZy>kKsa-s{b52Q5vZZH9gc9|kiazUyNcVr)bbfAGB5`+*wONn z6&KHL-f8-pqLRl{E7-WS1jQ+_^A83pP_eEFdNtc_t*LY7$9S3{B#lLuPSQN}ZFprSwe^Rhp_ zJ!}_Cv0ptc(shYH1-w#%SDM_%YFNB^%>*Vvw%= za!WNBM>YR}{pyDmk4p#~1Op44 zEjQuF6lSsI%FO;W2j*7oPU6;wGmUKqeamT}CWk6Nv@f)@X(EG**WKSG!E080*$X~+ zs*sDqNaG<1mT4Haw)$ByAlUsE@Pg02vamB<|KzEoIn~>5wUr0OAjwp(NtqZmdsSU? z;TSHJ0xHeFWu1vA$pJmBvp*F1eg!NdJ2t{k*n-Mr1g3l|5`h6@zW9R7oAv2F?r{j? z8JO#cPIRmo|SxO;M)ddQFIJ=%NnQHjGW#GGlAg zM1F7qHj*ao#m(LtTh>c;zZUjf?6CNtqbR{^z>d4P#v6~18!63M=f(T4Z@3*aoV@Od z1V<`AwMd!nIGw8j6!NhsV@LZ*(WHcX#3CtD`8lILZc56XVfzN$M=!UaPq3;RM;Auc zkJsyZVxiGeZ3J+yPL^M1`9&0_ti5D#_z{JiiJrCh{io$X<2ak3VnTbSCldhJfs!kX3bui)utNKO`m6 zFKJYeYnjy2mj^YHIImnNB@r^&L%G3@lR-caoXwjJ?8>p!~QgE7`|fXJU^`p3{$ z(8~khd%^3y8KFSE^aB;FWz=ZH#rFBKk;{YqJKG-4FSqe~)^$se&aE{aKONF9f;v!` z$8+ti2Ynu7pY{#3_K&6}FwcbaA3@n{K}{q?RCg@5jwkcXlIEUk2tRddMgYeP2qvfN zrf%tk5bpIRXUs~d2-a}_w7Ro$BbwGgemhvZ$|g4 zj@RK>7agyj1f#v?z(BD>5$h9}&JAGYPqs#0w$z^*V)*86}%cSL^vdvR2`P2kth-i5U{{h(&QaNiI7^C67~V4&}p*MG;uep!b9r^dsAKla~7 z+Ak}9Nd52L_5Uu&|2f+E|L%fZ{dRq(t!Z1CXP}cqG}UFDKdEwziYxQVCFIuY(-oTi z1D;Ln{M+PKJI(%-=6TDnc9mF{dG<`Rf)6084jP+y6+M_SOz(BoWb~%ib7xx}B4!uH z4En~U6!5bfqt@MkplP@6@21_}hy@NT*G_(aT=k~2W&W-_?(=Zd>?6O7^wHJrT^YUG zn*yEvquRrL{A1k>kMAO;g*)MS(S=2u$*ub&qr+| zWDmH=|AW2v{%UG@--h9Elw$#GD1yLIK{|*u=_*H%E=bV;iHg)vrI!#pO4U%ME4_p$ z5Re)L1?kcfX^BV)NeH1OF$qbY?fI5>t#_^GFL*vbBr7{B*?acP?3uZ*`?{_n!UVD{ zfn~}~EAFOL@K?P3+}q#!*a5=@~V+o{z#- z0+I>a(K`^9tB|Y3o5BEz5yqmSFQW{rA0~lZ3JjDI zjbW9icteGai`f))b_^ZULgZjD=PL^$9b|IHUhCzwd=H^_u)H`+F`U30@k(_<9) zKd0M?6q;!r!PCunTd0-9h_mS2n;rPOTK7wH5HL3EV(`oX(HVV(E;?@P0#5 zPXcwn9&Mifn-)!<*lIose^p!%`AN}r-#6T=xWLKaYb_t7ToLxt&1RU>^Ve)oLAKh2 zbVs2Kf_BEagY|sNqrE=GNZeNwH`FVYVAy%uZvS%YZnm%iSnAy`L&l!C9jS30>K@^M z;-iG{YgkakOv#9>UXXjyyQ$ciZWqe3v<5*Vn6pdU$}sgXSlhH#iXjd%2WQh`t+Mkk zZp=n5_NERN*?*UdGr5zoOYMe+O>*D`hVdl_vv2ivMbo})!yX7l4ZH}3;m;Fw3V^@vCTiXj_Vj$?i<$@{_X+X$Boy-*&~0_rtoO zC!4b30b%#NM9J#aFSX0Yhl(2CPCN~1A05eGmL(*>MC0czTi3HmW?eEj8_;;+i)Ew> z>|Yz9iAzs%Oe4PIP_5*qg59yR?Reo|w!$iItF<(^rAv|SM$Mt~Gsp8w>ND?~AyV6P zjLWgH-ok8S{r*?;c_si#{_z?|+M2sNZ$!@h?Iko#bg=B27=0rJMM{ZPj@Bm>XO}T2 zR$rsBl?Pi!4^IMaTW1k#S@&>q6w#k~a0QkN0tM)HQ-huw_j;)JrvX8KE!HC=;8j_; zA$1vz&FHJCsBg2g8-<&m)%-E)qU7ZcFzHSqmLABZL;eYLJ;%C_$VlAkR4xxFSYlr; zGBNEpvs||YR9pW)*{^K$tqQxM$#5m(j?E43?6YtpIM#y~i`Qx8Ws_cOQWomYd$9t# z79^*GTaa6y`-10)yL!?wm)2W@%}uuFClWnI(R%ZRCmR!6a=y;R9C&7|{%%Q0p0$+R zGMZ_bJdCn?+`K%avh?Axu54BpCj7G<_gQ$@irQB~eV5^h`4Gr@^pAz1*DZgm*cRm? zafR8H0gc|eH<85rzXxq4ax_lyo^1wBeawHxLhCaLfc@U|;xc4_E0)T04E^}? z4c+9U^@$#)AOk8jUKmHB1A{X#UZ2#G?caYx0q8*ABWjH{H(`Xm@QK5ms7|pEa|>wv zmu<$^8^ukw7Mv#wH@6aI%i7N(4ysgH6T5TpY2?blVjvFy$hj^2h9V& zlH8S+zk(7F$Gm6NPx(h1@-w?wAj z0xn@SbC=uA7o~u1Pj4l4>h-JV*R#J%|_g+GW=Gj}OVJx~_clz>dZhHQH9FnQp#k{GMbjz#G3#ZIR&j zii|0@tE1+UiwYEIA2wJ!9V$Ts_34Cn{}vxCPlH7e^fFLg3-zbC3&qR3D#7c_HYS{! zKJCd#-J%0Jiu~Yj+dT(pG4vbTgBb8DsUWGjF7wg3u>4coy9#taQ&J9bMH=!8GX!Kr z(iulFao$BuTyy>9QjNixS~d5IunfA(;0Xew;1mxpE8-8#FHv)MI4k}3-`C#bh#m=M zk@G=|EBmc*9DzQgQhUx6j_|6K!0%zugqD~&Tje)pWpECEdvikffRvsso06jtC!Slw#?L zgQ9)Lmb}8HIXQsgU2r!zU+%Xx^Dk(V$Ve?>4N-0in6neaLIRST#7Mv+?}gaTn44Ug z!DKlyWNyWnZFR_<$Z>3z?a{pRN|z8a+`<3;SQbzs!?d=t?Rg!al0az*pTMujDMu%8 z0GnPkdf8{zq`;J1U|l~bi24-}^nqR^L(Ry6s9RueqtbBuzs;Y6+5m*Ou4PXYtx!`z zc6TaE#6>&0Pv+gN=GoijePBNMky{vcig_^P%a6|c#a*%jti|Q1rPW}__kW$_Gl~nN ztiklu0~acBYfDJ%>+H^EN#2FLkBB?lz(m4~gwJJx#FIAqj4wvbj_lWgoq(P_%QWC9O(?0+v`&Rp|OW?1f~A4Yaz) zLalfyvtC}iZ>B@8$1MZdX!3fgy62Zcb8(lQ%u=pSfAMdhFmE(=3h-vEMX!UP^NL8X z+opv@gxdb!CRw+ZwkiUfeyf%NZvi`-@wnE(sf^t>nHN4t_uk0_faz4R&bq$G8*Zlb zP(TlpD9qJw$g0W0fCIAh1TtDd@pDb)%zI*CzhN&R?JL>{h~ZeVj1U=3-tEdUTQ9)VX+|(i>1u z&w4G4#Q7{0LX6P%oKJCqhE)`?IJVtyKZ&>|k5H;~%&4oK+Y(w2p8&D@HADmGdlYew zm_Ojh;B3{eXYw6b;@R^rM9mxitIVcnc41JMMJJ5|G(Gyvjdc4UOg~8k z7t(kub7?ywJ-=I!i=O41b^u11Mbnt|H`5S<>!YP<038{MXl(Dq*JWP7-jG$dY`Bb! zV1g(dz!I$<&1hc%(#iy2gOLm)W8)lOceQ>ui`J36C5&Z4?oz5{QNcYBNQ);4K$i{J zSoU=cVh3Et2S_1&P)r)zz4J?jE))_ZF~cy&@{e`qbY_z>lG7XJ_^$X zmQM5(DZNSlpMM-2sb$V<8wNLoy#9*W<<#%4bk9oG`G%ZJQDIG5M}ED3^f<4E`4GZ0 zWR8;Iy1mx}+j{rI);o#3V1Q(Ena%SEYFn8+JhfL9j}QM2o`$tQ<%kx>GMrhP zvKoH%CF%g*c(8(k#FkP4LOc=J1KGGNA%PEwqyS^0xTe51y#M1^ura$8=7WbVNx?_v zVzxQ@?I>A33E>X3wDAlB_S1X%u9;TW9Y03JS;pYHp{hIS$0P>wO13!m@?&vy6HNAp ztXaJ5kGjF_A1Pqwlqm50j`5qjr1 zkdYBiaNxyJN2HS+2eK_AY1r^cL^{(T&?W~{hsFaNbwoVJ?dl_q$!&&BVb1i;Iyt~d zw51N+RflD>KootzkMl&#^4%K1xdwU5cfPRW`QQjZ$VAeA0jZeBCxNXK%n>bg{{#ns zl>W)x)CrAc0sCm2V@0COG)|>%-d1d$xrdaA`)CX_)hRyzczPmWcT$wMxfo{>X})cc{C9g32yzp|Wn_W@!oM zG5kJfGfBQ1hUZ$`e8ME6?=)RdRsX+l3m7qf`8^g_o1}3BdRkFw;~W76*pKpCcLutN zBTU$46cBiQqAKh!y?VXn9@`Aj-rgxQ(14ilX=ra_lb@6V;>yd2iSZe+bq5W_avRdO z=u(n!CpZ{nbutTZl0X7`g3x4ByQIP|A?WR$Mfppa57n#CU?-?_^g}WarqeGp54N{z zpq*!*OhN&IV_;vQTi-ojewq9bDo@z`ws0$9{Bz$7o;3|w#V@$&hJ*Mqvh)> z&?q4vFSZox-2}{Smhy7ujV_>qO}S`6>#op6t1ed82}V4a`;!k`>qI*2!OG5dfI&;K z&-cspDZ;kDY2dtZM2i}`iOZ;ii?Kwg5bp98z%w)U8%!AaGduiWE&F2)N(_WMhdM!H z3a*IKqL}(zcRd7CFb%eepXR(cKx_Ab#0Pe82En9PmlF4 z`t>VSHjbME_b8<8k_%S$lb5@Id>St?cAfg32T~EMMbUBK@;(ZQIXWcNncefJL^bZe zgTOv;F}FBwDt^&p83bFXl};cNZX#*KywAk@lVWG-@2d!)N&_PkFqr zjq4sZvGa+#XOHSF{B8qm>vND+FYi7NzFkPr#r(r5U5^WiT!&W?I|ILu)BK zVEbdrL(|pGrJzA9ps354Kfm;z))8gSiwYZsbQS|4_v<-oYW!`|#>!c-uSaDuAxaCF zT}oa&(Ul+Y?rjkpE_*vm*GH_5$&Hqy2?aFp$gFRniAIcAMo-xNAz|SHHvv!c>v~s! z&6li|Xd30aTKzD;r+XC?SmB8DGBgpJj&Q$W)!Lc4)#W&_v2J4=0cp5jE;oAev(6~V zpao-MewV*fa5=&suvo9>6XGIg9Hb?~wCPN{9zNbAjwN&ZguD@X{Npl%9~oUuXCb!O|*kgzl?1P2fae#JU%QfLr@(m7@4QW^!hI9 zr@2{`-C57%sS9_W$30zZAI^i#jIc(l;+qfne$&mbd(8yoXMNz&T>7;%?spBTx+=Jj z$7ERC4jt>RG#k{0{au3Xh=z4ZW4N^O_9LE&@Z7}FW-!Wrwl#;KUH1M27#H>?Zy$h} zaMYeL=0sHSY+$JGvF_#wsEBc44}b(d5%z$8u(k*Y4%r{?0KwtHTR&MATXqYRzb^Ab zSppyn9abzqRj`yNCwmPFZ{C;u;T}~^)&`J&c;&oG@ql(JS~4R7_BQg}m|^NDG}s6s z*`{BEqx5yRf+(#deX~G};{f|s2Oa-~MF!QTGet)ZWZ0}T*!6OiXga&O2}- zt|RD^cFJpDkX)9MH93=!?e=Tm^l!(H*3ITIp2GQX2%kjYG{H7L_=r@ei_yb)uJGNK zJGk(#U9-zj8r*M$({C8Icv5yyhzL_}DPp~F=jAh(M+vc>Ch@zCTTRBYIe-wKY)bt& zes}l7IB4sBcelKTX#`oPwY>P`z2tl<7NTT9Yaw}}Wb=&mXuRpwwd$6VbEa&cQN5Qq z_fXcUR$TAnbi)f1UX&>8{yTrzG*i zoG*CTms%XS9?1M35`U#~Q}N9BKZpDt{oTm~JN75=b1!+X*dSi_%PD-K`5^1QOl$ej zZ1W2Wh-(Csa3g1e>VCgCKY=~&;o+I)#*ta0^vR<%o3RS%J+!{cC`@GiKQaEksF&<$ zwl0xF;3;#gPH2uf)Z9SV*}GZ!=jqanB*wohuxPIoEJgfX{;Jgw*kk|isbGaPA~`>! z$uI8HEQC6bTDdq=B$?oF4Hk_`FeFhmy4%Ih$6s=d2+Ckx!oL;I-yv6Ob(0T#J@98l z>rvlj=eK1Tc{RjNdzlDg_dv31hW3QSBD}}c39s@qR?<`1hi>j^BW`KjnRlikPyOTm z8Z*Q>PG?{W4pn+=rYM%BT$(~OOBj}I*UY)%|BkSkn{uQord#5MjiVH1WkUwJ4?mpH zH?bXU^moZ&y#iFTt(HnBukBtTUdHu2rDpV3U{N?A%AUfLimSf2`E9UGP|-ce5LJ|i`|7@Llk<$rzGrvQZFL3pVO5dq^B}l? z5N13SV?xV1LD7 zq4w&)jG@t|ketBD*~J5Pe!9V0$Lptlk*oo?5AwJZD)oa?C^#;A?-7Wcd9Z2x)7awq z@0GBfvZs0N;hxPzY?V7`Y^h0=IY1xkmye9P#$VAh>E zsXfo0yjfnE$h>u6X^+g&(axiYgv=de*+~S}4GMdt?`gBo5+-k~PFey-T$NAN>1}$y z0Dc(bQg5uFWUxp9#aIRHz3ae8g-4xAo z`OdS|wXWOBmZ;VXZ?5!8+<-VLU{=z%qQBS5iEkU2sQLwg4`v?zi9bs^j#>$~)L8iv zeJOIp_qwy#{2XU8^sZx45bVCqchhggM7QEorB=(vZTk=W0wcz3X1}!kN`AJlxzw7q=-mP{>Hl_X*WM!~JB}b#W@)@K~3bk5B zk^Oc3Kz8s@PN?7#s@K`dH+pnPAt1xie)VDKpz{M$7yDM?qrLt&TR&GX#y}b5ZOAq- zgDxs5g!fbtbi8j0JCFP|clT}SPCWm3+s`2~+yB#XwV9Ah?V<`Q@@gLCNA6BlS?w#t z)xE6`fOyCsiDz2JZgQq#94n4Kh#RSLy(K0>N+4g<)OT(%G3>exL75nWvj(!R=U`u} zBm}p1l#W0l5E^_t-<#KEM`@u>jD0?qr3m_mUXwG?N+nY&1`Vp32{j*RE4$_GJT1*W zO_dy#1>e~=&h_t@L}a^|!HjaYnoJ~IV87@n?7>i0`wL5@HhT5@J)AIl|N9!J`m(mB z;f|56<$)0cl;_z_(}a3&_1#&f$)(gSpaRbV6`0}gszRK=MK$s!Jw{>TTc=VqCFzq9 z%6W&PYN#x+3jZ%N(hL0F2S%5!=NKl-O*LY@IaNqB<9V58Z!St6rbg;c$pKlC)kujU zdt0#U=X-4iSIxHSoCcMvw$rZ|n>xm|k5tX` z@%@vFS!&KU^2rK+#s?28d+AUgw?|BP7L!#lQx669x8y38^4%w{glfK4kpvevm`gEE z4X)HZdgC?h*!CV;c%!c`V`Asq307kz{+V&#B(q#Uc4a_ovNp#1PCA1=Py_4y;SwBx zk8-z%H#%y$9ABf|5x8>nsC2nQI;TEYg7qmJIqm+A`NpUyv&JMUp`SJBG$y5Sk%PPLNQcX#^I?9!&xEKtVNy`zYV!Ip7WSYWW$G&J<_*@+ zfHc}_#9!1|N_fy=em&;^c1GlMmubI5SZ5i1;NX*IibEypJqiN{$sh?&&@E_AH0G1U zgo~pVChY#O#0`5#A5?`JqCxrC?&}MW4f>CgKR9gvgl~x~{-G~N!XV5+(DW5<=6+Mp zlvj;qq*Wss##KvnXIi=?8*`qMcf31pLVg&rlZlS>&RrC|6Sq-;_n-RETfKNyMUS$a ze!yZ6cCzVc>~3l>edGf~dt}>bbcD)toUmKn zY^hu=+{F0*xJnJ5D3^9Z-nDBvR3;rKM)_jz?LQ<2U;Q@r!&>Y_a(YCQynN#B8cFGe z;E3&C=l4G7UjCFHTkX6!E%@s+@7M70bJ>+nDo~4$2r%Lth6j9a>!%CloU5-}iQ(tm(&r=J_&bTNp9(f)oEm?bXi*DBS=b|=yJ5V7KUQvH z1M#H}kYR^>m7*zQK5sm;5+GHeJY@RN7 z(jg~wojR>vFAp6LyjU{UsJFr~^3PVOsWq6qUhLxhXg^7=IwsXoGW5<_5&g>Mq`fhs z54zuY_0+V%zqMAT-Ef@H-kIKfx)!Sg7E<>u<#mGgh>u%3W^KvSf4p3eU8^XnaZvgY zCZ}|+mvu5X^9WCu_V7_#0pq*S^>^q1Cl98WJ|8HLf8Mj>4csX!araNC=WcIAEOBtn3spC`(@eGf>4{1LE3oPAct-3>T9?05Wy2`6x>}(rf+&c*+3w*Mxfb>3J@J9e zZ&aa?Da5{XzwbI8;z{WIDCnFRMnztyDPQJy*UTZ%(-u3F#jQwbl#$_|ssc~11~iQ& z8Y{UhearGyK9Sh!>YuQ05E5AlPuD{1E;N2R7t;VQG}g5-J3g(sDD{` z?4ETD!&pUWRK{0dNyE=x{TctCaodxadb#Qxqfbxe=>4k%PUowT`Z5r>Z?FyxUkMqJ z@LC^Lh;dnh9e%_5^9#t0y@b;0?nNMKtPNB=O$sl7)z6RwEdx_EPgtCpGx9j;nPlBI zhl&Z8Np*&d%UR;{uOSiPFx^`HuzN_6Um4cDm{&)(cHL;IepO}1Pio+Dc9Jz$jzFpD z3uz*MQeL@fIBh?hvXkbwdbbzB;YrC_`-h)Pjo>Dtb|RYW*)i34?)~N!wOf^+%Z8G- zzUTTD#+a+khg?_;m-LOdV^;6S-4$!wPEdi z?pP>(#o96=O|T>+dI^j7$A9FTTw0ih1b!AVrtfSdOH(rvz!g!LybL<*!Qd!%s&ke- zFT7egGc`cs<#hFj&Yg=;p^Uj{T#P6vDyp9?lBr#Cue-T-3$Tt=2U^rJ_R4tS))T`8 z#lk_qp;tbH_O_FKk26nB#-PGMKFGq1!S{BOYf%Nu{stOH<)yR28_ezPfjAFJ73J$m zde(f6f^@D0v|#HGZgp1P`_nM-LYK?6Sb{_t(x?_~$Mayk+(DGhno%)-pYPrIivj2| zL-bnP933@Liyi~>UCDwcJ!=LUl_xmwd({vlql!vWp(pv~qShdFzgEo^V@r*}ZN3NM zr(CL5uXZCgD0%WjZ*CHz8|3F!Hht*zP2B^g^G$xB8%)uGUD{f8E$_9X(C%%>A&;>} z^w~1Q?A$sj8P-h#uS4~Rel;+41^34eyETAiZF4I%`K=CF177&+n8mhrP-{Y>IXr_o zTiC_@q9GY+>pE4R&6=}r9sd%(auQ9SZFt#SyXX2PZ4}t5B^(t;zDRvix#UHD@kq8S zeRbkmgt9j{w)K4_elbTk;z_s^^V9@VR((9r<6&)|tfkfONnJaFrS1_IX=@x4(|F^K zXFzx+xV5<)OEt(_W(n+X)=jM?;VBntWy;D6zkT!RJ5fZL+Rih)(&qU>scoTJV~47t z@<&kyFjH@52ab1mIvmz8OOc#*Ei*Sst10#?}-=* zOIN6PGA}E@Z1Qt7V~Xyyi)~DP@7`{m`Ty#NtNno^Kp2|HJrT448=FZ!csNMFRbAD zYPmPAUV0$zMB0DX^a7L`YKc!b{%7!($#xkSQL%>=0r$l`4j^7MAGwg$a?(@ss((uS z@wMWGCifK0@3iO?wC>yVDhbblfurM7oBsH-)s<*nLXx!`)c#tV+qe;G#StNszHz-r zj(c*%bp~H>y!q|B7s;t(arPd>8|0t#QE%U|fni{bj{b7w=gv$ISDN}*R;F!%6a^)mAMM+FC?<5wA@&n$X;~N(@U1~D z(Y?SqWTei`{ILPfB%&bpj0Z5M3^}-5&_GvvfN+sD%M+15ZYJ&RYX5unW#CZ9uq2BL zF$uhSx0G&!(K@4RFThez*9Fmx$!=R)^w6-TRTT1nOZVIwC|$8cj@LC}@cMWvS?{MO zkxur2In_kRXA`NW@pEG?9lpN|LylR8;K4J$7wdcSi6*}R30&W<`-gQQqwuU!*hWwB zlMvb4o$Pro_yI>C#|y~4LLSFe1y1Burs)OER`%g@k1Y)eG7n8IkGLZ8IOxDvl^siu z5%n42)kbe_*rQO-|MX5Uaq!mPines^Z`7Ob@2jpm`415r2xaEpAO^8ZKZ4>4RsP#F$=FmO<=h%PSdqw8RlFx_no~PC)R7K4%DwYB5?h> z2&N_@Z)$K39zDEb9J|7uGdhrm*~{>&ykEXs@9Kk^T$+9(zRrRzyTHzeKD2l1zq=_J z?$E9}I*lf<9+;u`mtT>@xzVjg!lHyFgf4y3jlYBgFqi$KJbxih&t2QXmuv49me>ai zE$_Qv&+Y+9%|y)yNO&HRv&{~#aNQ2Igw>%(mep83MTAgIOQf856TI)Dh|?zLa%c3| znLO4e>~gUzk^U#%GB6K2xf==q2!;%P)aucp%e0XZJ1oi_yJ|1QqN~;vFTXC_FJGXdwoaPAZZ=ZAIH3#sqTb0a)#^w|yFi|M*J1A# z+cu?#Ndybdfk^p;mTF4~;r4n#uXxkl{B5lhmp(a{Kcev$e_l=YU5V>?WMcY*?!V}t z$KNbWW28OaEq*=Ji7zbJ6W$xox3~#|F}P>uBg<*bOc`lOGClMmMmAtN=DLDinaT__ zD~fJaelNx0;_N$ImD9{vb7)-A+A+bu#rAZFoo5%7jHV|?;J1P&nkrV{>#A1R&Aby= zif@a?M(qoiy?yyX)XG|;<$(gG;7Cv%uJ0oAlA3EU~y}2k8D+mFG-)Pst>4ql5|mj zwVi+eI?JR#}F|IlHt1>qGNzM%ycCOox9P!+x+@huaIxIhV&< zIx7{okA4Q)tjeorw{-*xMkN9MUP&7RgKFT;c>usLrOfUFX6>fXzJ#gTBG#dQfT-Kw zNf|k8DE7oCVcviFR3JQf=IDJ>f&JN6qGbR6I7$N0yo0rLKAbz7 zsr0qL(5SRFo|$6pa41fEZ;!;$!ZF+)@US0(?FKz?MI`G|6fq2qE7OBggP_!;kS-h5 z6Z;i!4($C9Js`lRpaew@o$Fs86zy(}!Ik0*C4w z5|*EoUn2;IFvN~U{u!~bU9Z`Q1;w4o%}CLdmq!mL@4E#Rvt~mcqi z>byy?WcSymHz3qUsJmzCvI(2&uHFvsSUHypfv`KmHZ=wABWu;xU90ageh5naJjakd z{V>6Qf75{IuRd!lyRatt&x!D(&AuJ9FzLRGEuwysc|>9PGUFNR@m_&rF8zKZ`}v#i z7x>p+A0nzo<>X3EraKE9(zH|(tanX*0(qc3NttT3)-#wH@xNub6snS~RKHgTX59?5 zw(X04qo{*_!{zt^-u z8FjzNTo_EfKMvLPX)9A-RdM%mk5~QB+XokVk7Z1b0)fhtHu#N^OVPP#M&n;}*?paV zG;s@QjUP?BpP#^BpP%UAN7vmduXBO(o9t)n2)HWTFlsr{|MGO)k1DII4Yg{Qc7J^} zj^PgXclKaqRRz=C0E{BZ3q34jfe?b$QT{ma+Rxeb_d24@c^?LwSwYQL3i3sQ`NP+n zV&$Tq?pY^KU5cXn|CrGIxn0hVy%SRG!x5@`Q0t<5xi^|oaKL%^{)qFrhrI&V-=#)J zG?;f7=&x->_<+I>|LkyNqZRQl2RmV2nt)r zRmj~f6BOJq0O^Mre3H0fJAO1q_iVZn!s-{yHuXASxm?xt4!ajVwF-S?RDQ&s9GFrq z;SD+Ll|oYYIds&w{HN)(IHH5{k(#;V8Dyx_YoyQ*$8ExIK?%cwgjWE5dzJ*otSn<^ z)PjbD6<4uAq3XKSDSbfp*lC~_(S)4NWG3H|nyM}{@yO>il~-0mXF9TCOmqc~$;G9~ zQG5}!fsFC1i<50Gq<3rzw(L=9U{BG;z_8$@57?k-qAz%>2-rt)GRg9v%TAPt$kKQ0 z{o(jLwYWxOpLr|{w1aagZuS?qCUx7Tnn`kctqm{EbQLsfmzfCseFPg6xt@A*mB_mN zXB+&Tx7Jl;2>W!^0fG?<(q|c~-mWL*seCO@wK`m8#1gw$MR1iEZD9i)F)M7()Q1pG zBUa|6f|HSw`FO+vgE%TN@l`@=T;hiA=k1YKVP1sbfji43nict)y|M787ni%ef&7>R z6xj&A_E(Cg*tOViD3%hGYTZiGL!@Y;<+*?N!xd)!(6T5gd2KS<>hJYkXWmKmbQ99D zw6s+F=d9w4CTYggtr?6%mk5FeM$ zKFxIQ40xpO=QcHF5*NYHYZCl>yn?^t9-+H7V7K6b5?xzagY)uEjY`vp<1J=O_2^DE z;UO*5`n9nuYLZTyejKkc18!%3Oyenmt(hH&tNzS0I!zK!B)=>g;Su#Y!u#7Fxw9LP zn&;{ONkFB~_I(deoAmRv$mz|xtX&96@jG5QR&Xj!}R)zNFf)H&iopj(tkL9?t zsF<`e{X4tx`5>f--)n1KPl*^8QEc|))$yx{-DH3J9OAaXMI@5Ft~6Bx8mXl2=7T5J zu1*u8e=&&Vv5a+VASKCC>%7lGNOI>6(J{eJ--IaOtD~@;=iT`AFNT9pXzgwur z`3tjebvv=Mayq$@AHZe+I0S=nARgs9nDuS7l3mL;E8YX|WdB(9ckGLTES4=f+2*0o z^o8~D-rW=v(I55U0qr|B(Lx{Z3Ff_|w(6+lj14k9e)_`KOHW=NmJ(=a@ZUN*!V%EJ z)K4d4z2oqJo9k3#6g>hjETMmm%co!diz&#iwe%oRM*cl}zv$JA++#~6>tEappbarp zb_yz_K*g^@4(Jz>o?SWNZ*UYLc@gd2x|}A9qN%WmrS`=6o0iZ_ru_M{!w!rKf53S5 zS>n<3gTJe5xqGnn!<9_?C@(vaDKV`6k=(vAAfY*!yD;w>=Wx3 zMV?gpH^K1CqRLAHgs%DBE0-k{34G7w-%wb?XqZq_ME0=}b5+^F)}I;*3qilOlFO{O zmA~$>6V8u1^^LPg^aUQW_!$lIjJqi;I{g`+KxBsvGgL=Wu8ohtF+Y^)MzgH=!FI^V zH~<1RO7q#)2IST_^@%5>WcpO*)jS>rVrAE#AQhw-MR303CEpGJ7KlYO!=ui_ZF?>#`4&yK~fe+-C;CML>kq} zp~nZ#!xa1U%K*UgxvK(ckO*smVu&;KR?pKX%!1=9%kB|%0{T{TbRw4`lp!-rt%&Xv zFSgfVT&=*|LaW$$*PeP3c_IPG#Is3{+qHM6H5xEt*GqwFcvl=-B))3$aqSdMNZ_f% zWl{3}$IxXZ!goBXGpIKQ6N-3tE%stMQQV<7H}C#lrD9?;1WMKP9J&|da;ixCnxouf z1Gv|cd-d_JG(-^4y8S(^$6R=CsJ?pV78+m(bE{aL6CCY7_!6TX+`=|=a9IUC-t}{Y zuY<(_O#IF5BKQ5TOt9sbBS}@>Sqhdc2_;Y+VM zg?wO!^!v5Cc~8v)eRYtJub{gz$v zi_zw-Rrp^5A$jjyVpj*3B@OFJllnNki!ok_lH}Qn8gC@N)>K#KTfLd3m7T5YizgCO zC@1$qschH98hIgxVZtYu;hX&lX9eaqhd2{cNDr6}lG1*r-fSBL`ZYbD*Aiap&3zC4 zH{-k54&5m-`r)aL#UD>L+cV(qYHl$CPU7dO{y zu~-nNRqkZQ{3FaC{Qyjm^jBSp0V#~NHv&jAoUKDwx2{D!EyHisMX#N+kLkZuyV4FloOre3;^dzB;(2Z+v z)w`&+wlVzr2P%^zK^_{nWBTjr@b7NGg5lPQ>CeEMEkG1Qo~-CHK<|T@mIGreX{FC( zIP|KFK*2h1F7~FGDX1*!SyRN52mq6r+D@?|$C#I^jzqFUr|pb)mbb3i9~F2M`R|1| zLbfrK<5MUH{3d%^4N6(dMn7H;rdQ09~AFEy|FZTy+Y5t`gYG=&oc! z1o6};;XU!4dK*PZ`eK2^_y>VQe!}T;` zzan6fF}}0AdY~+iPS(Sa7WBGY@7`a<)dC?m zWyYe9JeD8p`}t!~QffabX3?hc1Pb>4LV#h0h5Yzu#M45wuI2dXNr>X@I&`0$+R(2*1U~$@c{gcYlJykK*-@B} zj#2OkO_1vAoqQND*X#PND z3(&jx(q0?3EyUifZc_XBEujY(HO^6;9~ca2$iORncv@!)9l9q=>39xR-%nv2?caCU z_T~p$h{jyaS<5=dz1KrdS=)?x@LyNqOp1|G8h$7hAaMk8zK=KdTx4+B>`Jd#_|HEA z=ekT?!`@-ZuN@|KzD&xu(c0?U*5+1}9qO)qWL5xcUEbDkEM>4Y@BHJeeu4c(zhPlY zs|J0>M=N}B*@u!;gnSIpx9xwI6Syy_Eto*b`3nH&nkXRf{N)pD59_+c8^<>`q39sc z4S-|fL^`q$;BZs|R0e}+Ifr(JH1=m!KAQM(?0IU=A=%o!09Pt@`9h83n@p=?sjjci zXj)lXPCPu@7qJoY77L(vS(M1W-&d(R z(0N|i=Vm^84UF7y4Zb|Eap)weX+L@NX^rr!)LN(HZ{krS20D zIHPEQrJfY{=;zrt;2dNx2;BNt(EIVAQ2~KNf_48Hkp%?)Gspb?W5-o8r0wp<)pPjj)?#r!fGAKn)HV+}rcxW8j-^td&;g-gRJrL85V_GN^ zmIt&M?N1HDwRiG6bdv%fU>pdAWtfL*m_2MxZxt z%!9B_I2WDCCU5<#7Cw-7UesnG_D`ZSdn0jqri054&>;E`#HPaAbdDI$~NVviRr}k z_r4sdzFCpG7yR8E#|SF#MXTK7;G3F`g5KS)HHR}3yYjl+E$0qgGWi{}{Lt23BdZIV z8MJuBBtW^uu0f}2_ZKC2S#j}lEYSTT7Rj+2y+v*O@)zv81G1-6S<@KdYS{M7=~47G zph76$t`Q@A%M_Za6UG`g-_pZepUsIqnCN+D4H7;`veUzQ^J6Q$r@|>;)FLh?wka1K zI^js5*Jh2K#TAxwI4wApML3QRW7IlMjE8Bu2|S&Cr!p!kG2TiYkWt$yj#GCjZ#eCa z(ygh$rq+-E0(Ar*ngPVq<#*D9Q^w59+9(e{5tY?-IkS-t4i4nGwlss5`clYo;RMpS*!wOJE-sQEe{LjGHR9IY>2TIvCZ?4pFMObm~VlZ;u9cC5)p&K6SR z_R>wvTqB_cwV`)C-$uasqU8Cmdi7Y}4#p{~A!k4pQrreW!=%~Rc4Lu5pCAenF0yu< z!4e-lj$5s)cNl!;Oy9^ieG;DlVAg&1bXSawnwd!pbT&3`dm*F{&WQtIA|PLhLW*-_ z7nRz|U@D2By*0O4c1+Ff=v?4bm13!wOshM0RE(=dF9Z0EzFUKj!$(yz=p#?|++hkW zEy@$oQTL(pjvCm#wR;lgVU!O+~4; zcXFHf4i|%(WS#AreE3&ZlF;>ylb$>Hvs@?D&(5te)OA6RhJ&OP4MJHl98xPX%iw@f zMYkZ-JOfuZLRg?H)i}gPBmK4b_$hE(OYp~+L4-G+lFY>;$eAWL0G+A!&bmMz>w4pP z^)5Q8T$?o|70!667qRhw*n7{YroQgq7sZZ~UdD>AbC$s3hPZ;1tZ<7x~O zj`V4P9vy_NbIV-zcoyAM3zYWo6Gox(uGV&-uwKlT^4h}^t{zq03{i=;m*l@w-Z`+k(N#Ab&XI+yLvm~(>ZEk z$>D0`;Y(^F@4bSL-`3BwbKCs~{cyYMW3PsuIpF=-_&&sSo&r}~8Idwc#C_(=;e^q@ zMqvo!QskxStF?YFU6W=;40$8%suCsvX#3VbKkpi4q3>EOuu6gInTO8F#e3$2AR2A` zjpSIPqYI`koZN0Jxj|s$Y123hp0&@`E0O~BXcpaEyAy?*MpZ3}`I`6@^X^GaV4VU| z+sH>NHHn)^k$Vcd?o@Lcr31-$GI4Ccu1)vq2q(YF7M7pOvfSW0N^wVx_SAlI5h+JX zBT$=za8fcxM?Ic$ydntO1e=#ze<&S4yVGh*!B#B)iZ97d?^~+N$&)m*_MWP-hiw~h z+4vj{nb~ut?yZB<`Up#w;5^hZd}9HY{hOLU(V|}AW`HXX;N?dBx}nbu=UpIwB48{Y z`&XGTqcmWZ4R&KA-;)WI^)|NKDu7TqfhmKdB|$|1y8SVXYORW4o}H`4T-(FWvq;|s z$DU11YhRmgp_xJ8B7Z$@eDv#xK2txH{~#oiS%!o3xwxrJL@@*6d_z^QUc44J-e6r6Aa?{wmlx`Fyas5601pV zI1dpAvE{mMr$&E^%Lr^JdDWFQ8dWTKMqyQNqvm4JGt z8`~xoJ~msX1l(-KK&>YxY-;EA<@bg_^-anqS9okIbA|@1h5mMiu2WtV=%|1g^K>LB z=nLF#t9*^RHwJ-p$n=ZV!&*PBFm@j5vL8n)XHl`IA;if~()}_m(&Q0S7lW@%Krs=f z6~LZ4JGOl|QEYkHWTA2ux#sbWOLJ+lGp7MK_{7KA_Y93&+M>HZj&mZ^5tS2))n|5m zIkXC`FnXcteqIYn7~n=5g(4!zzv9(=T03H>VGyz-?Ht26@W zUEBQn3GDcnYKphJSf>z zK?jSv2#n-yOi$rRkVSo!AI-N~&BuR{hz+`?vz&#ODs+N6f`dfQb!~H|+nUR!w11^% zp2_d@`q?jcy1IlYrha)j0yJNZzqOO)ou8&*p~K+bXo?hDQG zpiedYSm&;+$n^v7W~>cJmn+kdO|OtmF~}yg+NUYrlnyVsP7ve!Ig2Y_3xh$V51oY0 zl-J*=!3!8y46MXAL3a2e;5a<$9IvPDmw@GdeM-h?Y?Za@dxh9+AD}-OgNP)z6uwUf zGZU8z3Aswoq)B0VwTl_4m%CFS)Kq6-3V*QI>b0MTer!CBmnWfTBuG~4{$JbWkW5pw zl@wMkCR|xlQxkUDK_DMnR%1DSXmg32(${QoqjmjC@Yf@f zyr!5k+Y@yF;sf{{!t!uK!;#%_slfi>tfgp_?+koVbGLIi(rj^xf;;}?mFoR(iS*ge zfXwxN#@g|IRe3Jo%Z2|O3TI6iWRoEdfM7=ah4Vq@wSXek6Xi4zD4F z%`c{V@riMB`%Q^?Q8sR%uh@I(yY1xR(l?wi0rowpXXk$VVQGt1&VBu-?+~$$g?^d` zY))U2(bdIV?=*+a`be#Zr?lPg zDXOwVKY=B2|D#TK7&aEparIH(Vfm63e7c_*ObCgimBcM9n0@U2N5OOBC$$QP zE36OZtN+*=`aEpAQxQ0&H&cSt;W#b0N~>CvYaa%n45n=lnig?2j>g_OjMb`-&e%sr zFy4tT7e(*y3=9WZVXXn?Pr+|@OL&J!`_Czh?%2dD%Y*!Ra4)XnPy9$oTFuTM0tV^D z9xfO}Jm}hPZ4aA;yJVw>r2_h~^nleJ7^S9UJ+FfDGRrR&T*8efe^UwQ=}A%4OZKM@l;9Q;y#U3JE@27GR=)rl!g;MuDE z7D`yl`Ze~<3W)caCfueG$^9cwc~FcR06#GItNK=HiAw%{WA34|mQMQ&EX7>vob*fh zuAiQDH$1w2)D3VE@BJT}RI}C6&!+PvWS4q}$F$3uzSq?i02990&QOX)^O#-prC;ad zDXPDi9S?wffJBGclh{RHg;!iwt=A4X(<3=ew}3ZBv478_^Wp3~^M@KX0hc9um)d4(&QnBbpwF#5;#ArdSpMh)Xl(AZ~d5dnjv%bCb3zCQp zPaAuyK4$IR88p43YzHk%Tr`*ehx6pysVxp;L%Jiuiqc^nKk%SMPZTP&67V5(?Vq1t zk2oSS)|F?1uPu^s#*Xu369#0w>wWhOl3juK`BSrhxXnyKJY@RY;b&nj!CG!euWZ}i zh^{sA#;_Q@8U5y^qp(ng=RqP#VUm6xpSJDwV%3>C7-L{Uhkh>%>om9RQ1$xbCo8c= zzc9|A9KN%9_{bq`@Wn^*9`5k~;)4n=;ap#lRJ0p0Oaa7OLMa-VjT7e@zMP}B$d=td z@Oo3)*4AL8R694oqbr<~mMpXgTAwkU4fmq-nCP={9x<2YT^)~|2@~mG1D!d!YZ!I< z&TXIt>mVaA*@czJ%ZcXtcG!qyjW2F~lF^|C5Foz5SeJ6-rew*%L@ttNx&hn+)eD^C z#|3U6r_?#3;Vs91D5?-9#FBA`dqygGovoS5^}Tp8dS|r6T3J1eVq2b=bfwJwJABk3 z*X#-RDsF0cbGeZZxL!<0k9~UY8LK}pZ|65TgDO>0;!tZGXYL!3EXRtKHg7{BHbUxO zt1Er#6gar2-qq*^oF3+*ZRvMN#i1;TD!Wf~z2E&rPW5~;kSp;_Y})Q)@QB9ha?TAH6 zhLH1M|G;yqH;JsG7)0)4yghWi8zfg9i0K_~3~~Xq2K` z>+JNO0AX*F>6xn~8ZeR72==5?|A}zpPo&|xWJkaw{c4Hq9N9yy0{|RL*NV;PG=QNZ ztZtJN#J79;PKsq+pc#1RQ!q{s@P8~_k8<_Xn`y0XXgKn%2onrgu{q{ymX@w1gsn&r zvAEze_tC@`&4NFt5mAsvb%jQodr&oK4wdB_r64mI0B|}i%d32!e*nlQ-ZP;$OX^J4 ziI+`M1jkB_9DmjZJWNL_^rh(l!o{~uk#c)!rsPt^;}4J9emo^k`vJRBg|Kzei*(w| zUE*YnU!82&N>@NbNVA2*(?${0CprswPM&A&PrhSnbNhf@X!^BfUqHyjlJ5_378F z@1j%{aNidXdyVAiSQTZhHUE4omq8*g8?HZj%CRaij6qE(_ILENAf1XRmUjtEDS!x3 z&z8Wiz5QX^*W^AsxI-Kb{C03K9hw?75Q;k*{n-W3^mtB+Q2|ceUjR!;?Htg)?qSn*hbfqi{ibItvh+N@Q9GHm=pQdbjiRO#HT1 z@jZI-H?DF4GkPHUv*%X`cnt5ww~FXfB2$i*n>-7gK3J1SfX69$I-lbSiP)JIO~myy zgNMy{j;}~K-)~yXkQPDsVI7MzA|+Gw6JenfFN>~)_}hJW^^b3<9IFZ9riI=|}m_^W0_IMR|AecG0 z=2|lZW{c#*w|BgTLP^1qUinRzfMwh2lD1WEX8*4nSO9EGLo^*P_^4WJ9I75@)NRrI zw#TE5mR>3Gk0|`2(04N6Dp(SwMk!3w)N?9z!9*P31To(WXSX%@IYJlX!_sL(?^nwc zc~dPQZ+Y%~Yu&HkklvD?tAPBq67QXpm7C zVarKhtEu3C-4Q@Bl{K4{-k1KY(R*5Wm-CE$uxMbT)eZZpZ9R@xg90>(5MfRcUn+PW+GsF`%2LWX8Xd8@d~N- z6W3+Mjl|>5n$1q|jWs}_(?iX965G%qG#m4ZLGQN2YtLM)kUW1DROMDPoi+`m9`(f% zWV<4ymc2myt{r0r=Dr}!mvSx0pjcT~J3Y}9w^BQ6?Y!XezDhiR#EJi)gGmW6QL*(R zoO3>Vt>MgL9p`=^@`{Lh0&HijQs{{T|An;qvi28g!(KuSRwD!AWxvcHMaQeL ztCDo|d1;?xM`^v~nv0CsWZ=2i57@`CMn6S)A!d|0KCWqLDz|KXG9EMV1bLo{RG zy-jwG#AVkUM9AB>s3^e8^b{g|FRf{&l)Md~x*@Qsp4K-C`F$uP_bBhrmng~`N$4|& zj3ohLnILV;3Qd5E-X~-agrf37R?nLlSmmo~4mm5)hk!KHV25Lkqa$|ul*9O@j(+OK z=OuwKmz9-*TARMK8zgtt>^PQ6(!tx!4$-n4XQcnW;om?|bYLu7iV0YDpFlj#3==%J zHTse4-+o59e7j#9+Ih}f5bTMg)Zh(#0oP=%-KVK~Z9Y^au~VD27gnopuF69htYr%i z&V#%_2=lOJ`s6PrkSQV<+9CS2+~0gYPP!EVIP+>>$(E%fgWl2sJchTp0#)@YAzqdy z2HEtSxPm5h9QuMYFx46y4 zUsqb$Y_ zhmGhB8YZgJ*0+e@T(dcD62-xY-WiWc%gv6;2U>Uz3o@5FCBRe7xxYzLOxov`(efv} z9D7xj|Bj{U_xIELWN4&X*iD2L1$VKlp7SF|jWUBwk?)jQ?)iQwM$i3(?Vm|N%o5kx ztum34Vxg1W(EOES@yY?fEcww z40t3EjV*2Rqj8e?SlmBc_T(-!#ZvLj;d6kkr<`9SrxZ~pV`DD8$Z;S>on#CY4_NEm z3xk6$nEJBMD?tRt{^_wz%{Y~6U;pYvCHn4?rr=lccfyHi0AV9%Dh@2EK8 zCj{0H1jzJSXeg-W$jvAz_P>|5w1%Nh5z`yxW9j=(5r87hbd=7*{vjZQ;D#~+O3V3S z=KQ7ay1lgWgGf=@lLdEFKvm}G5|NJO2=yTH!Kzbp%E{(M4?6T_a5k94RujTz&+3PL zfHb}@j4v>X-S5_6Zf@efBx%8gTl6#rl$N9OU_q4$O@?16deC_cii+6eNGmBxljjcI z4fl!UC{NDdhLd)+7hx*KAfwSeP(T$HXWluh@Z*Idi3qm>h&X9}D3y|Sk@m`RPs?Mg z=YfKi-)dB54)&{-HrP0PW#6^$c8V3%OoZm*zsNGX;g1U$4g;XKMY@5Z&8|QO`N}K6 z_w6+A->I5Mru&Y6lBq$qI&MBxYY%r^BjnC6XyGT+Q_8{=(lgFD7$JA8%tsnh z6wf*D=GCzU!~~pQ8`xc4cIus4yD6zKZ=2pSd@ex85o-iX$<6HH#Y^4nk{|rZ()#*! z56P0s8KG#si`Ca$#v+reZsyV%w5O$fyrMX{FEZxE6X_9-d$Y1emB+oaO?aZ78a)g8 zbbxT$@VvifJc>N`zaVU-zQyGw`-W5$iEJloo;q$|N~ zbk{T$v^3Fj@lcKE(YsFpdKe4d44@SGxi%JGzW`@TS=vCn<{s45Ev@C*!ICgoH{X>a zc$>0J&MIpSYu6DJj2__Bnt7M-7GKd_yTNi`Jt+f>8Ka%HugUYzcD)U2wxG~Wtv*mF zsCE475-&)}Wv49#U^$?%w^vh#G4$}uKOI2Gj>Jq`uYd_!Wc)4qVyc?tI{M8}#EZu@ zQqXmRz$0f62q&JGE}L&GAj6-$5na**>`X47@;PfQ@MvvueTS*xfhkd%KiY-Ar*Z|0 zX$V?R3qV=IepgqQ@Wjg+RUtrn)nKI@wr=f?GzLi8Mb%E%E@~bx^@O+U9bYai_YGd9$a*aJqnJ1c00ARv8Al?e|*`nR#?-=4~w1>^}T{x@uMn$`%-a+%~hrK@E2YRdy1 zL~k{E3JK;kg8H_E&FqwIo`0wGW(o|Z(QD-9q{PaSdpCJ|!n}#(P z0+of8FW34Y!V!VB_e7LkBhd&F=lf=n)<0?rh>Yd)^7F}|`N5bHk*TJXBXPdu$truelj+TMAr&T{PD`x=} zgdk(1R)OD8= z9P9cyUAVwC2-rlp{QogKrkX(WWDf%Pn@l|uyR7+^?$q2;iP-?YF=ebeEbBBtj+`1T zGqajjy+Bow0H(<6U1rW5YO7$iD@3viJWA5=?mlg?(b+hqJ_I2~4<^3%A?y|l{$9F0 zV2@V*q5QU|63|Aduo|D`F@ijbctqPjyOk2Tfat52yB#R=(ps~HP97hosLZNJV* z3Cxi#Gb`!(=Jsh<;E=b>QxTv@If%jz*+e5?LxR%%XX^1dKlU9?clP&$>;ZD<^QNDB)TudEpxSu5JAS zm@qTILtWG6>Wz^ij0pnBamcr1Hr&O&9FHP@`_qB(2p@eVwK3wos4_v!YrMzwpii#l)QfaGM!RFJh&`5d}AC zBEXp_gPMHHJ$#Jw9zJGs{4YMn{_llt-2zf3GEq1n>H_Cl&79k-*m!^L=Tq@lQ(n>V zvX&_A_9d;3W&koMNs+A^eeVZ}%?<34_ikOxMqORq03knqIT$u7{mFad0}BtU9p=~>f2j=ux`UP0~l)ASfj~>ueCnY#z0~LveR601=ztT zLwg$5u{lxK7F4__{3#s-xDbdFoSiti6H{v=w<&bI%RO}0JJ-?}z0dcqtyiizYL=iT zhUnsa?KEmNKyt}AY1iP<3=5^}0~xaH=TOxOhvml_-l=Y^${x&1>mUl9FNgN&r4w|* z;A|41z))o_Eb-G8ooONL4TR0s=y>i6^{<^q>;^pDte-kH(4t}68-%BW*K&c63Wo{j z)n|5Zn{N95*dExJ_)P`!%B&WLV2r|LZ1>^!nAc7?&;XF{su}Ol$96b{7&P*%j2h1y zY=aSlj+H$PI+7JsW^WDS;jjJqO?!&8rJ^9)+@H47KM{7X%r7R8Yr@1ATiZF~_Z2)8 zik!Fgv{njmqALJpiw``;7_W+!@9s2B%&TG+P)VDsB0gfNNJ!(G-~TvF+!gU3Quf%C zfGPzeP3(bU4aCoFai&kp2Y7Zz_g$k92H?wY)R<48FtZGq_JBN1;l&hW5K7iHu|!(H zh*LZi;h60WY;FpF?tDRZ^*+|MKAA1(JlKeL1qXZ<<`v7Eg`D3_9DQZkB@#K!%D#Fq z9F0_*K1altv9Lc6T1wa_}|&LzhgF5_})^1u+ ztKhvl!Y7=!eIEK35|dnBVdf4HNht12rdy6P*uFsPf#6 zZC0L8o%tQK#2fz}4bHCUAjY8JN|fO#mmGhb?^;7H&R2u^$nOC(VcV~cu?5Xv8b+gc zmB@&X49b3mQKN6)RF}zhjV1d=^Bs*5+ny3`!Y5|9 z>1NpDw}ov^Y}M``w9Cm+AiB(rlLzc89wFFF_$$r4f|V0P);i`TFWT6>K=Q6V_%(vq@mHGyEg=w0dyq_usJ z$i`6;!27A)GqAf$8~AfPb4su8v?_i2CzqI&@aw3br!C^~OV=|3G5ga{J0S)$j#nI} zYwBj&n=`T8ZXiZPms1;U{`#?5m|XOoYmW(VZt9{6qSc1>F7<5nky`m|Oeefq6=6em zV>w59P8{`~s&k@Mxz%nY#wC~~7?dJI7oWfHM%dTn7E{)Y)J%?@39{-DTo?ecCBKs`C-EXtU9mT# z9}`9GxjvY*bXxcFrjsbgr83vf(<;qYM)^%?W4wZL>W#O23R~*E03>r!^W_qz|ANHy z#;>H8fgH!G>q~P9so^KibHNeMYHj!t{_Q8m5!WIj`x|Kz#<+n ziKlrO0$ar_(M(_osTb!x@BMs}lN%3<8C*N;vOj*`+*xh#Cz~EJ!K(&&^@VcJISccY z0HwhrfZaD^1H&O>)E^>cbIaf&V-1HNu=BdZO4&%Y5p@v<=T2_xK9Iu9f@}LfgPHpq zUonaQ!onfyvcUPSa=NrML5W zjjo-J+*eif2aP=}YSOzKI`zLIWo(jf{6)&Jzb-!CcP5Y%D4RGU2ATHlUm{F@l>qK` zx3CDGRqX?}mCCV@3+L0&H?}%#(qGjJt{ejWIR%SrPMW{bx9#_mp`mXsjF_dQxWRZ`rv1yyWHmPS!P6Y>h?-7^o-jDD5(38JTAi8XY6MyTz3W zpE*z6{5Ahp@Xz|!k646lX}q;b*i^YUz6eQzknLM@ZJ%w5+}^{wqRuvgbK#6HnQ{@sdu_>wo)bI;n`TINWk2e+Qt%6*JOroR(HW)B0e*uQVwXdMLsdQwz(3XPEmll)bYZ*F!i zF}UnhCp5D=t`VT3fS?=L@4ll=*tA*JU6KH+IUWX54^vLU7$(PQo|Q|!AB$>#OfJ*N zt^nm!IqzY7<(1{PYB|Z>XF%dR=rX;EHSNf5rw3j!7!{g=b_(4;Zl)`1f8BEc_|cyG z+@v7=9s7XhwlL8<{wPU%zw>W`Oh^r0l0gmnoUwL#K4{<28LGbG{g*G3xfYNQlmkazR~71wB_?-#1ke>F5` zmzam%+aG`&{NICTYNJjo0o<8A0Fpxs3jjfVK^9>JgwV#`p)Dnc@-6d%ZHdUu=Fyllkn!$3#&?pqv|2E+liaL zQM=tzFAkX=IlesouR`i6r*S;FUqz7mTlZZYjeGeD)~Vb}-`Lvj2waQfAEVKzfLaxy zAeZvrwKj)?0yZ_Hj1m_U8LsGJ3g8o0v6gh32h`qUMcRD%O?%R9V$S+vp(4kT&i8Q> zwe#0YbJ3|3r z@P&(g9t5PvR$|It7ecoXKmUVAGemg1_>Y}x=Q(OaNdPL_H)HJUIciCXQ#G>u-F+eF z-X4pt4Ovj>PFwix@2K-~U)`w8gp@_1Gc>fyD|#l zwp+NyzVvvT{1Xu91fX34G|A)jnbY=!v6gOW>*U)+(PA{)8+B-hCwzs!uT0Iez1*Cw5;m&PY$exn?vZ0;22lMuT+(6c)qW;Ds(Q z64Eyqm1}h=|56}!^-aZ1Z%jylAhiSBtOMe(Bba&k)HE{9-iS?PMmZ(wdD;KThXIp^U0TLPHcYvW$Sy2L)LqCaE zzTnYZqO-oEDJfN%QL+T&#tqy0?Q)oR`fbVL*T3HxyL=11zw)w&v)Gk0|8Rs_zYkk8 z`EENB2+~iG6%rFSkhoe|yPwSt@3B+W`06JKY>63x;-Pnb*nd&u-_rlyL5-eahrwRc zG`q`Ld*xu0;?<$w$xb9J(sqq)hR_Q|`Lp>*p&1PufRt%q_+JE@cOo@`i_x{&YGf0r zvP)fLR)aaHN7;ABp(>=~&?coI)_1jZMEvx5gyvT7U14RtPJ51nebLlxmCp?y43)e_ zYrmWlDh{BM7^Js`XV#PkleiR@ve`K$WAc0JWZ(aNYR%xf`&y*B6Ho!{^*gbbcKL+^ zG1j-AYf$J8lU7In_=PPctfi&pF5E^qQ?mtC*HzN#?a6A7x^A&jzHmY~e!Sj?vQt6W zu)h}=sh-e#8c(!-Iy|Qg4>WTlGLJMnOgQ2sGe%H|$V^H|jiB{#&SgfGH=xcSz=YH- z-fB--aNN-a%K8qHCfi+`krap=dM6=O{_e<^P&LGxTU}#mYwsjL47Fw!(5L{o{rehz z{Vvf?xg;>QEqQs-0I3z38Q6df0*MTkntsHu_J8+XN5EP~plIyUZZpO2hVMOQ3(W;M3qdzL2v-j@OK4L;R>8L})$L=3FVE(0%%^qioZZjyQ()|01>ei<*{hWH@GAEX zDzz?XJ|&w5v`-?10|J?i?rd-?iId~={{_e-QV0lF(f%?j-lGQPo;I*A^n;YMNF)LU>{ekqXY4_#|~r5gb&N_ zZ2P_t;pbQ%EzlUO&n&*GA4&NPML-cv3Gga|P$DWvMy)-0(AUXH4*1Ah`xHI;YIRhA z4j+HZ;xvEK1mOG0HM{&UUoO(A+>DoBFQPX3uBpwn2VOj`D;_}W64m(|wBV6rAgrC2 zW~P|)9eBGv$MLi^iAp{onK^B{<$%_n=5X#m;^pll`uxGg%4Ri5k@g-7$6G^H%D!(? z%6c0HkF1h_G?rs_?3}GSBO9p*n3PnqWd{#|;^wy7b3PM= zPIkoTpN9PT9V`#{*{m?G2fN8`%~e1O_F&km*hidDaOK+XV93^krSuTqU$bNAP;aEK zqv~A1=!o$WThC~iD*Ceh2rwwd%r2`jAa|JG1dZjTVM3FqbuKGj`CV!|n?3J89bEVF zAD(+0T8^rKH;|vmdS2E6i6arNt%a}v)(s@6Z$g{i95(7hLos!PPt@)IqAml4ua~}C zu3trCD>G!k_rD-kb7!}K9t(KgU}ynnEU%6ra8w;Yi;wGHd;SI*n@Emo*nPM4ASYO4 ztdkBcT5}YrHgJh!cAVwqtr4M+;rdL5Hl0phA7~@}#9sfCs76iV`VS(``pSp&tJTP! z6cMGa__V+bwQy{Da@r-2|94276cVWF8rI-rVCV}N=lX$g$uHcY)krzMuC*_As&*qw z&${}7{aPT%3B-_aUh526uRbp&b=`5~5r`=!mAZ(%RkHT}=dQs1Z-ANVMCB|}#&Zq~ zg^bR-U6+t(Kd$j{VED%U{-hsaMOt-?{Zui*Jj(<6CjTAkN*b5`IfGF zDEgjYU~+)MbW5cnbtMea$(Z(3S~A)zVz*V>H+*E=19p4V{QePY{@}4NtoeoW?3RMs zj}7=MAcpcR*THz?W>(270jF=`UX)XR)`V|+|BFx~f*@$*R0_#x8rp2Qm)cqNEriT; zc{4X?8{%P6pAi!+-cI+NVW9(Dr0*R~VX)~3Zpi9lMI+COyLDUVv4()Rl2OCln9WUR zthB$fYYVf#2au*BCG5oXSc8762^(fF`yBWGv%IlDt%j(CYel8US3{i zgi|#Va+>ZJUzHiDW$9A`6QjihylN%`I5_U!yVD-N^`EF5bMXHLm4j*W#6JH9J|pC8 z+3snJtF<=XlPgvJg30dPj=zV+gq1T&0F8;~IB_yi?5nx%ZSHiQ4yAn@7w*RfwX1Vp z0Qy~=u^{W=0RQAsEX^|_H}NX4MyeM9IS&u)bLUXSNI*CLFR!dbRm5`9yTnAmD+`+V z2*pG?wThc`>s>s_ySRBg`c8RRXNu=|!Mol}>9Uc|Sw5gA8o>S{{}>kYo(y;pXX8sK zEH3m#J|ETjwNehQ{HkYqn4|m@fUS9RVei|G|NM5X`9<3hm(PDOaK0%3zx$7`e?vL` zj>NxlJ$u9O@5%7*$?$gs{yiD~a~S?VSQ#Eq!8kZByeKM~hVA3XRm4X`woh7cM2{L2 z+jq689|Z8TC2LbZHqUTyocib8znA8Jlhpn-`Tos>`8y8(zXSyBVo=Nz0rdvV+q>8pInr6;96 zO1au|KLxb#K>(dk?mdX@u^24L6fT6eSxPW zU#rQ#|LK2>%l|YGW5?U~b8tMQ;tCv}he4*z?VCM{y0}Rdj?;E_$S_m}t5r{KQ3{s@ zidw>2k?SL;84#{9l#V21s;V_xz5>pm9cv652$Nz3BrM!`P;18P=FwS&w8cnA_xe&M z6tdO5GR{h8mFsfxyVI(y>@Yrgo_u5GC6HWXCARmy04 zaof}B`Y~4AyLa-BNNT99PuI93eP3qOK1dyg?6dR{Qt}y_1Mw~UA@}>P&;l0@O(n-I*1yrB(b8FSXk~<~`GrnGTpY^Tbta8!#8= z=RLZ;o5vC-eJU~e(CFPDwrbe?tn78CwU6j&2!6P|l3fe7G?koT0BVrh|yMyy(!o$YHuY08_Bw&kwNE>y~zEvecOgGunGWnG{4EqQhFsu4&Mp z8y@?LYhgM0@G5t^Acw>UE}rF#oA+!!cebkZ7c1o2wBfFuYW!}wCtM^_F%wVhH z)WeG{uQ^PA70m`2ohyO+jBH!^xVHWHuF*#8*!47RzEJAyiLWkH5A&(ndyx-sjEd9I zaBNg=wyn$aGj)1kJ{MQYK)>$vp;zE?(qMm?zWU7Qms%bUvC&6;u5FZGI$vt_awlap zEU~-fjkK6RZK)hQpZjuC^ zQkuUY%<;1F%UL7H zYBsz|8Hejk$ueonMT9j~Lw%>+61?yCtUt(omX5AvK@?T@oD+FtL47r2^$;OkjlGQm zm5Oww2}(KMc1n%PDM{8mPRPc=ofBCBo&Ml}p4PCXW&TDS{%8CXpOMB7*@|AU;W}XeFV?#Dq59OdzqbLZLtU?yCS&!ENSeDDrLD^R}vZM;_9VHW9HEgHN zS;9#3pDG11E#Td!#*x79MIH{(l$t_b=6y7Eo_@zinJxW;g|b*BfR z?5&RqyP#zqguxO*n^8rgSNrdWOlgX2n})9pIVMd9rl=s}1};X;wjN#{z;=5wa>cI` zoX7LMHW=la%iDB)&#zk_K%)p;;%YoG>f47&5*VmxDl8xaEi4B@@yE&s5tX&FQ=3vn--> z%oFQBPQ=993kSGw(~FK_d~Q(}2Zx<`W|}?P9a)DwC#pZV4rGZqmU6sYP5Bb$j`b0* ze4)S7qy=qDLq|T-l}&}U*E>19_gU_Rv{7mK8(*(tJi!8-O)5x_3g;kSgxn^@p|)*@ znl2j_xs>Lg$NA5~&k^2W0!%e+XH``8Q3hk%-i&xF z8Rhz|A}w)k6l$0k+%N4nuNj|T8n6~(k?JO895O`|Wju(bj9anW7w#cXJmGAkBVtLT zrz{#H<|oof93?Shnd1Sj%8A17k#?3hN3{2A%@0?C16Z>!VwAjP?3xU0rs+W;eD7|r zwW$9x*E7yT-eY0IuX((${r)?@9M0b6={`6|8XF{pc2kl^Xp6uT7rqL$pFAH1mqt;! zSvP(3K6nizx&)F!VE(d0gUt<;ONVybB(Oo%&d9t;lLCXTt$QRc^h zzP;L%36=SNfNR2;B%!Gpr1x#B&RIU_zNhdJ+=l>T;8PK`LxthW>ba!b4UBSJ6=!+0 zXhW4oI@1yB#yL&=H4otM{OyZh1v}eFOE8s?^6!I`w+$Jdi;~0<_Duc**Z0OLW&Pm7 z@R{>)SSC6d?z#V;D|tgUuI~v9T{`M zin!usr(^n`dV!d81sWXD18+Vozs)g8Jo*Mq%@1yTxZHcvYhHNVx4oqvqxlmps z;aUilpIu2736ZJY`3((A3tdr<(X^pEvuk3VSbAQg_xCjxJ}WlH>?#j{Thz)rj42Vq z?V3)5`|hcS)9`**^H16A;`sa9p!5VA`LHLTMW%84N|{cQn&MZ%eMfRWY<%y8S~VAl zwT>cVB8NWDr#rje>Be(ISVvKhd&>sx3xNl^DK(=O6mgQ{<+uKguaNGqo18mz9jOOx zRcXalub;_e@~h*vZYky5fU?rGvYT1+a{&h-4pSosKZXX-uaIdpDH8QqLFg7m#v{+|+sC7Jr|!uNKZ>2-#T9}Rs>HVKqp6vP`$cKv@k;o2x?FXE4BeQ)y_zNZ9hoGqiw!wKa2 z?%3D|#Set-mBx~x6P;-&>X+kCg-D-!3j3o+Ak%HFJ}Tivqscy-TAT~L%dM#L-64?~ zRcY^eeIl!D+t9r4+*myb)l%yuLtW!2TOIC!F} z$GL1?K7g-$>yyiie1>RQcY9reKD5F3yhXdqn_hY;tMDpr?8D#5OpHw_(pg_F!JI!y zV;@Wo*vIj{UK0D=MwNa|fW_>5L)_?B)lBoh+iBPKI3eSpUV-;`y`SFVM7`CDUtA_) zWIesrX|%+LvUP&4z<2V(0aJw?M&DLT{oRHY#lr!+S*7J7p$|ucYF_LIL%-A*Xf7X# zCe8I;ZXO-XvwJ$R>%VfIo6+Ha@KfSA3fjM!l1|=OHfi`$d7LBdXRif)WN^B9s*%^f*)R#f!;hK7C9)3hM)-lkkAK*ltQ+`*H{*W5Dow!VHmX|Eg@`i7otq%LsgIIUJWFaYM}46)Z-%P?=D2 zDA@~+%o6#)W^Lo&zgcGv91J>CLd z5V4c=n3_hZK9m$wO@PlM#dpli8?-j1PRglZXfM^k!KBHn<}tDG6AUGpv6 z)pz>?d_cS=Z6l`y5n$P!krEU)hOnIr;}T1FHpqfe$ooDl;S1A!)ad^hO#)%ysBUnF z$m4|5LW-X65?7j8WfUnp1#9|=8U;T)()Q2hwJAMsPN(YF-P__`kQ+wbHNOIeu=Wl# zeTn_w5^Z3jXKb3Nwe2<$x_7LBq(D16G!jI zB|;mk<7#`ATCp0Wl-MLCVkAbFnTU!JdlQLOTg>m-`+nc=@A3Wq0iWaZ!+jn{92t_F zdF9OcdOjcP)gHdVqCsp1s3TRDNhjcw){d$9QCa52j>;j6v`@LRorA@NZouTyf|otn zqk;^s#H5kcXXjcQx)??%6d~=R$n`%LGKKFq-#m^~NDIbd;yhd)#iAmlnJSFo+!t$S ztQUO0JaW!(^e%(Ah+N2o3Nwa-m4~cpW~*N*%`evK#AT!`Js}<9yP^tNk(HHzF#|O~ zMlJ;=k3q3Q&k&Ph(j}K=U;oqD@83%0E&&eQ>WGDKJ6~|&51R}%LEK#-tCA5 zJ-r4`UmcRr-ir!_PS#`*9()ZiyWe2SRsj%*hvF*!w0me^4YrT{j-e8>9D z3|w7ypl(Wd%KTv2TXS`lE{hW!88JeM$!W*glIYCpI(1`Z{>Om*t9D_O;NddR&nzD+ zs)o|7MNc)KJ##QSU8 zGyP_$8DI$e22fdn94Yg*95F;lN z`53Y&5pmsn=pt{CxY&<@PRhs9RzWXFADA{D&HXsFD(V6Vma;Qn`w;_^K>I@k)EOr{ ztUF~FgxQyEWqph^Eom4$Z>8^TCNG|tu1W(y2^&ohd5Hf3jrM*XbTorw$rl!ob= zGYQ*LFrdEBXjFaP?me10uoJmWN6hyMthZ1EZ*HMb*t#YD-l7Ya;%#rfiPFA>_5HrH z0aT+Yvz-~a;3!n~m4Nzur{l*pfBh7P)4Y%NhLBean3*at;>XDK#*8XxUujWEK#iS> zPtUcPYaG2Jy)ElK<{~Ca7sA!N8$|c#(#}GY@5hI%92Ll?Yz$mT@4@9AX5urn({jTFh5&DjhQyc+jm2gZ8IG3fyvXh59k61*5cK`t zY)W6RWfo*y+B@(vpAQMC+wQ>Ce_R7Ky! zr@;u?xn!$ExRBhDXc1a#t&`xGc|v)xX|x0 za2j0wH52wa(LK!sh^nm#^*#*}0}*9k?JUZA8@+`3y)X8R0Et}O-CmSpYAFw)ABf1( zLePVAMA%Nipc_8q6}54{*SgW`&Enn=*scV^-4j}XG>==08`9g|V&+JX?V0Ntns-&| z@ z+Uae_E{FYIPqZw?cw#QIdyoLF^ldv|=2kB|ag)tv6ZZx)DjB1@Qgw|=jsR%+rfwr$ zXMbGVHK=zCK9|@63CHH-TpfwnHFK)QPOoVCjn}e%7MZ9PpURFN#JXPC-`_^wOn~+Y zu)Y~KSOL!B!3Mi!dC&6)zx6@u{cf4mc8cu3*36woNk3{ z@83ebWqEROgKnNnbVtVi^86{1!t-c?Yl}V6|4aU~ofF>w74>k-IfW>8+0|2&=%Pgl`maK<=B?k4AqLAFBJ$F%hTcD5Bar~pJ%Y-=bm+)NC=JpTF; zeerzL2`0ZW@h)wiTKnP3$yo=)^5vq&aGxJ@&mWbOW)9u-5B&JphvDo-d6b4s&&E0S zgP%^IEn`HFMz!~GMr-N!?MshGjX(kIotHAlGo1w@3Q)bt7A;R>F>@#fUerJuwYEbh ze!!GH;4Wq)#LSFw^p#oF?02IbM^bIt<~Ob@hjnUf*{9RPoOFz;U1)x*GU5XIuDBFT zS#A}yy|F6iD3FjkBFmIv3?mC8v_M32o#!=q7_IK24=6(Fy8pP7`^;FUUJku62E(mw zO%ss?i49rNE-Pyd+Z6;D7FPNgSiAMLE3*G+oNBYU^$ao-$A@zxxxIB=t?}1fzT=8$ zA1!uGP;A2;ZZ0>9Cek!gaW1)}EVj#*?xEf5y*~$vhEj=;@yNiLYVCu-B0LADZA5qe zUOoY8ot5%=iW(98)x)90Ce1d}{2`e80V(9#1ZF`yfJlisIj^wg}a^H&&f%o11FiHPy~l^G%c@8>~cZ)*qs ztCH_L(>v`LqgQGdvN!;P0^N(g=>U?iWMlI)g{w{BKGAqL^RQ-#xc-1!Jy^Q8aDu_R z@Uu2nv`&@~`48K~o|WIC(+d-O-&P}fM;0iu-ogB_s0dl+xKS6%ShO(4Jd6$8%0 zjRuN;IC3+DYGz#NF7fk*N>CVuQkB9hWw5MlMY{)5!V|1Q%iz=qdn&OCnbiyb2d3b^ za)mLh1p0oYsYGINDRWn+CThI@FAz{d4O9G)ynlis^Lr$bSb1=7$@|li+@Vy-MUS{T zo@QfWD`gb9{?QmBe&A|Nd_lBF&VmNjx}cpJYG9q8!mcfIz3vW1gJT+MN?*%uB+%{< zaY^m#x-cb?&el$r+-42NBoh`0IzYpqlJ!22EF%P%CYng%Ndbo{jkFv$8XD_d!nwJc zSi8R8@kl*b+xz)THu(+rYhn1>cQIBMy`dLnxZVYh8!&UO^l_ODgb9@Wtbf(;^R(Fe zp4Aj6d01CCUA4GG;2;7*;k^P9QuQf5(dZmu9m8=giw8}dqm|%nI^BvOe4Pz@PK3&C z1yWJxQkeIyNQgCQbLbk7u?oq`GvS9WSmdrB3< zi1ZWME5Gs=>x5K-J7TMgART+waYrmiT*HQW1|McXGO7$MTrs<2Wpyudn>QvMJhvH4 ztrGvcZChWKqg=B|W8044xQyJ5*OKJq06O*^RWrMU${e!;3O>~odMmkGPhg?wB(QMo zWT}S?eWp`I7-+1b=90Riynal-PFD(jt;*lTV>y)LsJ+;oOQ33dId3q}lN#LIJ~Fck zmP-d>9GDvuwH6n6vmfn6e9>X`=1Fi*6@u^^S!uG6j?HML@n7i4b~ko#XhOe1d0xKA5a}Kyskux^YkL{|PMsn3`i99I>)u`B<4hQ|{S-}7eKrIHHss?rWo#Ey zG`8U0cZtV#qhy&M3v+ZJecG=~cul7Wq23R6D}X0?QELrtmAaKBAypa1FXxe9-sP9T z-Cqc)AWd`Y^>0VL3xkWpg20ZnEIG%umJ@KtkAwTuH|HF z0Ad@w6;Rli)eTldhbB}RuY6c-1#lw8F_p^-GqaO3CF^OAe@ zy3;29b~ZQ)6tUkCE3C#^8Vcyy0TQFHo8N{%Cx*;hwOer%lSBs9dR1DIF?BBB8Y=;v zJ+r)n2B!qE#*dKTgr$#aQGEw$4Y>H0y>k~ZNthMoG*)pz1N};MWT8jNBjiq@+hVwO z@Yjzry$^c_xrqxa6RhA-vgVYo-p24xnH~7%YRzS|M2B0Qu_8}KaYVpVu;(6wTr)pA zgA%RvQY4t&^pJku?)R2jwo$FTIa*mCsrN~tW^K`U1e;%ScjSo3km7;XwDPh?>ZVd5 z9KR#i@LVW^#ClmIh8<&7%=@uXx=mEm&lc;x#F<3* zAbCv(y&}$kj34AX8>;cD-f;K$tU(z(%_?=ioQ1zl}~aBHu`C%N<6H+cRO5Ym;TCsp7X+Xq@+ z-<;{p%@|%g`er%$hwv#iRy>>hn|JI;ueOEKn<8BRI0`I~HSC~Uzp3ULJn5!Ul8a&% zIh)5hnphx#28>mj;nq{iCI^N1aip~Df)BDg8^uV>%{H~%jafr5bA{p7okHK&(^@9J z4bOj4)t9^T@-_#sX2@LQ>jyCO$DMVDGM9|e(pa^|4D8W>152_4 zE?x!)u$^j|e>V1AcwQ{|d&~mA|HhFzqsmrn7->Pay|71zi*`8kg@swGMoM4J^*ywJ zXmyEHU3e{4rye&*@V^8b8-xqrf{iMfeNYAC1+LTIeCvP4?Of@LnLn}F-7lcny|U}) zutem@yRzZIufgd1Fi?Vw7VuE-rC?<~)<1@@k>>9-r+bZL>s>O$iz23hm3JMr7{ioP zHU3g=fz-SUUNZ3yME?ZnSzNR57H^C7qv3{ z|Ar}yeEJ2rv#$D(a2R^`ZLS2QFjf1`P^dr2J8UnxmN<{<)GM_@0GvveKWXk~&FWTz z5U#~d3_GE_k5#eyTDzC7QfU%j7QA_r#Kas8we4u-O(GJY%!ZP9`(62TR=`$c#s)&? z$zr+Y#Fu_4Y+<2M+A#Z#&VIwBCz+%0l21=*kwI)mq1BWWtG~7cK=jnj*nY^RhW&gq zWu~hC^`7qdeG77$B3(ZXd?6^-gr4IeHxjaSl(@ZMV`po-+8egsDt2q88svc`s6`B3 z)ZU#IA!bpS_|`0z=%shtGam7NO+Z&I0w(s|PlwYH&+8UQMu2l?Lo!}ToL9`+egdYpLepx^ue*6BjZG1ZeZ=bZRjJ@7sPBL5sl_VCOgroBFGgf z&S@K>mf34D6zW?Kj8+euI6p8ReaCL>%lFA{Hy%Xe9-b*$$NB>uwyto~vc?#*`x7{Ur>3YL#Hv8KQakK}RzupxSK4Ot`NXR{gQi-V9(_>D|Vx6PWjc@Bsns zwSpAPtDGv{q@LSt4YljuJ%_@e9U8^_pJP078A0-U?hrO4}XAO@-WMv10S z^v5KQdp=dM2&S?ql${R)B9P4&C^Ka|aJIkl)tzq-lC|WXLR}-m9)vwjryIi$7iY$J zn~crMQ1@<(kH}BB-O*U=@iTFKW&ql&1?YB#n*H9IF1M84!2QsFPSeVq@NUxkehKDv zkOZB>iRurR(bJy&+=tJI2SH@A=5~&uO4Lf$%`GrcstP@|%_{9%!;<5F*0wB(Iz)Cv zje59has+C^2kd!otKJ_$_=?#aG?P1-C7rq_i|mW$EBrzi!@gVzoDpx3(>}W2{Ozw1 z_)zTN=TDdsot3;}v4y8kP!rlMiQS-M}DG%9@4=DTzg^>&e?xW(@BPt~?_9I_-dv8p$vAoab6 z;`QOe(@Wtc?dwM|#fEQF2WxjzZ+esf*o|CPoE-fbP7{u+xjeEbDfe5kFsFEku=(E7 z@jmQ29biuZBEI+nE(#>=dWf_ydxtIy-^$~Hj*W`6+bLca1X|^-Sd6#T&{5=Gl#k~8 z=ag=3q`jeEXu^6i<~U@t0_FMuqAjlc{#$C7Ps=P?oXHDXHYVPS4C&@a3Kg#V@;3>2 z1})yvPXFL|crl=!99AFHgU6xvuQRzobdcsfnkq8=8Ua-m+gI-4YBFH zuj)OSzu4zD$jXdSAR|UNY()q@v&@wkV2=($TaU$lBwqXBl;_`;_0BUh;$Ur|vQs6f z{i-}Si_z5WVJj`ndlXw;=y}SepOz4@U&6tpDN#?snHao3B-sp5_0Z7z!iZfB_A-l6X?Qw8Jpz>rq zv|D0pahiT%svGLxTj%yt8#ryIWqu|hg0DGRJOzkW;(n3hU!_+5J?*$pNxbiuKVG_x zSs>gsfpx8ritHm7ZvR~{DuN2hUaQARGxr1B)4ufQ``L(;J21T`UzmP2aP_|}$AqvQ zT?mrsKiSply%?LOy!v&4;3Ylf`72B*P=RrA)`My(WL)epfBL{8@*s`1^S}}5=5}%! zc#x~z-bhH+I~n7+`Za^_Vr}^{bMy?>!2>nWu=-+P?vvQ-Rpq-;3AglUN7ya0>cKNM z9<3T_)HR_qN3a$(4najcwceSt&uqSqb3Jy=nB{h_ny1VE{8^x2#@=>PnbKv2va0eL zq7I^KR!7Vmb@xxDPK;|$DSvDD6)A;+{QZGeBNP_HL^w94QPq0*?+bkKj_z4uUBm4!|Ew2L2R&~y~QaR?Wu|; zqc`ir2P!@!rvWGuVxf^4tDUiLxOZ)K9$R;x%`SIjbA1d;-0UY&Jl=BJ9`Q?WKJiJY zr;VO=sCm6@bS200{l%docUVMdXJX(C37oXA5*?Lw==p8+vGQU&a;_$yJE-xEXU=o? zwKoH8I-J>$2;Tf!r>i4Jj&Mh;4=2atQnIpL7YFUfbR!C!C&pX&##Vrh(bqKfc zT-$~>{}rJXVo*yB`?cgc+5YkH2A)$wG5nSRpjuGLF9j$Mgy((Y$uG}o=L*T3jNx0# zy9PQNITC0Y8N{1GI<@w__3c!=Ta=OJ7zLZ$1Gd%$g^{^RU&=o{4dOK(Y@wJ3QSI7~ zwL-9wjO3a%UT{9bPrzFx=ImPZt*26~7$dv4~1 zQ7{8ejh}8n9uJ3{q-GVDP=_6=UCuV@bZfuT!CB+^IseANGq!sk!93G;Hi~J5t_9|% z+5RKM9<6*e-~Q~Pq$v5Y79~oiXcpG5DZ284A4j1CAPg(%o5{Ru-x$(>sOr=|pZv6u z>X!OBJmSs#owA{`Q7((e(6a+ovR|FT2vEPc5z#vv-T98MYQ|lOEa1rFK`S5bXP!RF zGbDrc{k1!jVdfy$_=e~|ay8#~WaqC~wtQq?psa!EKZoXx5iP?w?dT5P7sTOb_L47% z_2-8Lgc!rJpyhl1O87Uc@Y|*|nN{WaXc1|qEGX3BiHZ$8`O&NFcr6CjVx_;dRGJ?k z^=*sF-a1TBN@Fl0xzWugntd8+?e7Vty7qa0@J#uatRI0FNlox7eE3Y!aB$4;ynUTX zFy$!)R-y5UiR9$Nc;{{hYn@KRw$HgxHRRnIG^H#DDj!17cN{WDEe`7>A~9Q0A9tY33TcZ>`q9Zhf#(N0bcnj^=6xJm?J zvRw&{PK&#TXYf0GfpcEIu;`>hYpB=ykz6)rSty{hQ{=+%8@v&zQXna(bm-Rb#4-F( zKj|2qqdn%9U+r2k=H5Fh{n~e)ZI?i5*%NBScqZvS%^vyjr7^|mj7f1MLf-+rN!aN&) z4?v-8eD6PBHYbp7Ml)ZGG`npD^!~h(bx@&RL3oSm4WX`>oJeU`*=j6-E_H^>$A$Q% z&(TBu|B(U6+F~B!=SQnQ6`hF2v8Gr4`cHHhZA@#*>%tIZTlevZ0NIb;r>T2SbAoMB z{S66p$|Rfv_~&N>QE7l?niyz0Ahwn^59re>f)0wJ ze(+eglF8kGa)CPM!nG(mR%MRj%Q8E9P4Ni4cB33~;>D2kr@m|OuV02~e}^?;rTZw9 z_Ua1no!R46D}=vLyf5c75hFR`cSbhxdKl9RU$B7m$(T>1#*2{^*%WShGLjKj0l` z{TMPrSvaR`@@!vTc}U;7u`tI2Ir%p2*@Yb5l&mh>#5Y`30cv=R9KzsbumyB2!%VtK z*IpobgLnhKCh3YM$x6aWn7P*lamlyT9WSe|hK65lY<|?fe3LPJgZ&&)&X3f&iBB%r z{owc!CE^DO%|o2A%f`-Th&RCTZ-jz(y#v{ECTl<8 zEhWxx`)?kF(*1sh>9wRiTkw9nSbFFhnz_3A2)8wzF~-D&)}w+%IBXS@qW1N1w-4X< zVa+N_gMAuy_AY2YT^0$P`K?)J^~h@t{3tRME8P#B7liG4_r!aMs;%SWRRZ@q1$zfH z3K&_DF1UuXS#wiAx=$2GzIr2w7U1}%y7Fm?z#`xu`A3inlAq`!gLmcJC)-6Eo^&Sn z75^3lg-^Hz&Uf#Zd!+!2oOH=vl{~RPcO0qm%?#4couN~@k2039Q=9!#OASL{(X!~p z7XSinir6?+#@?y=;5_EGNQP4(u`Jf-JE>@Zm*YNo5L`m{fN4@g@2KuF?qyEDqrhY$zj z9T)5M{a51NM=qSCo(=y&Ie`W%{4nvW8Z z$fB)Lj8+si3N6f!iM9m$*T-~DWM*7tk_x+36K+u`<~Q)^FXk5?KyXF~TOAJPPw^=* z|D5p83WLm5+*DY{!eeEv9?FUI0X(u9#Nr!RF2AJ+==dD1hFm3MmGFl#w|N4;`%y|k z(<}90S}>bFf&IGAVf5RnkrWUq;1KznglA6)c$3WijI|r4>^nA=UNL;WBt}dwg)MAM z?6}`$&PQYd@_g-(sds^QiJqhEyJ@3rgHutQ&sjdb?J0=8sIB=*cb+cy!+MLx1Eo(3 zudYUBX*wPf*-j%N-+N`RzZZG`6XUInhD~@3VEx~poQkC7MQP|cxIL}XdAemL4^F+# z)-QcG71cMUpl#84`=GIAchJ8!#aw-Za?FquK!v8dqUILAEL8WIu~_&a-fqr%B(C|h z#~K3QNB1wBAp0X8V)_L5QxGG1h=9CvTOwr+xDl}QLM_nqVjWorO`FRD_Tas>8~Za~ zwgdCW%+hgb4Ik5K&p5KLq7grNWDEI*sN5p^BnZVdl>ptl@i6sGxUvj(uP%3YE|z58 z-RCEih6u+g_^r=~M|E*VOfuB=!hTwoIaUK!iQ}rE#cr|QyB{(2;%Xo#cL?4NNvp`i zghYc|d@C>+#v03KL5=NPY7#|N7?Z2j*J0u2pvhT^lO46AZ9!DQG>Q?r zD)plF?Waggqe-!B%=w7)i9oPSNXT?A@{MtOyl-_PfIp-_R2{7oG4gyFte_N3w}eN4 zmx<4TuWN~RMro>odwh=j+%xf+nXIg=iXw#_vLg7hTZ`gZ(yA4;pO>gykHeJ73 zfZ0K&8?ZPp>sRX@yxUo%IgV)ki1QkS?{4m_G?m=iD;QJpUAHycbuYKax)mVcK1Hq> zQiISIp24t!xRaivu^G1wLvK5VbZ_^R6-eA}2;C}M-(Pchd|(LDoLw!r71|XID5mdh zr^>tLIDr2w{e6)#%P4};{aO8aCFv^APdnT~h1uCveWi|NDN)#;%QgjGv>$;x5k8Z_ zY8x!IpMIf-;MX0-yU!>_`?n#OrN;RX_*}oEh$h^Mv?02DOq5`@*Wr(VPVxBUS!4*}rdDfyZPfx4N>5Z;J z-CIENrjx^cjD7697jCHxJ|5>>XkNCxM0l(Fq0pfbs>W_3defq0EW9Fi1CNVe*Mf{8^hp zKNGAR8>x1@;n|}@RdyM(<$g1t!h(BWL}+@?&5dm=_6w$~MAh2kTyZA=?^GZeGU(aj zS2-WzEP0zDAYQYa=x%&6S-r+nVxqN7|iyqX@_S*p$iw3`ru^ zS`Z&|^$oe;=y11&T4O014Z9$*0pzz}=#u+VVwVO!JVbZTW|HnSQ1iGQoG5iMi)9rHn z6CJIz`^Xs(Ng9H8?MYdIK$4QV=9^<2*48E2sjEK8y5nwmh?z*}Dibj~6Z+Rlnn$ty z-4}6M>@(V`+kAfA<*@!<&gaJNK<_fRyS&UCIj2n1326gN6Vv4Z@PVoCg!014{7QLe zg8AXoz+|4imbdBkHKkb<9B1P=-?nt-hq05g03gzzm>_NHoQ>w%vk2fe({76Rxx@YX zH>ec+CC>udoBmi%k8`HwJ@J+XW03J{n0zq{p)}CYZ8JdEaF7stDy#s4*jrfhvIhdn zBzkQ?Ki$(YH>tI+1$!b0n7fJ2nl0S6skDchjE~BA#tdB+U}0bBfsp+9C3}K z8~LJ7C*;sDiod4+p-3fs=z*{H=(>iVStfhOKmC53CyB ziaWcOd3ktXZZGTI;YVP{=mf4t;0F-=%F5Tx~Qdb2+6LYFbR&4sCWjfwQ zQ0yh^aYuSD;3CbR?Ld`D#t3)=H=PwW0hT;c|+DDu?_pXv=&A9}+ppT`eX-Ku=A zU+>8rz~71*b&+?u0WPt}_5gfXvP140R&NPzhg-PVu0)kJOvv!zyZE=Ot8X*$g;?(s4tf4CtL*DcTxhyIAFWK%|KOrSXVn-D~J>rrr5sYHr#i_(pd#pP}RXI zdWa4OY<4!Ug<~p%do|_31h?+l!=e@C)WRp?x`(Qv`fHKAq*HfN@E+thfND=zCBVfZ zcAgGs@Wabo>dnda*xrTLa<^vb8cq!r3wf%R+P@3hXxBrTmv=;-`+TSD$g1WsI;pj8 zSL~!O0^Z8YVSn^+-U$J0tLKDl86LV@Rrft`~$`Qv2MsNX;-6z|;G$ z?J@~?LSbo@Djr8!c%Uq&Qk{(2K(3czuvSemlG+*HcR2s&KP?qhzGDHOz@z0>zXnu< z1OUhmAni?jB#Lq|`;v=kRl-;XkK^|6k_8e-k7AH89W5et;<~01+9_JN`xyl7p>myS`Ivk3a0?;wV-cwB=}3 z7_|G>pMTr>@4UW=7ezK3@&R^}jI;I;9NDtDX2+i|*@~N8tZ^>1~X7GMD9~0^IkN{EFMu;@YYoQwAL5Y3pHtu|IjeApAyX9p)U;4NwxB zZ6NF%A75nlS?TX;GTuNY>Rw&kB@%lzLQS4^IwzjLt=gpUgsPo7p}}R0koxMH*AQy0 zzWf!bbLJv1oVu97)F4}>%_6DEJq|$k;Af)_d5I~Q)&<){;?mMky~rLD8g>=FD6V_I zB_~9Stf5wz!@5{Rzuct|V85v37Z_C8BuIZfKgNVrTXjRlXAGyf439HFL?;>)(rkLLAZXnlfu8A3l&ZK#yT{%drbx6z zdO*U`a0qV=`vdJ!{1M!{;)n63Cw%T{`fRm@cu-0cF}deQ^4fbJRvOWcu{%f0SD6=I zRVA*!Ly3HtBJSza6p*TKzY0~73$b1?%6iV34J{I`CEH_{N+e^Gc*o6BE>d#3jA>es z5F;vdj!QjLj%lboRD1;MfVL~HI?nOU;H@CXWlze&DRx&*S0+Y4f;)9R59aUQb3mBx zmi;KMD@(Y46cms#@Qzwr9pvPVdDMXMlmzPa8koP|iU=fCk@*00hy;ff^d};hl6eR1 z{w_yijn_Urt1UE2CP`{%eGNoQYG1l0oIF`>4%ma-QY}uZ$nTgdL#3HYY(Y^KAfiH| z-V-vC346TTOEP08FYSM?tHtnk_&NjVl%UInUXw&)O(r#YJ^og_u8pMf zv7AmjH)%4iD19Nl+JmXde6lK%mSwc#6uFpNvkr#z>CxCo1?#r3`YMco_%cbK&vxw5 z>s4<7a=LsXw31v&Hj1lKhgUYuJca=4&|l0oOAe03SO7L6tKF)E;7=G~+wbI5OnnRl>~BH$eN=qt9D2ca7<)JfyL+b=~^B@z8n4$!r?s^6}^DR1N>( zn!u@M`FS zP>)g2D0N>aym_<#!DD5aDE_NDR>A$yM4~Lo0@|a~1YJ<{_8ZrHWuuOb82>YEa>K`n zsPnXRFJ0%8?yLqvw1DfNFVazSIs41AfRnoc9pBv79D5E6Koz$-)ihY!7DpK$-Qp0D z0`QMlL1V`N7x7E6>RDu!(b|WjR~Pky>zCUfilpg_mW)jweH4{aX*jL?$SYg)==VtZ z{FTry1&1zSzd)yWZofdEjZgAabCH(gtd(30!s8M?D?B8AZVD?m^&t{f$1fh=t9Np+ z760vNT`{e!xKjR#wrEO2gWW`c-J7w9n!plYHEZw@jtVLzy}h$0TC`l%kk&x0eOQ$F zU1RGb=9Pqeyew9Z`MR}K-nJAbu{fR?HliQvW!B7g3<19JHk<3<6gf$&JWt58Rp`FH zux<0h?=wep(lm5~Dov@ios#?Vmf=WLuf@!Eum(dF=mrzkgU7KKV1e4U8l49FQNkb@ z+?f0S*wqD<@d|*?Sa!!gGWAL2DZjBySWG4i-+g=5rl~VnS0{`R4Z~paskHzt-i?Ow zsxuxz9yzE~lKbEPeq*u;x9{dE!7 zbaRRQDDO+cBX>!cgRs7T{@EYtrn4UqoL+H(QtF?IO*8pw8!tk+F74f!3HuIo*+GFz zXS)>KVRxM~ohzFpi6^QK0k8Fk$?||>Ra%n6a$%yUeetQDK)UnL5spvpv6>ur>`{)& zP4SN-0NhbFX-$Li=EJ~Hv@3oI2ibgH@^YT@1FG#XdtRz24}(}mpN=xx83c4WWI9yB zJAf@#2A7aey`@i6qt?O)>g>;hxvGZjzNnNWjfZ*vL+;vY&D!bE<;frS0v1JJ>O$iH8t-=W_8Oa56Zm zz~ww8+ewjW$8hpspOg|R{zLBSUaz* zkGQVajv-^%A@5R>qS%dPg(AY zX!l}(7UR10s6ixT%3Id)vG$;>@~$rEP(iNDR70NISFL@5P|T++x8xPAdaWg`Y>q*e zyyl!V1-;6hX#UPdLgc!)XUgjCSITT#C&vyBrm*c~OvlSIzj#X=3jPWbY`Ij{Pxq~& zU0KBS3)+g^+mGlh!NBgX;er(bc+>e*L zvyaE`B|i`b?S4R=3UK}%KQ#B?>jTE{7o|9vgy32XOcH*5>O7RPpasHd0Ke3NjDgFN z=4289CAl+f=G1bGG1v?wlTfOXgOkE<-~-2RFB?Ul>_IuMwKlvZ7l_Hr6Ei@R++V$z>||uSowVRC!f=B(mW>@z9~wnVJy6{FC& zy=x@7re7Q@)|fc!Z4Tko0HmoV{KdyU(%13orQxEZYWC|E81zcAz!$6cJ!&w_fc_ zXg`ARY2Iw6?2vUoGGtym=0W=I(Of{hfYLdSizzV{`Xmms0#W^Z8(x;vkho67*w`Te zC(>`Lc|+Dr)XcMg`OKSJd3!)Id3e;~Wu^cq?OI@h`RY-9YT7y;wQ>(WFdQC0<3ayVLHmxoOd`)nrW{bmi?Y6L39gXyX-f8 zt-i{Ri#dmsl8d}Jr_jFW`+R(Ie89LR`MfgJ9a7)n8=yR-qtyMm`1g7GN}7z}RgtS& z$D?8U;b`IhgX=AHJ;eFgO|bYO@lQ!_%wFsCcwwu&1h)$Qfu}t&$Iw{p0R$BFr{U-j zmxP9@`$>qUeA+FE&(7lzem(7Sl(8DPqeiaQ}n4ciVIK1yVb zDw=AwcYcUj%KdQVaNvfW&UY(I?k3)y{%ePht3W?6eONVaEqEOH@h0AQsA1M9r*lGM z^=sF%WUS2|t63^;^dVJ$FQr5A)gNea`!mioLen=`AWtwG-+MrEAhwgwz$IEp($#D?Bz#127F`R zC{;Yk5uzK1lfw&b3pqc;--pP%bM8F2yu9{z7~s~#Pj_Fu2wMeLg(UX;(5Obk{2ds> zs;gk+L0P{dEe+)uEP7yDC#yT@_YNZ`NeHIGqg@JO!rQa&zHpDbf!CwenWL`ad0&Ai zVcKii{hJU~vxC#?Mr>O#cgc>M_}br+ei4_ua8L#cZoN0Zg}MaZyvL@Sm-9t)M|#Gh zW>5omtGPNcd?2El09~)vHyPm53&~U@ON&9&WQ2rJ7bi34FY5+v1vi~I%Q8mXtWfaG z|LD*b|5IqSC_G6+yTT$6jZayz!%@nlNw#B6qMD?4<92(WACc&@;7^&5}C59J;?`e@KFTJ~MRw~1XA+?wi2}1Px z{CXgjkhZLgD1XXmy|WH*b2)NV#tFq!2@OgWsUCH_{S<5G|D)y1H zV0VTKqjfj;?cP)n@{wnKX!5PX%rUcK$-duHsLhif1F{|g)1f&%{3A1l7x+$7{fEG9 zhA#~ZYWDOaUyKZ{il^?#9+16qrut++Z&4_C!aAU}QbESSs1YB$q8P)MKy<^t!d)Xt z^tnS7d??w;Ma!6rEr{4h!vbS^46(3Ol%M6oKR?%|JtsZ7*@-(B<=oWkuHLfS`?lWX zM2>R2-9~9P5;_aQIiZeeNf|II;u6P$Z;Y@`Q)};u-ymx`97=@FkaeYp+Tx>^h2U99 z!9aWVm`K+%k45%$X{hB^qBCJp#)z+!(S)r1aIa~s+v>cGM-Skbn@t}mNQ4>b{E7l2 zM{>uMvw*uGK^;m|xu(!#05UK@F({PSw--;5%#qh5#f0~le=aN!wJ$&;aWn3MTjjWV!%lz%EUY+l^Fs{snQQNq# zRZprdl#<1E+R<$YZ^PLr05Xq2sLYl8l z=vOVKvtvODRIR^MtSCmQs|vTnDJdl18rBd{iz&N54ZmSe(}!%PVz#Ea;!S8{lJzOG zD$byEY45RnIBmvoc+-gpMO$C~H+;xVi*;><3hKB9MAe%1eKq1C^Ql2O{+DQ4Feqoa zFfp>!p=03!o6|7t-jb$m{f zgB52dA@bbwA+A-h&t|Nqf`X+02zOpP{eWbB#4F0iS9ArRbex$36wj!EURgo(fOX`t zi6jpZ;c_e5$#*Y(@{_m#e2{vm^=-`PpC2hfg%GoWr;8c$Z< zD)*76_L3s%fY%u4HVWoMuF6D(9gCBxHqxqcu)yS`hKhm*DIy{s3DQFeQl%Yf3B4PNSRnKoiU$aY90h}bDS)9!G4v(`B0ZLaQbLeO zFM>b}p@~6CsQ-=Ueebv*?&o{&8u_@#*n4O1wbwJ}e13Duz(?=qsp9lV zW&v2MG;jQX90|FDiDt4`*vKx*)m3{edYTWa%au|p&iV^tT8FrEejV2j_5lbk^>ckx z3yfHt&{9*!Vz-Nk3`+^>y}PN;U}QTN4AZ8xu}fJ6uLZ`|C7sTRN8;Dm9ZDmLim!I> zO6&gVmhQHnKMck6W_BSSMJIfVWu3R+UQ#aOADuS$N-76zJVNZa#;CO0XNn#WFuS*? zgSX!+t8?mq7qi{@e$xG$|Dz!?{_2)m>?mYJcG!%w7mq%h6H?~^l2_;BrtMg4AU8#r zF12!&N>smy_9CBM!&0ugYR8=muL~Qmzd{+7#joZdSNXLLp)4W3X&>s#wSk=T1HV&M z9I{L|llO%}pUJ@71Lrf)UA{$90t|umfA;+;S|`95;>#Cd7kx-!WGi%+f19z_2-=q5 zhYGKF*!5k)7&2{tz%FELNxyPkzP^fqbHy`k|KXR#hdO~IY{5BTZ*Jx|oYp9mjRazA z(;Va@;6c+GYiNxL*~r$}p|gp%#)#=V7r<%x5Xt9Xyc3ZD!CjIcZCckh_!u%hR>mLOfaJlQs(;EXN1-9Y~ZZIrW&aI}j>Xx~$%jD>DZP?uFmP9CC%pn#Cd{I$kjgf#2vJenGif#c)|;cOBg z5O9n%R%J!QX!mC0!^E#h^H}rTsh5{dymX%Qnow`rFtdr&Slh!HsZY_?eQU@ zl@{#A)tB*II8cuD3w%A01`fr=x?RKOvhHJ|dG_z-fB+{em!!Ic%x@51KLqpn2n3-z zN(ELR83^)i7IEQlf*OFPsu-l6@Rwlal`OqK%0r;bX=W+n}_Y_wir7kE7KY#0v8XN$dPar&qa`iY1lS3$YBA7kkOb; z`dny9G6?03kTf`)kY--1^8|13CCd2uNNkVabHeT&geMau%^w{w)UB|MEkcE4Q zi030*2-O~H`ty;;M^guy-sH1%99Y+@wYbO$#eY@WZA{*(K^ZZYm{?+faQ4g5y9enK zRr!;Cp5iOw-k%dkAIDAKmN5giw-kFIb8B3+Pcy9VZF8>##j2Kol3=Zr%&0QDQ$qU< zt5a9%SCeEV`F3iR-Z@fSGP|lftRI0ocMu+h&r(J<;Hxp$Kx4+h8UIO?2g>2W@ zC?aSV4-@!2r8=*COOMXy7%*v})+^`uMV`H=W>-q%o)PNP#CilW9zEk4?za~ek#vlOj~^%FXj6%7^3LUyEzHspYDF^8J|zg4^Dl?j9AFU1_-pd$No2S9 z>yy|QDx}Y|p1uOQ8M}_w0WD>sEYxQ!I4VsdQOvkqNYF0mD|E^xra& zs=f!2;|TwviH|qJ;f3{-wUboL)y@axWHHy2)9D?PCxz0P&JcW%g3 zPm{aHbL%G0X+Me;Oix|>+mO``Kmc2}b4!Sxg`%wg$VQ6vEQWA4?gi8KjM%=yFWjux z^g;k^wXJfjExWj@&K6ED3g6Y>SolCS={s95Ic)LDq{1|WI^ig!1dV?e=}v1L0MrtU zUN?}qv%h?_SqvmSkn+#lF8WhIe{mxmq$nx2HQYUmZ%^9{*&VOzh8r}yX#AT%`zx*d zSE_^dM8@edYsEz7Gcgq6^u4%4Hnqf@7?2CUSVyY<}f+H3p)(dyG76X~nVHpn%;xkMIpm)@7#;_9EQbSDG zKRmG3GaT3xh#13;SUvN5+DnQ7OZQ+NCLbB={@gNH%fG>0nd^(xKS;Kk;|`ClF@)-O z<++&_cn8o($zZQNUkMI2=!_wv?AV;wPV|kq8MMF1d6dZMaS7*Ki>`MawMS+An|vTz z_A#hLuXq8%-fOjzGnv!+&muK)D|EDe-ge z?B(4R8q(N>nUGh?RQ}WB0wp!`b%3@Oiq!5S(P-} zlfR_*72g_a@>bZ60-Z-7N{I-9;P9oqe{$aE2h&>lgm;@Fh#j-JB$0RJ_6&pOmXk{% z4PHswqto*XwQtt<(*%e~$|gD}uZ)gx2<*p>4(fO|OD`V++ zb*7FAP+Jecx+&+!JeJy9O&Vx*^=C}cloY4;xd+=c z*&sKT3%Y>_YL)4xuG>dHtFnr@I>(Debnt?2mT!h;uuk7i#C(gWx_wr$kfB#_bRoxV zMx{3k4IAqfIQ~l|Z0XaD+QB=mq}p>O+(kETmTroDZGT9bSa*cxfi;&HYH`N z`f{;g{7)OWbPQF_y6bC5Fb!yz5NOAzqG4OZill_oJn&nRalgea`KNJsmzEJ^Ai%9{ zeKBbVWxnDU!RwzK^+*lZ0M)fC0n#hqWUF;5bNYK>WDBwifWd)#vS6orTO1Di{jF*( ziBNAM-jMjhZI}EURfkC7TRlUW3z@H4f7J#FENZ;0!n`&@@yAj!@-yL4QnPPb<#t9Ja+G3 z4T9>N-Wk3VPwHYC5OLE~y#T5Bw|5R7* z+#5k_#Rv7?Z*=mVf~SQ}Ev8Mig+NID{M$O6kAFMW@*)Qrk7p3z-kBGM14Lo+T~ER_ zJiRhxc}J%gftnL0gxqe^B)uXTWaX%%5$LQe0FPhE=`cqOTD7Gl zKs62b!dw>Bp^l~4p6TR}{~ctFtx{(`E{m3yKz^V$NvV=P--muYemqLj7U*+(EF;hR z0AlsG9ak9ct*^M~t0(?jkq}U=T3UOv{yV1rnlb`0Catpwf2~IHzp|ES zA&Qqmd4$4$%+XK++l-pJH5PGGEGegJn9`+0(q`nw&tdMmnQC5bSEx#ZzOn^96&u-> z3imHq>#}&ze1CQ(3Cr_D28<7_MS^ESFT(LsicT2uvzXxk>wPyl)__XNlJz=R_%C~% zdgo6UIQ>B*ih3j8<uxn0%PvX2r zp3{EOSUs=_YqjzmoBAYlbL^{Hv9QAp2LlDjv>Mui1!Y+^J+35a%$oq zlD@3l`i*ugoGYY-(#$a`B>c=bppREt@KP_o7T-^Ih_Ay3CHsejunfyU;hX|Q3o%}H zmAAwu``qvgMs}79MnI7i2?%w5-Yz<8zj%{Y1ym+`B}X+tToO{;;Gkv@OXj74gvMnXrm z7wSvLl~EO^W_1%}yCm7H&q<;Hds=iz$3nWuHKlH-Z`bc%^z_+*Dd~YrgMLlYyTNBa zE!0&JHq;Cgst3|@E_@DGWFh`Z)Rs5l zLE3NBF>pr~v7-V^kEys4;JD-0k{wKw2NbNGwJ4M~3tk!w@C5n%TZ4y}Px?*zAf6zE z#gF`Y+k{Szp2p7>pkF`xSx6|XQ;c@MIw6V9X{^_$zfqyf8gb1yLFX^lyN&|(gqeqK zAG(}!tA=$2vIM67iLNPP~RSEDY zs2FTiImofFbOsS{zklBsx)tHAWgIhi2Gg&e5QaTqR}0C%mnPPU0SZUKGg5~+Zo{D! z-MuD}^Mb{BNUbO*Ox!_u%iD=@PREE_?ZkIIufzs4yPP?F+V3-1T<)N5(f84Qh^(%z zh}0?^>>P*w@J+Bt|LH2YAc$%eodq~-?r}pAf<&W_GyTp1B8%x*kR7-Or27@hya+^Z zXn5{fRLNc2JC1*UjawS)sj#Tc5!Y`juIKa=;ikpPxw|4=pO0{`RW#Q$Y?Euv5!?S0 zAln{OMSccYaQw68H4dCaDXOGq8*KyseBl(eJ1e5fgJex0gRx^L5jF&b-%;%gk}l!tsee;+c)ZB__p1 zv$+YM3znNN(*?&Dv$L#S&U1c56zoj>JzXbFF_}-lBl<3+vQ^$QND;)(I~M50667Nv6^GTqyYe!wMJ(=K5T32+gpHgl87vU6&7`z#F*eY2B8Zm=zh%~AB} z6!jZ)c{coS^qCamNwe8=P$46K-McY_XJ6T*rGjeAx@XL(FWA5%Nn@iqvs`xj0~)WT zQJ%A;;8^IsO=o7Y{WoOc#oV_*n(8HpB8MiRim{hHjzHg27pt*fPSu%enKa$nBi$^U z`q-tR)(2>A-eCbPSNa}ey?}_pI+*xKPrk^>!}5=$N(WQm%AQ8F*Y@ts1(Q`fV`5>NI`O`0 zINp_Gy&Ha~KJH%rKGXU176Y zD|`d8pPhlNECv+rn>B442dvHx^=@0x)j481o%5lACf`%D4zHajJVNqxO(U+9--LeTOCZcz=uQ?XY&Bfv(J8xNyB4e6^zE5j6tI; zLCY-Y`u6o#la$(^rAYR|GlSfSk8-=Nt=Q{ordN8qd9g-@FUsG6wyV-YP0&LNj-v~& z@H58|too6*!;|H8-4d_!%MeQ;57)2GIP>Jr#Ka*#3ub&Dt!uZ>lTYVWv@{Kw&}9sL z-`3xIeXn3L!a_Pa*YfB2^qF-m@j_#ySy^|ba-BQ|HO93rig%~De_t42LsX3o0zTtf z1Y>didHBfwr**ugEgz=mOE!D6)`hPJ41pTIv~*0WI?&l~P?U~dIvU(8k<8R#A#sm} z^j8|?d;Ptp#-loV?M(Z@$?3c|d$`A6+t5=AbJX5WDyl^8pBCf7{WQpo{T`1F6bdx^ z>NM89;VGfXROS#~PIhm6q(T`r-@cikP9ExzXO6#Ty9LC+f+9qrq7qA2C|=P)k8z+g zxc-kC8?ee{?jR+CGkUgVhCUUa4mO5jQ;*r8AbQY#+ z&ioUqrojZ;E;doIy!7<2%3yZv_Q#XU0ie?6oe2CT>?la1hgw@jYWxH6TX$$M$5Yw5 zHmPYp;|`kpe6wJV>(CnAx`H`oM*`p{`=MCm@;#2&Tt+7skE?J(1zt=Wl}}WqHS#Jq zE+gEtcQX1?`J2@vyn*fGvvyAWBNSp^Lw`PUi=A_(eNZ+gCwU%GAN^^|7@FEueB65> zdpi|bCDot#M+!24Kx}2$mf+Xp{T~u-#YG)T$=}mD3Fsv+!c?{huo)DW7Qr%^_!qeP zB%6g1!|%I53tt8$6C*&P@{>wCwu1B4m7l<$!H!0C?Qnf(mt*R=%Av8GaIcabze2iP z#?M6JQVuf0P_vZeUq~Ebv(RGCEXM}FXgKEB9u8do&{bU8Y8qqYC*#}ClM(oSJv5FX z&j&=x&-!g+tlAgYq?L5pdQ}h*RtR+rX^c2UV#O4raYR?3CTVBVE(7#JzRl_VdZ%!a z><}YQxkPKs7qG52$c}iua~mVV@T~urN)@{tQcMKgb+JY~+*KqeL>@S#63Ft$GsLns zW<9GjA`^*9n1zi{S`MKrOjR;Ht5@mJA#74b-zVo7K{z+3&-*G%ieq=KJ>7J4Oe4d~ z!6i+g(}PkTjm|)@k9azC6q^CF!JX+6^pBtoKisW^L=0z(XD)Qa2H%pI6z1G;Crdow zC&2wVYr;*PlDTq$Gb%pv_*3$#hf7Aq%g^&lJFQXSPnsdnxx{w&WEX@*k)f^o%`3+a~b zq8qo^yO18nwufLxvD`&ylt4Fiw3{nrti$tfr>iVS==&UG`TKJCH$Vk&%ucm$HJ%>) z^7QlrmUymwc_YlmQX!4k2*{@w@*f>{IdFs7T|f-l#Hcv^^jdGkhDXqPP82)*3j^q_ z-9_B9Q@-715+mA4WI1EBh;2uK;{o&n%VV>c>E{nZxg&bsl>*Y`U|6A^!`<2u^%snv zfv+DZPM{G@Kw0$iewuar7%Wl&t9eH=%&vPj4$uB3pJF<U&+~uB|9cwa(4qfZ+{gbf dXPVmojir@*YCG7x;ovbq4J{0+{=EJ0e*o*^4)Fj0 literal 119192 zcmeFZWmuH!+b@i|)FlQ>1%ng;X;1`_R*~**Mg>H=yG&FNkd{W88A4(h8Wkl4B!;0u zdVryaj`zIRfA9Cx{pXvT-tW~_<<3&lQc_S*oK=v2s7XQb zS2zX5iK)L&z;~WM(Nc!LL|kR`U9}vZx_UfzwxCdX?CNOi;A(62{f_$dlllUVmuZDN^@@w5N$;G93BT~WM-hOp$O{>4yLML7Jte2-Jwc_Zat5&uuKK1@9p1~WD zx&QcRmD}3d@`Pn8$ECeEcJh*`CB>NJ{da#+P%K_?a&n>-wojaHOURb+*)aD>%+Agp zz}jRJOnp>T67ICQ?OL?P=r}q$mhIZv*-b4j@;Nv-=oFfogwP6Uj@J6=WGY5i4+Y}g zjvhPaHvKEkI7Q5=i?wEJJXldlDU!9nzn?gh5>Q5YuDHZ$LRKa5uEup$vU0Vu=iV~;{|;pka~ALI?bVIu*3*UGBlnqw z!M~~EN*&((8FZ-A(bkS)&4mkOjYsQz-Z)9|eCW%q;SMGgY%Q^d4_9xmZwxxjcV#Mh zi5AL*G15x;S1U$wJoe1fco)?zbVD_fBOu_=m?35KA7V*|WcR!CEIfm%s;co4K4q0| z^Dz@%yPHddoh7s?1Ucc?B*cdwx4-a0`YJDoHJ;%@) zUi~lk)TH)H;Y0G0ss8?3J>ia>_U8x3w|910zJ0sT%*``UlkD(eidkbQ zzRYe=&~;XwG*V*};X3{6s*p{u@*vJZufloC*=<-eQ<3=N{Y8Vt(`V1(hbmlzyw{(} z$jT~4s3wc&S|)qR1{`c#nmXK)%gxR8KG>ci&llDiCa;mn_|>Ua{Fle|^c_i(ew8QA z(LWQSo$8ch!q0Z5<8w69={qC>4yvs09_d18+zPIw%+0tBtJ8oFFw;J3M%b!9L zDJm*5to5z9p_ZIicX+THLq6+)+x4QpL_vK?*YX&g+|%X=Hr*o;7z{?Y&@^97a+|f4 zg43iv@GNpAFjl6pq2~s1g_@e0_LV4qe}8YdJ6Ma>OWRvp`pKv=+c>szuD=x&6y}Dj za5~Sm(b}B*`R)(x!-8}urSFR~&61y^moG0azL|kN-YIhfT zIg9WVNDh+ zq~EJU#TKpFIQ!uQdoeyf)!|CF?sy>^o(`l&+4SaVKqYb!CzuNmo7q#eA3S(DRk1SB zXw&!QvDe~TcuDRq+{QYLn(7r8H?M7r7{JNnVVBnN%E>i~V>LcMc=K{W^M$;kqNcj~ z$M!^#^mp(6rs33l=r-4*@#@4`O1qy`u7hQE-GA!ex)HnBDyph5Pksg=hn<*|v^Jd8 zY~BTX&~^4V^P9lH7IT5-(NPqYhP7GiO)V($a~U8B0ZZ`KHyruV3%AI=y)DqQW|0ZMsc&e*u=l z9}!u?`wt%kh3tp=(8Ex16ZlZIi5N-Pq+jQT)%r0=4RkjPiGAG^k{3v z30UxuHsm1FNd4h}~*ZLYWyElf+%>ix^&z@Z;`p1@CVdkr6) z26r8~L^|^F@@0(-QvSyKJ7ldw)0(Kn#6+_Mq@6*%7PM@qum4Vb|NgyUjW-smKoaI) z+8i1p8dX;t!;dQH>FJ>l3keSHMh*}gagAb#>Qg&_K>I4_A9D-+B{3vuA~TiO+;s!b zTumc(XB(9r?yYqgA3s)co{`ZW>vvnrRy9d9Q;yN=VYX^gu{hzg^hu?H98_9VjXsz)zefE2(>Ff)tM%Vx)oC%fm)IaD@u8) zB|0)cKR=XSB+YAWn)v4=Q&wVBq223bHsZN+WBf2+GKjSQpPvQ!e#04ON`{`({B z^8(Wv^w`)Vq@y6c5o&Mf{;!Z%C#kH*zP^ZAZUR^V&AT3!l{~D8>%fhCN0NRG7ENgZb^zHBnL2kx&ydB~U1omZ70x*2L=V zB)j$5PF+7g00?I~n&(8JfeS}-XnaTKOZx46f@{9&jLDJ-zGQ%1=~CjKBJK@ZK@pG3 z(#bcisr)(+u(#64Ye&d4xUDzy`t|Ei^z`&RGa*-R-)Nl>P_-<tV4b@*s=xw#3@6+q(O4l78MXjiIzcEzTcGN=mF?>4=P2LJ=c2G6e|k z1KjCnj9jVgSFvo}a^W#7&9U0uAc>d?^YHvyuRGlDC^c`6pbtCte3z!XA3DCB$AotH z4tai5+sEDAU6;l9`t|FstCP(M)>;B;_-&~6`N=+$;c}}(?XU`Z(qvAXRJt~=4*mWt zE#xw-EOPhmWNyCQV3~m(UH-W4Cj^c@e@@Zr4qFrX8pP2yl{LfFlOqFnDh(vk-k8)&&{xOJO|*98T&FWyjAkG!EmO+#bh zRSTVG4&FR@fRc(z4_aWpt|Z;9C$Igt{=D_gpQNFswZ<}Bx$CbOZx3OE*-RX zK>-;~n^v{r*A;6(a@I>DH5JyoPfMX3NO-R|t$aGz-)+U?@x@6deeT<<7Hx?l-NpL@ zHifxRqyzn~08&{Xwdn}FeDw+-RpK_%v1&;S@u;J zy+T8~s)~wX*M!BzMcu($w{D3rrbI-fL0dKSgL22E#cZcw-CvwpW@Q8h^ zkUpgM*+(~o(9O)1e_$yno+n5h?wNV*!MdIH#@=oUkbU*fWKM3LbL+*@>jJkuzR~jcn$d(^;u`T&PdUO$t2zYYU z%^%QA-drW?jT^`T8Y!XPmM@7U z5`3AzSDH#9%FOOF!U~ES8B1&}jlFo&fe^K&NR1XtJo}w$9LB|MTJ2d78kr|uGq_UH zY&YuMUHGAU2|0&sfAcem01i^D4qZAV*x{PCZUEcNfyNA1%5-O?kqP$2=LB?Ebkb+( zw}y=D?Cdu14K9te*U5mlfEMT9v(7&9b^rB$PE(lA()1seJNEQN5yKHgA~0bKfw;U{ z1V#eZtReRr#eA7Y$^}%-H51l;=sXCwz?Wiv{CEhh%LHLB$%Cy+n+5tsPtfY0A7mAN zV6iOjM(bddwGNASTF$~j0#eims9%8GWQ6`hc>pp}1$CAkwmW8Gb7|D!Za$Y8ZyFpR zu_>G-E;LTaCdR_c3x4_RRRLDL{b*K8%Nb*)gwFiGW$dF;YApzGO@skV#ACv3h$!GI zC5Z_-CKy-)^FWA8y!r0j(OsMAAVAqc)P?QcU5vwMtzoriQRdcm8$vBiJ^viX%v@(- z5%Sw{JxhOA9oB5=Uo~)(D|n@DQL8 zQc&tupfN_X=A-IHtf%s;0djW&Q_Yx3_Gw==*3^vfUZ4HUrW7-o%PS=%g&~cNjTt9x z9_%j711XHFHT9aJsdwo}6p6H&L+PTnfr;EA&vr_~M(F|WLH;dGWk5<1b+e91H|iSJ ze|`UkP>?Q{k1R7(#$MfA@YVnNDwfeu8V5opMM5lo~cZN zy$_YX)gxu`;gKUp42zz;(P@f=!U39xg-?6P@v?wjk}xKm2jDEeJxPpr@M_pkx2wVG zpcGh&IP>CA{a(;$OWo#m8SXmXL-}uKih3;Cp0c?u>NXbze=?dQ*)KQMkQaxI-kxLV zg5t3bv@Hj)yMe0LaEWD@Vd=Ba0MRcuA>~Z^Kjn;0E zpy-cu6KIb(+c0{OF6$OG)Be7`XX8KKd$0Vw%-g}n&W>y^!*a*R1p}V5pWo&!@^Wx+ zjP5rhfZRNOCl;@F-^s!mKKeGY4}nXSSWAfC*>P8t1a9hyYYVUvHhL;0zvkO zxDp;7K2YsdGU7GEfI08q+}unnVE*pH#fzsGDk&TbuOWg3&IA}vJ|)-5rR?&_}(syDTNByVvWVFNB03+&5FBiX_y=^mzzB~IjQ|zqQ*lz z-w?lgH=FqCcpKncD)Hs#vZ3_3P!!P~OCvFUpxVKW>Ex{_NJ>fq{VuOV>d=^7Em=GG z5--m#)V2VlqlOgaga7;sEkLVjM_&p9W(HG5@O_B_loC6$z`n`M4SzT`4wrHWoXjrSn3u-`JI$f5&J-N7O?`134GUrb0 zOnR?cI+B)+N3*e=qfm##7@#j^im=S@G8nDXF_Do8C z@;sEt11MC+Nhy-fmVganW@rVUrQ$~YtM2V`D!?acK~vxz1Wa#JpeJ*C6|aXP!fBM+ zW}j3jvFvEypf@ryYWsAno{PtajMo$L-`hG$)VdG)5lYZ&by7U+nTXT)>l-TZ=KW<* zHO;~#o_Zz&4FC@Lq(AxQIKFk7@faIz321A!y0bI zDeHc=uS7saWeD6v4smg~?<+phmseI+C{LemC9gnnfvdHIQ~+6|0#K>|+t1I!{%mZV z50_)?gkDo(a>F>H%we=3@GPAnO*)@u#=EB-$#z02IoCq2-1@$HS45=ZUiQZj1~J{G z>a|b{F(DxxH3@Q*4sQw_lovImwBkhyt5<_yNqoexwRCrNl{!zg7++p*4})WS*7T7X zt(_YIKs^#usn;6IuLlK}hK|n0Ymu0pq6=`|#jTC*v~Bj~y^ZB%b)e^~PM2}A4VAh8 z0prCy>|b1B?fmJDhe*&CN4*HkTYk8elgfWQ9=kIxvt65ES&x+r~eafxqiArw0cI>o}gFxLLx# za1JEs-9dPNZfMSk7#s1cbtC{d#?Ewt0{}3&|CQvsK`OCkxpwUyBKJC3tt8-q8VT7A z^a!k44U}5Z0@%lEt_x2<*NBB%j3{Xe)9TN@K0g9ZOnlQvl9VAK#SE8 z#XVg%L>p_ZgXqJ}%?b!R_Fm69*qP@C5oBm?2+)c3LSIout*-YA(g#e5f@Yon{^azu z?zK&=f0BJy6~H1;1VIE;HZ4$i)HZ>`_1^Oed#0-8P>3!Q-JXh72vaRB@lmlZc91A-(Frjz^2^;Dn}sKbs#{1qBr zLv1Kau-yNZuU(0n7*S)WwlT4>dbNe8DK>d70fpY2+zF@IJ0LXY7U4XHh0mipTuJa(GfCprO zEcw+HN`N>S-;|x=AHO82Ab_>%ZgAaRof1cFHl#$dB8Riq(*W|5od^z`m{PpQGDEBn8La-^*5oNeI34DqBuTD(qPnNrr20*Lp zf^yJP<>7!y`_aDwZw9pv!HFidz6Kysa4u`eBUT6~(PX$}Xt+!jw5KM=#!|uf0ohN+ zu*yAuZ-0NyclaEGsD6?jC`kB1lvD?4$Qmq)o{<_Kgo5S5M{;RqH1Q^c#_0i8>xOQ- z4j2FpggLMgAcu)V^-7@o(n$V^v$W;|Qm|$~?i1FN>HwT;1Gn&B+0jo5k%3bJ4h&#_ zhlho!g*FZh44~m6A{4q73@u;OMT$kYJ2$!+Zf?`U1v`Pb9gD+NG#4(UEiXI5s%z@# zP($`xPfjPpTH{7i6R6-IOo;mLm4gIAef~T%6mu^hAB=qXbwsLzYIEIaaB$b_iK1c< zoO2fVfAb)41-*Zd=yc-Z;*-#5V4tC(SUEd6RpibaL!kl%Ek;xlw1MBj{I&Z3;2cLQ z9sj&Uq{@#U|1qg>mVu>=$Z&5cX|zk8wizFfCBiMw2Qir&?5h8vdxI1YL`4U-tkDI^ z1mznHV(!Yog7N(&mat=3fHQz{f`0IZ5)m+iF7Xg#x39QO z@D8++bN_k6QveNn6C7%-`t3(+_ZbY-=_sC8(Fh^_v7_EVk=fg1uj#9C$~WNNC_H}r zIK~f7aRBr!>)t$rcM^Y5jEy`&{l|e`WdY6t9jk4<`ah`b-t)gG?j8Bpg!*dI0o)6y zh7Rm|as!=14uG;Z!)$OyBFc!71Fz@Ils5nQ>gzxM9vgh`41(#A*ZBNiihq zCR@n6z(=u}NmD4H-Dg6vs3d70`eyj}SgoM*ROk1_qmC%r!Q2+Rx*K3Q{`>l`YQO&% zO&$FI__P;JR~-X}z(pkGZSxC8Bt&kfbOmdi@?IEJ5gsn6$qyMItm_TV`J)ZLOG_4< zD=rF8yQt}UomKa~Tz#o|2b+nKYHL}@=lm9{XPDKB%8|}iJ-km>S;C^QW0i5G=lxf^ zZh8-Vt67`t9xAl$o9WaJ&JSnSJm53=)h&XZ#}hmvv&_9EMMMm;)ffq#^(Wodm+wPH zK|WiRUJpt*D=~?xF-JPPV0)2U{S%+@-9q+C$%3szQy&m7x`Kq}Df9Nt64BWI93Z?8d6ez6Q`O1OwV_?M7==m}B`l+1O-cf@!pp zD#<-qBPt==p7O6dr-%4f!kG;Zr??eWls~doY;6(4sr)O5?%kSNu8%jRDodA8GN`+m zKl-jH+z=`EZYuFi4IQxzPJN_QdeomMJ;2l$kUu)}tGun|h`mH)b4Dl2DDE%$<8}wtB0G!o z{BC44c?ruM9$tCjYVJg1s8#37(UP;_;AS@X?P9a`c1qw&eC_F(j`{D~Ylda6?<>ik z4_M^oTt#_QbFFS1->F1< z)OVpxyR_J9OxEkQ+{iyRjcB}uZZ*22w(LAY8(F7srkyJ9<}tXbR^@IRt#%$|^8N$I z$2)cOo9Pi+5og1EJhpDW2{evjmFTVTiD@+7YnvFG%~_@40z+B>wg&&Zf}?Mq9t`yl zl(_}_`UP`czg~TBFnN9dul<`&)vUQ7dd?j@h<35?B1CO}0juh?h z(Kqe3iPBhao0rDbz9qH}gkOccMjUO$To8Y;84lcHV0B1OH~*9tYTQ zb#t?0i?0wjzPt^lln$4Im$3Jkml4<3|)EQ2Ur2(bo}Eeq6&DbJ)dnP5Z7 zZ@?CVK77yyc^zaLp@0KlFw5k@ifEtb9p}^d-fB?Kl*^&8^JM#02uTNXZ-AtW%V4`V z;4~c+s5+V-RXQIKu_$smUuwg+%TmHRM>>Ce)z#_u^QC0bJI+3P@!Cqd~U=H%j4}q;td5fo+Lv0bWnHHYIC7iD2AdL_drF+>%gpkz$EO1 zZ>x@8+zBch!Uul0#~o6Ns_(j+Q)SToQ*p|6CIfXcu^SEth53fodqdCq_b*@Yip|X! z7oxQy2C5dx?wUr;aJz&2g z(jcIA8!+mNaX12mA@HSES~3r*e`UvcpeHBIx3{+uwWtTGlq+dK2*Liqckujmd)GlQ zee?Qt4lp#RTUEI>5Dij~O4W?^BW)Nj`vGu>25b5TtEykeFE&w6c^tK?Yg#D=aSw znR}AlP`2op(@Rgu`^A0!gtrmn;p*m93Q}SwV9x#%|pcmy9;XRxWI3&}_b2x3bM=vd6fSPTQBdJ$aHQx$Ozz zKidjt+Fi0o+|i5=^u^mBomajekJ+^6uih%wc^=gcrap^oXiQ|J*ZOjplyY_d;xXJ1 zPzfvBpEh@Nn+MuX=MBH>e#;ZaEiu&1bx#qI;km*#s{Gq?rQ<@wGbU_ivQttABv7S) z$;W_gNWK>~V=-fXkh;EAd0Zg#7UhAxd&e93w^U5MW8YpygIa2cwYCDvjOfXDd4#&n z0juc*XN(ziAfya{ui?tPvD54G=gnm#=!QsQAUcM>dbRzNw76IRmfbVR1w>>tHOV6$ z?wfwRuM(5h)bw-~$R1Azq}=AT5iQ@Lb~_6)P4-^3o-5-!pskRhA<0L8cg?g9?zmTF z8AwFdgo1paJI$@FN)e^-bG{>|7R@CXc`_TOf;nz58yw;mp1mj|ExOi7*8j{|n5nU( z*O{D_S2;Pv6vLC4Z8C^!8LpQutXcbJSF?e&Ic13R&SYI1e+`epU1F}V^TY^BSY0J{) z*S0nl8t(XPk)I6>)0neE6+u2CM6COC%95~+Du?);`N!mK8hWSw%iao03#dZ2n!>`5 z;VX%Wo_7biQ{M&ei6@ymSQ^)zDUW<@T$`aV(bnA;Si2YK8$2yORi0|6UnT40G#${L zfP2Q_3cq)=3|xGMWN<55u5-9JNQ*7WZS((w^$0&&aB;CKn7c?hSgh{Zc^CppyZxlN4PEV{d5k?P>=O;q9pWd0+5biX-$c^!hDNc_70go12hQd_{MtgNi* z`MvM!uz8F|?uoA{Pghh{g!>($I=XTKQYh`qGBiU#C)eox&HI+=Q(D*`OLe{3CRm<2( ze5U=WqijPowR^6m;}hfBh5jsVa|07)r~t2qT-$!?o)e2QOd+(n<>hw)?CTGw%o?QH zfl5Ofty7E8F4pEmVlBf1bv<mUFco>~}Bqmm2bT;7o8L-pdXxQtCqkkSDfVF;#P8oRfZ zRU$KTaya&jo_+RqU&^Z!{>!3Ycbk%iCk*E>7*7%^1T=AMw-6UVd~zV^dE7p8j2A=W zZi`!>PtvZM$=~+*jxiU(6W7qTBnE0H=em~-wRwP5IL0TB$RtbVl??XIEjgeFZzK-o z@06iCy}s;WBtGRPy*|SdZS3dF$hI)<=NI*8FFFD9E%>{eT7G+s6PG@eP8UBU(N_vN zbr~5MB0vN#qq02kGtz++n^V5;!ol9n1-}8|SV8aJeJm{Ws;CF=Yi_bRGD6_3JRl%F z*xGQbCH6-T_fzn-kOo602_QLy%q~cRzHMuRq#Wgdk42CIh($otz?07eh=TaPNMc6_ z%re_pbVm!ARnbvV05E+Zt#FetV_^a9+S$b=5^yt;*svcKh45c{@s1HVoA&5^Ixsto z0}l6b8F{CzXJo8G5zH}>5)wCBTK6TiN>^5%!JmSViZL9(i~<~O}p@yF3oVZrFw^`4CExw%|a8Mi3& zTDJPV$CPI)@|bFOH6sLPw=e5(1wX044Fs_T^K@G=l6vr~RhP?S-x$~C6*l{|?pg)})el?nI2y7w1x$8W?KvHJ3b18sT} zM|J+xbsZrx+7GI>9tsjR_a2Y`CFC&jpupZfu3)=6W66y?M;=WAlj*oW>T8?)J4(X0 z%<1S8n9?P7TpF8wKek1@&u}D@YqqCBil*8EyTQA~++ zdV$)+%m^&WX2kdQF5CN)XRcgp7ANsmaq58e(6p*z3qfku zxcOrYQpvl20E)NcGZZ3O6&z~Fy0zJl&tAEC4~#~whYw!^J4fmd{DjqHQ#efR{Dv4+ zPpzL1tm-Mu{=yza=ptB8o;=yQ$zKQ-wGMzEwL5q2#DfW&x$Nl)crH33 zTWRC|3jbkZXTsWsO@D1GW#~Hsc2Y1iBi{8-i_m`U#7l3L0d&$gJywMywFR`j@xL#6 zB=a9Sz|6-J9jv#CL}&J)U7bJ36}o(f(h*+K@#n%kYDj(*l=X7ylIjq!wC>5vJWv~s z|7qDZ|3P7TQ*C48T>N@>;avBU0u8UO^10AZw0cpRZ0L@DhomJRmoG2#{fW9=Q7t1X zoZmz2{3oeF6+%8LSKv&JUUVmy`YXx8*RKo{*Ys?YX4>X`?+Q zHOgjXl}}57#?ZAklc1=e*wb$pKjKBNY*4GPdWqQ%1FG^5VD!c zp5vz!`U%pCC=xd>Z=1En7rM-oa9tEK!KP8ozK0}{ePW>0{xX(A=2A&jXIAjwpPlrSJwfn4@u;T}EnDR|W~6a%w8C?wNrklRKI{7+A$mD(Q_W@kf);sX=_I+4TV-_XtQjHdL9{jyA<1^sEvH@L`Bd2S?(h8?W_cK*arW@Q zE#M%gKo|`reEHllHyd6r>c8;G)Q|W^nMA!p#;1PkFqAd05HdW)!DERl(3lN3DK09} zOB&&CZP@7DA5p5N&1{nj(fswZJ0c|HC>>7g(Zq)HCe=s4@Z;C{=J!I$qT8EHlq1E8 zj~h49D=z6%rae2GsY$QWA&#Qh&N9%g8F@P~wl4aLlO?itEa?5BoU|jt!N6-ZV`5rk z8iFm0Op|2HfBOvz95p?C9{g`Ekf#_G2ChTlxRCrZ2)E(GWr5)P?pre7K@tJ*lHShQZa@y!m8a!jzg!~bA_kw1CLRe zGLZ6^sJfQ};Qiq~oS~ESErG{yeD4zSU1J2g;csrap@~j5`){UpiSMvjt}#{*mrj;#FBPj39mTcHx3{ss1fQi7^eBXVA%cCP8kfua}na-spY#GXSk0NcF5n z-|D=_yVtXSGw6eMpquOF;T6N-qXclJQ*D|;K{LOg1MS`sJ86;?vA~dIJ~PJAF@6L+ zLbMX{+%Zwm^!;H$N+#Q7xi2IYsA(vvv}{YaMg5p(ITT2KTh$>Ubb)i??-WROk?_E%3no2-|)Roosb&z932rb7JkC!}ECO}{Z!J^Nf z-^M9DDw;n!NX={jgvmd zo;@!;-}NdLvEm`(8TTM#-3)Qh0bCf!oCl8LU%3LD>#B35I7Lz>dX3AVLVHt7;(a7buffw>?eQ%5@e3F(!AvKxIba zTzn>#8E}6%IXL8DOftsGK0-u2Ufin~f`{3!|62Q}mJSrfV&y4C6%{>~VC* zGJtc8lu;nb-H2Z@ji1)HQnZZ0^aV;l? zXwTB#DSj<)`RY|k{(Dvh%MKG%-*^7YY*fV;XxwCs?!?VU#qep#Vi|Li3f-Sq#n}ZK zDp^@IaIZZ*<7j99x1(Px>hPn`-Vc8r{|t{Z((9ByOE2S6-!@}1jYpOb*TaYm7@d0t zWEX@bb&zBc8iT>^j8i{bPb>&aF?F`J3a$C6-;rOz-;9Y>pJt~xfs(Z zG0Z=?5UNMoAJ|#zNWdEMea%jc?vQ`OyHP%9pvVOP1eYXEIg4Iv0kT^*FwPfIPXkR^Yu&G$7UC>OUs`w?MbRd zlzQVSC3-pM4gP|Gje)(<>q0PWkJjZ4AXC((+#JyqE_J9o2xPhWd@%DV!BVGWz9g`b z*Q>tzNkVW~3gh-ztglHc_FbL18B3gUrStSVO|1wE%ar|=o~!jtxU}AGRg>VY)+%Kg znIy5#%aJFk>D)CIe+uwF07jM+`4$%x)f%9pMqTTJ{!(UM5R3>`O)zy0b7gwKs)5j& zV=Sh^AT|J$)ARW-#7K$E=ZUu5)#OYE zcexc(w=nUj1@{jbn9=9u_5SnyIAp>cykVe-+%DGOki7N;_C^c^GSjn7`4KcybI`{j zUG;PT;5C2E?qbzIv4v8W58#!so+_M3G#`vEjd)IkBvf8jK;mETFHQ?@Rq*CWIE_D4 zdcHn~DZJ$Q97*!|L9BPD4n_kNrsEBUtJa7@zYzHZ)I?OlWB}WJ5MuH-^j1CeD$)u>HnKBtCAD)pN*jkN$C7HuL%b$l z=Qwz{4~+A4&)Veb)En+BuuMpWvaPi^5=8|lPc_9#UEj7qxnh#!9*#5X!<88T}EFmcPLlecxeLEl_tD?kGF#?ia zxsv-kGuz3}tG@Ny*% zAog8A%<($zvTcXJ5Kfg{|CDEO@v-gZ0#>6hnWE#L9sDkNGS67tEPeIDkk?{GxO_wp zq~2gw97(~7!n`^%APPP~6Uh3IuheChgTNr-$4gP)Bm)N zO3jZ~!90BrO#G66TvVF{2?UWTz}1-~k@B~;JX>AM*ZpZSU?5*Viv*Eq`DiYS!;{u9 zp98kfhB%h#(xogg5={^&3Ug1Og=fMv^3NZ}O#SMaiZuUDogW=(ljqMd$R z;@+f~4#0rKe0Pnt8QD(>mHpRIBl%G$lF6)WK6L>Mn`~dda?9v|Uq>-)cH2y@*d+BnM zf0(X8T;S&$RM&RWJdJbTUS)Vlh_x$Y#MEp}1eKu93T=q%_L%OQl)l1{iz6CuVumMm zOJ83|t9SFB5O~8h%H3>?$~7*j-Z%Z3G?TnfD1qTVWWW`noRB58g1Z8vgg9l9$c*e{ zZ$-eaEh`~Lu$E~4`6m^`A7mz$*RZt7RT&VDAUxJX!9dNTH3zBzgg`&}?-1ExjPT(} zDn@O14hKBc1cnxbB(}z0AybMkRJIjkS0dv8RZM!?`o9c=#gzkEKJr)rV8_`o)enQ0 zxiC12*2)frr)^}xMB!!moC^#L$mE2)z~LDeqXj{;@Ajp%#;&fep}Y0<`KNEdQwmyP zatKzlHjr*IOdE`>;ujs4L>!rA3p<9h!>V-k&I`-oPp|9N+*^VfS0&}n%iN(>`{8-P z9)kmYlb-&SG`sxs-BMv3x7c>o9A4};2fEo%U$!~;ohg%0=Iqfim@_<^!@V;;5#GOu zsx|){!*B46Y@FnM_U~}VQM7hN(2c$2$Ps_D^6%fj3py;?wk3#(bvp@J_jUt!8S7XwgBuX1F z+RRL*8JeVMy*CUgu`4t^6vn#jT&5JMme!b2eKzx<$iTGZ&lr_?LVb_O5W`~sKMDec zJ2wG~oTa<-Yt0vU-J?v)cNJWywK3g@J0vL^q@MJ?AqiZ3@3LwdVvVqMprZDZ^xHn}k`2f{qKe9% zCt|8Pn<*%Jo1*1TSDpUqXJwl`Shv;aXVBRKtP3WNb-)Ki^edRdLe%d!!@U0nIG>C4 zN=PK}ve(wuio)RiV~_s?RL2S&QK87N47~1*AhSNm>;Gs*_5X^X?0+8w64Hj({~fvI z|DCs^A4dAL9(x@9n*T?0GxOi=Rm_Ph{8B|R6zjX^ONs0%qTvws-+u}EG_qNSiVTNY zbL4gNAu_y#yrhxwbL92k-}>(>@&DyDVU7$vJg?HZ_x}38t$^3!Ly2q(-!8LgV<&PF z>u`tcbnz1kpVZy$2p*f0#W+w!bL`<2XDA3S2i z=jzH%DQ>sa;|+>Vy%%+1esH)b`k6EM4)J%hlJGEU%>6XSbOCA9HS%rnD^||C>u7Y% z&BLrgEUrYOV|ogo?__}Io57?dw?p!};KvQ(*M524L3iETFI71tZ?Wn5`PNDcVGDE~ zyzplPsY~nGx)4e9YC%7p>N8?l$-f`KZSq6MMy@Qps$?7M!FOFXL`vVUn=~*ukfXHU zHK$(~WgWAkdESG)zfWGnNkP>4mMmt|w5yueGWugw{M5Dz7Y%-?P%3I>zV?n?_O#s} z>^m`3T$=sBmet9M!%d$hTm8Jb+M@OU9P_5^i@BjMAFPk>G!g0*?i6ci8>gL13hNCr znGu>v=??0c#>Q$iUoY@RTXmDKJX^Yd-hbbmTj|PnUrbHr*}@ke8QS8`IYFy^ZV{C9V?IaztTH&;Tlbp^8sW0 zro9pV@8#yw!iVR5qB+LVa&u9=^TUk4Bh3g_GtJAkgR}#m<0S(sKhrySo;^YBqId6> zhnt4S?2h2N%9+n1C&)QJQvfoCCbnxNZiB|dRmX`*51Xs=pwKn1 z;QoZL^(L{&c5sf6RxKGYcfUf!pz-v%jWYD)c&Z|s1U}nKgm>6qRhr$d7i&JDPU%tb zfGQjwm6s0|nS6xvzMQgudxZfEZX%B>vDgKENB~pTS=&>B0d98 z=s?2*bXc1KK_OO3w&gSm?S(u?#%{P$2XHNjcQZ6VV1cnBamjBdnY0fN_VF;?=Zgz~ zY%Y@67V}s{;BTqNk|`un=a8NtFp}XgDultfiZ`|qgtE-M0RatoQgOnI9 z;!OUViMQysuZ3<~JyXi0tzB<;Y@cdwt`+5gzp{-mC@1MNG*@ZZ9n|!&cA7dJo7T)! z!j?5VJ@wA+&cByCrfHfW96eA%!l22=*l3*DOb;Xrj(24xl+?t8cxzkiORy?5@;$Wq zo^sN4(zjGovs*hiBR0@IC##Ysh%5C|Rg7<+=~+{wjNtGUgN>zm%Xs;S|A)Qz42m+{ z-hK_EjtLAP2EvF0$)hC6Dj+mSra_|4@}OW|7LqvE;(q`L1<^t>{E+y zxju>aHSxOLC}fIO!K0>jM@4hco-(JtrT5ep#8Xv-Wp;iU8i$s$hE#F?4jOvB+4>Vl zYVla8dP?O)DG4@MZp86{oVGq+Bu7n=l%s{YtaWsC!;R;S*l6M+>1R^^G5%>m(CP8q zk;{|DKVnLcjxg8$@}2c!PifJ76kpnP#Zk)ka6Z}lvy*XU#GBlFH&>PUst+g4tgX{a zL?UCBZ)7VPbDHwY14;?(LgGp?WA9$~+~qo%{L}vF$dO}8se#Jw1n79o z!dNFfSan@!5}cWn6{Da>0yqEV%eUYx)(`I86r!v-Vu$4u6znKkf^G`%q@aPPj?9t4 zu}Us5mO|vZ&~5az^8@E9I1oRnZ3s(&Y4l&xZ#Y$7<>5iWPzA(HdT?|G&2Wq@VlKqt zctKczjHdwU2@|**2>%h=z_0ua3~=1Iph$J_zmDeZEj5ZZg)!a zqf$!k5ITa=z_cdny!Zw*&}#!#Mh7zNvvxC2j|-L#?QMkq*m^X|n!mM)_Vg;pj%@o- zn%>w8lOi1i41QST^}5&P_xg9`+}#$pk;{tnv+IpF4It!%RVA;GZwtrRkVBt;_~&M6 zXT433^~68rn4_AOSxzU|9?KZbW-G8c`i3U!fJ%}z$&Kn;XzqwfPu;TJbyV}okH(1# z39&&laHt|{EUvO0&mt#e;j?AB_x-F+AMMlBkn8o2MSh)ge+rB_-7!63lM~BE%taQ* zCt}eewoAVbRM3CZ<3WE`TyZB{MqQM!C;EDqYCSC(F0(RFeNr-a@9mcF22s1Gpl;nQ zF{rP)-9psS!N=8B^Uhd7=*2B%&JdbU9a`!rDpwNM?V;OUA2S6_t{tzeo6GylqgA#m zu`Vl;5gG1&!?`>{;zDoSQfv%h;A1PzoW{CmWKZ?7AO7XgzBNbay-W{vAY5q1~WO?zIS%r2q*Sm&Le%M(0#P&d8p7K=0! z`mc>=!(ktXHZ=j713Fe~kUb2t76VX{Mb`TstXS=?RnTJFS}GgoK!LcRh+{!>&RiN; zU-4qL@i2xe096FSj|C-0FAzWk1`uc+(zx{|0p67e?E`|}9&HO0EmZhmQm*T**_=+O z^xkwTHMQtWjt&gmq<;e49J6B%5s{HofCvS$rw(+9dcd@e^mmPGaA<^a1N>UV9t+-9 zUVeW5##--;DjTF#!G0yJ(=ve*a*ZValZm z>8o(Hg#k>fK4szsrvYo(?#=hUi5p=Yxt=vaSgktktVa#)_p;0C4BwhPiCS*TZQa_L ziH=!H4wLmbTXV!Nj4eQhgP!S#z~IF^#e`0VdsXdt-zbInLx&y2VOz1HL)hfilZyP z)UumhQQ_@)o*XvMCLLWW`VHhpB@&= z2>z(e!|I6SdGETGJXBh@Uys!3DREmlgwlSO5_nPfd%MUoW;Y?0ERWu0U`)w4UA)0y zIlSC4z^#}V)+8+>GFtI+A$?9bIg%-iEWjzGzh>>zUfWuECN>JjaKlq`{fvD@cN`VJ zaL(mhNgXR$dhL3sGr(dGsUsT(Os2=ZE~H2?vBp}}p^YXa%KWPueL&3&E)0axhbR!C zKF9^bjuT+;?%#h0LgZ|K=1$_1fa}@<0~iDz>EJLu#|8ppfK(J9nC7QCb{S!k2m}FG z4*a4)$FL&W>OI*Gh(z}K_3bpP!NTHJO#OzN${s5;oK0+p9w(1=AuQW$Rxzud&)UIQ zcm_6?m7wp;fhsH<+{i``F(>Lut#L-{#I-~HZl^mJdX?o*44r&cUR#HL z-m+P1-jG(8Yc&|Cck=L1y%q`8yA zsv@Txm37zsP9|=Er8o<5`036 zuh$OvDJ36k9{0+VRXYglr;YiR*s@Kgw=q>K1?DeW&Tf1hk~3(}wfV;ZX{-Aci}z}n zG#9t5R}{|q&&sD0dA90qmfr17R89Ni@mIf9rw=uO4NLB({>liy1F?w%1x%~M$udUZxFW+de_|NuLOL)U1v(di0!!|0Gx6Vh2m2v1EFI__MA&n%n>K?*e0O^z z*2U*@FCe6&qFk)y1i)3XMmY~S<;~4e<11$ntexAEA*u&lA7CelB)WlwT#;QzXRXe# z9U_exfkvvwT^3c@C-Zq98ba_O(P2^NLy%nsb=hwBQYG0Y{ulyl7YjDCJ-%?q*M zC)Vh*=CgYZ=b3uhyWp{&(n~A7p0(;1O!Y-`b#)^=4b@JyzWzbCvGgrq)xoiA{D_cs zLqMMXkD3d;&(#f0ygsoJlb2R%+$)V!jIT=sZ~0hpMP}Lmt)atb@ENT^!oM+-y0DRS zJggTlb4Xm^T-i9h51=OiN>fM=Yyu2yY(((2z@t11!*(19p*T^*I$EXMidcc;buiAM zdf@ZI`LZz}nAv?h@>bFnudSm)u5`7I7PL(!j^fdLK)~h&@dfZQl?sMi@@Ho)K_@N` zt5-h=Zv>mY_cl*HIMxc?(`eA4|BD29)ztPyV4zXf$!QDTF=&%hfWb0PtZUn3F|kn#*}57*6QSq!1I zisxxq-7gxuM*4kqdkc9c?X7&GqG~I5NAcvUP7CZz)8^IIALm4!S&b>0Aq(3FozCz6 z!4Om1et?Xxtb-bdvfd^GBJ@DP&$FbtDi;9>v>Jh-cPN~GAvdrEucc^87BW?+xp>6# zi&uUh>DGnJtT;;d$~K91f9&8p4SHFgPPI2MvBgGfVjc#WBt-08I3pq9 zA*dp>TMZI1ZK|fLpY0Ci+DRK@Ej2uY&hsEea+#+@{%%eUR4uw#!+6=ZBvtDTv)!jZ zERL_wh1ptgqD<*+-kF-(WHm0t>Ww-n_EqXR)&L}kwpsE#2q(FK@kreASu2Zhx;p$s zYTSn;ISlN**f|LpaDfa%ecX3DAK|&coEVhd-B?ay9#F+F2zMH0)r<@b8U6X~ey?Fk zQ@JE&^CmVnw$gnincxdZ2-TmUyh{N6AGl+Qh!q5!jC$~vJ9`lZ6E#*Y%z0`&7TMA8giW{hWr+vVbOw_^NcE%H)9*( zX-d;PrO21|0KYbQ&B3+BB{AH7Y{~3simy?nV&M5#FQhbc*$cK7=K?^#;q12H^77Zb z>Za(-O5~6;@9j^lgo0bPeAXjt?blg^?SJrum^$5*(lFn(uV*uQM(yzPFEaJ1&YHHl z5jWLW^&w1GYf9TBW+`u;Z@+);i?U+b#RoLarPjm!Mh)cF!}%xfW8nUShi3tZLxw69TqF|FJUU$V;;sjon3y)V z6ZBJ$0v#15VldtQhyEX}Z^AB3WxN`Sy z|C-0Aj~@Z*a|q-u2QGCZNY(O(7`MC4zlt22Y8&=BS$q%lnVOnNV>!}cxzk21Ta;vb zy)7Tya55Uqc3i$)`iuv6M3%zZkJX;PEac84(~}V|>swL06XbFA8jpc`=(L=)aguYg zm~;BTVd*?tSVF9YtQ(hteTcEimhWLw{AUgfc)ZdG-h4#Gw6hAY17U~gXY5&d0}jo~yVc8|1!`i7pC@gJoYW1hbr(f`q^7%k1Z0YD>bF`QC;vCNumou>(YIhwLa`Y=#-z*<@6?Wo$U@y}`RQ@R7 z&%ylcJyI$Iy7Ug>$Ob2W29&cSeXuG}o(+Mb2`EEJtKKw(eY$A?IHo&b-YlGufR0n) z#r&xFcsw{~7XWS32iBu(M9GO9dqCiHj6-<~6jKOed};wBwRhO*YWL5qZ3nqaU73YL z;)K+UNrscVmN7j=2EOHg<I1>S_Xm+@6Pk$yz*;E=9%6)rP6DiP0AJMN)s>h(oB ziS+of7g=zH0Bs8{q6EI#I&}7D#Z}NxtbUQ{D>GB9>B$WUC?Vkc>7#UKt`S^#gW1zR z)sE*t&lbCO6Lo0I({ji<|2oUrgg1E`S+>2uQ``B6>yy&lBX5#&wJ<0iE8JSyXr;f9 z%qH#zw!gJqxA=8gPtV=>U!7L%BOZ4e1&yPdA8X&gCQh|vcsIjZkVB)7)>*@Up-lc( zlRO)<9jr2-8@ZE#*^z9|8vueWzwvlRxj?0XG1A{F347UwmTLfw}nENp_o7b_o2q`{4Dm2A{08jJJ2FLOokm=ho@?f=i(j>l9z6=Eqc|`jgdxgs z{VW6$o$N>RRDF2^w2_Ex%hT?-drZWaYRZ>O)7?)^)r`}hbKCixu4kLs%|Car0sCRz zIH(r8YdGTh_dShTDq)Pd>L#mQN6ZXSVP<(ePnKog8k*P8@**_N-f+Drc}qz{2gBf= z9HEGzZr*g>N27k!qcS$_XG;N z<&4KJaG<7wz2;+MjUEr`c|Qzd-Sfya`AuV6l0FT+SP_EHnpm>-^8qHS@wf$@gY1uv zIyqWgU7pI*(s--?Xxo>1jitiFT3>T3L*JIn|3d)j*QAWak(9PO?#vlF;m_#wxGeUd zeM*17OWtnYIbt#RaCvKa?uhefZCFD3kj(u8xpQ#hW31wt4wlk6%EsigIxbS`*h;tX zbF+=_$+?WqBhooXXqQAOW3Q8NJ}qub5-gkJD>Wi4HK)?UW|qkHj?)(;r*>p0yK5oB zq#p|t8Enb+?E2hZiWoKBsxUq4)uFSMr%n^2bR!>rk7RWDR#fR*+o3Iwx$8s4Q2@uG|3-Z4 za68IzAi{Ok>2LK|YkEC(oToJ?4(}uTxST zJeGTkBs^L>gs?@p^F$+Ne{3^{nvoZ#x1Ti@-uazsansHkfelzJ z9iJwA)?knIq)svK7u~vNM0^aT4P8&Jd2pe%r2EToCtvu(+H!fB4P`UW3JG4pYl_+O z56Mdb@wdgDT#L$>&!)VM$R>A48?*FPJgrb@$$dlEnj*Fl3NnpgMWRVCqy^%)2@f(K z;`N4FdB4qf-{{gFSZO3Hxe5kuSzWPM(Tfe3mX#Z=Ov@6^Un+1Nf1!-vE&(V51ep>* z6IN837o2t8bXxZNmANodQ5?j;lh&RfZVjarLWw|PNEX(5vmZ@O{id8k(vjly0$L%< zqo59T!|{86hfk*^Bp?L%=M_iNYJdTe3BdQq4is0|$NnW_=cK0(^QKRd{K{N%Ub)0=eRJy1cq zT;pHk)*=z2O8ex8YWH40kkTk2WH+arcvDl8Bykh>AkB?M(o4tZpj{?KZfhiwh2kuB z#rHbz^iJp=!<+S# zkn7UEopF3vz09{9xlTvJF#gIl379>3@AWzhr%~~5Zq9f2YGxi2Uv-+Xf`th7#;qyE zwW!(R2Zf%;!g*tVmh{~m^5WWlHaO>&64WJ6ZWnbWL>1A&Z>^R{k44J=vPB_FL)WbJ z>Y9^Y^of~?WoNjLGaYf`ntDJMZQX~8F!Nlmc5rg)iPVtIg)@x zB=so*fo>oOq2WhJgN{4d<2FDA5V0KyqSi(R5)&m|cY9NwozS(5h6i8)WOos(V#nqh z_E|w_#v$LjIZ={bo_#cuI0PACtpgPdB>6zAKqo)A<5N zq!RXqD*V6nJG739Uyg{4_2d}^>c|{0C80}JI#g%T$qLpcK2zH|P~SVbh!8`O@!8~7 zH6>gGknYwOjj;_jG)!5t*>`b zH>4ju=_|47H9GSb4Duj1XiaUY`cH-1}{KZ2@aBB0Co zObko&4T-NC|5<)q&Lt8g@O{6ZlQ%2-D_(lES`&RY*#jVX30)92cAQSwWWCzH;n~pM zY8AbE>4wE}&$h7p1y-hOHAIfJ+4M?#{`LXVvrh$kW7e95ITO}IPtw9c4)wr$b?ev9 z4cVErYw)>SnDVBYKPiJr*7YQ?MzNspNdar2k(iT{1A z0jhE&9S(q=Q&O5an2I7K?+78ZO$GmLFQDM2sN37Pqzw~2y zVDHx*m9H|lj#hEc0x`?N3-jus$>1`dL7QrDL)~BEOlv~l^!Mxw&O{c`eiR!GOUAFx z-ITcTm4{30ma)l}$*|Kk>dEo}ioLPcuj7aL;O_4J?vamMS8CwG{mBt44L+=O@1TTQ?hkTa64L}N=%RtmLlTUxizCLLSvyxMJsakPn`m;)mpCLASQF3;rJsIQmK z_q;3N-~szraH;SR{YF@Adn?aFoT=j76~fU@bCbn66`KgLUGb2i@nJ=RabQgx}x+O+0Ox9vK4$J&DrIRed9&M%xC&7A}C z`Iq#%zb&^5T9gzjU~M(DcQWGn^Caj+QI`jTT|}4T@%mRGbSEMT zj#+0da$BEm_cmRSD#5iu7S{XT_o1S?Rf)u`0-3BUGil&h$@O;BpjsQ;Vwq1^AY^35 zQI`AilvG@8PQ45FnYZem?j7>Ds$lV{prxZ<56a^li?vnUVx1T}kqbZml~fu3#(Q}A zYqRHoV|?BI$?MAV~tudFJ%SVGs1kuS$W8* zb|}xPc#ETXBVJnFzp6W)yp~O_(pMe#yQfa)hAS{;Bp;)6!#L4}a=QeE*3oMlnnZIm za&2gZogFM$S1inET|e$x=J{?eln0a&*_o8Q1boXv%x!MuqP+xpIe2dssITMRKO-hv z85x-EwgsP0IvGsPh*q*&*iE}Xs&%<1e;t$>1fcFB2lVxoaUuehf>bzgtMo$NR6b+_ zjF;9vPHc%8exC})f*2lKWKIGU-dMsKLeK#`883La5JkDAWlmaJ8X(vUz#$-N)uVvW z!hz?Wys}-9)KljUbQc|jE#a!((5(R)bIc#qhTKqbgq(Y~jjB-(la$GciBu%J3z~lY z$AzjLbS__5whyIS$5oRLA|D3JVXxG>0)NELH+uS64Bv?rBTfA@eR{{sOUh^Of!wEs zvCv$P`Xuc3ufM6A-k8p5ocYdpfMUf{uhC^;eM(!H5p}7Tz6E4PA-w0%=|Kizk6+fr2H|%CXUN$}?kz}-9 zDt2+lfz$b~k>O3WqW=5uZIHCnAm z#R&#S1qf?!!ib!4V`gC~PVBMZ0Oq(*4JE<^HQYCPP2@ zKCyj2m*mJZsjJxSn@7KH|gp2 zPo}7Cwo&Ewjo@T`W&e?ay9fwwzu8}(A8BH<>sFcmALQ`2j{j;@|0~V?mp1wTERpg* zN>+yjil4pZ1NZ&qLZsYDoqyogW+TS`cqQg;dbq&v)Z2bk=J?kII?w)Z@57VJxBvU8 zf3C@Yuf+d<&jc-{W}7Z74L5wlH(S5w$qV&abU1rYlnDd>)prb5=X7-!chQSqFR`Dy zNl`+dx}_l5qxD9x=E&{aXS9`t)@Y~QnAD1kX`FM1pj1_YMTaLOh3wm> zilo9LzwW>K>)+-L{?q??yg8r!drf?=fCP>qzheIUkK5lOM==~Ityfk!#|hfQfralJ#->+p3J^APaZj>aJj+{}Q7U&^`B?_YUMn_iea-(6MY_TeC1^0CFN`=M;n({*<11IBznJG-kuF)9}u6LOAQJW9N91- z9Uj2%1+z_7$xZh;E*b6ysxOYFmNz+MW^=WYN9BE|`X> zt%Y+){G0au^8wR-yH79N_?fl|pM@(Q*;Gfa}+ zS3$kw?#s$V*yREV29Tbj+?(NPPsmoAE8GvIV!jD)d5hf^i5vs}bA?`+1M%e6tO>algP zMz8t+2AY>G8GwIAtm2q+@y5rnywvva#$PYac;mD@uU%G+g{QL`B&M_H@rA+kSH&dK z>v6(GCz3)n(1zwQ*w_uh@Y(}rW@|m0l0{ww@129u=iN&c=Bqa{H=^SVetL4CdK+qT ze$OtR_HLINkFfUpv>=tEl5{wRx;S2RtJT7n8-*XvBkernWhiQ_|5AqS#w?8%8u;$N z6%-c26E2y8TXQzc$To`EUZiF-ICFXReGZYaE9T$Z`fYV+d1H0j{h}b7lpZbXtXFCC zu#hI|7w1}y`%Ll5RpC!tUiM>+#H*L5UvuO(tJSRX7uybc=ch=aBPM~e(!het=_ln+ zUDCaUa=a#4Xi-&4{H+!@XEjvo{S-4Q?b0hlAJw#WbFh5zxpFK4lEmhrqZp0^*O-CP zS9=!64dGB@8tUr(pk{)2=p1(HwQLBDbqJf8FJ80+fa;sQUQW*|(Kmf|zh;X9t0Mf!)y(8pB&K)FM4@J|lc8 zmWhpx4HARmhryW+JjH%!10YfY zXC(WMi5yhkWofn7<-KifZn5Vx;MsJ=@W#Z_nOyPr5!64w z{*?EEg~NZIw3-+c6CIZuQb+3?soi}g&VWEUXZWq*G=_V zj)}GZbwu)=&EKJUCy;b02v-LQt!k~AnB7Q@jMq8?@2T+Q(epAk z!o-{iv+j9tL#UuoT7Yna-USkWUYrkn#aSeZNPD-Spa45kUWjl5AW8EcoTYVNQHHs$ zT#<*j7=haXEDwUFL^xr}1Q<>b!T`Yr5BC^idr`nid|zLQDC?j_GgOV}5J5U@U$JMZ({WEyK3GTjRoBDquZVoo+DtU{%PEO^ELvS#6JIjtqBT5Li4FIZBWfv!1_jHe%S(x=M!?&O zu2UR-xN-8T?YQ51sdi*!U$vT&@p$TjqOI3b&v@Im_Eu^hlSs}*i1_JVKQ<@e7A zs2)IY3wj7mM<5T3G_G4A#Od6k=YiYbuK$j3J&=qdH*VNmnU!x@Js5Pvv zs@7dV<>N#N+SygEH`pl_SP!T8HT_-0foiu~6lBsr?Ej;u6x%H{RP0k+?bBk_bfwdz zuT)1zn=&w;8Ns11?oOIZ++ZuJkG5=V@t6FyBIfC_jc@Hz62cD8kEU#Cnkyg}U{qp++G3@pYuk}2TUSuG8o_Om5Eda_&%gCUM&D9Vd zJ!E#f?zIIxT5HIwlO!Atv$h;Y8*Kms~~Q+5;KmtwfLt=wxq!J?9FK z*D>R}cPD0=tIDHnoW39T4-8D$Fe0@`-5vuS;TjFb?LmDVt^>y0sFs!%cv}X!k`Yhs8e4_ z&zkA-jy=P~b-?!&`RorIKWK5Cynf>{I(p^tli=A^;(Zm@h7EePtHQMcnKEKKI zW93boRi$}GsgoIt&P30IOH)Q2;}eh0et+n?HR<@JK|vyF?L>LhXC)kjODvhzxXu1VMSwFZ2TA+Rgw1)&7Z+`1H335GgR*2&V%mAV}3PF=qoYl6_!8 z0Ww$~Fh-Om<-X7P?QN$34uu(?odbQNE2vc}746{QkXwpofTpq7iv3u%MCWzHPm-~? zmjVdjbGb?I%&JBp2~!X<$xeQ%I?$zuo}8LalQ}(8vaa0BA=YNqK2hA#){=~KQ%w(Y zYL<$vva`m~n2lWDKaNN^5L|YpR2OJX%)ZqrAh^*uKmf{Xf7+c%#^Y|AZUDlY^7^dGPSf__>&#^>~pWV zDXoJPN|!9o<)*j~rRC93wcQs*Bi$ocL(Oz#(S|A!c=1a00hj9EOw4XXlZRuS_Phxk zp4*3VOj_w8GJZbaoBvuM;29Gv?WTN0oEXW0#*b=VPNk~6FDw5F7ymZsL?{qRX0>@$@)ND(}Kul2!TsgX;WMEU%iAo*3#yewOw!?V$Lu6>nvo)i_GXdgRQV4NK+ zhNUaV*ccRQ2D;hABm`#L`Mi6)HYLG6O+m2?SIGm!`0_mx(aK=5vb11lw0b=4yl3>2 z;0M(2rX;Tgt_m*??AJ#^7|QyUPoGNsHpEccnqO3~-lJ4HHZQTQ*Q0KR*dW^IdRZ-Q zgVSec{(Mq!7+-V20Z!~pO0bK~z`2S_ubknR*O+Q{zc%R{8?Mud&@J$Oj}@^qxxZ=m ziA|rprN)U`liidPNLtOM+buT94qF_UuuY)Mye5h+EOAG})_aU>ox3p`focmY`lPUP z+XEu|oMombCo@2}KL;X1G!#ewnRjhLBKomB0zgziER+oBSwthn-Y^mo?)=;f8wL_PkH}5WRfY6? zgP)7I#|o;JdyqQ~dT0p=iRSTfQ{c{AKk*L*8{A_=spazY`bycIpYn)Sc0?T>G=NQl zBW7(H2f4bd-o$UKjI&dC+Me1Y2sC=p!4WgoRIAqb!$n$5(Rd+xAcS;4G{cOHF{4Sc z5;C{bTq*o(&5mZlu;X&dnfr~oEz4nUMLVU?XWA~{w$0L(bGX}X zMN`3Rd(A_nO3#e=u|8Eh*5u57cMS7u1>RdVUKaF)rVuJ9Kc)2g{ACo9-@N(O_HmEQ z#>f>RA)&x|0}?ixj!l-|)N~y4G#i3)Ra#6WmLO%Cj;wzQzT#ijxzBBn0P3Fx@zm-_ zoI~!67;h*XV=NK+inPc3jKyz8P={?EoEoWchA0pIoMR|$NUQ)UP+Nk)6Aoku2H+hb zZ6`-e<+3drJ+>?;c_t~t>`0m_Nx+?nn?z*HnMUtUE+%f|)MiDuvofoKW3iQFVx9eF#}KC`snsOR^iDB3)gWS;`|n!F}hG2 zT~XoHH2O&gjUUh^Rt3ybf9>gHVh44U=~sp`r`9ZD=biTjJsgbEh>l6jcwu*CdF5~z5)QnQITb$@}=X&bYUm)W}9(s6h%0?n&L}d8++fpl`8sdfD5I&-?>4%W3sHL#OPBI6vWpn$Hz4HZM_c8 zf%su189s}dU^Wq%@?Cq*&kCprthjCJlc4Az%s@YyGgANPRa@&A{;mRnOH<$H@e_|s zBAhQ^{u-fnayhFQrY{ue`+sYRX}p)I^OK&RcqGMhbOeH5N4~qBx%!|=PpH2;DFL9K zc-AW^ypbz4kEF_GM+O&HYA%K(4Cm*>q%5^ESuO_(@!G7=ZR+P_B-2Y1j>skzT#NJ_ zkT-4X&kw7?e~Wi@-TEoJD@IexPl=S`{##J!kMLs?5Q?pZK;}RfI|r9r3xi3FQ*CV%!U!zzjnW0h$me+5`(0dO}75PwuT5panae+AA!&eLt-F1~%;{x&)zf^Bsr zzPmUiCZ}^4feH@0xw?`?2QcY#z1a&8qJx}emTR}|IJr%$dBhNX+lE9Qq{{QVLlHFU z*a(uN^}O1xc|Ig|162K(VUbqa#8zYN)uh*aqtRW5#fWJapAM#< zHMcuC5N4!4_jQmV)9hkP({&eKS+ukJomm2PF#XtbpHa~wQG(I8ma}ZmcY^)eXm^(# zhGmZBY7KvX*;D8`#WubBee&<18;%OubW2ch!_UK9~<8-LQ{AjYd*%;m#{s@yE_ zLJO4G#Zj(U++Mm=HE#Hj+MhS9NwzlQri29D$b2h&h{$ya!#~q;$BO!T5v@$DGke0T zOGI<+ekD!s97|KPpSLoQZG!i~me#>9iY8M#=rS{} z(cKnqI6)P1SoJ=e+vNJzF!eN1nGQMVgApI-nRsAv&O(Sa8p@odtV99RS`3V7`E+X# zT|dlsMIg17oM+JM-KN!>ts(wgOwX1LJgZ=6*8NAKZDnN@^s;HYwfOzhcgR5rLCzuF z2}rS#NbJllhjMDohfYF2V;foyU|!5yoob!g-U(V(JQJ_AI~1+Pl=38 zC^pnlQ zxX_lXO}Z%QIQfKwM~qA57Gu7W;Xc@>dpuRt)T0Phfjjbe%kc*Ep%@Jf)oZQgI1jw~ zn%I|Rd8gZnboQfHQL7Z5Y)OH(-^btpl^D&m3ythG9?1e^^?^P7*eVZP5FF3EBY?7#n{%#YOV(fCk! z6vwKAYk$+FJf)qeH5c-8TY_pt+L_*x zN2xzb{J~-OXI{0PRe^1hf%M*e8H!B=gzv~6Syz!+w(H5tEi)n@oSq# z|MaOj&nOHPn!hT#F3f=%aGB*DVCVYQ-qzF=N*dhcOf<&ywSCw*bJL*dw@~&YC`P&b zRO+Vj@SZJS z=r-L_AESOgp37bmzqSO1n#BLg`Ra49;IVZq&3vq`aNCyCq|O#X=MU-qDfnyaX)F3c zb`h$mHO~C_%_(l-Mqdl2kEddVX&cOwD=9LHX29b>&Mn#5yFD*J5{<<61nX`9Uz^u` zV^P^2{vFJ+9b&L1rr$vp;iqQXl(|QO7IF|JEwkEmg{~|zJp8i$z_W4QmD=qB&$>sA z5iD+)GswFSHgi7kCPS6p?p!&F2*yAap%O6!^+JXl=!mlYXq!qA{CgVAj6iz-_APC< z>DN#VL1D{*6i-?zF}E#deeiqf$>I*zzvm|GB*y5s1^l1h6h}tRM{UFqiX*QVt+Mfa z{p+{)o7J|867SaivFQncGI;pF8rUt$3|_I`<$E#P{7YCRZ}dNm~?rAv35&Jurm zK);DP2iO(q@XnERe&>#@ov*Zr{xq*mWvAD^MwT3K6>xkzzl zDXy8T8LXk)eX`{ifoWHc*UmaGcFC%>TvH@AvK(Y7U@K2tG$~d{IkA$f5wOws-9A6N z0X4|?Y4C>RF;v9-bW;Ll;Ms+sqjKRE6_DndAGe!dv7}tfiK#5e30Fqcdk%h3>y$uP zIXjCE(L_dOd$Aa|QnP`){zzI9jYdP-5jY%D#AKF@;Z(sdE4bY2&;)ddw6|{;KUamS zyUvf-)%k+0b{7trL$y9tKt!MJa=dWi0z!?rPy$^a06zqN|NcEH+|l>mcQ8mA&+dzE zhq1z{nupKCUN_tohKm;sbG8T&u>_L{Y}dP6NZSGlU({_SHct+o%)Oc@A*H@B*g=|{{+?GrZ2|3nc0aQ$ z;pcB%vu4fr#HykG6I~>9(OCzJ3jyZ#$2-ev-BS0v4ZHFsrUV(u)C&*LjI%p=WHY~| zHq}Q9$_SvVXsSI+^UJB$k_^7#hZ1c41h1V96|2g%h~pnPff0lREXqLqBF8AC@>Zs% z|L|*CrddRu>!6vOB-&^d3`XNF-#tOSKj{W3YZ zd2PnkZB1oOQNIc!ik!Jcu`?c*$|)GFTNypj{J(+d-=HoY0K-Q#OaP#1jEAf=+;YWC z31H8I`(qPz2IIwCZF0YXeluQY2hgc4}pX2p$w9PvxQvuEb0o z4+kX>{l*W2+82qLhX~TX!beInlrDKN-=VDJSTIjRKXX`rto(6turj{Ivl4Hj$VMi- zb+^lpqTFr&da=MZdsSmhCe4-BT%Vv%1$&sUTbR%L)jwf`L#2)W&eo1BlKXL~tX3;| ztoEPY^o){-=n95%TCJXZf2}fFMZJyn)mWObh37WI@><2>zIG*0&Y!S$nsYi+kE}BsER78XL{VidTph6 zjo&DLf;7L|)QZuqX#4kM6${6_OyAe-aG4TT=B*CpyXhrHcdbg=&GkHs#k2=kRe2@r zY~{f@Q67nR0qwS=oT9HyMZoHhSzhZe==3`$Va%!y=N~>wAtxzmtYG}=#Nv)sb3n=9L5PS-nVU4a8T8eSZ9<=eria=5KQXMam`2}+Deflm zn(}Oj=s2pg;R_Oj0;o9->8^*zE_CAzDZm-9NlGy z%9FqR`>^iiO^G|DRv}|6a5I zZLV2GjO&qo-<;6Ro$_)g>@VAIEQa;`EN7tZt*;=Ow8ad&lYDrc-D7yR#q@nb;?M{_ z$}=bF!iBP?SG4Y4{xdVff-#r2u_dOrEjiV`)M&oc)qmFU%d)sbp@L#!4i!Ayfs^ujMxN_8r=)z3XAbYW;DqtV2(PIKvi z84vqT1}p23M)O{h*N14l<$Pyw5N7E!{nONy;tH1VT^|>o`F# zpLbz-Uu*^wu3!A1GG}H`U3LT2HgAa0+i7X-Csp&1DgCG>pXPHT{a(Jc4a=1|XMcR1 ze&qeCePX;S=&HuP<32e$%2t?J}%j-G1}|6SDWy z7L;O>LvY}D*0D5Bkl)_Gen`AfnZ9>_RD6p^LQ44Z!Pu||fbK{B3Ta_gcieMQ@wDWM z^+O&KeD$qrYP``p!~jMS$K9hWG6{(mGRE^U12XM=v6kZwR#n(%%BAmKB1a9EPMHk` zkGn{s#P-Szk&6{FwE=;aNmfK!x)CDYzkh1m&OE#agB(fsW&XLA6Gi*oMF@F%q6Zn0 z-e#@JE^}&ULx)e6#UTX0vti~d&4ns1g~t2rV>9y$c-G0xsscjZVHmnZq-4v^4d`z8 z?uDgwWJ>7zd9sPijOCVcL|fK94YneuRSZ=bmtDn;{Dfrd)5W~c>d0*?r2bmRZg<^+ljt@J+HGy zKgCnmf_6#ZYq7>S20$%JJi@~A(1gbJr;!Xx>%;iKhhfn3s zo3ZMAtyg`+Gw~|s`>YmT-IMv%D`;k(#3oz4rd#bh&X`(Qb1BCt{eJYCOK-g%neqky ziH^Kyvw;KWZ12{mYe8x%0|ILDDjDPTU(PUIC`ifj=0RPgboIvHD0oc!Gf$TkU>5iP z(r0yURTIw{W_H-Bz$E%Gz^QY3$%yP_PN=5k5&ee)6xEE{Ce-8yxj=G;hhu$|Cw6P++bK zY{239s<3cz{rwIAi;=(@47jpN2Hdf4+SG@gxK%fI^87(9!wNb4=lPn__&QI&`G&J@ z`!f=`^5yKt?Dg6^Q~xja-U2Giwe1$g<+88?5fxBE3Bg1}$|9AJlvX69m6wnQo4#)%~NV_XfpJ z{9%3YN9nD)RUY7e5}TWUP4TMITcHBPVW_~jk}jYnDIpy9*ZUiR8sD4=UdS^hi=x8LP0 zFJ$FpzUjsJ%2Ksyt#y%PlZ<<;^fqDVxi!T_sx$Jtj_Uu#(Y5D-CZ^70B@T4Rfye;M(sUNYYz#WP{BF;Jj7y}@>fT7K zC$81d1thvxsSUbuk60YZ^1omiX40*fs`+HV4>>tt2NU8w8wt^O{FV$cR3W=_0Cq|$ zDk}J=zXFw?EM(N{#V#gMDCry-!QlEZA*g`@l8**|=tG?Ct%#^7v&H!tM=%}$4)DU* zP6P5vn0OKGEP?A^HZV!HZ5{rUbCQ}u>5-?oOw(djVyJ|mm2GDsI@Nd`gY9xvb=_^- zww(Y(k!sPR2EpdBU%wOq;oBle6J99il>hhYtxA;$2j%j;GhHE4^z+qxPqqtf+o@K{ zUJ@$TwRcXw)3ftPlyO#rcZhF5TF~Q~oS`3u100I0->@qTM3v}CQ)k_sRaTs3;5VJq zs!vd~R(b=f!#}*KpO444{Tp$r%Wr})!%HG~Q-eK-57|}|%Ji{{qi@pk?YfR}avB}p z_bu)GLGN+Od~4Z7$=Mmo*QQJZ&mAi{xrt%_Sfa;wH;g% zxyX=HHS+Y7ufLU$woYPcptK;(#*++=!2&VC2hIFLLP%;q!;TBZ3Q%roPPaXu!*xa_CL*IDtZmCvnrf^zik zQ#W4&*@vL&L3Q=HrAkKK+h?)q?#+SmV`){D0`ZKs>3s>nCVXjO#Esx`!&w7~=fsPu z-$BHXM#kQ0At51nOt#=|6MLSEK8L;$kPmR&&WzZHb!Ox65hGZs+N|5(DlX7xh2IDW z+h%xq$DSa2`oSK!kJt<(r28wg>1b;ci>SA6k65Lp=j7I;6$+m5g$v?(UOg^>urUr&TY)Gq?6SYbgd;Qlkve6!zZF|ll!1y68_Wd{Gatr&- z3UwAX&ri3ts`Itj@>g4J_^v-YxX|Do=oM|mrxn+bV6QtdMUgjzVcof*PtA)}dff~D zsl^%(|6Af&anrUWH}KB-ktX>o<+CC#OANVRDyPV{SjgS4n2X!wQ?9==V_wIb-2>#- zauZXC$)&aUg2dkR-ngu(DYIC)i721~jpK!Y3bBR;91eJ#2t#4A047hK5`;9$$3k4D z{NU{v5^g@+nt9q~HpO8M^Tn}9Kd%fFx`OrNr?J(!>uu3 zH%h=eR6t-^zZ@EqWUvZiYF}*(m6=6jZ(Ca%=q7Ls)QQE9C@d@_tJxrx%)$?;6Jop} zuCp?Dhlk$=-_s2MH;Kr!$|@+R1A0$^pb%m3LOmLOGv3+R*<>};d0-P%({S;LP`dC) zjxq*$YKSsFJ31J)ZVg?U%U|+@A0+leIUzKW#G%LH6)M*7SMNj3yR!0CwQ~_Wo(bJP zaCziVb5!lKL#feQU$Z_;{fd(iqah$Jkf05rJW-0xkNqq^rQJH3yWSG0q;VbZH!kR0V{R{VCXcdNgKs=fAC;UOPjAtTdfQGWgZ zQ$k#ox2)dHnM@ujHkoQDb`v6C9|)KAzehW|1_pR#{6(G8h-S|)Et`nL;wCGG4(R5) z=5q9b$#PU`k4#gTDrBBw5cZ=l1fK_LNL<}AGXhy(XaUt9Uxdg3bzqmVu`xk}m*(1+ z2nYYcdPdW+&JqV7zV*bp{`h4FFlkw!@}nA~BmpJU2E2zv&;do-9qAn{+8lbA3C$Zj z9mH@5e-v~j{d7xO%I#5o_-Y+$&(d?~VvvxOBFPIV59!y&?khO51LYvITS5&hC5juE=OS&^SIlX_L{!l7 z9;9>E$8XPQth^xE+cL^3Lmkc?*{T|&x$tKCT8Y(oIVEY1FI_9xN$r61eBv9n_flK! zvu92|sIOdDp!Z5Wb69PMU)BN@B1)KC4i z?DX)#y^6l;wL&&CpEeM595^?VdlHNy1Yl}7#w3j!_I1_1KD!dq&HJhxm7$7>Ij2lD zhB6^mbI3d19N4#^1x7wDYZwoL2GO zW4fxZ-i#+E(0H+7Mb^paX!%KAF81RWJ9ds#+1G9Su5=Os*b6~ab8>gw+|V@GnD37r zPj#Icp}sqOB4xxfsMfx?psGJFO1BPWVyu2dtTko&B?u0&DoGK#_8Y$qbSy>5)|tvu zH~m8k)2dyo?HrOnokiVN72_IqAnW>vm!O3i8AbXm9Mw~r%52EBAB{|26j^ZMTVi+8 zG_C6w5HKyL6b`d1?*1Q<;R36yD*wfWd$iN~V_ioq^WPkX2OD)k(Cq~Ay{){_R@O6IZ$Ea|_5yT3;SKfiBl z9~YaIt6`WL%k(kUi8Q|e1yeTz{XW~>T%7-BI@nQu{~dLSZYTYe zt9R?z=kolio+k2zr^>_as)Ok7@&U(=zkg7}z4NP7ld}02S^Lho?p&IBdeTZ0wTQat z=%<0gtg9L-T8o-Vy~mp_KGkdJU;RKOR;e?~XK^v^fZJpYN6F!Rib;8MF*&*8y0Lq? zE)JQk>h&+}^78PDhzU^O2}%7+_JYu6M$uc!(WZYoa+e)RnN@tI#`@wicDded;BIWt zu`pd7?X)mP(lff)$-e%u)07tsuD86`c+5@>#eMj21|d#<&8EFa)XnywSP~H(*JCOv zeP1OO2g11-lIkqV-bo1GmjXC~?%Cxe-CP@xw&E~fE*y3PYyIwAkvnS=>~gs}F@?e7uq!j^wa3{P&G~NmS$0FFjE!ScQ)<{(6MEKk z@?F$x*PiL-&JABs6EAJ1#;Q^__jnojikE)dDv2U(lXqFwU+cC{5b^xJ#(vtPI7#<6 z?y=d;s>Mg2TQuukJH1ymXXzrZf?Z75?EWTYGjW|;(vs#-VcJu2JJ;TL zyXwYY)x3g&Uki?>wRk&anK7?&%=jL&$DaL6T<=Uu6!O~>lxezpH`P-RO_s> zxH`@gyS0~7#y?X)oADg z|DNy3DI3bsvhZ+YQ`)s6_2gfZH!nxcHkJ823X-d2I8$mu`?1SHh$YTP;13%)Rq?vS z?-r{w$U@?{n@gk32{pm`3McM~(#4+kY(CRJxr&A7-d`*G`%2+~E|!@!+Ly|9maAF+ z6apQdCqq`iVwPfZw+o9l<;PIMWDP&u^OW}JuZ$}eb7s#uN}>Wo{L?GkCQL7@#HyV? z_`={|pZoK_*&hFO@l%qxochnqKOJs6##*QD)=V|Oj31*!tvD7OtZP~ms+>Hxh0#eZ zpgxhx;XOXC-m)iqM@+D4+0MSO^d$ui4UMr;zNmC@zi7ZrJG0%+nDipo<zeo6k_YojHT_$jx2Eos?IVA@CdQ~=CL9_buOJ4&$JVLQ&s0@3`hiXZ> z3D{s!Bc#D2cPY2#vFcD-Uao>h_5_%qBA#1!8g_m~BWv}dk;mkqeBcpJYSpWw1(vIX z1Ae}+i@h@HyyZK{X0Z^M3ht5*E*Bn=tL&pd8;{pxt6_#sW~M=ipsppqW0%pu(!d!j z!CY6fsm-;&GQ7^M^1wq25PCT!aV5z$dD`ZlX8qci91ncNSuebs)S%9$M!#|8i;tpv zc0;QmXQ?rsx!M2olgnIMOiOat$U;@8LR-oqH-0g-cIRJi)bO#7-m)BzQ?7Nf85$W# zQ=4u2HGY;Py+8K8e9rKw&f4Oqd@g59WuJ(-&Mh4(D=G@EbGrUsU2a37O2mbG(!4vD zBA+c)=2nVYCTG+2M~nL|g>G(h*3j_tYg!TRp05Pl>IqHobxOwK^q#N4_}H!9>Rxyg z7!}829uV|PjOVDF@XpgL7h<(53(D`>48~9DAH|+>+z&VQF5Wq8mY?MSejtlAwC89z zxMOawOI`o7zdsgRZT%1TSSmiCXCNI7XlG5UNGD{lOEOe)byp9V@YHuJHD(fwlFggm z>8C4G&0T!Lv8>Re5t-qFzn%8SAAgXdl&nUeb9M01!h;TWM~FR@fQBf<^w`a$g=dKs`wwN3%bX*ejoZN;jWJNfNTfg8?p>!!A34jJ%bg26QAm)U(R{C5eTva)hT&Ur>47e|s#>F#PB z9UoUF9Od7cr{)*lKN3Xyru^_)r+-%Jjc;$9S8^H_)*EvR@4rn5u2To0WS@}U#-p|e zWQeTsN?~HljjfE!*S|cweD$@<&%TvwHZ>+R`g&sLYW2q5;aDBiC2xRm($T|pYN%1s zJ&tLwNIU{l0lsm)t|AwY4)$v=TY7jm4~%=)Q}P?cJVpEWi||V<(ezn;3=w~`mY(u->Gi5+bx4ce3<`A(nt@D_5G#vU05(l-Qc#}aDJ@7 zK=I+%x7)X$k#V?DPH`;0>s@9!{L*FXi3}wMxrNN{+*S{gN7{otf4eTpTqPp6w+0GEBpwz42``JGnD2Pp}=Z`szQId2auWj|{b@$^ zhXDb9nhhNnG{wLD5xSXCm%l_A+;F;Lw=W8N>@0m(c-ymvO;qbZMB_QBv8L+n?CzH# z{}Hcjk^OsPsEfbX^(VUS!oPz*c$@T%3Jjb8_n(ma?1~6UNHg6s z2!erOgqn#i6uZg9zXlb!R)px6op56%O$x^6M=)sC0~EstqSr_P4)@?O!uz`mwU+^zI;zf|s$YZ^s&U zTun{#WTvY;w!tO2Uz%xpcgDMLAQwpjO)^f=s@pg*DseMw|#a!;kgR?K8wXPqY^Po4Gcx@(kiTs^o(q~z^nNqN*O=I0 zuH2WmIBQ09O@I9OQCi9~`?AQl5S9L&=eqP87y zHv7(rqPg)d`7V&YRF#wv3=|fA86nexpI7O)T%hX))|^ zW~W%evuzsqdgQnA!{h1Obai~2eje6#Ydp2#sxI8a#rr3~ z*b2$F677E*9`$pDuP6J_692cu8IoyXA^ry^mMP?oU70avbHBGU|$lkd1Mi65>7QJS>CGs9I$ZJ*Mbuyo^0 zVI{YRS{p92$cxVDb}u{?YwvFs>%AFp$NRZdrRmr3ivBu|D;B1!V&o;PFxm6;45!2} z;a-GS6zQklY%q~H80l+kf0wtiIbuE5_wDSRv1gk)(k8WdmchngDW5bg+kRH|YddS( zx$e}{d!P~%>L{0}{Ad_*{}GNd_RJaaO>%|eDzD>F0)PrJw`9coTW3%#2a`7Q~y zXK9hBu)USFqmO)H)D49TZ|a$a;!gb`R{XJq>+gsUcX*3|heHrn88}xzc5fTdL2A|O z@Enucc4#G+Lx-i+f6LD4qj|3>BQ%{7AM*u${S5+%vSh^{(uGlA((*r54G@pe^L|M#G2=Gd(Vj$5xr%!8wWB|`UAIGV|81%5wrgg0s^_MNcZ>FLT zh*QGmab1qX_`BiNIS(n8%Yb{Brq*VhzB#K1ix=ttvGvX`p&zLnQOc@R*LTM z_Pn-BQp0}v;^UH^jC}tO)AqyvP!8<>-D9zD%|9b;6U>thY2Moe?FO%4!cE#hLmGqj zLr9i!2_SnDTgkd81y({qM>K<@DH&5knTRU^0D64(?QZ~NOlQWr9J~FDA*LcsT&1dya`p;gMd9%nMBmrmjc5Zh3dBJ?6SW?-QxtN7&Nz~1>%^2GVUO3 z+fbFu6^0lt#!Pt5Q+ z?3NA^=cle^4K3PH#P{5;qX3|emN_{&@rsG%{polZ6^tCDS~4)tdHwY(Q6nj?sZka% ztyLuTzHw!seqBDszjDDM8i1J9u;A1+G^F!pNlIv`iaB!unz?pGjMK;aA=NsQW++@m zvNSXwH2eDcIL89ZcK1YzR#x0A{QSB1xnP?j+D@`2Ehs36Es7YOY&%C-YOZ(A9TQI1 z*3nT7J-3PmA5Y>l0qLzPZ(Q;MwSP06f*o?%b;s#p3;XhKVNw@!-66ToH)+TJFffEy zUH|3Aog3)5R$)|p6uHGn`j{0qH6CKugLa+l1Z>^DUAdmdXG`bya)aK~P@2kj_vxL$nw0w9}p9rQBJ*5TO?pH$Xo_ z{iP1P>j(hYHDlr=hOH!G+Cm#GTzGccy7Mv3*rn1gHz#Kh0?ltE5~mJJ1qMu=5*(k# z4n?Dj)M+6hCM?iA1VT7-1!v+pI*cBNoP=j+>1mmm?3p#R1I}WSf-X<8tDd}duvXgi zg|qU(A|?PK8<{CT%o;Gx2?GNC1;D0kxO;!Su_|g0LEh?1D$X zy{)Y(8Il?lZ*iF)Ey5r>3OuosRU+e;?)LP6)BskCkc<+pAsplk?44y?B}wgNXF=Rl z4jsCrATkP;9tyc{P&&Wzri%5&kJj>pl&T7Bk4+9VC~V!jmCQV`sOIJ66%H+W3{FkJ z{(xE@vCSpD{2v2ZzeE(Ir4`Zhx4F()AmH^Cd$0rAQTcmn$yyor5dq-_S|IxM>&wzx zp>l^#w)~Iw9w-LXfzbtT!vUpU?wd@!16(`r@Rs3gHM{NPw1@i4EHU#y`(@6D*LK16 z;Y88_XcWw`O^y9*$+&g>uDWYOlAe|BHwTEaJ*|CM`WrSBn?((Dxt~9MT9)bt{|8Am zHMP8=d^A(tlq(QbN?Z_()hr*t`;3p<_q%I0 z$b7+}WM&yUf>rAC)Nj$3**ox;x>bLJe&qA(eTfC}58)_4^pw7Mk#}MgD`IvnLhV(I z1yGKzn1W2dkD1#o@i6Nb7kGM?lJSEdaar|e9(37{(Vej~j)28h}I(ZJ-gT`VofpZh59ZcMR@(i?_2p!$FuJ9u` z@|^v!ce@OS0<^#o;u4S1FMKlNliTH^HBri&Bu(APuN@5xQ-%uZYW>PdcYHUtt*}Zh zcW8uBj#lEraij8=xYtD7%QzdM`Wq(fZvbZ!_742AV*zMlR3SFhmMdI!-MVtYCmiKI z@f9PpUc9IZ+&M&leOL*@GK1iv_L~J8;Yv|DoqD4sEn&ByXc~Yq)+u_uiG`_vIX}ap+}o#AODV9k1T7D-Cq~*rCKp5K(Zo3u&CjheJY?;4chcqgU z;7hzd2&6!!J97bPhyEk>+B0XVFvjjw4~$vu`w7_zmImeRv+kl(uTUUT>b!mb`s+`! znS~uV!hs-LIAC9G2`pg%lgN7TsX)~|gyhByvNEx!1QBNf zyv`ksJwQze^gxto$YQ0pcLe_benenp0m{K>!F?kq;74zO-#) zaK6e!!#+SESf=;lc+}?hcDl(pqz_e117c%1WFiCZAZkLuLqNRcZA|xyvuRD^4Qv-`bpG{`bCf9+PBk)tArA^O{qip^w8rCfIk=$}b?}+N{yvA{ z($Wd@#<$W#jg<)>K79D&@OPb!mRWrVz*m=gw28TtvelPcIa0cmx%HL`cytgzI!z46 z3Ad4KAPx+~MMrZH=!nef+nmSc-sd2KojZ4~dsP=_EA z%AuiU+iFMT212A^7P+kmw6V0f7*08lPMB1408o6__;=4mywHFR&?7>{s>7p0xF>fn z2)Hfb&%vO}2BC?UmpAT%W4vwvphgKIh>GkAdenZ@V$hf~oBusZF47^-0IQZXIUKHf zWR+5BWE2!wjSGVNL{o;-hEw{o+{Yvf>c=;na+9*D*M zNGTSF3mCR#VI_WSA=KE(5;ln6updf1c(K7r2z|&BH7L)Ycnz>a(Gkal%0U3Q2V!DT z*q4??EkR~Bg-;mjQq9zfI~4I zGgtqzm6Y1Yjvuefq!{D-kyD!LO~WDN!TThh5e2qz-r|=BO|2f;b`n?PVyWvQBgHU* zdIX^u(W(R}V9q(cE2#0HwbTGJk?Su`k?jAp);*4)Co;FJuQg|JcA#RbG_jV5R0zSB zxn{IZXlZ@q<`#yl0GU@@CwMGQCCb-2j1)TA3eZfs-lVG-Xbnks-Yq z!ZCq9&z(PyLv<`7B7%I>n3$N;juX*DaE9_%ppBS9V8sKW1LJ#WLeRb-H4<70B8UT| zoNyNW=WyxcHjDi}gD+DB{5uqOg!+dn-vkj-7Mu0pmD!*IVH2&Y{tjj)5h=o|E|#px z%!<(Un3)qW5x;~2eio(iA}umTmb%h>-Wnh2oq@$TP$7E=?=ESnfOX|6AK z*$EaX4hIjaBEpj)4w_&g0-7Q<CUZXN%Ul? zu};HMx!d1;5wGd*;B8IhL-&_t;Osp^9@&lIm?R3M%q7$nMmng?Q-#yOK6}W~fvHM) z`eD*O;g17o9Ac>wn$Ct?gQSs>QQ~!sg(=4mpT`?7sA@k_*|Xi+*0$m}>pgb!g&H@9 zzxlOi;sO4CA+>0D*7|n<>fb*nLc-Fv;Smu`4Z2PV`%9wHfCfA8jcEn(ad3RTNueC) zU_x&H!ffAq4g8wJ@V;+2K z+=nve#~$EtF%i{64kq#WU-xNZEj{w!n84RRfsg%O7tJ*L zzI`9GgA&kSegTD-Ix;Gh-$Du263Xwv!MAiq7sXlMQzlm#D2*Z!tQNt*prDP=-(}yw z|KlM++yfMExlZ;4N5;g&&CT8QUX2%}IsO2izP_$#zQ2sy*bTE7o%m^-#N6?UjkYn} z7s#P0Z@;%HRpYDK^|H-7_wEhsk$sI?HC2mm_8hy^ixV77C`U@uL&&UTf5{E>*c}SP z^hA}P^FR;1Sy!2_{qGFyoOi|+oP2TvD7_u;iY7@W+rDZEQa)bW)qP!Px*=BeBFKg( zSjBNY@Gb8r6r=I-<1sm*<4jeL!#->LJm50>r?0~{m-s0L;0g`yJR75 z@D1ff6xg|0<&-@P^;FJ_Hc+LKaY*v-ef-H)vMI5?*-}XAESVM}2&QP?-TI&))4?Pp z0MYg<{xp%`07caJI;d#l-%*i+f}aw95IWAot?2TOOcT;DYPWf@oMzP|T^$rm$E8@B z8r#MnFj?4#-nm03Gc^NDnPA;`=-0#<`B$Zh!B?r+a-#mhn3KhZf+JDCMCX4MWU8@w zzl&1d{C~wjOsh&qU>ZL+!W8;jJX^ch~>P&puV|4=wo*Iq^-`n9X&TqYk5t;nRxM?eLphRiGFCs7o`Zaj`?Mn+G zGj576aa@aua2p;Z3Zh;VNOdrcuFJN!f*f_|SC_L>M}8RxJ4hmztAN?1t*u?&=}BIb zgCWD*TApw%0lxbgbMo?*Ip^;%()6}C{b^ZrE>`N_Md!K#E~FkIwJPPwS+uHT#6%=* zD+JqBAZ2to+rU3RF7mMwsigaLr z?+AD*CEG}Ogb4Uv*J((AFc=}J-JEToME;Zc)Xg(M&8pGN(8u=>h)_5kfrk7f?0=xb zBinFLZ#fcGrZZ$dV%Rb_@$ckF+ahNB9htf<#(nTbdcB6#Sg^;eJEL~5comQ ziI1|OpqRzO%E*ar)&!4dz|o$ z{k#+Dgf~e*5hIs&bD;Vw>Z|h(m$o{i>Kl4k)RUv(2ivHbKt=$3y<$y~bh5_)pZxtt zS$Ckm;@4w2B>M{ub>rK4FkBPStuOEACv2Zc+hVmKC;*mp<66L6Ae4?L2LZPyn(*Nrlgn20_{AvZpX$z|7E z8}7DIsBS%j`=cwdpDd$A=CsgJLH5#?>+ zOI!@As#haB3Vlk1I1HHZeYqdpW6)`Ja6+h_5c;&dXFoekxW$Y$jZ>sHZ6Hv^IobNkz3SX54fO zYAghNvY$a}YJ4j63kG@OSohEgZ#dqQ!qigt{nIm>S8zH+WydLl$NFAtXOo>1)LA(U z^V2CWv@cz}ST>z&5m$4WyhixoH)r&OJhjP%gl#oKd8;|uk0XDgY=<3>mWhib&2b>1 zn_e@GdnMPd9;1(F(#aYRDG^J34~L8l2tyT^vg6ie^%~QEMDOIwP0EAv%Ig7Z+=-}i8fJSH8nK)c#y9>w~Aj+OqZXyUB@f-y? zkSGJ8RzCbMNU{5|XiG6AY)hEf)A4|>TS4PgMAwGWcM=#3H_|ZC{(ttY7LjO3?G%4> z`-@BCys~c=0%H#0`(U1R+Mj<}PW{+&gN=+`p?&tn;#$(TV55bHTeuh~<2CgV4ie)~ zTxQ;r7AlK}jbtl8AQ#Xy>Jo#{RmhZ9MtB0^?(I>d)+gyL=Xf+)MAQcI)j<9-j}5r< zZI;wczxUUpM*{$_eZ3aK_9cm2o|*ai^zgERJ{53v0uJ<>UWM;}2vM$~KM%(mW%UC3 zXebq_U%mPobhX!Lr@Bj@Dk-|&npoByp zMP8_eXNMQ-apSi<2V2_LSF4_ut2n#dodSCgpp*j}i@}Z4U>Pqt81m}x{f{>8F-lJY zI2Q{?(D1>1NpV?BAQ6*JXM3u^X;=HJosIEj-}uIs3uhG2DkU8f1`XG* zB~}@@0c3hbQ+*o9?qROC)?t+gPLA>F5M9?9Lv*$bzeV=SJ=57Gv~&uWH)!W!-9zHy z`P*Vz`qz|T`d?lrWFA+{;A=5^9-BRbl1n={jOqHIkIMUPtMo~sN29*AbzkD{0z=_2 zf%u-o0Ye&i9v)HBBD1|=jtFy;KvM_Mo7wz6)l&Qbyg1?`4dk(6x*n6enYp=^g!rG) zfXT~_{Uf>e+91f6zQv4j%a+$@$b@VznV_JJ*Gw(d{`Pph=4fERs_fb-xt1O8i;Jb9 zNG1rmc$6G3SVVdH=4;14VRJIXPxcO_43{a_IIrr_1}3G!S@WkKItvR53Ia`SuiY$~ za?srNQKhBl6LzS^=Qn16j`_!ZF2j%Y#xf2ss!0L7#LvZpv_*+1{(JkuexNg%rF&1^ z{9sv_7l`d*loR`8nnw1t^heHcKhJ06U(ZR^SVw353R{#ve*V;#K87=Fbjklj32`RK zbi>%-3jzBM+?kl376gdrW31EeI+vg`mW3Mrw7MVooQ>W>Sk4Ky1vXXlYjP5a7LF(< zfEXHc96T5>SMcf6GgjB%AA74Kp56j>*}|;V`negr!nYR{_pq|+T@_tbCyG3!JqN7N zSOm5^Ul3TVMWc|^{Yz}oS(twQ{CP*#(E2WCQHbsheLad{ji5WzaidG2Eh)0`%-gqL zcZP&G=!5}&(#LwtZe^DGJ)Q;(zpBl=N8|E~Cgga(*C3{jobc?3ij3S1ow#E>YVkL` z4(sK8EpcMLCd_X<)`oh3or|mZr9sYYf83@z3Mi_(sn0MI-4VNhnx|$LWUWU5J+`>0 z0eam7bA}V(+L=w=!j70j{bl@65l^pfXE7nYX@pa@_N6ckInGTkor5ubx3Ny;pYK+2 z4;y=_>JQAhj-Eq3}OO8);r`Ln86QMsdTLj5Ud&-KZJImxV)Tr>0FaO=6}LO-@GlSDc%Y# zfh4l{pja8dGmY8B0xHs154^Xki}fDGBykshE>h_i%;BD6T*#2I>m#tY@{w5BukTuh z672O248li&W$huvM$Bp5*>YWdg-Mz$M0m4QNz`uQ&*&H#vAXT(*et4sMeOUSuV?D7 zYk5@IX=U8JmUxUzt238Ac^mSlz;!1Kt4c-=KyJdEXU4jHpAV^3pAE-19xz8LTAdj- z03t*i?yhYQ!v#zt!!p~Onwr*b*l@zltJxCz$i?%%sN*q?Mc>>-)?Y;#C7r3&PWw>|E5_9Kmk%ziFUaa0@ojC8UclGpP#ynjh&5|GhRGdj4vIFqiv*%UH z?0JEnxrTnV#)gq|?Jm>n3{oW1vw5^^B$+1FV->$=4#m#w~nmZnTJ%F~;3D`zh0f(wQZrxe7Sr zCg3BEBGGl44lGw;8JU?(2!H~J$tEdQ?P67nS2CggJ~+E=%a*IUpDmi+MKEpQ8`?)@ z7u4Ev8zDb4Z?pMXH9#@h->+Q0Pv9A1$Dtz(#PxU!mLFmr+MI6R?sS+Z<37k9v=1){ z;r{&^9Zh!9MY+gZJz$?nVW9K67hsjA0f@XBY6vOtVJ22vSSzB>uiu6R@3vYoG3*^6$P#i@$LNAA%*C0AWnrwUj|9o;a|tnItIhJ|ag zZaDD*X1B_i_Y(Mpfcqdk#A>A{5)v=I+)8bkQT<{eok%nxo0y5aG|~<)KwtcgY8<5D zueZ?OtAIO@0?sEUbXs5(01Nj{N=m}b3`M{urI{+eyeIR{{0Cah8lXSzJT9*t%^@B} zpi)*=D@$PzRJ1d#iK7F_^jN>lP*Km%*>=lPx2>le)c#mZ`^~VjM4-}5EF#f>&hb9t zkmQh%eNjJJ_<8aGg0Z}{1*r$K-e}DE$yH);?A?!sEIcKoQq>C10GgTB5oFB}0X!fd zYF`O)d#rLU6GjN`FooGTKz15TWix~x;MM7KgM9J-Gw88o?+s-kI&5^CqPaj=5qrEb zYEr>o1`WlmBLQ)DY)+e(VI)(~|BxVCP*a$6LSC{`Z<0>2lmPTN1H>W;Lpsf5{Re)B zmq}ByHE2)b2_K$xNC3vk@y)EP~dHEbSuIybN zFF;u#?wJ$CL7!vWonu?kZb9*YIEIsA6Am$&Oo%|*3FJgd*F_$Nf^7N37Maf1u z2+lLsWMhoLB?w%^J}Vj_(2zze+w?EP#G4X80S-<86p|?oUiAYim+-&=%UYTWo(YkB zhc`~l1}K!WCI3SN%V68E=j0`Retykd$5gO8VsIHS>4?E7n|um{u`m=6KDL5~wZP&a zZ;tK`CqDA>ul`pOv+y>MLze&fPpvPY-lDpduXVGJ{)5pco# zF)lfxn2X0Afh1{ zOKInIkv~GTU&siRu-2k+6}b49*@oJjP%2?yV2D7+O-M25B|}J5!<+ZEZFphX-R8`ueCGOCH3h_9|=$qze#CkdEM$6?k*W)Son_Q_Nu zgioMV2iL-p^s)s*baaZ_01?sA-F&bPN;O#CuoevlH3!pSl%)agWK4=uw-!C_B#2A8 z<(59L@Ci*2Ix<;8Fk{zsnN$T?f+04K4Bi3i%gV?cWgUl~6=pcKISv%!SC1UJ;SJP=|LH5|-66VQpsvO<9^AtZtL0lgEnT@c^&}dZ*A!Ex6w%)v-8Fc(Z=VKs0EpmEJ zz>+4xJYd{)h8m7Cw-*q79l(@{E?>Q!S5Cry5b#vW`hCQhgXsK^ZQLhA1%yhZ>i}<* z^RrfG-0DaH5*`<|n(j<8Xg?su@}OI`A}6l8Aq#O9Xh81I_V$N zsLke#mN-c9M5H?k;<5>~lKc|1IoQl`G=WE83#&zB{T*5Pbabblc#t@&9)mm(3o25# zoq>Ttp5giP=es&P(GVU4C|@5sI}KnB9!}>OcvQZU3WG>v<8|M$ICO3$Uj?xp;Y)9Q zgSfI|MyPYI3Ay7uM~*0x&8WT_h>ph8`~3a>AiGxQd>xF%6I~d$bTC0KUfqeo+o5f>bfwgo_(PW z>Td?Dn83fW7~gj1VK+#0^z(K*cALE($4~8mRzC{krdF1d=C2&w{sjV^ zx9#5R2YqWZ!J&ALLs#B@uyg`bOCmAOZm8KVspI4QHOn?V4QuG`Ff1oT^-v%fqBEVI zcJ57*V>^lve*}!mcTq6U&;o`;STC4(AMOJIvxZDc5HtGWYx{oB!UQ&tghf)xoDh&! zSf(ge$}+Qp6{ef8a)@UV(DLGiWY&@7NknX7#`)+)s{XErDF4hX=a33;q6%Z*V-615 z+`t;T*Wt^Y{|s5MTQUATPnOhb;Z>N;QN3B@*B$V*lm<`gLX`z-K>;l&qm_Y8j2~*j zAPZx&vR3(v7s>nkt|*Ksk{+TyDHi!Vbd>@lA_mwj8k@MJqRS zb2uD+OxZ&q@0_;LK1%?ybY>P7-NDl<=!!R!GVe~D3XUQD;RY)w&va3L6t*pt&P_>PHFkZZGjsSNoYseeYb=N)dwA( zW0$u&kv&JgzJVs{G!DSs$?m-mIAm6=Sg~m`Y99*XRcR~e&d4nLa{rUCAdzTI15Q5l z2P4T0I2N57)zP1lKTC8 z7^Vb)gyYx?o=hDQv~fdv&ga6yKHQ4SXpkl#MAe;rP7|{aS{iuDhI;YZ8E*rrcao%QKZ$FXd(IFpm zTx$x2(t8S_jM&9iIr1CqdI*_3kquzLmc2xqtJji90NAg;i?73)nTC2Fb`jJMJ6>)AL{GV_^+SjC7iJn*yAOe zw}8Si)zECgy4ny`m9ZY;TorRd>XMYd_+Hyy6J;d57VQRG977kDs_SqiDMWlr9h8#L z+3v2c2+~v&+!8eGm{+fM5n@=o^Z0Wzf{2?(r%g<-wcXdOTGeFX`#Cxkl%{NpxXa3P zbUW7k>sXUoXQ8+E%QYQ6PM>Zbu-??_2WmH?%hK}wECYY zl?>iUF+kr|T|hh@1Eqc;SZ$5@=Y_5Xvj$)o07$i=^@Y2;Z+g0YFz>gn94KS7CkB7I zWJ39jd3rR4Urn4p+kmp7lQK|G1nJZ+%p=W`X4-AX6N?MqV$l=0b1hCQJ8_YRI|xc5 zg1`(RR54^G24>y^Z*sk@dF9wl*IuGKhivntK67t(Rft}^iIal~h7`0EAsNze(b52) zU>oA9We92^AVGX;*{CR!TPiig|1FlN^7okPqx_Iaj6yHny?_plOH`EhW6FNG)z4T| zs4K9vdte}-hu&rt%^a2HBxe3Qr}{KtG4MBS>cPyD@IenfAqHa=)FqDy0zeVw;(ClQ z^;+ehVETl}oSi=1+?seLS>I!T@L(OpQFg*h7W4uf3UHwIS2>#FONa#p)xU+XoP3vG z&$>R~_&!x7{=J;G*Vrte6JYR|Mi(m5s{S;L#W?4z6 zcVv<^=kK zhVBRYn^WV+loyfuOCl{NJSu7c*!?&7HkeKS1`qSq$Wfv*bM*Q{noT<4Z{m^j-?SkU zRI(_G`_MF*jW)^=m;n7C7Rfk2)@7|lF~@%p*lkW5=C9iB7-oS+bh7G$G-0Hmv}u-; z;(bDBzNl|%umQ^@BYWvmEtq_X1lu8G0gR+I=ZhjG8fLOn1Yv{S*?Xf+yyQ$vM0ga zK!pz=Ay-`iHhhFeU()1fRzP>BT51cax9PVtF~wkP^QaV?Foc~>WCnL^+or@eBo693 zj7bTIh52~+AomrVf|B<+z}dy{rbVP`_6k{l=5MUcb+XU?T>F54MTB338UjprNQ(gM zA1cMFi5X6(opRk+2L$=hUk%{0+eIHn>q-W#6TM;X{jd={%G#c4=8IxZ^?NdSypBH} zFrL7U8P#MZ9sh2A4LmGuPB7r0o*9L%d=jNEX^04DhjZd{g|4KVEGlEuoS={pOXaIN zwp7*TQq*9xbZf7haq&ye$9z+fQ zomcv$%+#;Bj+27>I}GS&9mQB2CfWi=W`ZeUf<2us`R!E=rKPfDs0>p&>Q5WQ0wdA4 ze`rWXy(^^Ly5;ct<}`FtAS$6TK92gQ1iNA&@+g5QQnTYL7KUzMxdL=|0{B)7_{T|m zu#s#=d|8HR*^r=Yx*3A3+}By+Ig286-Ag(;cdx>Q&+3Nw{QI7w_9P7}@nr$69X-4X z8hhkw6?|brE{-vP$m;NI*!=jk3aEJ>7Es=$q8ilUXcs#jFGKoJ;KFfGqT zcuf^O-7mdQ%PX1R*NvfB6hFcfgQGxvickt!|B9!hTUxdJBk)s>eEvU{H+TK>)=&!W zKZk;l{PVxtZw&;Bt)Ocv%4-uAa-sj=ru04d@8w@m&Day2=75qabd0gFZ zxS_dJNmR2z(RXK6wB&;~r6EO^ckWcWD*b9P6Beq%@}?hGAATTlA)@io{oLolNqV|+ z174~XPYP8cZ@YHgdZ&Knf|v9Bz0{H4h822ligOCuB@;7$H0=jVDcgQA0pJ3VB+o3@ zA^&^#?(f*Pmu*jgwl%Nf84y!d0~niQO~!Y=d;7NdSMsNG=Tn^;lk>GXmO|s>@foju zdHfa14&=SzF{F=Z9`3I=GwEOzyeTNp$3QD?HABioz>0V2WrnwN3IjHo^s1Nb*vjPj zgCePP*Xcm_1h>fOyt7MPmSN3_R4fZb9&iCa!jlp@^`;1>`C zNrC8|i@$xljMh#G4e=!6dRbkaKtYjoS=0w~9(Ax9Jyz?6Ry+k2_lb13Q>?l6Bf$iw z#;XyzPa?_)@O-ShB92Tz31b|{c6@@Tn-)kAQb{>uvhP|zF;aPZ^(+c<1^mVnfD45w z`A0-NbcgB{D+YW#liVKDcTp;-V$6dUDYu%pcpsvwQ*DMz`Q&tRl#TgkxKEzM3Oj8= z)BQ`VYRs$F_1UJhT6NW^=?kAKwl@UfWUUy|nTV|o-7j;*@^w!oMi?*X>#VSR_KH13^={z%z+%7RaOshjP zn_^mcEJ)m59thF5rPZ6hQoG^|%*+BpuLJv!u?upHRmpru&&d5|eumch{d@HH@B4!0 zd;an{tQ9*TCN|cZC&%9Ad_KQ2&~wn%>QRqf?p&ob`p1&yW=&eww92?o6|Z|-91cdR zNrB@+vdMkcp=8kk;d2=>0|s^C*M~GLi}#`1>Fz<%{Vp}N4x`wL_Bj0C zH~{<74aAt__p)`N0mY^(_0ly}@KN>kw<%4k>pDo_$jJ8amODPXP|7m=K)Wlo@kDsW z$lQ3!uK`!;v89-=dvb&8K3@*vlyPItinc3oy?n`Bn`%c9ABhXLfSPS2|Dx9Q14%Ad zou+%@;#3Qs_@A;5sMO018cfDfsn*NS4XrL5gZ9#w%7!Q6?uNfxNB2px8R}{W_AM>c zMmhsXyV3dUTJw)g>_JZzxYxzmH%so|+zE7YF({b&_N(GXmPWmUOG5i)W=DJUCbd1+ zNXg<`jXmE|KQ=z;jRm3u3VxAB6o&Yimkgf^^boQk^G~d&u^RtmZtOY88K(Hg?|24l3-CJDNp0o=xsi1R`PJ_e&hbb}dOY@f8)Qy> z9i?u6@?^!JgH*EVqC&^Bt(YG?!VI?zRGuo6OR@p-t^hk#+BvB&SKh`t zdsyRlo+Lr=5V7`L_oA*B@m)yYc^-ysQD2-dxs6>sKRP-Us`+jF{X9bmpU3j(b5hqE zIncW$!L@?(Dif^N%%YsE#;}Bv0MeGnAP2W3BzscpqiHhrsRay-V$P3DM`BWCz!*V(!p58@Oe})^Kpl zI=Lx}n0$p*Eu-5`Ud)R%Me^v$lP4oM4YV;CCoU#%)t;GZ*KsI{VhW5eHLl!uKf5WH zct&UW6Jyk!xHam53o;jq;#CS%y!s~OFQd<2joM>T{Wfl2Q~GxjDNUY*63#ymq=k3E zEZ*>6y0SK{Lb)yMx4$=4e{ze3o_I{`+`lhX1`8Ff_b%&GO6xPhu$pDU2mE%o9LNwS zC#bYq*UUsLkSYmcfR!s1g{%WVib3zKY{h`V!E6BWjDpf)9+VedutP(y1DB1B4d^dW za2Tq?v&HW)T&~&X2`^f_UOpD-@P%M^crVNXf`K3-h@jCsIP=pO#KVH5TRs9Z3p=XS^oZz2oeg0wSP7&+TwI=Am8SJfi;EX&8Y-_|z?gYI z^`Bog`syeV5h>OBe-BmSS~oC&E0p|Y0Rq^Lf?zn8!0X0|LL6V9elY`|gK^>FXh=hS zy(}%4;oV>t6xYN4${~IZ%IIISz#k(Lo>#A4AwW6|h#H886mkk&CYxxGC_s>4A@?5$ zsMN)#;W*0xfK>!a9surv23&laLKKoe4VA~g0M|>z_9XPeYjp#VBss{6&Wv25T!eV| z)YH^=u3x=+6?v({qXMX^eo?p2`@|;g40UD%U4DQDp^;JGHH;8X*fE5 zSy)^ofg#FlMr_4{?pH>FzCiltUn_SiR*7r2!gc=ZLZmqh1)B3$vazmBO*X5dbc2OS zbUhr|Cy4S5DMs{*38K>C16`W7wsCMyW*04phb5Wn>FZl=yoj8d{vgQEijO*MR`TuJ zAuWPBj7^%VE!GiTd42hGd-9TYgOBOXE&zJjsDaIJiRO)#=x+2={uHcL=0#Iz-~O=1 z_#n}3anAsw`T6mE%0{z;lWR+?*$A)s1$#{393Q=00i`bRBYOL&8OwiOU+?OT)@-6B zlP;(n&x8jsW-Ai}gdpxr0%q2z!b=N`HkwFt1#J6FH`Mmlp?G=*45Pmw-vjBU1z8UY zlVex7382|7V$92jGpG!Ljm{r1cE_Xk{@6AkY#7Q7D%5>&C{(7=AwFOaLeY+VlUu7v7) z0f?-G7jIsEz6Kz9Bp`0_ikJ3yUe`ZpKf*;PS^k=7cHKm9zJs*D{-bIlxJJZlv-Itz zm-bOnVo%o==EPW)gG4gxhyCuP&K_Q$xZKzJ8QN)2F^cP5d|sx9CYa8gIpeu;^|Q{2 zbJ~>;J8SY@7rJs)?AP5T`DCc%X<(UWOR!4Fm=3s3wqAw0xba*zJbElv#jxWn4uq+C zb93-}+Xx??t^N0X$K-*3bd%Zm38zFC>cbD$Q)9dDsa`-9OyWsx_79BaUC>?xswu;* zmIX#taab8(=%^hMDD570jxMxJOi0WTs-GOY@QaCRsSLKpcJ?m0& z6QgA+FJp|0=t{zgU{mJ%V#9IqMg=}35l)i|E^VSI#U5ZSCezBTJ_ z?p_!wK^yS!@RU9uFMYPZ35^Q#fhTkLU{=#}T9VTKpL6emnAWY(JZad7m^xjsdpqm% z@Eao-8RP}B&VK(3q2bP4;`jwOErQ9SSbH7>m@I;-a_MEncZN%h*N}A;7TDvbspUGb zK+H5Q8KlacUmu4#a-5dEQ{D_&pmqchBfV8Ww=l5eN^2D$b(jSNTmzn|u51G#80VFM zgKX-0e&K_^KM!Lu>~0yC)Kwah7$SH}>0zuMb^~Ai_-h*+l$v>FsP%QY4G|*}c#dN3 zJx|`>-*rIJf53sMw6!C)030*bvFO?7k|K(iN}R3=Jq#ebre_KULL7j|BLaH0Y;0`F zVjy?WkiO8ZDHE@jln!S+zcW#yMZZD?S3#k6Kd6+aZN^D(cXu10V=Nte-dd{>;zY_x zvE}HFeO9ez@}$6cSQNY#GQPaOL-KV2CDc$l*=Vx|Gw8Xxj-gzMlrOQv)5_X5m7ezdIyw4m~_QK^`Yu;f)(UFGe z&hC1ZoJ-tP^Dry8nex=7e?Wy%X&`-gIVNB^iYwBDuRg6J#IaMvoU~hf)XXAQ;e2TO zoUm7r8{=wgWX}z95Pl+&7z=4C02XZIFD?lFdpotLs zK@D9>Ha&{#GK}X!$7C9<~qG?9eo0GSvQm(ATlNxAZCGE zYR34k&YWE&#jV}zW9Ju>r$z4(Q?vrXHd9p0Q+(=da7UdHuEU3eR#w#2YV{-2>{y{_ zOr@=RfSu5i2(t>|jI}l{i%v{KU8{+jx4h4z=$Tdaw*6&7rM0NZYC8MU+ zk22^0J*)vvhC+und-^qz^nqfB#um=mJHuJ3IX=frqV8m5>Tu1sWgGA>t#fPatxWE8 z+im#F3xY8)yy}3ywzjS@Tk3FMe?L^mc+&G1gW$`sD2_YC*l_Db+;?v(6%3B;A(FAf z!O2NOON&F2w&6T@yE|Csu3}JZA7OS{c+6pGY&T5tO)O9an7`##?Z7{t3VOt7*>eby zfqFqBi3jFT6cGkLICsuy1hS%!9_|2tj>fg2jXMZJ1i9R(Engvr;Vxj?m{I=#My|=~ zysmSa&M*FPox}JyE8#1Dp{E)V;zW`@$hHYaWq6bV-1y9A4fDiXNJqA1x8niEW%7|! zDc1~*{H42XvXV}9^^{9N<@P@( z1x8HkhWcpr8zd(MS6rlx*fG3pPc6jKa$H8(2opyHG0RFRgZ%SUphB)5?e-M6rBZQP@81DEW3ntZL&tjNhu`TpmtyN5W+H{PRuFg{zc$u47@J%z%SJ;)@ZllIsWVrg+2mV6hQK ze3r0MBFT4MFsy6ZTt9Z~n3!W+R>(amkjSgSuL(m=)SEXl0RzB*Wy9+ZC9f;P1zT1O zGYW~vW4ufWi}`W51JSm?$Z6JC!c+u5cYPdm>t>}@M~1cfA1I#co5)kwbZMfUyIt5E!|09svS%|+msTLs zUOQ;I;A7X@SbI$+YQ6{Uve(Ol!c?H`X}FgX?CM3FwnOZP`HA;9w97r-9?i^-J@}Oo z#=?wJiWShweOjBpaP8&K-~YaH;6{2=$gE+M3f{5?ATWWXSA{tkE=JbL$OuVL#z00- z21t{T2p&WP4~Jb|b7}oa>D{g6sEyy6f{g_?^}&sStVqt;DL-yST!@7fm}~U(u1kZ$ z0+zp|;9Ge<)*FFc9BH0}Sn#xAP%i!4yNu}tVT!PnHAKh1J%UWGu=-m9(TplW26IHD z1f*@$1Pq0$^d;Lz`dGS;}1-pUS4wm5@I@xRlPyfI(5hj<~}`!>&H)=n1d&w zN5>@EHz|rkPaQs|mJZY3jg##;LDf`>n%gh^$)s^(RME*}@2q;xcW%^6@5GTv28$XC zHXe!Csi*Iwa(3r`?8Kt_`SHeUFI8R}?>~Ooy?8HLhH#?6_i8sm>+$0`_P`Uzj#+Lr zoQJKK^Y-e~0XG=wy+5~nKf0?`A%7fMpkALSkF%9z*Wu96wY0?7ua&qdF$O7p6?9+f z;Ouj|@%{T$Xk(+WPXlz_nCVBf03N_3+-?Ol9G2^N~6ADe<2nBxw_zs!C zS_DXw9B4-nj0a#g#y^DRqqwr+HIM=HaN{P)(Q;$OxsjS5k#%8Mf3WF(d7Ov1r?n9I zM=4~Cf>JXb=C{1OJoN-IPk38xep9j-J2Im81cve{D{pw~t3xU!?J9?H`By|GHnur2 z2v7__0zFV}1hW!?#y|lU8xzx$EA=opSb{2Qie`oPR^{iS*jR%YSwSSlYpNbOlpw!E z-F5&ZF%*a&ikp>n;jP~z$Sgsmt;?~IV=l0%0TvOq$8$7ws)kX>a-REvxs7Rd zQbmFW>9mZ1cgx}U)lH2-%Do8INRx_zZtVdJr4N4~y0@X_FkfpeoYQkSUUikvVGj-} z6LxT1h7~DIX&NT0E8*^~w3L%$*@l&hiN1SD3Fw@Rx$aCthj|l{l%ETOwd;K3IeM|r zg*MvkOia3%i6vv{8rf$H4+2K82U-3XE4A}4al&LnAHks|9~7h<5ERrMcvYgm%AFvX zWnxq5m%gd!O7b&T%|nCAPd!C8NVQoz8%#GxY23MQC@7p6`s!;mu-}iD6tqJ+CjejB zAPJ3RIELQ5vU~Wj%He;P;h!FC513F$Jh`QgRDoB zt?_H&iLfg*Lt!kOLlLlGAw)~65-iLARK_)`m@8y~W)G3IA=+LzsStsmCI|xnKmd(2 zGZ9J`K&kLFQfViEmNx3{mcZS+cZo$;PDvo57yz5B!8ZxMs2JG2kasY`>3|t{4(zOu za+JrU2`c<<2qR>Q-al(+Yuiy^;`8lRqocsr-@kur7LPy@-pgrNo)IYk2srU@ddv}Z zOjg$D!HvBu$0do!J<+pnfeDv9NxOx6h1MU z>pUd_-8Wm3dv}O75YqWYJ6ktLi#?L1tU`BnjJ&Z<(8SqS{F%tT!vF6v*zgf2_z=Sc z;l2pU1LKB(A2+<`5EB#JAc&?X3V6p+9ix5(8U(}->Y_9cZxy|m zpiuRzV4&k?WUoLgsDms5iTPAyyu}HMjGyeIX|i7Xff&BW-(HyE)(-1gttaq#VRw&t z7G$QtmWj8HmUeP&<%EOq_|Vy&Xa(PXx0Uj#Z1L+R2W7(OQmLYywRwjEo9Ph|w~hB) z#^s+6`T4Cz=wJhdCu(=;m{DHYm{+&6E=iUIWn;;k&6Wxwl$*C$;@_dJhpk06yMz_H<+ zCYv*5nzgM*ay4Qk4;@Z$`}cslV*Xq*-%n5SC9+!NnJXY^HPG+T1E07ixHRGrMH`N{g^l4NHy*t6mZQ!9a!NQq(m8d<0M#t+So~`Lf5&Jr>!2Bkr%G{|NohS0BGeq)W)3xBvapf3L(p zcf$WM_e7R6`Pd<|l$rN&5=VbaW~_Y*{6{YoMpIlQ74-hk=2^Z&EAQ_jUK!-ie;>9r@+eHm?80zN-3WviidK>l?sE+Sqlvl$%Issa&Atm>MLD%3(J;I zNyI?6{CTz9QijVp52B8cc6}M+S585w*@?Ul-ZykSIWON}Icb3Eh=_fO?{$^N?iLp1 zX$ET(iD{k!#5*PrcZ}%GZm`~EGCVNcAd=&81&_yXfS3uFQKhVuneH&qkJn3j53nZ9 zUl*`pwCF;YW**K#7hTvt+ct!c24lQO%h$-1ij&L21AZ~HzAamEoHmF`ifY)|_-hg= zfu-Q_&`Zr_VU7H;cLy1Z&RQ*P22~<5qEto=8=ki;&fh#NbwcSNm9XvGOcY?8V>))m6MHa)Jnz$8p$86~_x>~C5eD_@w&2;p& z5I3nRKjDVYWH6m-l)T5GU~)1f9_!a3>b)e)a#op=kpF}^kZz@%{4pV7$-A|3abEnd z>!Y)w<2Mi+A$a4k)B@Rwr_Ia~e**lW31~nI5;T(xT2x$V8yLGXp;6~kBGkwkfcRX_ zH4)hTOegcsH*LeiNF)W+nze5GAJ_ogg7{&;#l!(?7|2r%Ao>kaPyn{dNkv5k@(Rux zN+QHKB2}dTgdn9qh)Ea`&*n{y+*z&i)CXn{50d+-Y50HPZ_|ZTo?5gqAln-F5}aII zG?B8w(i+yo6)VWQ;{(I<8@|Rk;Q6lbrDjKx*FjH0r1o~_AT{ym>Pq>ZO>NA3; z%6h1+MiaLiRr*|%)c)t9$$^@XhSf!e=pq%jm-Y8Y9xYjGN>tgud)U+>Y;*7l-HS8I zyi*lsR~kfe8o%I$vpbGbcd?C&WLycIo*h^_8xRtk51(oadvG1ISyZz;C4n>J{mi{U z6ZhMqCMQCejThBTTIRze2nR+qP1E7bXp!Cl%kl8HoHnRNObg-mWWK|MIW*rq!HNDXVV>Uvo zf1S?K9CT^h=~N}ot`?4pTa-)h#FJXmxiH~r(}DF5g5Jrg;DM4v>`i&a#VWZiV1Ml# zS_Uk!CAg-h28qyyObn(6)1P{wngrNjYu_cPO8_z(;YA=IsuLg#SO;tnxbED!bF)ha z;0Nf0NtqX&!1^3McyO0#*j>DQIUPt5z()})II7hFd>~WP00<#Xhp@px8$c#N$<|Hb ztcdp&VWa1sgZiCu+nwsvsnEp4L~sIc0LwN9o)jVwC=q~h{t0yTDUh$tHIIVwDdjdt zXSKsgb5zw)5h31_a(>?NI%PdLw%fN`%hAg`4lO2SD$Z35pA)#dLNlH117~{FO)Cwe zt*fR9gB`@!!+K6ZQp#*&);RY8op7c=1J|{eR?qaZl?q>3o8-TjzGb@6@|KTW$M3HW#VwY1Gp+8fX^VEKlHP&6xEw(p0_tgp0vs>CM_q zvyh@js;rWJ<{OjE7L4ynmvozRA^Q>w*=`Oks*1MB^TVs`F;$}>Q@&)3S5eLl9SiTk zna+o%zPgF2gmX%4na<9g>F?;@apA`Y@~LU;PWzurEXi^8OYF!}@tR8$6ws>DKSd$f z997yyyCe5S*{3C8QF+WGbiU!4swp|ldz7NA`B5qOh`Iy zwAKgSZGF;kIU=z8INx6io<`RStfo;zr^<0rqTOwn^}6ww)%{mg0VP8u`9ys9$V0^P z2WO2|o>?RR)>TNgfDK6jgZK(jRBz>@c_1$id|W!yZHYS2qygdsYDn`0Ry!uR(7gE) zkZWuYCS<}R4|cb;FdfP4YXS{Umv+YxCJ-4u|3``Fb@PaQr+)c&0mz7$N6vRj`$;@OEBA+ciT-Ck#u;~Suf)y|T z?M6I}-L`ww*>eH7hj@^D!12sB3m%|Ikd`2#HVCX_(U@jOfp@6_KrCFId2>^Dx65lA z&@=%`V*?NB+)!CDlNF?21q3M{;F6H^a->ECQausFGwRV1^I|}lkZ=bK>s{|&_~toq z<|Co>THv&8>1+Wo6@b+1h|(5A{jW@HsGb|Nez#Q;vLLu#9)n~Yeb;$aKlIr?keKW% zbNub!R@*&#-cJ<8dMHgw2h;;bC81whSlu_3rw=pGR$RTLGrqP%bL~=ga8%;YZqr&7 zQ&AsbRcCi2<#k{Gd440IKN5V7T$szf*Q=kld+nvHx$3kRa>oFF89-?~{~UB-HhJ#Iv}R_e6JwLj;&u)(5 zo2Ld^S^8N7xPms>#+R_k$Jg#e3HW^(YgA_njvtj8POQeiWK7QTDVbi~9e=b# z9%<>==QdQhoUN1W*mP^{f`h0Z=jkdiHFjea8b)&ERJQBIwG>96@B_*B?_1zvl ziFEBkSP^oFwTx83Q3JVyS%3#x!M**Kau0-xfQFU&9aIA67HhT(z#!PfkUABdr^o>4 z`U*YQpMlH>$x>9WevdnT=F%NDs6%1H5`m**j(#*neMj}WL2v{Sp|&A#Q~?8mzHfh0 zDHY}OF|Xz3Ug6I3SOAJc9cTvL!IKOoof31mEM&dyM*Os$wHI5~_ARpeQ$G29@Cmxo zrQhA%co48ZLn@l8ui_f8>Rm4Cb7*#-E+$*Fu#|q;IWsgYuIAU`Wk3-TxUO1#aWpf5 zIAIp0;N3dZzPzhp9L<_<=rr9iJ*1SGOWBx~FGd>Z!`Gl^-M)?LTnuULc!4dtEsH!?RU1U(S=iwt6d3x&UyxE zjzd@X%6C=?>=~9cW-H|+7Fj!AURNe`&KdekoG?FXFPmxM@#uNGap4z(=lWSRW>A?8TWVYA(1jHNfF0({$%&5OxF$bV7ynQ{9!HjspP4MLH;6B8BV`uP0ihnz`rVlh34n* z0MtsoE43zmE|;!J*{Iv@qIGOYzesC8N92x-&haj6Zm=2sRQ}>8*_GHF;UC9CNRq z|HD+~h~T_5-6PJ?MpB}F{G#8%t_fxtn6z}*8OUHBrU8`zY#iX!wxY_Kh={XDL~Fy= z&&*N8k*d7#&T5oDy|JP6|%Z z4zjuilFi~wN%>)GXGemTSj4y4y1~PMlz_AVxsLfKz6UIfSLUW6PgxyMpYN*~KBnqh3CORr#OI5OyGfe#B7W6Y^bw#jW@wucFmo*DKth6-EEb#V}c|F;2S@C4W8+{%E6C z@Z-=DOvZF^RgcCq3Q1h}(@&khmGl6H^U*&lm5AA5F~ zjIIiGp2oDux^66-J-gT^cT}{yvx~ zR#Vc;Q+TJ$B6*>mN6jwHdo&|>xaw-;UHb0O(pMfok(m^fYN?ottvF*5uYTDF-aMl@hje+~Ro|E*@lr%022YJgMDfLdc_POFo<@cwJwqMzjdk?dj5KYXOo4k}m}EG_l} zs6v>K(XtfU=rHY89(hW;UyBXn7A8q;=1N9i#Sx8N6lm-OG;x=R<`LCj_PYbwZKR?e z0s9fZ;D#bUn|em_wRn5U;a>W>jylD1Djm#)!?XEoWP)Bg1$ z$aQiqZm*)S!j5Zw{GE=ux2{?8@9yDENs^~X!l6zHuh|jrR`!_E20r-xN~g0N9NY9z zaNsGD67pr|_2&lj-X^D*lE@YxsAH?yK6rTTP5U}~d3(=8s%!`1P6pl&8PT6Vr`iu* z8V@V-Is?g~owAJRRM5c8fMq5eM$VE)>Rwo_+F)tK`F`yhL-{BN#E5_lBOTca;Z#Qi zk{yE%PM|qRg$8I82Fk8o$QxE@@E;(~VG@j&03c|A2jK}eX!TAlZ5NkjdI*xlyF`Hy z26zzvO#tGnL4#PF^34)9aa~9 zQ)^bkezb!iTk+IdJL5(2)3J@=j*Cro#R(EihI+@17F>vuiX(O+u^E+ObS3lSToLAW z<{9kn(xjTH^?r1#3B1#tii)*|Iy?okwDgE~LS-eZ)D1L><9a3}TP@nz5AzaCc15f^ zzr30)-2#Pm<&v=F;?`@;6rb~*t_~#M7JX+a9QTm=AZ3@$h@U_%S5<(oYQGlk(fJ@^ zP8?m-Tl2Lf6|OY=9r4D_DQ*8{dbU#a=89a7r-u(b-|Vr&-ihL`yj!gvXr(;m>GXD( zv~SVRmBn%I+#Yl;%FHYli?MMmt^>v5E0I5USsTT1v6(5A-o<51v+s@%xNInH5;=d2 zk4p+%K&n@fj6|d{k{%>$@Uotg?tnQfJTueE*u~PaAL~L5JqWNs2omZx0U4MDFar5M zkii%$0ck0PPis%3PNf7fT#~F^93?9t4Mj=PZ!i@7(k_qvEFhVY=^KP^vrupm4lo0f zg0`~K6~){t50ySjs{(+Bun^HOkY_^@fjlqeV^(%&ls{Ngbim`T0SX-?2M#8S)H13@ zeoQ7JFB;3m7x4U!E+{Bx! zeO~3L3n_gRxm!%kGMub_%raoj=>c4k|(~ z3E7{VC!n!AizQG>fRp$CS@p;DGt@4*#FO!goxQ$&ZfX_|&lUqz{R`6#rHtldtj`Bg zD1YBf=G#AIy(1k2C{stas%uQSK_=DEuf;Nm8!aPz`(_f6l<4}@1e#*y&wq?5SFX98)iKJ~L&LDM?7G~+ ziQZUeoD+9TV#;vI^@-Ve-o`{3Jfp-f(=vRUXe!dr5<|WeiDnl+GOPBZMdsoow@4|W}Hi`-25#*-Q_wb-p}8g1 zFgQ88cI~hiZ`5+f=8@u7x3}9qJ_IXR57a(TL(&6;J|q1qNB|wfC#Qez5ujpK(xOt4 z1S&+X2yYQ>{|n4NM--4!h3E%YQ%r#{w*h!#ig_U=IeB6_YOhwj;{Gor2n2FJ;DoY) zp`-Iw=IliVhJ-PjyZWK_pa7Z@oQ-cPa$h#CSgAgPNY#+j3yDN%Z|5;WGvR=KM^IH{ z*M^^ycKOe-#=8aXe3Q?cvVX0}8I`-qiuZRZ7ozRGuR6!VSM2sg7jGndNP%WX6R;Sq z&eB+dmz5T)0aMN4o|5KMnO)RP%W+8(FR}!GmtdTV+S0x> zTsA7Xh}{%8jq4vCu4@{+&B3NUpgbgBh<;k59}&S6UvfUV{G4DTL#A!g-}4VveKw~A zdyZ7QaI|+7Gmrveb)sTQN#)YjVT_Z1(Oktj2*nXQo?t_(&~zm>JtYg7-iK3(zZe3; z>l=-eM%7AZ#t95g&Lp^vG!`;FzKfmO-8qrgd(I>L?WR5Xx46Z; zenwH7or8`2MY{75``)dQ0!%1c!cg}{8Y`i+Xm#0d!gD1qhR8`cK~%_)@2j4Aktv<= zYOcS@WtluZ+&S0Fu`@!;{9%eu(q6l`{PZN>kb@V47;fO@tif@b;CBa#?+YNH1aa{~ z#xIiour!FmZEusw*s>8sD+Z1uBoPQU5yXBGWuhF@fo1X)(e~=Ee@*vzo0K%qAcI`-SR`B%nCn)lazHg4fGxQ*|i;7Nr0 z082KCkf&{Od>`&{&gW0(-qlZEcHA>Y2Z3_v#g#tU^$9A9>1cDgHGlE1$eh1e_jPGL z+>70nQ=;(hXjXlkee1Dvn32BBYp|U2d9TZu{+w$>5KF&t(c>w}ABXa!t6ke3@kz*w zj7>iQVN1-GC*wZ^(Cq0@ws1#|mN=GynaX1mh<-twtcKVJB( zzL9!2Ll-ZVOv!Ukr3ujnCdcb?kvlxI<*P@T%r_G{zfLVBh3OEp>^)JdTXERG8U=Nv z!&k@(N+kH_>@MAI746Spgykuw5-+V14Rzh;yP@u*HU|PNrmNRcyxeUG3}BE$jM-S_ zcsxXXxGwan!AnB1vl601I)SiYLTV*7VFlE%ErXpMX{rOY3nCl>)H`g+St$_o=R41} zPq6iw0~jLW+Eh^B>GkM_IKZWlr>(c|HEv@qZaBi00uetkqY*pSTVyVU*28_=&tHT! z_kaC{&Uq-nm~6^hS*lUEcIxn&>udAS!>L??f}^kF4OyvK1ssZ*zSa5}loGtVVeE3F zM{WPkv0Chixocq%K;h3es@wCJJ}AZkN=4p3B0 zWsCHS!HE{0R0)k0x36C9+?$6t5zez}JCq-Bog-Q;y8)nCVCA`U@18Dbr#c{kuhS*VGk1vPib(h5{65t6g@O2XPKTQ_*04JuK)K|% zMVQE`l;v{1uX{F=yl;pbBffyIx!gN@>+=iQ(RCt@v|~Mf{_JpAzdUcCg!S4Ri?>0< zebMm<++0*+W~~E%h#4K4|5@Xz*?`fiN_s}`XIqJQR9d7)jnk=`UBdRee-4F5epSXP zRVEI-Tt3SlC~UhdO__4TuUxK?KNP<%X|dmkHPp_?$?9fO+a5=Y|9)wwgFfmCZgzlU z43(@SwWFWzxU43P4PdNJ8}<0%egW=8OfZe&a{&X&Rq^L(k5mk;db##is8I*Q&P50O z59&*OZncX~^QCpTw?(Ia*<5w*F*lj#tQn_>Sy8Q zRfqcOfMZzmaR2P=Y-p#t!%ETkT^G#A4Wt~rxMp7_K2cQsh!ny>0uM;bJu#^et(FdW zI*NQpFE15#T<}-qQ=6!aCGJ*upISFy+!yln5GdaOy<|d(qX!_34Cyuz7>FhS1{4J2 z7M?GVcP30T=`iqM6lI!6yqdS8*!D%mM7nggLm6p&C!i|Ks^dx1;qOWPuG`5>8g|Kq zk)^n&CN(DZPq@CJ8>fSmH{xn9o@^$Ms6_edFGOc&zBnYD zW-yezme8dQx4>L%lsaJv2XU~UIV`3OzmvxHDC=oSF`25M`B*b=DaYQ|TXDBU z(t3LwgQupB3`Y4Z&HUI|Ffu!#^0wZZ2?HunJcvFCIS>)`%rX(KG*S#2bN9(BBzg}5 z1Dk4Vk(zT*Q-bL+Z38MtK0SD`Py~5y$B%uIkU`CBf*aJ!5~c;DGZbDa*g0b0{6jhH z7fYaFr+zhoS{4p7h)mU1RFs|@grDVdQgao6$+)NYSKl23B8~vio<5tohq00=-VQ-B zF|GP7K;l~J-Lv7p0`rM_c9Lef$8$&lyj!~n7+DX}LE_5*dPg8j*4ubt8A4(*LBSY< zbv`ix-wI5-j0|aYT!ts+g~{OpN{@L<2UXCTe$$Wj9h+k^k&LHo{5l8g-~- zTWfOUnADMo!zsi4<-6g^ab-CJhuvu|Ud1IJUr#rG9pF`BdQ@2W(<8Gb(Wz|z{9=iY zp3`E1nS}|YqqPOKb{Ke=8SWoJkX2h?cZ;9n1-`qd*#I(0!10^mS) zDuYC({@W&iIIIzM61*-(D_cPBWlwysSTY4NAqa#l_7^Z~N_1uZD9Vkl*r4zQw?xvvG zYWK;0c@NK2E~FF%vS+wWj>R0vBr@4;CVov`GM!QzIDTM-^=`dFUgV>KEC1|@Ku+{t z;T-bU^UXJ$7gG@%%l|RXR{tOsl)qM>sPC&(DTnYh;aXy+y1^m`AA1rrbW&%}9(0Y= z)!pu6ML&WDSOMGKyKogbhIZ@90M^A1@Z~q@dqElm%g`<;6`sv~0?OO0fsetzrA&D? zS~;;XpR#yVtnZ4d@JPCKAg9yeGX`nEE94dtKEDzG5b>_()jQ zYPIerhOL#}YiJdWLRhvnl4!qom%*9t#hz8?k1r18sXugyd)p$KTq??)=^USo*Si@U z@U@@4I546*#nhGko_amuxXn=L)ip7+C{Bg8;d$&<0+FwxGE8ad+S+Np z>|x#4^V7rekL%;7g;Yw4PQF-hc3vL&N06t%bmrJ0;Tx5`;Bo7Kip&hQwTN<5UhGdLdhXLq$39@C(_${~K}l-(t*_I6j4&pkw*+6C1k;m25o z6*P@x-l@z?iSO^?%&^F$(Fn{tu8DVKK-iOt6-%SdGu=xUdjxiaFN(OZ|L zjp2D=;TlT(4#h6w&O%HMdSAi`Wj7oXKeoBHv_q2L?f1%ghKk^d(FxiVgdfqZRdsz) z{JEBM4`cUez7VfZtB22D{}H&(Fgw2p2Z3t~&OGcyhJ182s))wTS?!4sZK1WUS_-*X zHPL-~1{8#io9m<%Woxx6pS*#wT`Rq+S9Rqb@(-$X@r4O2c^j^W`mD(ByQdDZ;^Io^ zLMFVA8mHq~YxLQo3binHIm+5ju6Y_QdB;g!^>pOtq$d@U;|{CE90^SSJC(1ARH`e- zqW6t0;CIq!H7toAE8^i6YJYb$mZfCBN_|2B2Fugg~d3LPi)) zt0Zr>+RDL!+r-2~SX9(v@5cesb+R~8W%7=SF%lBy?E&uxdWhzZsuaNfkr2X%IO<0C z+v0>%kn(K+RsLs#gL(jz-mU{8V1g2PHSmM>fKv>Vl1O9IoU5#;}45H<^F3nLIt>bbRgh*k7whsN}RX z)JbK-ZdM1Aot+UP=Rp~mBQ+audJ>cL1YEr<->ywQ|5d$8Aua{Zl6QZ-;qauFa`P%2 z;ab1+#eEh(5fzUmgSuYhrFn ze)N^eDYOo(*O?4GuPtu)WM81`NO~LRG+^mbERvU>+x^~ZAa6q8P~Revi$p9})&sOf z3pRJX4jdTI1(mO4VPw|iF|9@=*%=D%vp**du=B>Nd&rtb#Oo?9y)i0W+P#k-=g||g zf5$X1vY=uN5>L=@cZM^Uxs3MH)3AS%eNZZ(`k{2PYb6?^ziQ`KNJq{D4n2PY?(dm;u!>NO~7$$Cs)gjwV-4Ge<8;PTPqkx9qmglC%G! z`8l1A6;J>r=Un5kV3hH^w#lekJKb()BwVY8D{v2Pq=IwUALMErNFLX~&xH6j$M4}k zl9gdsMNG-*K3gi5J2%6N0}gc+if6}SsJS;o@OZV&vl z!O-rxJ8T-o?>BU~g|cQ&vei(?X)O^Lo1CKKvvS2$mIlTp^*-FaJq4LEkq+Yc!T}Y_ z@7w!%MMWJ^4uw6=l&UsN&tWs#ts}~0C)JCnj`YN0tI?D6d8s33dS3rI(3P#)aP2z% zR%Le0GzC*|D)?h}SH!!Gnx+S(zSG8-MbRLm&gv>MaifjN z`E1Z#R*s~$k4`-kgddd`v8f5^uZBjh|S1Lk# zf{T?OO4C6T#jDUNY7FQgAbnhL10n4x05F|Cb4CMDZ^*Ml5>Dadn+H)K$T;2c=n5!R zg+^QfKZL6Xh^QTwY*w&r0-C|9@Jdvy(s$pTZlHg$zHp6T`j6r?ttFV{XFvH{pv%+5 zgSB@%&r|5q!tBD-UxfEUgyh^{gaIa1L`(iou~Dls)sc^Tdqr084Tfk7oThhVy%v1! z@G*=mLZ?v}Y?fFSPt}r~AZT5utY6e|_gnZ5r|7-O5=C8)-4pBP2bpeAn0^W8JXTWZ ze>AfIqd(iT@*TX>F5w?I>p*@W2<*GVM-!`aA!9>TekQkW=d=&~l7pKtDi(XM>6(Y( z-rh2QQ6UJX<=eu7H+m`k-TaaXW&5gmc5Gj#qYM~2551~j$+>+hWQ@M*ccy?}VkC%n zi_|Ij+Wc+X)jQ{JPW~^5XHomlgv2Wk_Ps$T2#uAI5!u;R5;;)lg}B-wMB&rxD0ovr zxwxGS)y08w&wQkT4?f~~NZUtRGxeL7MJe(^M4+2C6Ct?493dFMwlF^f@|>T?o@{ zfU-AuW}`7!LHopaA+DAb|00V&-ADo?OoKH4b$-zg89Y)P4Ml13|%4|(7sjT(R ziv5~K8`t(W`_jn#r*>-x=F^irlFCcyk1Qu|sEa_$0TmszCIh;N?ZjP_cvJqrNiRE@ z_AMW&z-C5bgMc5GDq>*21#v{5*2X6%BWz>gj+W!4>}qD|@;s;)cKgX+*a+M#lwVw# zI~q)|V%)^!r^FXA-opvoY+868>8H;I=;x;=vSQU$^7yIJ)3j44Y$ZbDm$e@+n(#=COQjB zc@<6>ucqoPxR|qbB7371PBHdsvh8dSb@g5ETqgb&$SgkJh|Xz#!2kP$qkMlSXpU3Q@%FJN|!B#NKP=M)EB@k99!h7NRAW zdH6{J74-i7FGyr-as33jSs_bfzk%E$LnHjp12Mb3MA6Xmb7a$=`42$#DTYI5%eb`7CZ#R}Ei2Zrf zAD>jQ-=@<3+GF;{Td6yne%#fp&ztOGDOyqzbNa_Yo^4cR%y+gc9%5%blJNROu8d#r zEh~7;=Wj{+W>j-|72#(~y@=co2ZEUB@5eC&ZII&w}jiq5O9l7V~u2`C+R0 zLi3RlCdyY9x>3g#?mI+N@}PY0lKow$BMqmH_V=h~dYLONS2*PDJKVdK7VvehZ;qJ> zrGtK5(9$eQ+^nfI!WqeOD`2$I<4KIN?wY$6?0D@rH@%Xccn12V1Qs2L>ADq_z?eZ0 zlW0xYwGq@oB5BmIl*C2l!bCK<#wD|&d$AW5sh7k0tNS5VnS&8e5i z)K}dJbd(ol`;veNw;*5c`wl-AI)_vthjap}ryxS93BCf~6sh^6>~0Z1-#=Ob4Onxa znZ~1`(OC^_heDE6XU=pEm0?GRfLrW>3dzWY19lH58qVLzs}AlMCbR^F%BVB}ed}bT ztw?H$g%AHm+HJbtl9$-Z#0~WB?o>@o-Y*Rp_nW(N&&8MH)h_B-ANc>IsQqacmApeQ zuusH7YSQ##ds^)G;Js_);v6<8k$ZP*y(mHR*~tYZhJNYVK}7}rwuAL>W$0ZDPWpdH zT4%YnLbMeG8Hw%rLi`05x6Ur;s%X@^pg@w#DJx*!$c4B#Z5f07=kf;6sGv6}Lth&H zreHD%$0q(S_TB?1sD=`quZo@AEz({r5`+ z*nZib5viE#3GSOeX%)Cfv}=aAw*kwsua^TZ_a6jMzVR>DzAQCV@WNW&VN_n)4Q5t8 z)}NCMc_Eq3{qd&)>CcAkk*hpwub$>UQD$#b{e5vLvV4vMF(_oWg+qRNsWC(qJ(m$} z>Fk`8>GyA_uAh*C;2%_1epmlT%9#Hd)wLWi-f|NBLy@`>GL)h+>OkB8!mKvjxg}r` zfD$NU;3Ye^sHiTuhfWu6?Nh=aE|s7xJxR~dG-*F{qz=fWf`#D*qNtU34zf|e86_>< zGf#*$2-iE_KsJ`hO$X}tw|+^FSn>rSzbd=U*yN!)&g{7-OC&<&9kT1VVSmBTg7L2; zt*mK7<8LhAczOdWFmImc*LINY2n0p>`0<{en=G9MQS6P4qxfC^n7Eb=_f4tQhkAD~ zZXI0L)3TgFDtutj;@=Tl$(d?d(Z4^8rXt`nYTMQL56=#}LtY@*!$IuyjeGsmeYz+ABAAmsI#k{DFN&{!T4>aUU#CSN!<%_X-#MFd>gSEq%L=-1`&EQG6lUm|1P@(Etp^r`B6zk#u0kjjctho4^epQu zN_#q(K%~Hc|1*95E{r9o&nvC$M`Sw)$JHKVdk+Z_2O$*VL<0t7=~bN(kh9ucTj~pP zxp%Dc1>hl1fV3(D82*)cETvJcqVR=Dc9+@kiUn5NT%Okf>SG` z+o!VK3P>O7ox89#DaVVd|U-uDIG=KP)0^NG*PDdcK}b=%ZkFBki10>y5( zMR&?^BWzWaqFF{(?fK%B2)M!wc}UFly)uIeS<%kZ^0PPh;|cPw??dbkv>|Vss~HYj zYU9eq`ZI4x0(tc_A--y{pBI~Y$b?;KxV9G6-|6|sGF1xSPhKMD*yd|j`-t2b}vcm9wu*_8oWJNlOtZT<<~LA(COXRKKGRP?J8m zA6JFCfkbwSU>9qUFpx0{l$~7Qgv1#<*a1qj8;PI?v@t_uCF!sN0oJJKb7`CBZgyH= zqsC+J$~`1{LKi$)Epbr-rgokV;E|0~#0c>R{Mxvo_XEFlm5GUFgQZTI|G{W&8d-#D z7WU{8aOESxBD06lYOZF=Gnbi;e8l<+z64|~iCqbFOV~X!FR@k8*vKgN`qKl5>JL|WcFaeTIB!qLjnF=GwCn7#62&Zu_# zy$@vx$=}%fWMNdZRvKHk5x0?8$)kk!zg}|Y#G}dPkLNl>|2NTB?Ycil>?z#2)7&Yz z9rt|w@C_ts6yeArS{SGmYzt;0kOVC5`hYLIJxBooUx2xld64`#q+=i%qsNaP?E>9f zAE-awk~9FU(8cQWBT-tgzR(W#x7i#6>ev5i&Z!MdOs$XsF&)RG;jynHoM6|<8^Xh?jQakxs1PsEeIuT|{mKcl^W?`}XolLQiouNNV~> z+l1I_T*Uo6p{4=uxj8cL+>Zyp8fav?LFg{MnM-sXo))e+2H*Kg$zj;9_Qt2f-46fJ zEqtE!bU~T7j=8uDhit5Vm-ABXMP6Q&L!)mr1B-awMt0mYJ88es-0~JBZ&ov8yph`@ ztn7*)l+x%{_`H{lm^>1IfO}uyojYN5$&K(v&O_AKt0ip^%tZM$3g3X4=-czUyeSY} zBlqVc4uMQl==+%ETxA>UgBaSvKO{M81`(eq+CJPod~B(1em|kR*be!y!|#V*1Sr~1 zCYHp=1^Nh7^%oS)8J%a{J2wZlzgNb1;mo3DSKTk0`?v2j5z@@d37xD*lrV=q^3rfL z)(h1^@rth^6u{V7_wL7P@<)^RRy3R#8a)e zmI@7WFRB*e(PD3XV|_mK6i!2y-IX4f#KwE%~W%~*HRo1?N&~7 zVE)X}XlBEZp5D8yD$5y}h&I_hpi8 zBC!{ktylN1j`4>)pAHtOQ!E@g*@k?OI70FErc9KREOJ~lVw|R%a$Z(I%!AwKjUbK_ z={=`Iq;IB+1_>%N%OB!_?1OEa>K)J$=mGK|23D)!$BhM-XvCy2c0<;E;XUNauq#P< zE+->74)>8rVk|gaAW3*oeno(bom-N%yK(Z}UP#~i*V?=(rzKYQOV-ct$! z=J186&siT`_pXI4Qfg!k%u2=`dF|nO2vo?OJie(@7KWQ)h-gHFw37zdxtW_ zEIP{1?ARJfTbyt2xa{-e$d`G%xCPH}JSngT@*u{VXlnx>i1;o2V@(POWXhL9^PUCK zi;!a>`+));=ZJnLfQ&?0J26X#A_dU#@C2t#5DU#hCIluO%!Pphhd2{YG-Pf! zC{Q_V^^&jer@sQF8YErcM#JyjF=_sJOV` zNa^>_Om}cG%pf1r1iC8L*mK9y=k;=;<7uaJ?~-s~6Mle-kr_0C_ZoXYm~OFN21zfg z-a=A+SXEArPJL)@lyLu1X}1moE`f|f&T#JQ=#{7Y=6)C+V3*nZ57gAZ{`~jUR12R` zl{0&u=Kdctzw3=(2f3eG883rDcx;AV<~=!6)#;&GV9Xa#)l=3;IIL`wfX(d4(>!rB zfipO6+h_mSAcj%`U2) zAZL@cg-NXxAWD41$$GiVY=vAT=+7P3AB`Lg~Wk9^KK48I|Gnrzu2~&Ab_2N+U{u?l5()A>5X{oU z?Rx+IMTV9)glsQ9;TeMwg$|!5Wf|A~4_o|ZH=*DX8CmK;Qub zM_ZLCaG1-`B)c_b@8%d-e3=?aPQQt(Feq_lbB2o3cdcClJ#lDKiskx!R&~Ryd|Vy3 zF_Zl%-<;RE23Il%v72*k9OlqE8pQnE?yqrVF7xeJKjH)irDF-TQcCjl%JhBCljPZN zjI54ZJFLvo-ll#YH_tFKUpAN-L7-W5Mg9YtRM?P6(~v!PI@U+%_7B{bj;})|>C$|c zj8rPJC<+y(&wFBb%#4xg01VB>c8JcSr`~8!oo*i2RngW}%@Z)8ZCS8AsF6;a<=8Wj z6bS8!EE5*JeJQqXF&TJ#R@IC2tyyD&1G>XsBiSk5qjAM-gY^Ro*K$zO>bbXid5}V* zoVprYZ(a&b)UICXlQ(AbW19T)F?Pq$3Dr?{Y|j7YQz@%duxPB+ONW>ZR3~KhPgE(p zv`!|Q;!gdZm&f7nY##}19_&`{)E7*_R}UC`s(pu1EekvAY;kCgYfy*&l2ru^60l$Z zLI#ir_4CUy}HewzhSc~4-uwLUbvfXpYM&p||r-pMFEnBgcIhrWJPLAId#0UfxQNPfmSVaVN zNPj%dQi`6|1DRCm&n*IT))`F4`5214X#pdvn-+drZ))N1EDxE)UTKz2j$!wv36<3? z%bcG-&mG!g_x|~xQD2RFM?=8rsaS{nwz8(i9`vt>dwKO{FoU`M6%JcdEB+FM5({MI zU{-m#(H-Gmj3J+=N3%$(_`+Y^^#w+N+T>cDXziD*Ks@H$BupS9&~EstYiz~z6CcVg z4DrGCK-wzpalP;%D@4*s&;8>Pn8Zth&G|#m2&XZc0f^`+U0Dh@n)JE}fd(O4dIv%Z z_g){j>l}^Wpg+6cvTeG~hNN1!^sBo(%19zRIoIlVbN}F&+h`3#fk?EI?eM1)u@z$~ z5JaUzJ??LR$YVfM5Vgd&ToFrhm}A5KOT6!?*BKBG5N@y z7m5nlr6wG9MP#SHMh(@E)mDXJ$G7e=1&grmYOk3BnuMx?ajHxT4E1fMaxMqn8<`P& z@FT~{e1?dax8k_{R}kw-9QRh#W2SwEokN^io%^;lf&|O=uE>Io`2OD{u29+kwqE^j z56<69;a|>^PpB0h;}crC&P+{9ZrXQKZq4eU>A898uH3sGbW!=QLw9Z*y6up>yI`ty zV=l<;&Kb@0+ttSp9A;lXtNi4}nY(OOWAdwuA5@BCbPudjOz>uW(qLk)y0Oq9=i1@A z@7|?x-v`E*zX&OplM^$`mVRnNx6)LTJQl2-|6YNz`ek;uTo+5^*@=V|5dKc ze~|_7-@oP)4oHpOw{IkyC+bvB`H}*-rv9bWQ>3F+J+&vXW>QcShedlhrLz#3vbFO6 zjy$>^{^pGvo48pGZ9;b^ZmGMXwSrr2rMOqvr%twir99TIH?R8qxVBk8PlV>*TF#AJ zX8NAD-W=U3M(-V!jhZ1JIK;-mVd(EPmQC5&>)-oOC*><_QY6$}eU5>bRzrhc zP)obaDF<85T$4S;>^SxFCnk%6df0t&c)ot4qp7-1ZRf($WMj9+T!`9yJJo-A+fB?4 zZU3%y|8bQ@j30UJ`Ho)SF!+ouIK&g)-ivphiavfNb-$y1wteqvuKri^8-8X%!MMCv zvwt{BdzvwA#1HJA3KSW2C%hUKOLh!)AkJjThs=H29GEt)d-_bjNHw{R%7W^9zNR4tWJAurFTkzQ{Gvlk&AQQ z^LAeTt| zY(LdJ|7H5+azpVxdFMl0URb9xVRWhDiFV^EQ;qtnyRVhFx6v1_o0+}}>f`MUX>l`D zRu1|c!m6{i^1!IX?j>QsIsKTkZ}LwLWwS{m>+!-?f48F-_e-P-COvdK9J)Fj`mRjW z_PWj?GFr0MO!%WQ$H7_%=ny(Z(CoGS^VpVP-0EkF^}d`BFPNog+y>WZ$8(|sOTz9pApS zs<~~Klh^%t2&~Bg!Erg(L@6F)fqOR^Rk9yy`I}aIY6a3P^afdt&woofI7C;i^B@te zs$(M?gbg; zq*m@rQf3(keOJpCR_e~rP1Of;C}pMn6mxBtb37%DT`PLc^K-6%U`6Rqv5-XBYRef< zjgm)b4Fy8f?sm8)Jhh)H+Huya$<#w}3aeWMF|xC92C8hrOq`jV<5HsRIe_Jgvhwf`5JSN zxlQhnoLA9-iG)$@CI6ZmT1Cgaq>rA7jT0zx2RD&l^Yd5;Xy=7Q-Z?aca%tJw*+qSd z2MQXDh;slNJEW4s>h0S45Fs2e0HmGH19jH z2DN^!&HD^jfTWt#WL~ZNO04+`&uXn4b(UGF=fUMft(+c4*M$A}8a8J89Mk76)sKXf zI{oT6%v%@xbAwvWsw{O=CweqFII^bgw?76ibbH6;_?FmJ{~4XE#k%LCwn-#TrHnBX zR4}K*F=Ebo(-LZw5-%c;Qd7t6xXw3d1}8tRU+roPkk9q$`4JUN@5LUF%$NC7{g4$V$G5q5^@7ntJRGS zeVFWuxy@=42VEW01_#69=7KNGD) zID6fCySWry0}ku}MpcOynsaFg3I_W+vMCehVs z12k30NCu2qu`rZ_>LTv+>C2n*m2vPH>_C!0_xBsjZB+k?pF`%!`v&Rhd~YxtiE0L(J=K?^cbT*}V3wvRV|O^z zhZ006^N`ce;L+n(E#y@Yb=pTb28DA`A#l$ux_~MTVEMhO>*4g;OieAUAYl`rD)<3@mbUEcM zhVIKmd%O9aO&f1_@tu7b_U*GPnmdO-k)2e%`Ms-3g0_Vs4&w`NjK*c_tP$q$@k@K2 z?VIKqCZSHw_mnVhyQ-xFPSWvHWR1GbaPdVM9wqX`=>Axl4Koyua#k!yPu5R_rMhSZI~`^oJ5v?cRggTxon>M>~=qxwYkqWXj?w8*xGODoLkW0r!V2iM~SIUM>uErTBNIqRo+`s2}I= z5BBkR3q!<6g*;!#3nPV2+0A%lA_+l=@?2T_@F_pE_oKc0WI-aK)gbJu)t zpu?AoWH~-8_N#t)eeeXM_i=$;RG=KisSfGQ<|(yX54ps068wbf7Yh$o(J1VH*$f{8 zggYO|H0Sc}H@=z4$t#|E*1uA)Xg9Jhu9vH=cjpb6myOK~dI)?=l7AN=Ql6KCguzX=EGu8~81)PjT|Pm~S!+D-@Klc3b&D$oZHmsPRBi2S5*$H1! zoR#UgF_vyUjHoTyh*>fcm6-DE>IY*w*Dp=+^wRN}r;Dnf{;5ff$=EYJPpI0fn1`}x z4*rwOqht9i%^-6()3BAQ?{nYfX+JamtJ)x)5{5@NI~lBNVr4@d9BvH);Se)leDL5w zj*QKF+;@TYfI5o#rCZ@NrxW2kQYnPX)&1dsl5?94y|t8&m6VnUuz1*v;lQMGC3=27 zd2tY{hm9hyH~ZYZ4aWfD^r(cyo5U|t!xVe6e8$V{qa{`Uk|^jjU&x0x+Hu&`B&prp zJb7nzW3}s}w^P5b<9us7|60gwN4`^c@=h%8H+he$ODwbBH78k#S0Ex}A~irgK6;*f z0RPNf%U><7=63J2K)1m-U(ZfBZXnb`Bgb-1nCv%UQb(QsBSAW@qI1YODz7WKNg>-J z-1_)Q9!?1lk8OIAK?7&|`e&^3Y^20k_&n9W(1+64B*hfA?a?(fu5Wki+xe=hD*N>} zbW_uQy<>$9rxw;G^67s}<~Sbdv|SDIhfU6JjAh!@Sp&@ImHO+b#ueQyK_tc8s^ts?>{<~WV`^Gj`^cRQP%h|Ys!ofHUXwDabl2Ryv@{jM1 zeWQh^KUX_Hpus*kZZtE|_sGMaTQloTnI!c6uIJ<*YjagBJ=T#W*=jo-$49p-{O)Zf z2yk)CMJGiQ!W5ak&zb}D^NV&Yik-AbePuWHIYf8Flf~BHRsvHrekwv&c6%!Gz|NRT z<-#?(;gQhiiFX7_QUTAk<8eY!c<4d+}%2Qu-W$gN{@ZbAzvDeCw zbh4!Y#0FR>m1&;xLu?VmDa4NQILdk#=T?-sK45*z4MetH;`8UvMSMr){B_;E&owqR z+1Sh4)NlPfQ3o>Hs-b~=6BVyNDq4E?oUNyn$@2*|J%Zx$?@QFZY3LnR=V+To3KhzF z#=X`<+7ukK+r`iq-o8uQZ=L28P)oD=& zi})K>HOBpQgt{5dn51A1)A*)-B4a@45Tw zh)8m%&EM3>Sz_-0wK$#oRqu^GB{ANgYf0vGj{iG_+#6FrbG56ppS{^3SXyorK7aa5 zyWqA~-I^{GIJDDFeTfY=Co)(zj+NQiglP_Esz+)A^6~NYTJ_pW;Thi*WwTG;-h1*7 ze=xu~j24>9G3G^)cL`0%}ux*hLUO=k*ThrH8;W^%~O9zcq-+nr#xj6l`s6 z5sonu*@{#IZDetXhlPdG=Ms;td;k9Z0p>(8$d*BBO)y|XgYP<$D;3CQlarG(t!i)B zFD>1$>ms6~Zbyi$v4(2c>$vz&@}}ju^qG5o#!zw2YkH=mJ?tW;$Z}(e(^5zc+W2*W zcK^|3-c$hAAtol_S`t7S&W&IF>5GZUL*m$iv!{3v_%>>P!7!6SKd=hFWxdM62xQHE zdR$UA9YPr_V0~0~oJZe;bY6U51Cm^mn1|`T_Tq!0zxn9*))s4oGJA~`HGL_%99ZT@ zbjG9`JKJXj&x_z%(bMZnYuoRL{*Xjn7ynf)jyL<>*s9ciFVZhl)S21&3}{xQd^pwX zjI3mtQZ)XebxlxF;x?+1-Kiq0E0}598O4t5Q8_KPw)37#axFwfpZqrZ$O&Lp9{p21 zSrui%H^%-5dt~ZaZ19E`AJ3K6S97b555KvxA&Rex2+gC9+nlPRX*}rDmybd#9x+~S zYWe7-_G>Y5uVy}f5GVad=mKn`{k%H@Y{<$rxr44E-B63fSbE@6Ygq} zfO&l$SSRNgmRJukS>HnPUH)k2=H@0-HpfX&z1c(GdtTZ-581k{4$RcvtM!CRUPlk) z6YWXz;|q-s1SMnx5ti!4_ZDYJ>%JO}>5P-;v^XpsSG(cPW4PKv`vz2)Iq)Mf1s>qr zscK%qD(3;lcRq7k0rSz(isb0j!iua+HP0>=3g(7i?Aq6Tzb7Y>$1nBgnzXb%Exp`^ zel@q@uaWIovi^9g3>(oQ{L0OHGM7A&rZ_d9z;c~H{d|E^9dmnVYw73~)#L@nZF)WD zz==zP=nZ8?XMJ`qbMYiWQyC2v2IHCYJMLd~*S3!&X>h%IadT!WY)|%=@t0fXvZ%l* zG6&_&!;KP04#1ASPF;Bw@kmln@sdC;dT`y1wxGape8jcHI1v-O^Wyu)RC=b_&cw~@ z*0nM{{!u$kZQoVuvg1L}aa+N51eYzey<*lhHoR*hx= zXW)Ts>+bGu@SM|vR#3!Lke!{q7w=q0(noqhpk^YXfdZvJ=b(Spg&x(l%&~WW(u}L4 zrsjg+E7_5J?;fv8b6b2fcL(m5G1Y%xb7zxEbhyrX*OsK@ai{$f2X@kjr02 z4wsavsTY_Nqq(w-j$}WgRKvx<{N88al3>!o0pwRzEp*!=OI`i2akbS%8yxXKa2Gnd z2b_K#Z=O6^fAJ7(8iY??Zs^JfM@Oks5ogXCCuFR@_yH6|k9&xZB9*e_?==(%N#*E` zg&atje+Y>&kR=cSoSSD{tn&+DK4TVr&%$~-pZG3l4a#&{S^Qa)~2 zwFa_haBY+u)J^jnm5^9lg~z-oR{2I@dsVBSW_tUx=km9Wl`hgICXup`|EAEdmrGg@XWzIwQ_c*_Epq0+)x;3a` z?()krV!Kvtl4mHP(cLl5jFH72$Lu5%Dlj~vq! z1QSg#%0ysk9<$vcx401CG6I3E#OGW<3TU(9_Q!yP>fz1??_bN143X_PTweW%ZRr?G z6PT}pj1mkOkf?bu>Ih6*_-R{c zdJrNdlt$4rlN0@TWh`?yW92k=rZSkDJ`Lup~}fu>^Z8B{p-YvYkG?nNX`#9 zf5^EAYXdxDb1zG;p@l{^l*Mn(n6kc;=p%JL`3Hin-cK#rYYVCWGXrnVf{lncqolo~ z?$JD-Yl4!lpk~nUpU=Ma<}iBkb(=Sn^SuhGUc>9e_5@Pd&4FDWB_6_3VZrE9=XBUU ziLCvO*!iB+Pt~OlKV-hEle0kAL=*)k3RuX0 z8Y-~~0lQS|!>&IkC#PVlgLwP^V$r7K3+txvx+D==phvmHlskp$yFnR5fih-S`(a_ueMp@ zBD#2q+3p_iJrVz19gD!r5!UHBM%$+e9v(WQzTRXTMQC8Y`o6S>*uQw>(((99; zG_4!=8qEJ#S-wwnmz}w}-)g;_p9jWhv|Am;B&uDtN)I!wtQT9J%yO0H zI034b1vQiU17PreS3%WKoavI`zA6dAJin3boYVG>r`>>vquUHY*l43k$h6YaP_Ok& z|A&Gyly}1VQeoXhH`>0t*kKT z==b&H3BmkP_q$<2D+qc$%%tD5oLG?q%S>smDr`D`Nbh3PGyCTkwf7@>JYb<_1v5zy z0Q8=Au!eIH&+IXh0)c_qKx$_!FFBPFCxyyIbe51e63Ct?iJW!7dO$BTEUM zYAnoD&>Mp`V$O-Eo=*FGMBst*s~hv2JcYyzz?wiNE(rYjt$20LC0JPtq$iGlh?> zpQWDA2T-z4j-V5bKT)!vzO%CjPsgI$d{Ms4NmnnQNw3{)v{L0YdXbV5vmrp}sV?88 z6s&)Jf3+6Nd2-3F%71D4fs46U@;(!F<(`00v7tYUIa^6i_Nc(Gwd=754jgc;E1W&S zPI)Vkf#<_R^4mZa zf2u)IG={JIk?3++W9)`DEy=+Ef#yZ6KQf;exw!Ua7f1EIeUOt+)9C!EWd--%Kf?ZL zojvVY0|X8!H8Wwc=RD>R5P>H z#k=0YMY|JQ<}j!&Pu(r)o$6?5pOa$}cbFC3?1oolSAq~+RCQf+bTo_q?qk`#t;xYL zuD_@7?G|=j^USAa2UHWl&>G#}a^>5&B4Y6LPDS&3*wK8-{F7kfMj;VTWOS)(<3 z`rmOi^nO1p?>|UI2?^*gvalRKc~YAcTh?D|WnZ@BQc+viEOz8qMZ3jccH{-x^Fvip zi?(J;ddduuxRAiqpP16gN9kuBW%BOCg zYVTiN+tBsVE>=$p>D~AcZd56yi*u3H4GaIcIG&Lpsr{SuS8h3vKmEGwu?~5?SL1gW z7vNIXHwR$5%)eK36B)N6uLxe)cHcrldv^d~IX)_>vJEKNzk%d@BK8=QO(D^7adEJO zVHRP3I0F6vqnOY3;?J3pAK!fAjPH|3tU_e|tAgPBvUUUUPci z6E{S7$6)Sbv4_klfnbnvyh!0=`_u9xXK034G_O7M{>Bfi(q_*e5T9Jo zg|H1At(5HAc=Gwi@WJCp9BHc>ABiK6(ElNV@^7x?k04|d`TXJ-4fTlT@U6mW(Fhqm5 zCG@R*0OQxeD6kqv)rlJxHQ$>FLVtgJViG+L=brAlwJHc%L0i^zwJyX@&xm``pFaI_ zS%Oi{r*cXhiA`(}2fj-2h&2EP(_}e0IS4Lq4;)f~rl}uhi70TN`5h8XBI$))x}#fk z{|;%k`xX>K%{to|epHG_AaRY%h+3c3%GxO| zTSMmNFqlwQSMP{^AmC7{rdZmZhsYj*AZGw3Cs2)FfoKg#rBel^dylbmUF6iZ%Ro7( zXY^8U9~*t##EdkekVT#0lfM@Hi_rNInnq)%-h5+;Ku4H$82v!SUweH2>C%kR2dc@o z;Nii)Kka*R-~&uk(m+ocz`i!IwB+pRfqL=RqZyX%6eJh?Kjl6EPDNsQ325c+mK%|7HhEs50~_XLeO1l zf#^06?*u^1Bm|blEc!$C=`Om$@9gMwILO#_@QGTNGJYS!OfnsY@QO{A@Id z9M4o^3M^h=-JYo194m21DxX|gT@}7``7(2P=e$i{*k#2Fa`VK^c_NXhsSYeC;RUL~ z?O`|gcM;%V_pNtsz>$D=J_!xoS{W$(9>6du#>v^Z36IC8IBsumOZHX3A^a6yX*GXL z;`C0rmA8iF6eRWpz?t44Zje+1QSywijD?{d3-QTGbCd`1YHRfB>SyF%I;{e@7s0)n~iF)CZcCyDS-Dw3=iNAAT$b?JpK!PUR+#6Ff8P8xTBzO*1hb6 zF3@%0b7TlT`1%l5iL$C{AJAmZ01gE0L5}CjPhk2Wc1UiEBULiQd6-S(L31zctC}cN zb-hIvELx%j&7BH%0Pwc{E+;8z2qNfi$mGZZAK5G1+)717MF>F$8dfd|2?>~wn4^C@ zJp!m)6lxnBK-wq@w{IgqC+)GQ3$;GG65O9Y$cuLI&HEMy&loQ!rvk$G=|z=0jpl+2 zKrX=Ig8~xpPUAjn!R&MJ>qN1uCCSNZpvoAf+_EA4FdtO?SA>ML0Lw#uAIL~*^My69 zj5v4cZNoLl)yaBy_~f}{$WYgWrD{^&H*5`onTF+^P*WixcNk>olYOt~KFu&>WA=gB z%+C)?Fx>}Oem=$~F^ru8$nSZ1Kc9LQ`QpIx7_A!>?Ep;xPetXgzy3OY{CE%4g$UaT z0-InmV-F5Ti0uUofcgu~aeS@S)d@|FjdRerBmEJO>QX_4i11dnji^j&|1*Z=(%Qdc zSpGPy|6Pl3AC(_E`@)II$p?3ZAsKL~)Zn$nxvzj$w%5FdK~zmZS?vZ~yV$9OalrWE zJlufl5`p#24qZBWidAl;R_8n&UAVA zv-{}LqgUA(LE73(Dl*Y<`Z7jSPVt!S`ZPxlk==OD*8Co}hH`IdAc1`ewFI*Ca3v5j zycpy}MMaZBIMe(nWJb(MK$j-rgGr9bad0$FP&bxl>@9%THNA%fp<8&F$)_!NU$P>3 zEOezjXKTI!n)-rwljxhnwa?1uOh7|BAzaB2IdV4K@9;VCjR!c6IVkLr$V8wOT!c4`6f`$OE*O;JF>@Og zqwaBVk|iX*f$cpPc5qCO_u$AwU>CI|%EMZZ!r}Y_P!5uj@kL8@5yP%O0HJ|RQAN4) z(~Ecn$^i{=0g{RYmlyF~KnRa;4RZXcdjKHXm$%HpsA+e1w-i!h0oCDaScNqVL&odS z!~tjO@A7$@`N8FHmqWhc@dmUq%TF5S59NT12Bv3x9ySljv9b1cejGO9a=9xEGWE)w z$K@JU?MaON*;<#CN;~6I9i=?#D%!yVEv_>Tj>tKw4Ovr{VQ~jXUVeTxzyzvzCUN&+ zV21f6`Wv+R_k7agmTgxM$kvewSi7Edgq_ts;{5+0k(y9T?eQIK4B@`c+1Nq}7>cAI zfGEIV$l-qL(gN%lvn8E!y}p~HSx^u_Li}~`uL2!+H3XUw)?>@Ba&U3k1K|g~yVBI3 zXDEW?*g!T7k6vyBoIa_*SC%9OCx*LTRsw7siLe5|`+?cKJY~IC3fPMQ#lm#3A0l`i z;HAjDN4((>q7eeV!JS(r#*e%LRoXX+ERCcAh}Y#%g7Jh7Y&m=tUVxdjvz;wZ(MQk> zK<8jCB*N|=nGO!g*5q9R9zJoj#UR{Oy%KA+x|Od?LshO>umXO;Py^W%K%$IX960g9 ztrGA6=D=2J4__fWJK$tUPlxQ(@Jpy4RMLkPaEV*?6EWBtjxp^}C`Pe*wd;5-?d*84~rPyHHzCx%@Kn3-^ab)PQs z;t)V__lAh&w@?$VlN}+Q*+8ODO7)#Sqa1_!SK7HSBc6jlo(aPGI4lrFglyKC&nx3AXUj%~P z7-O~6-7`=DJU>DkD{Crz;u5%Tt80I~s117a#kx&1(7w+XHL>)<-@yXnY+CE7g~SMk zYslpQ-EF>Gkrjnbv5_tZ7YciXg&71lfS|#QB3~CC!z}l^N&lqvonbe(%Vq6QFZVAzT_17noU2)? z*MXWUecjLjw>`}S(N5A!wU^D!$1g;(0^1c}ApGudcX^NZpRkwR?TOqhZU4Vnva$2O z`uHt+2 zc|jO!7?^q80lWzfgb5(!OC)^0pmO8~ZYm?%Ot?uAHf$U38hBl+b0K?hZ{oZn7XbSm z4z-j4%7g;AW=#D2c|Ts>f6T;h;k!^t9+YfS4oKwVEsPLo{Ifv&=913VTnP?y7tAVH zcShl!UltP+YbZxHt(a&wNlD4!Cg*botH$N{BvE*N_|!=y1*F_=x1VruFNa;62_Dq|_O!cUm%c)^=e#gf##u)PXFtHg#?Wu1uGc11%H;lP?*}zJgrrmE0f;WXWw@RRi zAi{$k9CYwnWoPslc^p^-HZ!#sdQi{Hm4@320BU4}v9Cxg3TZVC9&8^RMA+4cm$7<9 z1=Xp-*?41o4Ne_#a7BxCM%8zJpSdl3vf-NFZsi2*6%hP-9vR=E0qBR)4ps_`h1WJL z9(Yp-@$%(^CvebBT zd*$hkx!&;k^9AcS^+S*f09TW`M@bl11MzK>@TX*YaC0 zhsa#w_Wd4L!o~zNjZ_m;5kH?Xc=j+oYr+?lq8o#yJu-b3A83xTpv z)N9oetYj^#_MkI{wQeDY2@mH0{<#uFBGwlyR#T!8DWNu6?)Ab461wOVb7;Z3pC`=o zO4>d>05-vGU;rYFWf-i_eQ4WAG=}*MWb1|HuNMC#5*=xTK1?Y;1~NIEf`#2_iVSF{ zw0P(OBf&3IfP2l5uHl0R5jaaTkm?Bb zz(MFeN|;SxhX+8bjBf^3G>s#qxObSGh36ir*~SAUYM_kChLvR9d6{Y0TaK%aSa24A zf@Yy{y&LDG-5nCg@RAghN|x^gpV=<9z%gS3S9d2s$^w^VSH93OT3?Fn3Dnt~>*eZo zp`)WCK_#t(fdXa5jauGW0mnRKyMCTSQ}qCiGckZYi9Lfh`ifTSi{6W2{IA%p5--mY zQXJqs#Y7}NDux0WhDfTJAy8u|E8{dvXoCi8h~>k=zI8Bmo?ctv+#LB}@!U%Y2$SA* zd*u1SApsExxE_GFB`&`-toQLkz8fp=U(Y@Vn=Ba~1=qR|EC>+Zdx^pEH)b+rvGwCQ z?K(_Ll`&=zk-g>|8VLvfx2q@D!hkjcHMbp*ZV<2>`k_o%SeKemH_#Hxu;!3?8H^?( z;IN4CSp~6DR61XlTKOhYKDW2Gx0PU`qO9x9U4-*m#4n`4HD?S!gX6FcQZquK*2|tN z`FPxSGv?OG({QCa<*C^KAHi4^1N*o~14nP^A+Od5?lefeo$=fm@lj}xm+VdP%}h_f z0#O@qS+u}774g1?or~^n3)|3i@UXZ6+-`_ow}oO4$?1gX1JLGhfC$eP5I-rPYCtKL zY0(g1W!UlJ7~O>-eLK6{OP4OK!v$-;dJ^$32APd`VC(3D!;;nT&N?(JLvV$m>T&}t zXr|g^*k%qftpRH?6Ws3V8`$I5OvbTRT(TeG9M+0%B_GJHe1WpCzl z*=Z=4H^;m+U^Xb!EBKwT0PSf(v|e38LLB%k#Yw0Pm)cIc?O?+n4Lgk2k2=W1=Wr)` zr$AQZw0Mk~_HvR(u(#a)E!x(Q35Sh_d|+Q$-4#Y!v2zM&18;8M;}#8-!am4)pB4x6 z9N54RIG{mp3<@*Vnol;Q4@(0M<1fW|%TdL>WgY-+SR1UvEL7U9Lf|MAMdA_7e|`e+ zManIt!vCIOwOfu?8`uN3Jx*}AwU2|bQ)W#yYJP}T=$qa7G0+lqTyS@VKIQ@*^p5<2 zZ9Z^yXiRHK)LY?DX;?)Fm<}C1e%!^VpoDF|$0#bAt$B-pEqn`JrHq)jAUC+?U_UHS z!X^TUL;w^#Y*un&bczyvK4Xdx?Z z>*}&g#cPuf)vG7JOMWURE8Fo}@9hk&oX@+Do0)!Pv_Ec#e-7Tm^(FzmX^%#Mm^)pW zE*`mMs4`HF3@46u)u^K12!H~LF$=#$c4XvYh(Pg!5n!qxdM~!f#6N9YSZi`9l+4LR zgp-woh65eb>mE#L75!63Cz+y>?)P{$i6ze%&U68|?Z)-RTJP|&eDWB!2&HN3%}=+= zMsJIvPh!F%=Z&d#smuY+tAt%Vs?!{+hYb3s0MGclK{FiSLb5IQQMX@3?F2fifcA+v zeB#*|8xl|P&kFkQNbAhh$e}fAYP~oudW4>JozJRoiuFgl&3;wJ0hpr&k4y%JxUe1% z2N!Jv>=QEDIaDD$_pzUE$V8`FeM#Vk>sPN{^_aHx;-~jK4P&5P~4=G{f~1Wf%^H(CCJ z!&QBJqgz!=K$-A^A_rj1va!Sf$Y*Hc@B@xw;Zq&($j<5Tv)mE1N z3YaJld*n?T0QpGtLVEjk?_(}ZvD>nost7lgj2st9v1(gV*_#~9>$!aK7&>u%!X`kr zh&;q&=uduJMfu?a+O(8o+Prz{8?4zGNu#Pq{yp7QS);a}xluUaZQJ&(N#Pb>oo(C3 z;@+kewV;Dnd0=1`v(yBeF6W)^GdJlmc{LKuIO$?xAy8^-B1J_hK-J2uBkq{k@uQE< ziQ$@R{`G8J0E@OS=ohBA)GYvkp}oVlf8qhl=^Xvsf-5_fwwQJz8beI}on zjS%s+n>l=;^658rwE2O#?qt_ggdkybcj5QISJeHI>J=??e%5EU8}~PdvEVoS##NfH zc8aP}p(;MMdtM^c-K6bo?`YQ0i-5bfXdapumS+tuOx>-?7d#jag^lqYs2{Rf`FHLG$h4xi-|K z-k@2@-K5dWN9Yu$@T=W+7l(d2cvn9Yr>)bP|77r*lVo?rrk{_4hET>w8xCl$S5s5t zbyS>j=udbudzKHae;OHOT+(&7b22rI$t3OCT3WoJMz%+p3TW=f*OIjx#dDJ|vrfm3 zsVZ#t>!{1--p~rh08NtyzzvF7RUy#kDVeAXD0y20MqO{f4uVu(C-!CE!90I~IV>&+ zFWsZ{#Y{hRHfUF8uxt>Jj_E5RYVt@1>%6U|N4Ew7wzx2=_|$n53eH5zsCC`@*TYtH z@I}K*APP-v)(FCEAK}ulvZVFu(#Q_?G$~i>@VEZm$|HgL@a}fpc8Ql#qhLo!*WvW^ zU|n`y&@u_UXAvrcAf;^77c{-+H4VuRLMBH}pN?1csbn zq@?}(X2-jF*pxRm_|6U*!%HeRjWTbD*&Y(98GCC^X)T2Og>Wu#g8^PTBIo)NLQZuj zro2+_1d6RFbDhvA{S=SKlsAdTtjrSN;pmjc4JC$Yz%_Rr^hEI00peiaLO%# zHKHOT?KR-WX+g+y%=3KrRvykp8Qb41qZs{1p;Gyl=CIp#=-z4 zowQT%g2q*zNAt&x)YMd^LCI-xw<9_rg)MXh$GfOxXV#E@<`VaPhK33%fum7q?53%) z@(kp(Hc0jsp|bOaY3?o@AszgTeg!!bW?bb^G>a96!Y_}Kwe=S{%{v_*iiI>$t-ik} zfWQ&5pN2IANJCFgK<=+O(uu5S+9$aS_&W4@kBkDwr+AHLz(vb?kE7A0x) z#b=1I+go0Zg%GwI4o_GfK%r}_7D~Mv7Ktf_MBPb1ua$w8tg75b^G%I|uGWED4rE}& zut$asmk*JV&9ObBR#;H)9Al}g>m6;$1vq{QIBSo4zuef=bgP{KE|7YzpXVMHVZ_im zU(s|$QfrA6eilHQH|gYz;@TB(Xvfgi?-Uf=L%hDed>S=wmNNIDlP|KZP zJq}B4VcBNly*Pr-8-YpZB!vBr(I#DfWXnkyLYUeY*W#4;q^;mA-VQ~8Wvoo&)?-ZC zVO8@COWI9!YyQdt*~N?Pm##nhqCFpB_T?yheka2jMpTg_3X}q$IMSS{-dN`>_Sp`j zho-Sxx+Wpi7=b&~Xex?UJr6ei)RIrRjb6Czi4za-tc-|py-7D$^(Yuxb!S#qmJu9V z|0AcF#6T>YXLe?x{N~a~r<BlNVmz+nIY;4XjS!-;=sje;P{LBa75Mj zrw|cej*-c5sMS5h20EE5h%7Kh4WY?*yu87CO=s-lfbq-YZ7QZ49EVKeQgWxwK6tv? zuJ)_OSkB}{7^ezw>b1UZWA6hCOq{Qlc_|e`c{5jR*9)@1uNh|*^Xa{CKe3X6jUj9; z>bs5KuKm>H`1pql^RxQCV??uKZ3s&Knk)YFVrCXSy%c`7-Q6BB`#eJJlst8j86UPpMf#bcjny-HWvCfUnzy3a4cl-YwO4+c)%;QV??UBGF~E7t0X=KgWJad z3lQks&%?u2=OjV1(*oQ!DP`|Ca3Mpov$M<2o`)i4(LHF?tubfa9Ktfl2nU$4r*XW* zMIaZ(>v`k&z4;&(30)T=8(vW@u%Z*e?%R;J2Z}~&rTb8AY{4d@ZcZGgGRba66nG## zJ2#+i5(h@#B8fNP2a+|6g?(AvVMfJmGceeR9l2TgVkq6Lj$vFvhG?Cz44N7Wg@SP( zu`&!pNJG^<{U$XkVD#gC(v0x9KOM^Juh$w?E{(TKUsFo_p})}Dx@MTRt@V#y8VgSB z2HT>2Z|MWeS|O62q1^x#2PXj0|*owP|~4k(_*8Mu{*FRI=G;qfH-Wp63Cl`E_AOZ zJo$Sv-6_wIo*)uE=^ujuP~#qlPudr*JMbED{x>ijq(#Dz2D3z+6R3v7Hz;%QJc!P5 z3%HlB(VULc)F)^T1|Tu6$c+S(S5x3DcN0Pa=}RI8Gk%U57)Uza`CeG75NIAjRstFX ztxiU3$45-XI1GS>r??b@j>%zY7LT%G-~Se4&~qC1J0HQ(hXCyE;AzC4dhp=E2c%=j zsepjOy*S1Wy*?`_kQZBw%{g33#Q2B%WZ<72B0CoFU8=eGC1H3t(l(%H4N2mhepgbA zEX}dzCQf^#rDEx}&aSQ$TtKPFh7g4s453=#DhVguyO)4bAjrW-uRf0g73uEd_+agl z%ezsJ)35;71|b=OF{vKS_aKEV^UWv!sI^odZyWi{xI59bkOPi;3jz-oG?AV>(%p-X zg2gko%QS6^o}@F&R{lAUaz^%!f7h3VGpvSvyQHL~)={bEfHJHkz#+0>4@Q;xi<55) zj58LJ|7p&Q?EFPa>i`il?Vj6W*!^)QrzDuVCzAIs!*_zLusrJJ" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import numpy as np\n", - "import seaborn as sns\n", - "import matplotlib.pyplot as plt\n", - "\n", - "# Data from the tables\n", - "orkgsyn_data = np.array([\n", - " [4.85, 4.71, 4.69, 4.80],\n", - " [4.92, 4.89, 4.87, 4.88],\n", - " [4.81, 4.77, 4.75, 4.78],\n", - " [4.84, 4.75, 4.72, 4.81]\n", - "])\n", - "\n", - "bioasq_data = np.array([\n", - " [4.82, 3.39, 4.82, 4.82],\n", - " [4.85, 4.48, 4.80, 4.84],\n", - " [4.83, 4.72, 4.80, 4.78],\n", - " [4.82, 3.54, 4.65, 4.78]\n", - "])\n", - "\n", - "# Labels for the heatmaps\n", - "models = [\"Qwen2.5-72B\", \"LLaMA-3.1-72B\", \"LLaMA-3.1-8B\", \"Mistral-Large\"]\n", - "\n", - "# Create subplots\n", - "fig, axes = plt.subplots(2, 1, figsize=(4, 6))\n", - "\n", - "# ORKGSyn Confusion Matrix\n", - "sns.heatmap(orkgsyn_data, annot=True, fmt=\".2f\", cmap=\"Blues\", xticklabels=models, yticklabels=models, ax=axes[0], annot_kws={\"size\": 7}, cbar=False)\n", - "axes[0].set_title(\"ORKG-Synthesis\", fontsize=9)\n", - "# axes[0].set_xlabel(\"Synthesizer\", fontsize=8)\n", - "# axes[0].set_ylabel(\"Evaluator\", fontsize=8)\n", - "axes[0].tick_params(axis='both', which='major', labelsize=6)\n", - "axes[0].tick_params(axis='x', rotation=0)\n", - "\n", - "# BioASQ Confusion Matrix\n", - "sns.heatmap(bioasq_data, annot=True, fmt=\".2f\", cmap=\"Blues\", xticklabels=models, yticklabels=models, ax=axes[1], annot_kws={\"size\": 7}, cbar=False)\n", - "axes[1].set_title(\"BioASQ\", fontsize=9)\n", - "# axes[1].set_xlabel(\"Synthesizer\", fontsize=8)\n", - "# axes[1].set_ylabel(\"Evaluator\", fontsize=8)\n", - "axes[1].tick_params(axis='both', which='major', labelsize=6)\n", - "axes[1].tick_params(axis='x', rotation=0)\n", - "\n", - "# Adjust layout and show the plots\n", - "plt.tight_layout()\n", - "plt.savefig(\"images/confusion_matrix_vanilla_v2.pdf\", format=\"pdf\", bbox_inches=\"tight\")\n", - "plt.savefig(\"images/confusion_matrix_vanilla_v2.png\", format=\"png\", dpi=300, bbox_inches=\"tight\")\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "c33d8b53-0bc3-4d45-9ee0-729c9071f61b", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "456bcc74-21db-467b-8901-57bdae1a784f", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.16" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/experiments/notebooks/plot-line-chart.ipynb b/experiments/notebooks/plot-line-chart.ipynb deleted file mode 100644 index db62db3..0000000 --- a/experiments/notebooks/plot-line-chart.ipynb +++ /dev/null @@ -1,209 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 6, - "id": "1cc0b872-8de2-45d6-86a9-28e2bc784d8d", - "metadata": {}, - "outputs": [], - "source": [ - "import os\n", - "import json\n", - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "import pandas as pd\n", - "from sciqaeval import config\n", - "import math\n", - "\n", - "def load_data(file_path):\n", - " with open(file_path, 'r') as f:\n", - " return json.load(f)\n", - "\n", - "def compute_averages(data, criteria):\n", - " averages = {eval_type: {criterion: [] for criterion in criteria} for eval_type in [\"original\", \"extreme\", \"subtle\"]}\n", - " for entry in data:\n", - " eval_type = entry[\"eval_type\"]\n", - " quality = entry[\"quality\"]\n", - " rating = entry[\"synthesis_evaluation_rating\"]\n", - " if quality in averages[eval_type]:\n", - " if not math.isnan(rating):\n", - " averages[eval_type][quality].append(float(rating))\n", - " for eval_type in averages:\n", - " for quality in averages[eval_type]:\n", - " if averages[eval_type][quality]:\n", - " averages[eval_type][quality] = sum(averages[eval_type][quality])/len(averages[eval_type][quality])\n", - " else:\n", - " averages[eval_type][quality] = 0\n", - " return averages" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "83aefc6d-2e78-4b34-9f05-5e4a5a9537a1", - "metadata": {}, - "outputs": [], - "source": [ - "criteria = config.criteria\n", - "\n", - "dataset1 = load_data(\"dataset/BioASQ/BioASQ_test_meta-llama-3.1-70b-instruct_refactored_dataset.json\")\n", - "dataset2 = load_data(\"dataset/ORKG-Synthesis/llm4syn_test_meta-llama-3.1-70b-instruct_refactored_dataset.json\")\n", - "averages1 = compute_averages(dataset1, criteria)\n", - "averages2 = compute_averages(dataset2, criteria)\n", - "averages = [[averages1, averages2, 'Vanilla LLaMA-3.1-70B', 'gainsboro']]\n", - "\n", - "dataset1 = load_data(\"dataset/BioASQ/BioASQ_test_mistral-large-instruct_refactored_dataset.json\")\n", - "dataset2 = load_data(\"dataset/ORKG-Synthesis/llm4syn_test_mistral-large-instruct_refactored_dataset.json\")\n", - "averages1 = compute_averages(dataset1, criteria)\n", - "averages2 = compute_averages(dataset2, criteria)\n", - "averages += [[averages1, averages2, 'Vanilla Mistral-Large', 'gainsboro']]\n", - "\n", - "dataset1 = load_data(\"dataset/BioASQ/BioASQ_test_qwen2.5-72b-instruct_refactored_dataset.json\")\n", - "dataset2 = load_data(\"dataset/ORKG-Synthesis/llm4syn_test_qwen2.5-72b-instruct_refactored_dataset.json\")\n", - "averages1 = compute_averages(dataset1, criteria)\n", - "averages2 = compute_averages(dataset2, criteria)\n", - "averages += [[averages1, averages2, 'Vanilla Qwen2.5-72B', 'gainsboro']]\n", - "\n", - "dataset1 = load_data(\"dataset/BioASQ/BioASQ-test-refactored-dataset.json\")\n", - "dataset2 = load_data(\"dataset/ORKG-Synthesis/llm4syn-test-refactored-dataset.json\")\n", - "averages1 = compute_averages(dataset1, criteria)\n", - "averages2 = compute_averages(dataset2, criteria)\n", - "averages += [[averages1, averages2, 'Vanilla LLaMA-3.1-8B', 'teal']]\n", - "\n", - "dataset1 = load_data(\"assets/sft-bioasq-org-test.json\")\n", - "dataset2 = load_data(\"assets/sft-orkg-synthesis-org-test.json\")\n", - "averages1 = compute_averages(dataset1, criteria)\n", - "averages2 = compute_averages(dataset2, criteria)\n", - "averages += [[averages1, averages2, 'SFT (benign)', 'orange']]\n", - "\n", - "dataset1 = load_data(\"assets/rlhf-bioasq-adv-test.json\")\n", - "dataset2 = load_data(\"assets/rlhf-orkg-synthesis-adv-test.json\")\n", - "averages1 = compute_averages(dataset1, criteria)\n", - "averages2 = compute_averages(dataset2, criteria)\n", - "averages += [[averages1, averages2, 'SFT (benign) + RL (adversarial)', 'tomato']]\n", - "\n", - "dataset1 = load_data(\"assets/rlhf-bioasq-adv-org-test.json\")\n", - "dataset2 = load_data(\"assets/rlhf-orkg-synthesis-adv-org-test.json\")\n", - "averages1 = compute_averages(dataset1, criteria)\n", - "averages2 = compute_averages(dataset2, criteria)\n", - "averages += [[averages1, averages2, 'SFT (benign) + RL (benign + adversarial)', 'yellowgreen']]" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "id": "4240a124-7f9c-47a3-a832-10252ba0e02b", - "metadata": {}, - "outputs": [], - "source": [ - "def plot_results(averages, criteria, dataset_name1, dataset_name2, font_size=12):\n", - " criteria_abbreviations = {\n", - " \"Coherence\": \"Cohr\",\n", - " \"Cohesion\": \"Cohs\",\n", - " \"Completeness\": \"Comp\",\n", - " \"Conciseness\": \"Conc\",\n", - " \"Correctness\": \"Corr\",\n", - " \"Informativeness\": \"Info\",\n", - " \"Integration\": \"Integ\",\n", - " \"Readability\": \"Read\",\n", - " \"Relevancy\": \"Relv\"\n", - " }\n", - " fig, axes = plt.subplots(2, 3, figsize=(10, 5), sharey=True) \n", - " eval_types = [\"original\", \"extreme\", \"subtle\"]\n", - " dataset_names = [dataset_name1, dataset_name2]\n", - " legend_handles = [] \n", - " legend_labels = [] \n", - " for average in averages:\n", - " avg = [average[0], average[1]] \n", - " title = average[2]\n", - " color = average[3]\n", - " \n", - " markers = {'Vanilla LLaMA-3.1-70B':'*', 'Vanilla Mistral-Large':'+', 'Vanilla Qwen2.5-72B':'^'}\n", - "\n", - " marker= markers.get(title, 'o')\n", - " for i, dataset in enumerate(avg):\n", - " for j, eval_type in enumerate(eval_types):\n", - " ax = axes[i, j] \n", - " line, = ax.plot(criteria, \n", - " [dataset[eval_type][c] for c in criteria], \n", - " marker=marker, \n", - " linestyle='-', \n", - " linewidth=0.9,\n", - " color=color,\n", - " markersize=font_size-5)\n", - " ax.set_title(f\"{dataset_names[i]} - {eval_type.capitalize() if eval_type!='original' else 'Benign'}\", \n", - " fontsize=font_size)\n", - " ax.tick_params(axis='both', labelsize=font_size - 3)\n", - " ax.grid(True, linestyle=\"--\", alpha=0.15)\n", - " # ax.set_yticks([1, 2, 3, 4, 5])\n", - " ax.set_xticklabels([criteria_abbreviations[crit] for crit in criteria], rotation=0)\n", - " legend_handles.append(line)\n", - " legend_labels.append(title)\n", - " \n", - " fig.legend(legend_handles, legend_labels, loc=\"upper center\", ncol=7, fontsize=font_size-3, bbox_to_anchor=(0.5, 0.97))\n", - " plt.tight_layout(rect=[0, 0, 1, 0.95])\n", - " plt.savefig(\"images/results_plot.pdf\", format=\"pdf\", bbox_inches=\"tight\")\n", - " plt.savefig(\"images/results_plot.png\", format=\"png\", dpi=300, bbox_inches=\"tight\")\n", - " plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "id": "8ac306d9-1c34-4cd6-94ab-b26499b1e45e", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/tmp/ipykernel_803013/3035001349.py:41: UserWarning: FixedFormatter should only be used together with FixedLocator\n", - " ax.set_xticklabels([criteria_abbreviations[crit] for crit in criteria], rotation=0)\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA94AAAHmCAYAAACF21bCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydZ5gUxdaA3548m3OGXVgykpMoSBAJCooogqKioojXrNec9aofXtM1XDHgVTGLiqIgSYLkjOQcNucwuzu5+/vRO+POzmyeDWC/zzPP7Nb0dJ+qrj5Tp86pU4IkSRIKCgoKCgoKCgoKCgoKCgrNgqq1BVBQUFBQUFBQUFBQUFBQOJdRDG8FBQUFBQUFBQUFBQUFhWZEMbwVFBQUFBQUFBQUFBQUFJoRxfBWUFBQUFBQUFBQUFBQUGhGFMNbQUFBQUFBQUFBQUFBQaEZUQxvBQUFBQUFBQUFBQUFBYVmRDG8FRQUFBQUFBQUFBQUFBSaEU1rC3CuIkkSVqu1tcVQUFBQUFBQUFBQUFCoN3q9HkEQWluMcw7F8G4mMjMzKS0tbW0xFBQUFBQUFBQUFBQU6k1ISAiJiYmtLcY5h2J4NwMOh4PS0lIiIyMJCQlpbXEUFBQUFBQUFBQUFBTqpLS0lIKCAmJjY9FoFFPRnyit2Qw4HA4AgoODMRgMrSyNgoKCgoKCgoKCgoJC3UiSREFBAQ6HQzG8/YySXK0ZUdZGKCgoKNRMemkpq0+eJF1ZltP2qUiHnNXyu0L9KcyDQ3vkdwWFBlBmyyHTtI0yW05ri6LwN0OxX5oPxfBuJSoqKjh+/DgVFRUN+t6UKVOwWCwA7N27l0ceeaTO7/z888/88ccffPLJJ/zyyy/u99q4+uqra/2/Ot26dePrr78G4O2332bYsGHuz66//npefvllr+/Mnz+f2bNnc+mll3L8+HGPz5544gm6dOlCWVmZR7nD4WDOnDnMmTOHTp06cfjwYTIzM5kxYwY33ngjq1evBqBTp07cddddXHXVVZw5c6ZW2RuDw+GgsLDQHd1QH1rq3tV0Lx566CGvY9esWcM777zjUSaKotdxvq5bV5+o7XzNTXl5OadOnaK8vLxB32upe7Rq1Spuvvlm7rvvPh577LEGyVidwsJCbrrpJm677TYeeOABj8/WrFnD8OHDmTNnDmvWrPH4bNGiRcyZM4fp06dz7bXX+jzPTTfdxO23387NN9/M/PnzmyRndebv3Enym28y+rPPSH7zTebv3Fnv7/7d9SDAPffcw6233srUqVMpKyvj2Wef5brrruP222/nxRdfrFXOBnN8PixKhlWj5ffj9esL+/fv57rrruOee+7hlVdeASA1NZU5c+bwyCOP8OKLLzJnzhx32dKlS93fdTgc/OMf/wDqr2uq4kvf1cRdd92FzWZr8DXq5I/f4JEb4dVH5Pc/fqvX186Fdvv11199lk+YMIG77rqLK664gj179tQq59GjR931r4n6PMfVkSSpXseJosi8efO8nkv467czOzubp556qkHXrw+H8hfx9b6J/Hp0Dl/vm8ih/EX1+p7Sd2RcfefUqVP885//rLdcLhpSl+rUJH9tNLS9GzKuysjI4I033qj1us2mAxW8UOIHmhFJkrDb7V7leXl5mM1mALKysjAajURHR3sdp9FovGadrrrqKr7//ntmzJjBxx9/zM0338yTTz5JcXExffr04bbbbmPYsGFMmTKF7du38+qrr1JYWIhK5T3Hsn//fr744gtycnK49dZbGTp0aL3qVVFRwUsvveRxzZ49e7Ju3TqmT5/Ovn37iIuLc9cvNjaWvXv3IkmSR31mzZrFrFmz+PHHH9m5cyepqanuz1588UUyMjJ8tsm8efOw2WxMnTqVrl278sILL/Doo4/Ss2dPrr/+ekaNGkXfvn155513+Oabb9izZw/t27evV92qIkmST8Pa6XRiNpspKipCEASMRiNqtdqnrFXr21L3rqZ7cfLkSWw2GzNnziQpKYkLL7yQffv2sXHjRsLCwjh27BiFhYX069ePmJgY1q5dS25uLq+//nq92uuFF14gPz+fuLg4HnvsMSZOnMgFF1zAoEGD+Pbbb4mJiWHTpk289dZbZGVl8euvv2I2m7nqqqsYO3Zsva5RlZrujyRJ5Ofn43Q6KSgoQKvV+py9ba3nS5Ik3nrrLRYtWoQgCHz66acsWrSIn3/+mfnz5zN27FieeeYZNm/ezJgxYzh8+DCbN2+mtLSUu+++m0WLFmEymdBoNHTr1o2bb76ZTz75BICpU6ciiqJbHkEQCAoKwmKxkJSU5CHf5MmTmTx5Mm+++Sbdu3cnIiLC6zwAr732GkajkVtuuYVZs2Y17CYBDlH08mhnmUzM/uUXxMoBsChJ3P7LL/SIjiY+ONjj2KSQEDTV2vfvrgcBcnNz+frrr3n55Zc5duwYAI8//jjnnXce119/fb3q4IXo8PZom7Ngy2zANdATYevtENIDjPGexwYkgeqvYcXy5cu54YYbmDBhgrusX79+zJs3z+NrV199tVfZkiVLGDlypLuuTz31FIcPH+aNN94gNzeXTz75BIfDwdChQ0lKSuL1119n2LBhZGVl8cYbb3Dy5EkA3njjDc6cOUNJSQn9+/cnKCiItWvX0rFjR1QqFU888QRjx45l0aJFXHPNNY1rN6cTiqp5tEsK4bP/gMvIkyT47C1IaA+hEZ7HhkdDld+Qc6HdvvvuOy677DKv8sDAQN555x02bdrEmjVr6NOnT43NOm/ePB5++GGfz9qjjz6KJEkcPnyYW2+9lWuvvZbPP/8ck8nEww8/zBNPPMFrr72GJEmkpqYyefJkZsyYwaRJk0hNTWXx4sXExsbywAMPsHPnTo/fu59//pmVK1cycOBAiouLMZvNbNiwgcWLF5Odnc2TTz7pljEuLo6MjAxsNhs6na7GutSEKDkot+V6lFXY8/njzL8Aue9IiKw/8yLhho4EaKM821MXg0o4t545f/Yds9nM5s2beeKJJ8jKyuKjjz7iu+++q/M31VWX2267zWPs8uqrr9K5c2cyMjKYPHmyz7FLTfJ//vnn7Nq1C5PJxLvvvsumTZv44IMP6Ny5MwCfffYZ4eHhTJo0iZtvvpm3336b//znP+Tn52MymXjjjTe49tprueCCCxgwYACffPKJeyw3ePBg3n33XQoKChg/fjyTJ0+mZ8+e3HDDDUyZMoWMjAyfz5GLJutAhXqjeLybEafTyZkzZ7xeLqPbhdls9nmcL6Piqquu4scff8Rms3H69Gk6d+6Mw+EgIiKCb7/9FpDXlj/wwANce+21rF27tkb5dDodFouF2NhYFixYUO96CYLgdU1BEGjfvj0//PADAwYMcB/76aefcu211zJ06FC3N7oqjz32GO+++269B7suFi1axBVXXAFAeno67dq18xhU79mzh3vvvZePPvqIQYMGNejcLhwOh8/7kpGRQWFhISB7GzMyMup1/1rq3tV0LwCsVivl5eVMmDCBiRMnMmzYMC699FL3QH3atGncfPPNqNVqRFHEbrezcuXKOttKFEVEUSQkJIQffvjBXfbwww8TFxdHUlISL774It27dwfgrbfeIiwsjPj4eLZu3Vrn+X1R0/1JS0tzt73dbictLa1NPV95eXm0a9fObXwNHjyYnTt30qNHD7Zv306XLl1Yt24df/75J7179+add94hNDSUmJgYd1tdc801zJ07l+XLl7vP+8cff9CtWzeP52D48OEsXbqUuXPn8swzz/iUc8WKFVxyySU1nueRRx7h6quvbtTkCMjh5B3+8x+P1wUff+w2ul04JYkLPv7Y61hfYeiKHpSjeiZMmMCmTZs477zzAJg7dy7XX3+9+/8GU5EOP3fwfK24gL+M7kokp1xe/dhqRvusWbNYv349s2bN4v333wdg165dzJkzx2vQX51169bRt29fANRqNS+88AIPPfQQn332Ga+//jrh4eFER0eza9cuAC688EIefvhhsrOzPc6zfv163njjDQ9DZPz48Tz11FPs27cPgP79+/u8L/WmKA8evcnz9fIDfxndLiRRLq9+bDWj/Wxut1deeYU5c+awadMm5syZ4xUpU15ezp133skdd9zB9OnTa63L0aNHiY2N9XrWSkpKyM7OZu7cue5n5pJLLmH58uUsXLiQq6++mv/+978YjUYiIyPZu3cvAD169ODRRx/FYrGQnJzMbbfdRnx8vM/fuwkTJnDfffe5ZdHpdNhsNgICAty/cS46duzobs+GUm7L5ev9kzxePx+5GZfR7UJC5OcjN3sdW91oV/qOjKvvAHTu3Nk9/tiyZUu9f1P37t3rNXYBuPXWW5k7dy7ff/99g+QH0Gq1ZGRksGvXLt577z0++ugj5syZA8iRXD/++CMmkwm1Wk1aWhrr1q0jNDQUrVbLwYMH3eOqCy64wGMsp9FosFqtxMbG8sUXXwCQkJDAo48+6p4Q8vWb5aLJOlCh3ige72ZErVb79LRaLBZyc/9SljExMT6TsPlKaGAwGIiPj+eNN95g8uTJLFmyhB49enDjjTcyatQoQJ4VBPkBr20v8bfeeouHHnoISZJqHJT7wtc1QQ6lHDp0KPv373crrx9++IFTp05RUVHB9u3bqaioYOXKlcyaNYtevXrx8ssvs3XrVubPn1+rDG+++SanTp3i5Zdfxmg08vXXX7sHyUlJSaSnp3tkkO/Tpw//+c9/yMrKYu7cuTWG2dSGRqPxef9cHu/CwkIiIiJq9XhXpSXvna97AbIxsmDBApYvX85dd93Fdddd5/G90NBQAN577z1++uknPv30U4/lEJ999hk7d+70CsPatWsXgiDwwgsvsH79egACAgK82sBlbIqiyJNPPtmkpB2+7o8kSWRlZXkY1Vqtlri4OC/vdms9X1FRUaSlpbn/3759OwkJCQwcOJAXX3yR22+/nd9++w2VSoVKpcJoNPLss8+6j3/22WfdMrhCJtesWcPixYt59dVXPWRwGc/h4eFYrVYOHTrEvHnzGDFiBFdeeSXr169nyJAh7uN8nWfu3LkEBQUxbdo0ZsyYUWN9ayIpJIST997rUZZlMjHsf//zML7VgsAfN9/s0+Ndnb+7HnzwwQfJzMxk6dKlfPHFF+5Q20ceeYTzzjuPO+64g6KiIsLDw+tdH0D2WF9+0rPMnAUrhuFhfAtqGPOHb493FUJCQtxh75dddhm33XabT++bL0pLSwkLC/Mocz3DNpuNe++9112/NWvWeD0T1an6/Fc/Njw8vGnbf4ZHw/994llWUgj/96Cn8S2o4NFXfXu8q3A2t9vDDz8MyMtUfMkbGBjIu+++y+LFi1myZAk333xzjXVx6SVfz5rLmNDr9YDswX3ggQcwm8189tlnrFixghtuuIHevXsDcOrUKffv2w033MDRo0d58803ufrqq33+3rmOdTF37ly++uorNm7c6GWgNKX/BOpimN5zsUdZhT2fn4/cQlXjW0DFpC7zfXq8q6L0HRlf0U0ueerzm1pXXVyGbkPk//bbb/n555957rnnqKioQKVSodFo3H04KCgIlUrFp59+ypQpUxBFkZ49e3rI6hpXVR/Lde7cmcsvv5whQ4a4nVLV+3BNv1ngBx2oUG8Uw7sZEQQBrVbrVa5WqwkMDCQwMJDy8nICAwN9KomauPnmmxk7dixpaWlkZWXx6KOPkpWVhdPpbJB8o0aNYu7cue5ZwaqcOXPGPQt3zz33uGdMXdd/7bXXvK6ZlJTEiRMn3HVet24dV155pXsN64wZM7jwwguZOHEiIM8OpqWlUVRUxJNPPkl6ejrvvvsuL7/8Mq+//jqbNm3ivvvu4/nnn/eYeT5x4gQxMTFuRTlr1iweffRRNBoNt956KwC7d+/mrrvuoqioiJtuuqlB7eKipvun1WrRaDRIkkRwcHCDjMeWuHfgfS9cZGVl8dJLL6FWq+nZsyddunTh9ddfd7elix49evDiiy9y8OBBxowZ4y6/8cYbufHGGwHPPnLHHXewZ88eXn31VfLyPL03vXr14u233+bJJ59kz549BAUFudenRkREMHDgQK8JgPrg6/44nU6vtnQ4HKjVap+TI75o7nukUqm466673IOGkydPsnjxYgICAli/fj0LFixg2bJlbs/D9ddfz+zZszEajT7D13Jycpg2bRqTJ0/mjjvu4I033uC9995j1KhRnDx5kmXLllFcXMxdd91Ft27dePPNN93f/fjjj3n++edrPA/Agw8+WOMkYn3QqFSkVBvMpYSF8cHEidz+yy84JQm1IPD+xIkMbdeu3uf9O+tBSZJQqVT84x//IDs7m7fffpvdu3fz0ksvERERgc1m8xp01QuVBoJSPMuCUmDIB3J4ueSUje7B70N03d75RYsWsWzZMjQaDT169GjQ71znzp05deoUMTExOJ1OnnzySY4ePcrrr7/OuHHjuPvuu4mNjSUlJYVevXrVeJ7hw4dz//33U1BQwOjRo30ec/z4cbp06VJv2bxQqyEqzrMsKg5uvBcWvAWiCCoV3HAPpPao83R/h3abNGkSV1xxBddee63Hc/Xcc8+5n0WtVoskSfTr18/j+Q4NDSU+Pp7XXnuNDRs20KlTJ0JCQnA4HCQkJKBWq7nrrrt4/PHHiY+PJzg4mJkzZ7qvvXDhQjZv3kxxcTFJSUk1/t5VZcSIETzzzDOUl5d7TWgdP37c/Tw3FJWgIVif4FEWrE9gePsnWX/mRSREBFQMa/8EsUG96zyf0nc8+w7AkSNHePzxx8nOzuaBBx6o8zfVha+xS1OIj4/nlVdeYevWrYwYMYLbb7/dHRXoYsqUKdx1110cOXIEjUaDSqVyTyg9/vjj7uOqj+UGDhzIvHnz2LBhQ41LHqo/R1Vpsg5UqDeCVN8sEwr1xmKxcPLkSTp06KBsJ6aggJxA6ujRo1gsFg/DrzmwWq0ePypqtdo9o9zWOHjwIO+++y5vv/323zKLaHppKccKC+kUEeHTs63QhqhIB9MxCO7k5dluDjIyMpg/fz5PP/10k87z+++/s3LlSjIzM3nttdeIjIz0OubFF1/kqquuolu3bk26lk8K8yA3E2ISIMI7l4u/OWfaDXmtbHh4eI3GcFtAkiRmzpzJZ5995vdzl9lyKLWmEaJvR5DO9yS7P1H6jjctOXZpTarfD8WOaT4Uw7sZUDqsgoKCgoJC01i2bBnjxo1r9ussWbKESy+9tNmv01KcK+0miiKrVq3yyEHR1sjNzSUtLc0rn8rZitJ3/p5Uvx+KHdN8KIZ3M+DqsCkpKRiNxtYWR0FBQUFBQUFBQUFBoU7MZjOnTp1SDO9mQFnj3Qy41vyaTKa/ZfiogoKCgoKCgoKCgsLZh8lkAnwnoVVoGkqLNgMajYaQkBAKCgooKChobXEUFBQUFBQUFBQUFBTqRUhIiGJ4NwNKqHkzIUkSNputxq0JFBQUFBQUFBQUFBQU2hKCIKDT6ZSo3WZAMbwVFBQUFBQUFBQUFBQUFJqR+m/wp6CgoKCgoKCgoKCgoKCg0GAUw1tBQUFBQUFBQUFBQUFBoRlRDG8FBQUFBQUFBQUFBQUFhWZEMbwVFBQUFBQUFBQUFBQUFJoRxfBWUFBQUFBQUFBQUFBQUGhGFMNbQUFBQUFBQUFBQUFBQaEZUQxvBQUFBQUFBQUFBQUFBYVmRDG8FepFSkoKXbt2pW/fvnTv3p3rrruO8vJyAH7++Wfuv//+ep/rmWeeQa1Wc/r0aY/ytWvXMnToUPr27UuPHj248MILycnJcX/+ySef0KtXL7p3705qaioPPfQQVqvV7/VpLA1tBwUFhbbPuaz7XK+9e/fW+p3du3fz9ddfN+p6CgoK5zbnmo784YcfGDBgAH379qVbt26MHj0aURTr/N7IkSNZtGiRz88++eQTDh065PH/5MmTGyWfwlmOpKBQD5KTk6Vdu3ZJkiRJTqdTuvTSS6V33nmnwedxOp1S+/btpdGjR0vPPPOMu9xut0vh4eHSjh073GWHDh2STCaTJEmS9P7770vdunWTTpw4IUmSJJWXl0tTpkyRrrnmmlatj4KCwrnNuaz76sv//vc/6Yorrqjxc7vd3ihZFBQUzn7OJR2ZmZkpRUZGSqdOnXKX7dixQxJFsc7vjhgxQvrxxx/r9VldOlXh3EXxeCs0GJvNRkVFBeHh4YD3zN2///1vevbsSa9evZgxYwYlJSXuz1asWEFsbCyvvvoq//vf/9yziCaTidLSUuLi4tzHdu3alaCgIACef/55XnvtNTp06ABAQEAAH3zwAYsXL+bw4cN+rQ/Aq6++yuDBg+nfvz/jx493z74+++yzTJs2jUmTJtGjRw9Gjx5NYWGhz3Z45pln6NSpE4MGDeLJJ58kJSUFgFOnThEWFsYzzzzDgAED6NSpE0uWLGlSHRQUFJqfc033VeXw4cMkJSVx4sQJQNaB48ePJzc3l6effprVq1fTt29f5syZA4AgCDzzzDMMGjSIxx57DJPJxG233cbgwYPp3bs3s2fPxmazAbIn6MEHH+Siiy6iffv2PPXUUyxZsoRhw4aRkpLC66+/7pbj6NGjXHbZZQwaNIjevXvzzjvv+K2OCgoKzcvZriNzcnJQq9VERES4y/r3748gCIDs3d+9e7f7s4EDB7JmzRr3/6tWrWLQoEF06tSJBx98EEmS+Oijj9i+fTv3338/ffv29TneW7BgAUOGDKF///5cdNFF7Nmzp0FyK5xFtLblr3B2kJycLHXp0kXq06ePFBoaKo0ePdrt5ag6c7dkyRKpW7duUlFRkSRJknTbbbdJc+bMcZ9n6tSp0nvvvSdJkiT169dPWrZsmfuze++9VwoKCpImTJggPf/889Lhw4clSZKknJwcCZAKCwu95Ordu7f09ddf+7U+X3zxhXTrrbdKDodDkiRJ+uyzz6RLL71UkiRJeuaZZ6Tk5GQpPz9fkiRJmjZtmvTSSy95tcMvv/wi9ezZUyotLZVEUZRuuukmKTk5WZIkSTp58qQESAsXLpQkSZKWLl0qdenSpcF1UFBQaH7OZd3nelVUVEiSJElffvmlNGDAAGn16tVSSkqKlJub61VPF4D03HPPuf+/7bbbpE8//VSSJEkSRVGaNWuW9Morr0iSJHt7rrrqKsnhcEiFhYVSSEiIdOedd0qiKErp6elSYGCgVFRUJDkcDmnAgAHSwYMHJUmSPVe9evWStm7d2uB6KigotAznko50Op3SlClTpPDwcGny5MnSK6+8IqWnp3vUtWrEkEtfSpKs50aPHi3ZbDapvLxcGjBggPTFF1+4P6vJ471+/XppwoQJksVikSRJktatWyf16NGjQXIrnD0oHm+FevPNN9+we/du8vPzSUlJ4ZFHHvE6ZuXKlUybNo2wsDAA7rjjDlasWAFAQUEBy5cv59prrwXglltuYf78+e7vvvnmm+zbt49rrrmGI0eO0K9fP9avX1+nXEaj0a/1WbRoEStXrnSv8XnllVc4c+aM+3vjx48nMjISgKFDh3L8+HGvc69atYqpU6cSHByMIAjMmjXL43ODwcCUKVNqPYeCgkLb4FzVfa6X6zzXXnst/fv3Z9y4cSxYsIDo6Ohaz3PLLbe4/160aBH//ve/6du3L/369eOPP/7g2LFj7s+vvvpq1Go14eHhdOzYkYkTJyIIAomJiURHR3Pq1CkOHz7M/v37mT59On379uWCCy7AZDJx4MCBRtVTQUGhZThXdKRKpeL7779n48aNjB8/ng0bNtCzZ08PXVYbN954I1qtloCAAK6//npWrlxZ53d++ukn9uzZw5AhQ+jbty933303hYWFmM3mBsmucHagaW0BFM4+NBoNV111FQ899BCvvfZarce6wnNADqVxOBz06dMHAKfTSUFBAQUFBW5DNjk5mZtuuombbrqJwMBAvv32W9566y0SExPZtGkTl156qft8BQUFnDx5kkGDBnld94ILLqCiogK9Xs+WLVsaVB9JknjssceYPXu2z+MNBoP7b7VajcPhqPX81dsBQK/Xu8vUajVOp7POcygoKLQu55ruq47D4WDfvn1ERESQkZFR5/GuUE8ASZL4/vvv6dKli89jq+tNX3pUq9USERHhEcqpoKBw9nCu6Mhu3brRrVs3br/9dsaPH8/PP//MAw88gEaj8RivWSyWetexJiRJYubMmbz00kt1Hqtw9qN4vBUaxe+//07Xrl29yseMGcO3335LaWkpAO+//z5jx44FYP78+SxcuJBTp05x6tQp0tLSmDRpEp9//jllZWUsXboUSZIAMJvNHDx4kNTUVACeeOIJHnzwQU6ePAlARUUFs2fP5p577iE+Pt5Ljo0bN7J79+56Dzyr1mfy5MnMmzfPvXbbbreza9euhjQPo0eP5vvvv6esrAxJkvj4448b9H0FBYW2ybmm+6ry6KOP0rVrV/744w/++c9/ur08ISEhHmsxfTF58mTmzp3rnogsKiqqt5fIRdeuXQkJCeF///ufu+zYsWNuXaygoND2OZt1ZEZGBhs2bHD/X1RUxMmTJ93X6tSpk/t7W7du9VpD/vnnn2O32zGbzXz55ZeMGTMGqF2HXn755Xz++efuyEpRFNm+fbvPYxXOfhSPt0K9mTZtGkajEYfDQXJyMvPmzfM6ZsKECezbt4+hQ4eiUqno3bs3//3vf9m6dSu5ubluJeRixowZPPnkk9xyyy3MmzePe++9F6PRiN1uZ/z48dx5552AHJKk0+mYNGkSDoeD06dPc9999/Gvf/3L7/WZMWMGBQUFjBo1CpC9QLfccgv9+vWr97knTpzIli1b6Nu3L2FhYYwYMcIdXqWgoHB2ca7qPhdvvPEG5eXl/Pbbb2zdupWAgABef/11rrnmGjZu3MjFF1/Mq6++Su/evbngggt81v+NN97g0UcfpW/fvqhUKjQaDa+88gqdOnWqt1wajYZffvmF++67jzfeeAOn00lUVBRffvllo+uqoKDQ/JwrOtLhcPD8889z8uRJAgICcDgczJw5kyuuuAKAf/3rX8ycOZP333+foUOH0rNnT4/vd+/enQsvvJDCwkKuuOIKpk+fDsDs2bN58MEHeeONN7w828OHD+eVV17hyiuvxOFwYLPZuOyyyxg4cGCD5Vdo+wiSawpJQeEs4ttvv+X+++9n8eLF9O/fv7XF8YnJZCI4OBhJknjwwQcxm8289957rS2WgoLCWczZoPsUFBQUWgtFRyq0ZRTDW0Ghmbjyyis5deoUFouFnj17Mm/ePKKiolpbLAUFBQUFBQUFBQWFFkYxvBUUFBQUFBQUFBQUFBQUmhEluZqCgoKCgoKCgoKCgoKCQjOiGN4KCgoKCgoKCgoKCgoKCs2IYngrKCgoKCgoKCgoKCgoKDQjrbadmCiKZGZmEhwcXK8N5hUUFBTaApIkYTKZSEhIQKVq+tylogsVFBTORhRdqKCgoNAwXdhqhndmZibt2rVrrcsrKCgoNIm0tDSSkpKafB5FFyooKJzNKLpQQUFBoX66sNUM7+DgYEAWMiQkpLXEUFBQUGgQpaWltGvXzq3DmoqiCxUUFM5GFF2ooKCg0DBd2GqGtyuMKCQkpEEKVpIknE4narW6VUOR2oocbUmWtiJHW5JFkaPtytJUOfwlu6ILzz1ZFDnarixtRY62JIuiC/1DW5GjLcmiyNF2ZWkrcrQlWVpCF56VydUsFktriwC0HTmg7cjSVuSAtiOLIoc3bUWWtiJHY2kr8rcVOaDtyKLI4U1bkaWtyAFtR5a2IkdjaSvytxU5oO3IosjhTVuRpa3IAW1HluaW46w0vBUUFBQUFBQUFBQUFBQUzhYUw1tBQUFBQUFBQUFBQUFBoRlpkOG9Zs0ahg8fzpw5c1izZo27fPXq1cycOZMZM2aQmZnpbxm98Me2Ff6grcgBbUeWtiIHtB1ZFDm8aSuytBU5Gktbkb+tyAFtRxZFDm/aiixtRQ5oO7K0FTkaS1uRv63IAW1HFkUOb9qKLG1FDmg7sjS3HA1KriYIAkFBQVgsFo906fPmzeOrr77iwIEDzJ8/n6eeesrru1arFavV6v6/tLQUkBeyS5LkcY2q/1cvTy8t5WhBAZ0jI0kKCanz+OplrmvWt7ymcwMYjUaP7zVEFn+VC4KAIAg+ZWlonfxRHhAQ4HVPG1OnmmRvSJ38IYs/yo1Go1/7XmPLq/YRf/W9xtbJ37I0pjzDZOJIfr5bl9S3Tr7O1RD8pQuh8e2o6MK/jy506Z/WeMYUXXh26MKGPjeuckUXeh+v6EJFFyq6UNGFtdEgw3v48OGMGDGCnJwcHnjgAb744gv3RVUqFcnJyaSnp/v87ssvv8xzzz3nVV5eXo5arZaF0WgwGAxYrVYcDof7GJ1Oh06nY97Wrdy1bBmiJKESBN6bMIHZgwZhNpsRRdF9vMFgQKPRUF5e7nGtgIAABEHwKg8MDESSJCoqKjzKg4KCcDqdHgvtVSoVAQEBnCwoYF9mJl2iokgKCUGtVmM0GrHb7dhsNvfxddXJYrHgdDrd5Xq9Hq1W26A6AZSUlKDRaNwdoTF1cjgcHj+CDa2TVqtFpVJht9s9ZG9MnZp6nwRBQKfTIUmSh+wtfZ8kScLhcBASEoJKpfJL32vMfbLb7TgcDjQaDXq93m99rzH3yWw2u2VRq9V+6XsNvU9fHjrEHUuWuHXJW5dcwsxevepVp+qfNRR/6EKLxYLD4XC3o8FgaPFnzNUf7XY75eXlbv2j6MK2owslSUIURUJCQlr8GVN04dmhCw0GA2q1mpKSEo9MvoouVHShogsVXajoQv/rQkFqxJSlzWbjuuuuY+HChQBMnz6dL7/8koMHD/LDDz/U2+Pdrl07iouLPbaNqM07lfzmm4hVZ0GByV27Em4woNdoMGg06NVq9BqN/PL1t1qNTq3+6931PY0GnUrlLtOr1Ri0WtSCd2r4j3ftYvYvv7gH7e9PnMisfv1abWZTkiTKysoIDAx0d5TWmNl0dUBXJ21KnWqSvb518pcsTS1PKylhb0YGvZOSaBca2mozm5IkUV5e7u4jrTmz2RyyNKQ8vbSUlP/8x0OXqAWBk/feS7vQ0DrrVFpaSlhYGCUlJY3aa7aputAf7ejPmXZRFD3kqI/szVGu6ELvc7j6SFBQkNf1GipLU8urytLQuiq6sHnLgQY9N65yRRd6liu6UNGFii48u3Vhemkpf6an0ysx0T0e9LcubJDH+4cffmDZsmUUFxdz1113ccMNN7BgwQJmz57Nrbfeit1uZ+7cuT6/q9fr0ev1XuWuBvZVmaocLSjwGCgDSEBeaSl2iwWbKGJzOrGJIvYqf9dWVh9UgvCXQa5WoxYEsqvM2IiSxO2//MLY1FTah4b6lL2mOvm7vL5t2VKytOR125IsrvL5O3d6TNB8MHEis/r3r/d5/C1j9T7SGn1VEAQqKirIzc0lLi6OwMDAFpflq337vHSJU5I4XlTkpWh9naemz+pLU3Vh1fKWvKf10T1Vj1F0YdvQha35vFcvb2z/OFd1YVuRRZKkBj03VeVuCoouVHShogsVXdhWZKlrzO4vXdggw3vKlClMmTLF/f/IkSMBGD16NKNHj27IqRpM58hIVILg5aX6fOpUEoODPWaS6noBiJUGuMXhwOp6OZ3uvy0OB3ZR9Cx3OtlfUMB///zTQzZRkugzbx6TunRhXGoql6SmElNpUCic+0iSRJHFwqniYk4VF3O6uJi9ubn8b/du9zGiJHHb4sUczs+nZ0wMSSEh7legTtd6wrcAkiSHeDmdTnJzc90ejuzsbAIDA4mLi2sROQ7k5fHP5cv57dgxBOSJOxdqQaBTRESLyKGgoKCgoNCcpJeWsjcjw8Nzp6Cg4Jv00lK30Q1/OVXHderkzgHkLxpkeLcmSSEhzLvsMu749VeckoRaEHjvsstIDg9vUTnSS0uZt3evxwSAShB4fNgwtmVmctfSpRRbLAyIj2dcairjOnViaFIS2sr1Ss2FupnPX1/aihzgP1kkSSK/ouIvw7qkxOvvssr1JsE6HSlhYQT5MKYl4JejR/lq/34yTSZ3Hwo3GDwM8aqvdpXvwT68Ag3F3/fGNZHlWl/ndDrd766/Xf/XFN5oNpux2+1otVq/ylaVvPJynlmzhg927GB0hw7smTOHrRkZ3P7LL25d8v7EiX5Xri1BW3ne2ooc0HZkUeTwpq3I0lbkgLYjS1uRo7G0FfnbghwNibZrCdpCm0DbkQPajixtRQ5oXVmO5Of7jIQ8Vljo97Fho9Z4+4PS0lJCQ0MbvDYovbSUY4WFdIqIaLWB8oc7drgnAFSCwNwLL+TB0aMRBAGHKLItI4Nlx4+z7PhxtmZkEKjVcnHHjrIhnppKhxaeLPg7Uj37fW1IkkROebnbW13dqD5dUkKF3Q7IRnJyWBgpYWGkhIa6/04ODSUlLIwwgwFBEEgvLfXKSaAWBE7ddx9JISE4RJGcsjLSSktJr+GVYTLhqFwSEaLX/2WQBwfLRnloqIeRHqrX1xju0tD2cBnUVY1pX+9V1YdarUatVqPRaNwJMqq/22w2srKyPL7jdDoxGAwEBwcTGBjoN+VrcTh4a8sWXvzjDxKDg3lt7FjGd+rkbqPG6pLG6q6WOp+CgoJCS6DowrbHrqwsBnzwgVdEl2vsoaCg4IlDFJnx/fd8e+CAR3lDnpuG6K6zzvCWJMntIWvq+qKmkFZSwqHcXDk8tbSU4OBgoqKivI4rNJtZeeIEy44d47fjx8k0megSGek2wkempDQ51LittEl5eTnZ2dkea3dbg+qzvfMmTuTSTp1q9FafLi7GWpnxMNJolI3qKsZ0SlgYyZX/hxoMDZKjule1IbPOoiSRU1bmbZSbTKSVlLiNc1ul7IFarU9v+YG8PN7Zts3dHv+dMIEbzzuvUQZ19XfX31UzQNZaJ1EkJycHg8GAxWIhJiYGu91OWVkZJpMJURQJDAwkKCjIIylMQ5AkiYUHDvDIypWYbDaeGzmS2QMGoKm2N2Njn5u2MthsK899W5GjLcmiyNF2ZWkrcrQlWRRd6B9aWo5ii4XtmZlsy8hge1YW2zIySKvckq06q2fOZGRKSrPLVJ2/672pjbSSEg7m5tI9JqZVlwG0pTZpLVkq7HamLVzIprQ05gwcyP+tX9+oMfs5b3hXzxrZGlSVw2w2k5WVRUxMDMHBwbV+Z39eHsuOHWPZ8eOsO30aCRjevj3jUlMZ36kT58XENLhebaFNsrOzPdLpBwQEEB8f3+Jy+PI0VyUmMNC3YV3pvfYVIt4U0kpK2JeZyXkJCc2iYMXKMPiqhvmZkhLOFBeTXlrK6eJizphMHt9RAasnT6Z9aGiNBnXVd3/3qZr6qyv7aVlZGeXl5QiCQFBQEEFBQRgqIwnqYmtGBvcvW8b2zEzuHTKEx4cPJ6yGyZLGPjdtabDZ2s99W5KjLcmiyNF2ZWkrcrQlWRRd6B+aU45ym41d2dlsy8hgW2Ym2zIzOVZYiFoQ6BUby6CEBAYmJNA+JITLvvqqxmi7lubvcG8aQltaBtBW2qS1ZCk0m5n01Vekl5ay/Prr6RoV1egxe0N011mzxrvNUZGOOn8vCL0ICGxHREQEeXl56HQ6n1k6Qc58d15MDOfFxPDgBRdQYbez9tQpfjt2jPm7dvHwypUkBAczNjWV8ampjOnYkcjK/RjbOlX3FQSoqKggIyMDo9GI0WhEr9ejquZx9CcOUeSHgwd5bs0an0b3p5Mnc3WPHgQ041piXySFhBCuVjdLBIDT6cRut2NwOknW6YgPCaGv0Yi9MkmYSqViW14e05Yu9fieCFy1fDl3DhrErH79iG8jiVcEQSAwMJDAwEBEUaSsrIyysjIyMzPRaDQEBQURHByMzsfkyJmSEh5btYov9+5lao8eLLjzTjoqSzoUFBQUFM4yrA4Hf+bkyN7syteBvDwkSaJrVBSDEhK4Z/BgBiUm0ic2FmO1cc0HEye6o+0AXhs7Vgkzb2Uq7HZWnTjBbYsXu5cBNGcCL4XaSS8tZdznn6MSBDbecguJle3fnGN2F4rh3RiOz4ctszEiIqGCIR8Q1vEWrFYrOTk5JCYm1mudaoBWy4TOnZnQuTMAp4qL3d7w2b/8gslqZVBiotsbPjgx0StcFlo/e6XNZvPYhB4gIiICURSpqKigqKgIQRDQ6/VuQ7y+Hsy6KLZY+HDHDt7eupX8igqu6t6dQ9W2nlMLAqM7dGhxo9sfuNZa2+12bDabx7uzMsRco9Gg1WrR6XQEBASg0+nQarWo1Wq0kZGofvvNqz3mDBjAV/v28cK6dUzo1InZAwZwaefOPvtXa6BSqQgJCSEkJASHw+EORS8uLkav17s94Wank/9bv57XN2+mV0wM62++mQvbt29t8RUUFBQUWojWHgM1BYcocjAvTzawK0PG92RnYxdFOoSFMTAhgRt792ZQYiL94+MJqUei1Vn9+zM2NZWdaWk8tHo1G9LSuGfIkFb3av5dKDKb2Z2dza7K186sLA75SN4FcgKv/u+/z8iUFM5PSuL8pCT6x8dj0CjmWXNxMC+PcZ9/TkpYGD9fe22NUZHNxVkZam61WtHXkkiqWSk7BT+nIvsNKxHUcMUpREMC6enpaLVa4uLimiSf3elkc3q6O0nbjsxMQg0GLu7QgfGdOjEuNZV2oaGtHrbicDjIyMhwr8vQ6/VYrVZiY2PdHm6n04nFYsFsNmM2m7HZbAiCgMFg8PCIN6S9jhYU8J8tW/hk927CDAbuGjyY2/r3JzIggPk7d/L80i/oqC3ghD2SpyfMaNVQnvr0V1EUsdvtPg1s1yPqMq5dhrXrva5IgqrJAF27Adw2YACSJLHu9Gk+2LmThQcOEBUQwKx+/ZjVrx/JYWH+bAYPmvIMW61WysrKKC4p4ZsjR3jzzz/RqdW8PGYMM3r3RtWA8zVWjrYUXtmqurCNydGWZFHkaLuytBU52pIsZ7MubO0xUFXSSko4kJ1Nj7g4nxMAYmWWZNe67G2ZmezKzqbCbic+KIhBiYkMjI+X3xMSiGpCxKPrnh4oLOT8+fP53xVXMKN376ZUr0lynK19vK5zZpWVsSsry8PIPlVcjEoQ6BYVRb+4OPrHx9MvLo7owED6zJvntSvSS6NHc7iggE3p6RzKz0erUtEvPp7zExM5PymJoe3akRwa2izL/trCvWlJWTalpTHxq6+4KDmZL6dM8YoWaQldeNYZ3s2K0wbmTKhIl1/m9L/+rkirLMvCcwfgSi5eDbEjsdlspKenEx4eTrgfQ13zystZceKEbIgfO0ZOeTmdwsM5XlTUatkrRVEkMzMTgISEhHqHktdkiLs84TUZ4pIksfrUKd7YvJlfjxxhYEIC959/Plf36OG5Xdvx+UhbZiNURiQIQz6A1Fl+q3dDqKioICsri/j4eAICAnA6nV6Gtc1mw+FwALKnt6pR7XpvasKJrJyD5GTvJjauL/Gx3b0+z6+oYMGePXywcyeH8/MZX+kFv6xz52bfCq+hrDxxggeWLeNEURF39+vHDZ06YagMDQoODsZoNNavrSrSwXQUgjtDQFK9r98WBpttiYZkzFdQUDh3aG1dWFNOl0s7dyYqIIBArZZArZYArZZAnU5+r+V/198BWi3qBkZ/VZ8AeH/iRMampspe7Mpw8e2ZmZRYrYQbDAxKTHSvyx6UkOAOdW0OXvrjD17ZsIG9d9xx1kUEtBVESeJEUZGHkb0rK4uc8nL0ajW9YmM9jOxesbE+oyzrSrpbZDazNSODzenpbEpPZ0tGBsUWC7GBgW6P+NCkJAYmJDQ5MfPfjV+PHGHqd99xfe/e/Peyy/wa4XlOG95SeRr2wgNoI3ogBLar/wWdFqjIqN2otuT8dbwhBoxJ8oC86kulhw3X4uHxBhi5DBLGAlBWVkZOTk6zZfcWJYk/c3L479atfLhrl9fni6+9lolduvj9ulWRJIns7GxsNhuJiYloNJpGzxQ5nU63Ee7a11mlUrmNcEGr5fsjR/jPli3sy81lSvfu3H/++QxNSvK+juk4LO6Cr4iEhhhXjUUURXd28Pz8fGyV+3tXp2p4eNX35khm1pCJCEmSWH/mDB/s3Ml3+/cTYTRyS79+3Nq/Pyl+8oI3tp8cys/noRUr+PXIEWb168cLo0cTFxTkXtJgMpmoqKhArVZ7rAf3eY0mTM609mDTRVuYrW5L3iZoG22iyNG2ZanLK9mStJU2OVs93qtPnmT0Z595lV/epQthRiMVdjvlNpv8brf7/L8m9Gp1rcZ6oE5HgEZDoE6HQxR5Z+tWXy4ZArVaBlQa14MSEhiUmEiHsLBmv99V76lTkhjxyScYNBpW3HBDgyLD/CnH2dLH7U4nB/PzPYzs3dnZlFqthOj19I2L8zCyu0VFNchBkVZSwsGcHLrHxtapg0RJ4khBAZvT093G+L7cXASgV2ws5ycmMrRdO85PSqJzRESD2rit3JuWkOXT3buZ9fPPPD58OM+NHFnjNRSPd3VqGiw7KqoY0dWN6krD2ppfeRIBDLGVhnQ7b8M6IAmMCaCuJeb/+HykrbcjSE4kQY0Q1gdK9kKv56H7Q6BSU1BQQGlpKUlJSWibaW1xTbO9rjXNk7t14/KuXf3uhZIkifz8fMrKykhMTHQnu/JXVkKHw4HZbOZ0QQHz9+xhwaFDWJ1Oru/enX8MHEjX2FjZAyw5oeQAFG6Dgu3ye9FukJzeJx35GySMa7RMkiS5jWrXy7X1VtX/q691r4parSY+Pr5e4eF+oyIdFiXTmImIQrPZ7QU/mJfH2NRUZg8YwKQuXZrkBW9oP8mvqOC5NWt4b/t2Rqak8NrYsfSJi/N5rNPpdK8Ht1qtaLVagoODCQoKkp9DSYLs32H1JXhErjRgcqa1B5suWjsjaV171bcGrd0mihxtW5a2OFHU2m3SFDlaWxc2VQeJkoTF4ajTOC+32Wr+zG4no7SUXdnZXuf/3xVXcEPv3g32nvuD6vf0eGEhfebN48XRo7n3/PNbTY7WIq2kxGcegAq7nT9zcjyM7L05OVidTmIDA+lXaVy7DO0O4eFNnrhoapuYrFa2Z2a6DfHN6enkVVQQYTQyJDGRoZWe8cGJibVugdtW7k1zyiJJEv/euJHHVq3irfHjuXPw4GaR49zMal6RDpVGNyC/b7kVdv4T7MXyMYIKDPF/GdBBqRAzwtOoNsSDuonhGamzIG4s5rx9GKLPk8976gvYfhdkLIahnxIRkYrVaiU7O5vExMRmMbSSQkI8sleqBYF3L72UjuHhLDp0iBf/+IM7lyxhUEICV3TtyuRu3egRHd3kTl1cXIzJZCI+Pt5nhummsj8/nzc2b+arfftoFxLCkxddxDWdO6E3HUPK/oGKo7sxlO9DV74flWhGMiRA5CCEpMnQ5T7YPBOviIT1UyF5OnScCVEXQLVtrGozpl1/uxAEwWMfa71eT0BAgPt/1zZcFovFHYoPEBsbW2PG+2ah9DDsfxmvtpCcsOlGSLke4sZAoO9kZBFGI/eefz73DBnCpvR0Ptixgxk//ECoXu/2gjdn5nCrw8E7W7fywrp1xAUF8dP06VzauXOt/VetVhMaGkpoaCh2ux2TyURZUTrWY+sINm3AWLwOlSXD+4uSE0zHWiQq4lxhydGjXpN+TkniaEGBEnKu0OZILy11G92gZBQ+F/A1Bnp/4sR630+VILhDy5tCTRMAYzp2bBWj2xepERG8MW4cdy9dyiWpqfSIjm5tkVoMjwk34KoePdCp1ezKznYnPesQFka/+Hiu6NqVZ0eMoH98PPG1bA/cmgTr9Yzq0IFRHToA8hj2ZHGx2yv+85EjPL9uHU5RpHt0tNsQPz8pie5RUe4+eTYnJawPoiTxz+XLeXfbNr6+6iqm9uzZ2iIBZ5PHO2c1rBrtXX7es7InMyAJDHGgapm5BJ+zIuVpsOUWyNsI/V/F2eE20jMyMBgMxDRif+76UtO+c6IksSMzk0WHDrHo8GEO5OXRKSKCyZVG+PlJSQ3+UTCZTOTm5hIbG0tQUJDHZ02ZsXKKIr8ePcqbmzez+tRJpqWE8GBXDQP0GagKt0PhDrCXgC4CMXwg9pA+mI09Mem6YVNHoVar3YnaArK/Rr3jH+6IBEef1xBVgajPfI46fx1OYwrmuKsxRU3Gqon38FKrVCoP47m6Ma3RaFCpVPWqnyiK5OTkoNFocDgcHgnnmo2yU3DmGzj9tez9D+4KpiN45iVQQdIVkL9RXl4R3EU2wOMugdhRoKtZAReZzXyxdy/v79jBvtxcLunYkdv69+eKbt3Q1dMLXlc/kSSJHw4e5OGVKym2WHhu5EhuHzCg/l52SZTrnvUbZC5Fyt8EKgO28GGYgi/AYuhK4sHr3JN4gOLxbgB7c3J4du1afjh40OfnvWNj+fcll3BJx44tPoveVmbwFTnajiwOUWT1yZO8tWULvxw96vX56pkzGZmS0mLyVKWt3J+z1ePtorF77/qTutbutjS+7qkkSVz+9ddkmkxsmjWr3r/Z/pajJakpMvTKbt0Y1r49/eLi6BsXR7jR2GIytUSbmO12dmZlub3im9LTyTSZCNbpGJKUhF6tZsnRo0hwTkb/2JxObv7pJxYfPsyi6dMZXTlJ0VxynJuh5k0ImW0OJEnCbrd7J72SRDj6Hux6CGIuwtL3XTIKISoqitBm+kGoUZZqHC0o4KfDh1l06BAb09KIDgzk8i5dmNytGxd37Fjn9gWuRGGRkZGE+VjvW185qlJms/H1tpVs/vMnksWjXB5VSg/VabT2fNAEQcQAiBwEEYPk98AUL2+13W73SNbmdDpRW7PQWk9j1yfj1McD8rpqvSOHwLwfMWZ/h6biOI7I4YjJMxDaT0VtCPO7YdyYNmkwFZlw5jvZ2C7YDEGdZO9+8jQIO897acTg9+WoDUmCkn2QtQKyV0LuWhAtEDEY4i+RjfHI831GiEiSxJaMDD7YsYOv9+0jSKfj5r59uW3AADpV7iPemDbZlpHBA8uXsyU9nXuGDOGJ4cPr94NoyYPsFZD5G2QvA0suhPWC+PHyK/pCUOuRJImKigrM+94h8vjj7mUrpd3+TWj/B+rV3G1lsNkifasKB/LyeG7tWr7bv59LUlN5buRI9ufmegw2X6zMzvrpnj0Mb9+eF0ePbtHt3Vq6TRQ52qYsdqeTVSdPsvDAARYdOkSJ1cqF7dqx7vRpr3W4C668kutbIdsztJ37k1ZSwsHcXLrHxDTIcP276sKaSCsp4VBuLt0a2I7NQU1tkl1WRq/33uP2AQP412gfzqwWkqOlqCkPQGtPuLVGm6SXlrI5PZ3lx47x4a5dJGpK6Kwt5Kg9gmxnWKsvE/NXm5TZbFz17bfsyc5m6YwZ9IuPb3Y5zk3DG+T9s7feLoeFCmpwGRBtkdIjcjhv6WEqznuVLO0IEpOSMLTwfnE1kVNWxuIjR1h06BArT5xAo1IxvlMnJnfrxmWdO3sZO1arlczMTIKDg4mKivJ90vpkibYVQ+F2ijL+IO3kKsIr9tFOU4IDLWJ4X3TRQ/4yskO6yssHGoAkSZw5c8YjNFyj0dC+fftqEyQSFGyBE5/KBqtog3ZT5FD0mFGgaluZvL2w5EHa97Lsuevk9k6eJhvc4f09JieAyntzDII71XxvnFbI3yQb4dkroHA7qI3yco24SkM8tKfXuUssFrcX/M+cHC7u0IHb+vdncrdu6Ou5F2V6aSmPrVrFF3/+yZTu3Zk7ZgyptRnwogMKtlZ6tX+TZdWGyhMG8eMhfhwEJNb49TNnziCWnXFPzqiC2tO+ngZiWxlsthSH8/N5ft06vtq7l1EdOvDcyJEMq9JWvjLmH8rP55k1a/h2/34u7dyZf40a1aAfPwWFhmJzOll54gTfHTjAT4cOUWazcUlqKld3784V3boRYTR6eSXHdOzIihMneOqii3jqoovaTFhwS9KUde9/N11YJ43cKaOl+fHgQa7+7jvW33wzQ9s1IEnxWciW9HTOnz/fo6y1c5G0NqtPnuTzRffxQcxi1IKEUxKYnTsJOt7CWxMmnNXZ0vPKy7nsyy8pNJtZdv31tY8j/ci5a3gjZzW3FRxAF9nArOZ+RpIkLBYLBoOh5lkR0QEH5sLeZ7FEX0pu8rMkdOiFpp7GiF9lqQWT1cqy48f56fBhfjlyBJPVysiUFCZ368YVXbsSHxhIeno6BoOB2NjY+meJTp4Ohbvcyc+kwm0IpqM4UfGnNYbjQirx7UcysNcV6CP7gso/SejMZrPH2uqEhASMtXlNnRZ5bf6JT2VDzhgPKTfIRnhI1ybJ0tR744GtGNIXycZ29krQR0H7a2SDO2porZMUjZLDViQv8cheKXvFy47JyzlcYelxYyAgweMa2zIz+WDHDr7at48ArZab+vThtgED6BIZ6T4uraSE/VlZ9IyPJ9xo5JUNG3h140Z6REfz+rhxXJSc7FueigzIWibfo6wVcm6HiIGyoZ0wASIH13upidls5kT6XsxiFkZVPB2TetXeR6rQVgabfu1bPjheWMjz69bx+Z9/cmG7djw/apS3h6CO7PC7srJ4cvVqlhw9ytQePXh+1Ci61TRx5weau00UOdqWLBaHgxXHj/PdgQP8fPgwZoeDcampXN2jB5O6dPEZLVM9q/mPBw9y008/cX5SEl9MmdKkvZMbSmvfn6YmJ/u76MJ60Ya2MYW62+Tmn37ij9On2T1nDkHNaGi15r0ptVq58OOPsTocnCgqalPLAFqzv2blHCRmZU/Uwl/PvUMSGJj9GDlE8PRFF3Fr//4tupWsP9rkVHEx4z7/nECtlqUzZhBbbTlsc8rRrIZ3eXk5I0aM4Nlnn2XixIkA3HTTTe51sP/5z3/qlUDqbFvX2CQ5CnchbboB0ZxHUZd/E9nrBr9n7fNXm9idTtadPu1eF55eWsp5kZGMT0nh+gED6B0X530NX8sAAKhcVxTclVPqTnyfE8TC3EAS2w3nzqEXMSolpVnuoSiKnMrcj0XKwSDEkpLQs/4h5OZsOPUlnPwUiv+EyCGyAd5+GugbPnPW5HvjKIf0xXDma8hcCppAaHe1PKkRM6Lennm/9JGyU395w3NWgbUAQnv8ZYTHjACtnIyk1Grly0ov+O7sbEampDC7f39KrFbuXLIEUZIQkJOEBOt0vHzxxczo3dszW6jTBvkbZI921lIo3gv6aNmbHT9e9m4bYhpVlYN5P7I+7UXkte8Cw9o9QffoK+v13bY02GwOXXiquJh/rVvHJ7t3MygxkRdGjeLiDh3q99zXsPxnw5kzPP7776w/c4aZffrwzIgRJPtpe7qqtJnfh/I0LHl7MUT3avUJ4rbQHv6UxWy3s6zS2F58+DA2p5MJnTtzdffuTOzSpdYsvjXJcbSggKu/+44is5nvpk5lSFLLeCtb+/58t38/1yxc6FVe3zDcc10X1vPi8u4qS3rTVpZCymLV3ialViu933uP8Z06Ma9yLN8acjQXDlFk0ldfcaKoiE2zZlFus7V6HgAXrdZfRYfsuNj/f/LYqhqWCxfxxpkI5m7YQHRgIP8aNYqpPXu2yPZzTW2TP3NyGP/553SPjubHadMIaWQi4za5xvvpp58mKCiIHj16uA3vO+64A4fDQWRkJC+99JJPI8dqtWK1Wj2EbNeuHcXFxR5CCoKAL5Fc5WXWbHJKjhIb2pkgfVydx1cvAxpUXtO5RVH0ujm1yuIwI+5+EtWRN7EmzkA/9B0EXUi9Za+tTpIkUVZW5iVLQ+tUvVwURZbv28fSkydZnZXFvtxcOoaHc0XXrlzZrRtDk5JQCwIcfBVhzyNe5yw7by7vF/XmjR0HKLJYuKlvX+4ZPNjD+9kc9+lwwSLWn3kJCREBFcPaP07XyMkNb4OiPXDyU4TTXyLZiiHxcuhwo2z4qbT1Oo+rv8aFdSFIH1e/OjktCFm/IZ3+RvbEC2pImgzJ0xDiLkHyERlQlyzVlUlD+oHPcklEKN4D2SuRslZA3h/yEpCooQiVHnEpYiCSoGZHVhYf7NzJF3/+idnh8FhXlOkI5fBdd/21LrzsZKVHexlCziokp0X25ruM7fB+CCp1nTKKoogoiu4t3qpu91ZmzWZ59kyqJpwTUDG952KC9HHe96PafSotLSUsLKzRg01/6cKm3FNf/e5MSQkvr1/P/F276BcXx3MjRzIuNbXmc+esRvj9Yq/rSaN/R4gb5XW8JEmsPHmSJ37/nT3Z2cweMIAnhg8nLiio6f2R5tWFDSqvXBLl8nxVXxLVkr9Zrj5SPRGm3+ragPKqsjS0ruU2G0uPHeP7Awf45ehRHKLIpZXG9mWdOxNcZZDV2OfGbLdz59KlfPHnn7w6dix317DtjD/vk9/1cgPa4NM9e7hv2TJKq+gikD3eJ++9122c/B11ISBvV2rJRTJngTkLLFlgzkawZCOZsyv/zwJLNoLT4rN+0oilCInjW+wZq15Wly5cd/o0oz79lMXXXsulnTs3iyxSeRrW/H3oo87zmoRsLl0oSRJ3LlnCdwcOsGnWLDpFRJwzurBR1yw9Aif+B6c+A2sBQtw4pMxfPRLMSoCgj0Lq+28KYq/i5Q0beXfbNnrGxPB/F1/MmI4d63Xd1tCF606f5oqvv2ZcaiqfTp7sscSxoW1GRTrm3D89Js3rU6eG6MIGGd4rVqygoKAAi8VCVFSU2/AWRRGVSsVbb71FSkoKl19+udd3n332WZ577jmv8oyMDLeQGo0Gg8GAxWLxWKOr0+nQ6XTszfqOzVmvIM8qqrgg8VF6xl5FRUWFR2Zqg8GARqOhrKzM41oBAQHyj3h5uUd5YGAgkiQnXapKUFAQDocDi+UvpapSqQgICMBms1FcXIzRaEQQBHdWbZvNhs1mcx9fvU7O7DUE7PkHKpUK9YWfYQ4ehNP5177Ter0erVbboDoB5Ofnu2VpbJ3sdrv7R1CSJEwmEzabjZiYGERR5ERxMb8eO8avx4/zZ8Zx7og8wL0R24mTshAQqTo35JRUdEt7EIsujjsHDeL2gQPRS1Kz36cKey4/nbwGqqXQiTb0RqcOQas2otcGokKHIOnQCAbUKgM6TQAB+mBEh1ouV+lRCwaM+mCM2gDE9NXo0xaizVkKmlCk5OtQd7qZCn3nGut0vORXtua8ClUmAJIMl/iuU1kJ6rzVaDIWosn+FUGyI8ZfhjVuMs7YsaA2+rxPQL36nt1ux2w2YzQa0ev16HQ6dyI6F43pe+775DSjLtyMOu93tAXroGgXaIJxRg3HGT0KR/Qo1pQE8sOShz3WFd2VO4E7Rk6lp30HQtZvqMqPIRoSEGPHomk3EVvEcGwEIFX2Hdez5nqeXAa2q8+6yqqrNZVKhUXKpcixjyzrHxTa91Kd0Ulv0iHqwjr7XmlpKYmJiY0ebPpDF5rNZvd+90ajEYPB0Oh7l2ky8drWrXyydy89o6N5dsQIRiUmunUJ+NYbavMZjCs8t+eQELCMP4wxonON/dFsNvPjoUP8a8MGTpWUcOfAgTx20UUYoU3qQqjfM+ZwOBDMGQSs6OE5oBHUVIzZj2RMbNozVoX61kmSJPfvtcPhaFSdXFTte425T5IkYTabiYyMRKVS1VmnMpuN5SdP8suJE/x69ChIEuM6duTKLl0Yl5pKTFhY4+5T6SnshQfQRvRAF9bRq06f7t3Lg6tWcWX37vzn4osJqDKI8/d9ciUENRqNqNXqJvW9+t6nI9nZ3L18OWvPnOHxCy4gJjiYu5YudYfh/ueSS5jZq1e96tRWdKHTdNp9T/XhqbX3x+IcBEs2gjUHwZqDXixEsGTjMKUhWHPlzyzZCLZ8hMpxhKTSIxnikPQxqAOTEPWx2DVRSIZYJEMcCGqMm6+GaoYMmlCETrOwJd+CTf/XEqrmesZcNEQXPrl2LV8fPMju2bMJquI0a6ouBNCc/hT9nnvck5DWPm/hSJ7Z6DrV9xl7e/t2nl2/nmUzZjDQtW1aRTqOooOEJg3EoYs7q3Shiwb9ZklmjHm/Ih6bjyp/Pc6QXjja34iUch2GkATsh+ah2XWXO+mus+8baBxFSPtfRgztjbXXq5xWpTJ3yxYW7N3LRe3a8dzw4fSPi/Pbfapap8bqwp+PHuWWX3/ltv79mTtqFGKV+9HQ+2TM/BLV9ju8+qu/dWGDDO8nnniC8vJyDhw4gNFo5Mcff/Twbn/99deIosh1113n9d2mzmyW23P5et9EpCqKTUDF9PN+IVDrHW7aHN6DquUmk4n8/HyioqLcM2j1nVkpzk9DvedhgnO/hW4PQO8XQG2o8fi66iRJchY+jUbjNy9PYWEhJSUlJCYmeu7VbToKR95BOvEpVknFYucIHj/dmRGGI7wfsxiNIOGQBG7PnURytzlM69QJXaVcKpXK3V9cW3JVHdxXn7GsOjtY/Zia3tMtKzlY8Z5X/VLDx2HQhGMXzThFC3bRjMNpwSFZcDjN8rtoxiFasDvNSDi9zgFyn9OgRuO0o3Fa0Qg6NLootMYk1JoQtCoDGrURSRQ5WvQrvryqgbpYuUB0IuT/Aae/RjrzPThKIX4CtJ+GkHQ5kiawzvtU33KXUerqI/6aVYcanidLPlLOKqSsFQjZKxEqTmPXxaG2ZqOqluNOEjTYw8/HEj4Kc/gI7MbOiJUyuwxuX/K4+lBN7zapmHzrn+RZdpNr2UWFIxuDOpIIXTcyzRs5Fzzejb2ngiCQXVbGy+vX8/727XSNiuLZESOY3K1brXrGg33/QjgwF0m0yD/eqAAJRv6GkDC2TlmcoshX+/bx7Nq15FdU8M+hQ7l3yJAGeS99lflbFzaovJYoAGJHNqpONclenzq5+oi2hn2KW9rL45KlprqarFYWHznC9wcOsPTYMVSCwKSuXbmqe3cmdOrksd9yo2Q59pFXNILQ6Vav43dlZTF14UJ0ajULp0712PPY314ef+vlmsolSWL+rl08uHw5PaOjmX/55XSvrFd6aSmHcnPpGh3t9nT728vjC7/owur3tOs9COF9q3iqs+UlZJYsBHM2OEx/tYkuHMEYD4Y4JEM8GOPkPCbGeLncGC8b1tpQqKJPfMpy4mOP3UMY8B9Q6RGO/heKdiHFXQKd5kDiJFBpmvVeN0QXWh0OBn/0EZ0iIlg4darHmKxJsuRtgpXD3JMXUPmLG5gi71ij1iOoDUgqPaj0oK58V+kR1Hokle6vsspjUVWWVzleUBvkHUsqy1efyeSe5at5ccwELu/RWz72zDew474ao5D81e71La+PLnQd16BzS5K8s82Jj+H0NwiCBinlOuh4C0T09zpeKk/DWXwYdVhXhMB2crnpJOz6J6T/CKm3Qp8XOVAq8cTvv/PT4cNM7dGDf40aRefIyFbXhR/s2ME/lizhuZEjeWL4cK9j69VmLirS4acUr0lzLj/p9nz7Sxc2KrnaJ598QlRUFN988w0LFizgwQcfxGw2U1RUxEcffURgoLfBUJ2GruXJNG3j16NzvMpDVF1I0o8nSjsQjdDyGcN9ZsyuA0mSyMnJQZW9lOgTjyPoI2HoAojo14yS1p+SkhLy8/OJj4+XZ04lUV5ne+RtOQw4YgB0uRuSp2G2SXyzYwc3r1pFoqaETtpCjtkjyHCE8u2ll3J+XJz7oar+qkpVo6n6S61Wux/E6j8gVd9LbadZmXYPNrGkWo1UjIz4gIjg9gQEBNQraYIo2bE7LTjEvwxyt2EumuW/y0/hyF+Po2g7dmc5jqCOOEI74zDGYrLlkFO+2+u8KaGj6KztTHzun+jP/ADWPIi9WF6z3W4y6MIbdc9aClf4dvVXTeWuHwON9TSh2Z8TlvOJ1zkzu3yEOXxkjffX19++sIvlFNr3UWD7kwLbn5Q5z6ARAonUnkekrg+Rut4EqpMQBIHT5cs4UD4PV/TM4Nh/0idxWr3aoK2sa2wsueXlvLJhA//dto0O4eE8O2IEV/Xo0bB1XCUHYGk/GPKRvPe7K2P+oTflkLbx2yGoQ71OZXM6+XjXLl5Ytw6b08njw4Zxx6BBdW5v2CYpOQi/9vAsa8W1numlpRwtKKBzZGSrZ/CtSZYSi4XFR46w8MABfjt2DJ1azeVdu3J1jx6MS03FWMOkQYNp4JakxRYLMxctYtWJE3w4aRLX9urlHzlagVPFxdz6889sSEvjxdGjuXfIEL9kcG91XVhTfhlDnHxPK41o+RUHLuO60thG3bh1oLXKU333EEmSd+A4+p5sAOoiodNs2aipkpy0NfkzJ4dBH37IBxMnMrNv38afqPrWpr7oej8EJoNolXdSEa2ef9f17vrbafEsl3w7S3wjwAVfQtLloGm5ZIrNhjkHTi2A4x9D6UF5TJk6S16iqGnk/uTZK2H73WDJkZ2DnW5nY0YWj65cyca0NG7r35+nR4wgPjjYr1WpD5Ik8a9163hu7VrmTZzIrU1NlJe3CXbeL+90VJ2LV7snzWvjnMxqXmbL4at9E/FUsALtg0eQVb4VUXKSFHQhySEXkxh0PmqVnxVqFVyTDC4CAgKI85V0rBZEUSQ9PR0dJmJPP4eQ/iP0egZ6PFrvzMwuJElyh2g0RAZflJeXk52dTXR0NCEGSR5EH3kXyk9B+6mywR11PqIkUVBQQGlpKTlmM8O//97jzlRfJ+ZLZqfT6V5763A4fL5cCILgTuCnVqvdf7teFc4slhy7naiA7gQ5e3Kg/ANcRlWPwDl0j74Ss9mMxWJBpVJhNBrdRrhKpfLwrtb27vMzpx1d0QYCsr/DWPAbkqAlL2oci8OO4xF/L0GcxUaeXoMoqIhSR5MQPorE8JHEBvVBo2q+iaOysjLy8vKIjo52R2i46uPLYK7JqK6qLgRBDvt2TY5Ufbna1GazYbVasdlsqK1ZJO8eUW1dkRquONmoBFQO0UJO2Z9kmraSYdpKfsVBVIKWuKC+JAQPJjF4MJEBXVEJngnoJEkiLS0NkzUbs5iNURVHsD6Odu3a1ev5afXBZiUNfe7zKyp4deNG3t66laSQEJ4dMYJrevZs+ABcdMKKC0EXASN/RYK/5JCcsHqcnHhv7MYGDWrMdjv/3baNl9evx6DR8PSIEdzct2+DMqv6Uxc2GNEJ6y6Xd3CwFVRGAYDQ7ioY7p3AqrlpyjZRzS3Lm+PGEaLXs/DgQZYfP45Ro+GKbt24unt3LklNbZ5Jl5zVsMrHvsW1DKxESeLfGzbwxO+/M2fgQF4bO7beWyTWh+bur6Ik8d62bTyyciX94+OZf/nldK6SY6WpcrS6LmzEPW1O6mxHawGc+ASOzpPHVEmTocs/IGak26PeYrJU45UNG/jXunX8eccdpDQk8aUlv8rWpmvlbTzbT5MnZNdeTkslnDtTXMjI+e8ztkMS740fgyDZZKM87w/YcquPb6jk5LSRg+XEsDEjIOoC0DY8E3ZD8ctz70qUdnw+ZPwCxgToeDN0vAmCUvwjh2iHw2/D3mflifSB7yBFD2PJ0aM8umoVJ4qKuG/IEB6+8MI6k1o2WZZKnKLIPUuX8vHu3Xx91VVc0a1bYy8IOb/D/hdlPRI3Vp5saGR/PScNb0mS2HT0f+wvew+XQdU94Hb6tbsWQeUky7yVk8UrOVOyDpWgISVsJKnh40gMGYxK8NOMOX8N2u12u0e5VqslLi7OMyy7Dmw2G+np6YSHhRFeugy2/UPevmropw3axkqS/JMh0WKxkJmZSYQmm7Ccz+HkZ3JIUKc50Pl2eZYY2TjPz893G546nY7P9+/niS1b3AOrF4cM4aExY1A3YTsCl3Fbk1HuMtgrnDnsLHuGIHU7+gY/iiSqsIgFbqPKoIpEp9O5z+drDXB1XN7V6uHLdYY4O8vQZv2M7swnHBWPsz6uPZIgIEgSw7LPEBN4Haa4qZQFWCkR95Nn2U1exX4EQUVsYG+3wRgd2AOV0PQBnmtdZ25urnuNtEajcRvT1evsy4CuXuZ6VfdAO51OzGYzFRUVVFRU4HQ60el0BAQEEBAQgFarpWj7q0SdeMId8pXf8UUiBj1Ur34iSg7yKg6SWbqVzLJt5JTtQZScxASeR0LwIBKDBxMT2Au1qvZn0Ol0cvr0aa9JhOTk5HrJ0eqDzUrq+9wXms28vmkT/9myhdjAQJ4ZMYJre/VC01iP16E34M9n4LL9ENjOWw5LHvw2EGKGy5E8DdRJpVYrb27ezGubNhEdEMBzI0cy/bzz6jVB4C9d2Ch23CfrzLGbkdRGLHn7MJiPIOz+J1yyAaJ8J+tqDnxtE6USBFbdeCNxjdhipSlkl5Vx8WefecgCEKrXM6V7d67u0YOLO3Twq0HrkwZ6vKuy5tQppi9cSHJYGN9NnUp7P2VFbs7+eqywkFk//8yOzEz+b8wY/jFoUI1RLY2Vo9V1YRPuaXNQ73aURHmQf/Q9yPgZgrvI46yOM0EX1rKyVOIURUZ9+ikqQeD3mTNrj4CylVTZ2nQF6COh3VQ5ci/6Atxbmx6f7xF+L/gI8fYHpVYrwz7+mHCjkeXXX++pS2rqI5fug/LT8mRB7lo5KgHkLUpjKw3x6AtB6/9IoSY996VH5FDyE5+CrRCSrpTbNHZ0vXe5abAc5mzY/QicXCDf437/xmmI54u9e3l69WpMNhuPDxvGnYMHN3rStD6yWB0Orv/xR1aeOMHP06czvKatZ2u/kDxRsf9Feavj9tOg52MQ1qtJ/fWcNLydTienTp3yMqiqI6lsFDp3kW3dQJ51OxqVkaTAi0gJHUN88AC0Gp3boGgMNQ3aXQkYIiMjCQkJqffDVFZWRk5OjhzWTRFsvkWeoev7ijwTWsvezO46++HH226zULj3M8LzPkdX+AdEng9d75a3rlLr3HXPz8+nrKwMrVaL3W4nIiKCsLAwbDYbp4uKOJiTQ/fYWJLDw+u1rVxTMVmz+OXobIK08VyU8H8gqiktLfVIkKHT6QgKCvJpRLsMU4vFgs1mc3vDAwMDCQgIaPzEQeVMfJlGS6lOT4jNSpDDjv2i5VQED3YnkhBFEUHtoFx1jCLnPvLMuyi0HEWrCiQ+qD8JIYNJCBpEhDEVoY59ul11cXmZrVarl3ENcjKLgIAAL6O6oc+Ey6PtMrQtFguCILgN7YCAAK89661WK7biE7JREn0eurCONfYTSZIoshwj07SNDNM2skw7sIvlRBi7kBg8iITgQcQF9UenrntpS3WsVqs7SYkrSUh9+2urDzYrqeu5L7FYeHPzZl7fvJkIo5GnL7qIG/r0abzBDWA6Dkt6Qf835Mk4/oqSiYuL+2uZUeFO2Sve52Xodl+jLlVQUcErGzbw9tatpEZE8MKoUVzRtWutOq7VDO+j78H2e2D0cogd5SnHphsgfzNM2OXebq+5WX3yJKM/+6xFrtVYll9/PZekprbsRf+4GintewQqs/gO/hA6+fKGeZNlMjFt4UIO5OXxxZQpjOvUqcniNEd/dYoib23ZwhO//87Qdu34aNIkOoTXvoTprDW8ocWMu/rQqHYsT4PjH8KxD8FeAinXQed/eKzJbSlZThYV0XvePJ4dMYIHL7jA80NHuWywnP4aMpdUbm16FSRPkz32NURqylsryr/3zbG1omvbsOOFhWyaNYvIAB9RVvXpI45yyN8EOS5DfIscvh7ev4ohPhx0TZ90a/C9sZdB2kI5lDzvDwjrI8ufMqNR29w2Wo68jXL4uekwnPcUdL0Pq6Tmve3b+de6dQRotTw3ciQ39unT4Ei6+oxnrvzmGw4XFPDbjBn0io1t0PkRnXIb7n9JDsfvcKMcYRzsqccb21/PScMboKKigvLyckpLSwkJCSEwMBCj0eixXVDV8GWLvYSM8g1kmNdRaN+DVgghRns+sdoLCdN2RaPRukOXXeHL1f92GWlVcRk1LjlcWaJLS0spKCjAYDAQExPjZXTUhCtkOykpCa1GA8fmwc5/ytsonf8/qOPmN+nH21qIeOxDxEPvoLblQvJ0hK53Q+RAj/OXlZWRn5/vDiEWBIHY2FgMVcJLWnrQW2HPY/GR2QRoIxmf+jZatbyWxeFwuL3yUVFRBAYG1uteuDIrugxJURTR6/VuI1Kv19e/XvWYiXcZri4j3Gw2yxM6GgtlwmEKHfvIrdhJqS0Ngya80qs7iPigQRhVse5+6DK0XR5tV390vefm5npEaGi12nqHVVdHFEWPNnIlCHG1UX1Cp+Qt1o4QG9rFnczMRak1nUzTNvfL7CgkRN+OhEpDOyFoEEatf9bBn9WDTWqW32S18taWLby6aRPBOh1PXXQRM/v2RdeE6BP5giL8PkaeMb54FQgqsrOzPTJ9BgYGEleZ9ZQTn8GWW2D0CjnssJFkmUy8+McffLBjB/3i4/nXqFGM6djR5z1rFcM7cxmsvcwjYY+HHA4TLOlbGQHwaYuI5MvjrRYEtt52GwktvCYv02Ri0Icfesly6r77WnbducMMP3dA6ngrFkMqxp23wLhtHr91dZ5CFHl81Spe27SJJ4cP5+kRI5q0Vtrf/fVQfj63/PQT+3JzeXXsWG7r379e5z3rdWEzG3f1lqMp91O0y17ko+/JE/eRg2UDvP01jVqn21hZ/rdrF3N+/ZXtt91Gr6hQOb/P6a8rtzZVVW5tOh3iLnE7ZZpDjvogSfK2Yd/s38/mWbN8LqNwH9vQPuIwy+vUXYZ4/iaQ7BDWVzbCY0fKOr0ReXnq1SaSJE/YnvhYbn9BIxvaqbc0eVKmQXJUR3TCifmw53F5udmAtyBhPKVWK69u3MjrmzaRHBbGS6NHc3kdE+X1lSW7rIwJX3yB2W5n2fXXk9yQpRCiHU5+Dgf+DyrOQOpt0P2hGu2qltCFZ5XhDWC32ykpKSE0NLTGTK2+MNuLOFG0kuNFy8gp302AJoZ2QSNJMFxEsLqD17pWF1XDb13GuCAIOJ1OysrKvAw7m83mNnSqrqetDUmSyMzMRBRFEhMTZc+j6RhsulFOYjTwbUi5vsaQTdc6XZds9aLoTzjyNtKpLxDVIZTF30BwvwdRBXgaQg6Hg7y8PCoqKtxe/eDgYKKiorw8pI2So5GY7YX8cnQ2OnUQEzq96+X1bGw/cSFJ8jY8LgPT5Q0PCAhwT/jU6Q1v4Ey865ouI9y1ZYRTXUKxcx/51j3k2/ZgFYswCNFEaHsRY+xHQvAgQoxx7i0Sqod/NyWsWpLkzKiudjCbzQiC4F4j7wohry+H8hex/syL7j3WByfeS4A2qnKd9jbKbJkYNZEkBg92e/uD9fH1Pn9DaGx/bTODzWryl9lsvLt1K//euBG9RsMTw4czq18//4XwHn1fTkBy6V4Ilj2VZ86c8ZrUad++/V/f2X6PPGgYvx0C21c/Y4M4VVzMc2vX8tmePVyUnMyLo0dzQTvPH8+W1EGArJ+XD4VOt0O/V2qWI38zrBgGQz+TPVotwD+XLeO1zXKCI7Ug8H4rr/G+/Zdf3FtWtYosR/4Lfz6JdPlpnCoj6lXDEaIvhP6vNvhUiw4dYuaiRZyflMQXU6YQ5cvLVg/81V8doshrGzfyzJo1jExJ4YNJkxoUDn+u6cLWwm9ylByU14Gf/EQ2uDreDJ3neHnnmkMWyWnj+W+fpp91LZMCDyCINkiYKBvbCZc2eBKgOe/NG5s28eiqVay84YY6w46bLIfTIoejuw3xjXJZWO8qhvhFcth9HdQqS/VEaXFj5Kzk7a702P3IHzSpTayF8OdTsqMwYSIMeAOCOpJTVsYL69bx/o4dDE5MZO6YMQxrX/dvf02yHCssZOyCBUQHBvLrddfVX9c6zPKkxYFX5JD8LnfKif2MtXvKW0IXnnWGtz8ot+VyonglJwqXkVuxjxB9e1LDL6Fj+DgijKkeCad8etItFg/jvHpyNUmSKCoqoqioqEYjtToOh4P09HQCAgKIjo6WzyU64eC/Ye/T8hYUg+aBIbrW89SK6JBnVI+8DbnrkKKHUxxzPaUho0lsl+LhFXalxy8oKHAbVg6Ho96TCc2JxVHMr0duR6XScmmn99Brmt+D43A43MZnRUUFkiRhMBjcxqdOp/P9kPrKcloDoih6ebGrhsxDpSGszsXEIQode8mp2IXNaSLckPqXVzh4ADr1X21itVoxWbIotaUToksi2BBfa1i1L6+2RqNxh9+7EtLVhVO0YXOWYxfLsDnLKbWks+rUo1Btj3WtKtC9RjsheDBhhpRWHTzVRVsZbLqyRCeFhPDz4cPM3bABtUrFY8OGMXvAAP8mqCpPg197Qq9nofsDfxVXhpm7SEhIwGisMjAT7bDqYnBWwJg/Gp9htQoH8/J4es0aFh44wGWdO/Ov0aPpW+llb9Es3pY8WDYEwvvA8O/rXha0/yU4MBcm7K53xvfGIkkSF378MfFBQdw9ZAidIiLaRFbzY4WFrSOLaIfFnWUDptczctnht+Tf1ytO12tJV3WOFRZy9bffUmA2893UqZyf1PJrigH25eZyy08/caSggDfHj2dmnz4tpj/bii48Z3GUw6mvoHJLMuLGQuc7IHFig5Pw1orolEOYT38NaQuRbKUsN3emKOZypo97vMWWyDSEnw4dYsq33/Lp5Mlc37t3ywvgtMlrhHPXysZ43nr5dy70vEojfIRsiBu8tzuWx4VHIbizPC70Q6K0VqNoD2y/Cwq2yZ7kno+BJoBjhYU8tXo1X+/bx8QuXXhp9OgGh4fvyMxkwhdfMCAhgYVTpxJYnxxadpM8aXXoNVnvd71XXjbbzDsGndOGt7/DVkqtGZwoWsGJouUUmA8TbkglNXwcHcPHEmrwHYpQNZTZ5QVWq9WEhoYSEhLi9iRaLBZycnIAiImJ8RyQ+sBisZCRkUFUVBShVWeri/bAphvktP6DP5S3QKhCnW1iyZPXEB19D6z5kDIDqfOd5DuTKCsr89qr22azkZeXh9VqJSgoiLKyMvR6PTExMbV6N1sizNPqMLHk6BxEnFzWeR4GTViLy+LLG65Wqz3WNrsM05rkcDgcHmuxbTab23Oo1Wo9wsX1ej1qtdqdvMz1stvtCIKETZNFsbiffOseciv2IEp2ogK6uw3ZEutpNqa94vYyD2v/BN2iJnvUyeXVLi8vp9xcgl2sQKMX0ehF1FonomDFLpZjd5ZjE8uxO2Vj+q//y7E5y7CL5dgq/xYlzwSENXFpp/dIDGm5xFMuzubwyqpZogGCdDqeGzmSOQMHeux17BckCdZOlDPyXrLBI4GLa+tBvV6P1Wqlffv23jrCnAO/DYD4S2DIx37L3rszK4snf/+dpceOMa1nT3rFxPD0mjUtk8XbaamcUDDDJX/I6x2r4LNviU45VN9pkb/jz4FzNZYePcqkr77i4J13Eq/Xt06yuWq0auK7kwtg2x1wxRkkXbgsh6oUYVESjFkHMcMadVqz3c6dS5bw+Z9/8trYsdw1eHDDvItNaBO708ncDRt4fu1axnfqxLyJExu9jOBs1oXQyn2rJeSQXFuS/RdOfyM7YFJny/kJjL4jwuqUxRXKfOYbOPOtPL50b216JYtP5jL5m29Ye9NN9fJY1iy6/9tkR2YmF33yCQ9fcAHPjBzZanJ4INqhcEcVQ/wPcJRBaI+/sqbHjIDMX5G2zHYnmBXix0LR7iYnSmsMfmsTSYLTX8Guh+Qllf1fk/NDCQI7s7J4bNUqVhw/zg19+vD8yJE+Q8Wry7LyxAmu/OYbJnfrxseXX1737ibWQtmpePg/oNJB93/KkWgNnDRSQs190JwPT7HlJMeLVnC88DdKrKeJCuhBavhYOoZfQpDOMwTbbrdTUFBAZGQkKpUKk8lESUkJTqeToKAgQkND0ev1iKJIfn4+JpOJsLAwIiIiapW7tLSUvLw8EhMTPdZP47TC3mfkGfoOM2HAm+5sizW2SeEOeSuA01+DIVYOtUidBfpIt0c+Pj7ePSEgSRLFxcUUFha6vZoVFRXuBGp1tXdzKzabs5ylR/+BTaxgYuf3MWprTirRkj/E1UOxq3rDBUGgsLCQkJAQVCqVV9Kzqsa16+/6JjlzrUl3vRwOB4JKxKw+RYl4gDzLbnIr9uG1xykC7UOG43DasDpMWB3lOMRynJhxSGYkqidkE9CqAtCpg9Cpg9CqA9GpA9GqKt/VQehUgX+VqwPRqTyP1akDsTpMfLP/CqQq8giomH7eLwTpGpgoww+crYPNmtbvNtua2ZOfw5ZZMH4nhPV0F0uSRHp6OkajEb1eT2FhIUFBQUT6WmeXvxVWDpeTsnX5h1/FW3/mDA8uW8bWzEyP8mZrE0mCjddD7hoYt1XePsfrkBr6VkU6LOkjr93s84J/5apy7UEffki/uDg+mDSpTRgkLrlaRRZJhF/Pg8TLoN+/PeX4/WII6QGD3mnSJebv3MmdS5ZwZffufDhpEkH13N2ksW2yOzubm3/6iTMlJbw1fjzX9erVpDY9W3Whi3Pe8K6Ke0uy9+Ss3O2ulL3g1bYk8ymLJMlG3umvZYO7/LScMCx5upworVoY7m0//8yqkyfZM2cOwY1MluvvNkkrKWHIRx9xcceOfDZ5sl/WEDcLokOOUshdCzlrZEPcXur72F7Py+PzJiRKawx+bxO7Sc4Wfuh1uV8NeMs9Zvj95EkeWbmSP3Ny+MfAgTxx0UUeYeNVZfl2/35u+PFH7hkyhFcuuaT2DPvmHPl6R/8rrznv8bAcmt/I6DrF8PZBSzw8kiRRaD7K8aJlHC9aTpktk9jAvqRGjKND2MUEaCN9JohyyVZSUoLFYsFoNBIaGkpAQAAVFRXk5uai1WqJiYmpcdsxSZLca6qTkpK8k4LlbYBNM0FywPmfQOzIyqQRezFE90IwxMp7Kh55W04GETsKutwjh6pXzqCZTCZyc3OJjY11h41bLBby8vJwOByEhoZiMpkAvBKo1dVuzXVv7E4zS4/dhdlRyKQuHxCgrT3kvrV+iCVJcodpl5eXe+xF7jKwqxra/pLNtRa7qiEuiiJF4h52mV70Oj5S059AVSJ6bTCBhjACDOEYdSGVxnUgWlWQ24jWqoy1ZlRvCNXXePvyvrcUZ+tgs6aM1atnzmRkSkqT5fHAnAO/9oBu98N5T3p+ZDaTmZlJu3btsNls7knG9u3b+05meHw+bJ0j77HbSA9jTfx+4gQXL1jgVd4sbbL3BTlRyyV/1Jjkpta+lfYjrL8aRv8uZ8v1M4sOHeKa777j6N130z40tE0YJNCKxlHaj7BhOlx+EgISPOU4/qG8TnFyRpMjEHZlZXH1d9+hU6v5/ppr6BFd97KwhraJzenkX+vW8fL69VzetSvvXnqpX7aHO1t1oYu/leHtvphrS7L/yonPgrvK68A73Ai6MM9xoaNMNrZPfw2mI3LitvbTIPmaWpfAmaxW+sybx+gOHfjo8strPK5WMf3YJiarlWH/+x+hej0rbrihQflLWnNMaLfbcditCCfmY9x7v9cxpYN+whk1HJVK5fFy7cJT9X9/yt5sbVJ6WN5eM3sFdLlbXqKmC0WSJBYeOMATv/9OdlkZD11wAfcPHUqQTkdaSQl7MzLYnpfHc2vXMnfMGP5ZPbN+VcrPyI7I4x9BQHs5Q3mH60HVtIi/ltCFzbxx5tmJIAhEBnQhMqALgxLuIq9iP8eLlrM7+2M2pf2bEH0yJdZTgISQ/pfxIAgCQUFBBAUFYbVaKS4uJjs7G61WS2hoKImJiRQUFJCenl7jtmOCIBAVFUVmZiY5OTkkJCR4HhN9obxGcNdDsGq0HBqU8ztGRCQE2Qsu2qHDDTD4Awg7z+P8rgmAyMhIgoKCEEWRwsJCSkpK3EnDGrI2vSVwiBaWn7ifCnseE7t8WKfR3ZpU3U7LYDC4lxoAhIWFNdv6eEEQ0Ol06HQ6QkND3RnTjSaRXSaBquuqBVQMa/cYUaEpLX5/u0VNJin4fHJKjhIb2tkrq7lC3XSOjEQlCF4e704RzTBbvuNuCGgHPR7x+qi4uJjAwEC0Wi02m42goCBKSkooLCwkJsbHurbUWVCwXTY6x+/w6SluLF2iolqmTU5/A/uehWHfNz6zbLsr5cyqm66HCXv86uUQJYmnV6/mtv79SQ4Lo5Xm1dsOkiSvre94MwQkeH+eNAW23SlnkY6/pEmX6hcfz47Zs5m5aBGDP/yQDydN4tpevZp0zqpsz8zk5p9+IqesjC+nTGFqz551f0mhRckvOcXpnD9Jju1NdFjz5nFAUEH8WPlVngbHPoD9L8PuxyBiAORtqBwXVhLWW14znDwNgjrW6xLBej0LrrySiz75hEldunBFt27NVZs6cYgi0xYuxGy38/uNN/ovaWgTcRvWDgcOh8Pr76r5oPT680lEhVAl6k9CRbk6Hmd5OaIoul816e6qxnh1w7wmY72m/81mMzk5OZ5bgfqDkK4wcok8IbTjPjj9JfT5P4SOM5nas6ccPr5rF8+tXcu727YxpmNHvtq3z/37Patv35qN7tKj8sT3qQUQ0l12QLa7ukVC8/3FWefxBjn5U2sYhJIkcrLod1ad8hyECqiY3nOxTyPC4XBQUlJCaakcYhIcHIxaraaoqAij0Uh0dLRP75Ddbic9Pd1tAPvkxALYfGO1QgEu/dPL4AY5yVZmZqb7nBUVFeTl5SFJEuHh4ZSVlWGz2ZqUQM3f98Yp2lh+4kGKzMeZ1OUjgvU+Bk8tJEtDkCSJtLQ0v23j1RR2nP6CnQVvIoecq+gfeR8Dkme0qAzVac1701Q52oKXp0WyRKf9AOuvkcOpqxmZdrudM2fOuJOpudrR5QVPSkryncDPaYNVI2VvzZi1oG5c+KIvqraJAHw4aZJ/2yR/M6wcCb1fgB4P1Xl4rX3LUQG/DYTQ7jBsod/WvX+zbx8zFy3i+D33kFjZl9rKswatIEvWClgzHiYd9TA2PORYfam8Tvb8+X65pCRJ/HvjRh5ftYrbBwzg9XHjajUS6moTi8PBs2vW8OrGjUzt2ZO3xo8n2p+D5HrK4Yu2oAtdtHY/33zsE/aWvoM8yS3QO/RuhqTObFkhRLscWbTtDs9yQSUnEawjwWtNPLZyJfN37WLfP/5BTCP6XlPvjSRJ3LVkCV/XY9swf8vh2q64umHteq9qWGs0GrRaeZviqn9rtVp3lmzbwffQ7rrLvcbb3u8ddN3v8LquJElIkuRljDfk/6pldZl6HluB+hOnBQ6+Kk+AhvWWd2mKHARAhd3O82vWMHfjRo+v+FwmVrxPPseZbyBiEPR8Qk4y2Azj6ebWhW1jyqiBtFYokSCoMGi9t+iQEPn16Bz6xM0kNXy8ez9pkB/EyMhIt2FbXFyM3W4nICAAu91OWlqaT0NXq9USGxtLVlYWer2eYF9JUwJ9KVFJTqBWDYfDQVZWFkajkbCwMHJzczGZTISEhKDT6SgsLESn08l7iTchOZM/741TtLPy5CMUmo8ysfOHDTK6/S1LQ3Ep66o4HA5EUazXNl7+pE/iNBKDzyc9bz9J0T2JCql9242WoLXDXl20FTkayqz+/RnXqVPzZfC2FsK2f8hZSn14dktKStDpdO5lKK52dG0zV1BQQEKCj+dVrZMNzd8GwI575L2v/YSrTRYeOMD9y5bRx5+DiLJTsO4KeR/V7v+s11dq7VuaALjwK1g2WA6V63Rbk0V0iiLPrl3LPwYNchvddcrRwrS4LPtfguRrvTx8HnIkT4cd98Kg//plIkgQBB6+8EKGJCYybeFCtmdl8e3VV9e492xtbbIpLY1bfv6ZYouFhddcw+Rm9Di2pX7SGFpDflEUKSsrI6foRBWjG0Diz5J3iDzTl6iQZHdkULOj0srexupIory7SiMN7+dGjWLpsWPctngxi6ZNa3BbN/Xe/GfLFj7cuZOVN97YaKO7oqKCrKws4uPjCaiytrixhrVrK9XqhnVdaLreTp5xCEFSNmVCHFHt+/o8zhVW7q/JpKoGuCiKZGZmUm7PxSxmYVTFo7U1U/9UG+Rlah1uhJ0PyjuBpM6CPi8RYIhmXKdOXoa3U5I4Vlgoj2sKtsnrxtN/kpfOjlouJ59rpue9pn7iT846w7u11/KE6NsjoPJKEJUQPJCtGW+zJeNNOkdcRveoqYQb/wo1UqlUhISEEBwcjNlsdhvgarWanJwcKioqvEK7AwICiIiIIC8vz514y4PgzoAKj+RZgtprr0en00lWVhZarZbAwEDS09NRqVTExcVRVlZGfn5+vROo1YY/740oOVh96gnyyvcxscsHNWaYbwlZGoNarSYxMRGHw4HFYsFgMLj3gW9pNBoNkcHtwRZIZHCk7/W3LUhr35u2JkdjSQwOJkyl8m+ImIudD4Au7K+tl6ogiiImk4nIyEgEQfBqx8jISNLS0qioqPD9wxWQAMMXwqpRckhkp9l+EzsxOJhbzzuPtadO8eDy5ayZObPp99ZeCmsnQWhPGPRevX7w69W3wvtAv3/LRl/0MNn73QS+3LuXMyUlPDrsr/XzbamPt7gseZvkBHiX7q1djnaTYetsyFoOSZP8dvkRKSnsuv12pn//Pf0/+IAvpkxhfCfP3+aa2qTCbuep33/nzS1buL53b94YN46IOnZFaQptqZ80hpaUX5IkrFYrpaWllJWVIQgCDm0+1bfJBBG7Kp+SkjD3tqyBgYEEBgai1+ubT856jgsbgk6t5vMpUxjwwQd8vGtXgyKJmnpvfj58mAeXL+fTyZO5qI69umsiOzub8vJyALKyslCr1Wg0mloN68DAQA/Ptb/2IVepVEQn96O8vJzoFnzeBEHwGH+a9NvYXDgXV4TGkMCHaU/js9fXSWB7GP4dZK+SJ90Xd4Hez9M5dgYqQSBeXUxnbSFH7RFkO0PpIR2A32fL68QTLoNLNkL00OaTD+9+0lxRAGed4d3aBOliGdb+CZ8Jooa2+ycnilZwMG8h+/O+IT5oAD2ip5ISNhKVIM8mVV0DbLPZ3GHoJpOJ8vJyYmJiPAbSYWFhWK1WcnJySExM9DTcApJgyAdIW29HkJxIghph8Pses5qSJJGTk4Moimg0GnJzcwkLC8NoNJKXlwfgnUG9lRElJ2tOPUOmaTsTu3xAmKGZ10o1E64EapIkuTOctxYajYagoKBWN7oVzgIyf4OTn8El6+XZ6mq4Ei/WtBxFp9MRHBxMQUEBRqPRd7+PvlDOeLr9Ljn8LOp8v1Zh7pgx9HzvPX46fLhpXkLRAeung2iTPfXq+mWrrjdd7oasZbDhWhi3pdEeV7vTyXNr13L34MGNCgU9JznwMiRd4XPZlQfaEDnj+emv/Wp4A8QHB7Pqxht5fNUqLvvyS54cPpynR4xAXYsXa93p08z6+WfMdjs/T5/OZV26+FUmhcbhdDoxmUyYTCY5f0rlUsHAwEAqHAGQ65lLBSAxqhvB+gRsNps74WpxcbF7+1FXXh2/hsjXY1zYGM6LieHliy/mvmXLGNWhAx3Dw/0kcM3szMri2u+/56mLLmrSXt02m83jf1EUm82wPhsos+WwJesVqkZobM3+Nx2jRjT/DjNxF8t5qo68C38+SVLgh+wa3I+eBQtQCxKiBCZdEqGbnoP2V8OEXRDet3llqqR6P6n+v79QRuGNoKYEURqVgS6Rk+gSOYn8ioMcyFvImlPPoFMH0S3qSrpFXemxLZlOpyM6OpqIiAhKSkrcydh0Oh2xsbHurNcxMTGkp6eTm5tLXFycp3JInQVxYzHn7cMQfR4E/uUZdhndFosFkEOdExMT3aEUbSmBmgtJEvnj9AuklW7gss7ziDA2fpZWQUGhgdhNsPV22SCM9k5uIkmSew1TbXojIiKCM2fOuJez+KTT7XIY2R9XycnWjP6bWe4cGcmdgwbx0IoVXNq5M7rGRprsfAAKNsPYLc2z1YsgwPn/gyW9YfejMOCNRp3m0z17yC0v56HassD+nSj6U07sM3Zz/Y5Png6bb5bX3mv8G16oUal45ZJLuKBdO2YuWsTmjAy+mDLFYysdgDKbjcdWruTdbdu4pV8/Xhs7ltA2NCH+d8S1S4nJZKKsrAy1Wk1wcDBxcXEeoeMqQY1a0OKU7ICEgAqNysjG9FcY03Euer0BvV5PeHg4DofDbYS7kq8ajUYCAwMJCAjwz+R4LePCpnDf+efzy5Ej3Pjjj6y96aZaJ5CaSlpJCRO//JIru3XjmRFN2/0hMjKS7Oxs9/9Vt9H9O1JqPeMRtQvyktkSy5mW2dpVpYVu98nLgHbcTe8zn0GlWaMSINSeIe/6ETey+WWpQnh4OLm5ue7/o+uxM0VjaDsW11lGoC6W2IB+BNbQSaMCunNR8lPM6LWMvnE3c6JoBV/vm8Ty4w+QXroJSfqr06vVaiIiIujQoQMhISHYbDbS0tLIyMjAbDYjCAJxcXHuEHUvApJwRg33mtHMy8ujvLzcnTwtNjaWgoICSkpKiI2NJSYmpo0Z3RLr0/6Pk8W/c2mnd4kKaL0MmgoKf0t2Pyon4unjvQUdyFuI2e12QkO9c11URaPREBYWRmFhIaJYfR/5SgQBBr0LxkRYP1VOvOZHnh4xgoKKCt7btq1xJzjyLhybB8N/gJDOfpXNA0MMDP0MDv8HMpc2+OtWh4MX1q3j/vPPJ7KZ1qSddRz4P3kdYNSQ+h2fcJn8nvFLs4k0uVs3dsyeTU5ZGf3ef5/N6emkl5ay7swZvt67l17vvcfPR46w7Prr+ejyyxWjuxVxOBwUFRVx5swZsrKyEEWRuLg4kpOTiYyM9FqvvSPrfUL07ZjW4ydGJ73J9J6LubLb5xRZjvHbsXuwOcvdx2o0GkJCQoiPjyclJYXY2FjUajUFBQWcPn2ajIwMioqKsNlsTduVoIZxYVNQCQKfTJ7M3txcXq22LtefmKxWJn71FakREcy//PIme6KtVisgJzcOCAjwnfjzb0SIvj1uS9eNCq2zcevnG40xVt6D3gvJW7wWoKKiAkEQCAkJadZ+0iCrq7y8nIEDB/LLL3/9OK1evZqZM2cyY8YMMjMz/S5gdQRBaBPrkOorh14TzHkx1zK1x/dc2vm/qAQNvx27l28PTOHPnAVYHMUe54yOjqZ9+/bo9XosFguZmZmkpaVhsViIjo6msLCQioqKWmWRJIns7GxMJpM7k7ZGoyEjIwOApKSkZtnWqin3RpIkNqW/yrHCJUzo9DbRgU3bKuVs6yd/FznakixtRY7G4nf5c9bC0fdgyIeg9a0fXNsOVvXKlNtzKREPUm7P9Tg2rDKZVElJSc3XVBtg+Pfy3rI7H2hyFaq2SYTRyFMXXcRza9dSaDY37ESZv1Um3HofYkc2SY56ET8Wuj0Am2+S905vAPN37aLUauX+od7r39pSH28xWUzH5My3PR+vvxyaAEi8Qg43b0Y6RUSwadYsLunYkWEff0zym29y2Xffcd2PP5ISGsq+O+7gktTUZpXBF22pnzQGf8jvWouclZXF6dOnKS0tJSQkhOTkZOLj42s8f6H5GIfzF3F+0v2EGBLpGD2MIH0coYb2TOryEeX2PJYcvQOLw1sPqipzdMTExJCSkkJCQgIGgwGTyURaWhppaWnk5+djNpsbbIQ31z1tHxrKOxMm8NTq1eyu4kX2lxwOUWT6999TYbfz47RpTd42zOl0UlJSQlRUFNHR0cTHx7e6w6m1nze7sxwBgarWbZ/wf2At07b8FpTunARVaGJOgsZgt9spKysjNjaWqKioZu0nDerRc+fO5ZprrvEomzdvHl999RUHDhxg/vz5PPXUUz6/a7Va3bNOgHt7LVfKfBeuZD3VqVpeNdV7fY6vWua6Zn3Lazt39ZTztR0PEB80kPiggZTb8zicv4h9uV+yPfM9OoZfQveoq4kO6IkgCGi1WhISEigtLaWwsBBJksjLy0OtVqPX68nOznZnH3ed2yWLzWYjOzsbh8NBUFAQkZGRFBQUUFZWRnh4OOGV63IaWtf6lte292BN5xFFka2Zb3Eo/0fGp75FbFCfGmVsiOyNkaU5yqtmMvdX32tMeWOfm5rKm/I8+VuWxpb7eobrqlNTf5japC50VMCWWxFSb4G4MT6Pd61TTEhIcH9+uOCnavkuHqdr5GRcGVnDw8MpKChwb6PoU8aAJIQLv0X6/WI52VrHmxrUBtXrVLVN/jFoEO9u28a/1q3jtbFj6zwHgFCyH2n9NdDtQVmWymOaXRf2eQkpZzVsmgkjfwVBVWd/rLDZePGPP3hw6FBCK2fnqx/r0j+t9Yy1uC488ApSxECIGeW+d9WP9/ncJE+Tt8+zFoMutNl0oUGj4flRo/hk926PFcF/nDlDidVKkM47j4CiC5tPF9rtdvfabdfaX1cosuv42mTZkv4micHnkxQy1GtcGKiNY1KXD1ly9E5+PXI74zu9Q4A2skZZDAYDRqORiIgIt76tqKigpKQElUrlzg8UEBBQa1196cKq5U19xq7v3ZufDh/mhh9/ZOutt2KoNI6bqgslSeLe335jc3o6G2+5hUij0f15Y8cbxcXFqFQqgoOD/3660Ee5KDlZd+YFkkKGcmHSYxRUHGXVqUeICE7EVmLzmRS1WceFAUlIg9+HbXPcOQkYNE8ub8H7UVRUhE6nIyAgoNl1Yb0N7xUrVtCjRw/3emEXkiShUqlITk4mPT29xu+//PLLPPfcc17l5eXl7s6n0WgwGAxYrVaPrZh0Oh06nQ6LxYLD4cBsNmM0GjEYDGi1Wsxms0c4oyuDtCs7nQtXgqvq5YGBgUiS5OVJDgoKwul0etTZpfzsdjvFxcVu5axWqzEajdjtdo8F+b7rFECvqJvoF38LR3NXcqToR34+chPh+i50j7qKLlGXYbdKaDQa9/pv13VdoePp6emEh4cTGhqKw+EgOzsbjUaDudKzExIS4s5gDvKaS5eh7sq0Xb1ODofD40ewYXWSt0Cz2+2oVCqP+6HX62u9T5vPvM3Bom+4KOElQlTdEEWxyffJ9VDpdDoP2Rtap6p9r2r2y7rq5JJdkuQ1YpGRkahUKr/0vcbcJ7vd7n5uXEnfGlsnF419nsxms1sWV5KZpva9xtwnV3hf1QRg9alT9c8aSlvUhbr9T6BxlEPffyOJos97V1xc7M4EW15ejsWZ7za6QV4jtv7MS0Tp+hMVkuzWBSqVitzcXCIiImquU+wI7L3mot12B2Z9KmJY/0b1R8Drns4dM4Zrv/+emT16kFolIZDPZ8yeT8C6SUixo6no9ARUXqNldKGOin4fErB2OLa9/8aeeled/fGtTZuwOhzMOu88ysvLveokSRIWi4WoqKhWecZaXBfasjGe/BTH+V9grXKeeunC4AsJVBuxnvgWdaebm1UXHi0o8MqB7dpCJ9ZoVHRhM+tC13PhWjrjGnAbDAaPZ1asQRe6+mNm+RYyTFu4tMMnAD7HhQHGKMalvMOKU/ez+PCtjEp6nVBjQr3unVarJTQ0lMjISGw2G6Wlpe41qDqdjqCgIIKDg73G5TXpQn+ON94aO5b+H33EI8uW8dLIkX7Rhf/duZMPd+xg5Y03kmgwePSvxow3bDYbxcXFhISEyL9ZfyddWEOdjpX+SJH5GJNSF4A9iABHN5KChnG8+Df6hTxKQUGBewzekDo15T45U27CEjIMe+FBtBHdUQW1JwBa7D65Eie61nQ3ty4UpHqa6U888QTl5eUcOHAAo9HIjz/+iEqlYvr06Xz55ZccPHiQH374oUEe73bt2rkfCrdAdcxOSJLn1gQt5aGrXi6KotcWCU2ZcSmxnOFg/vccLVyMhEjniIl0j7qaMEMKkiRRVFREcXExQUFBGAwG8vPlvbpdHci1rYUkSe61CUVFRQQFBXkkUGvOWT1XB/SVwbum8+zO/pid2R8wpsOrtA8d5j7Wdb7q56ip3B+yNEe5q78GBQU1uE/6U5amPDc1lTf2PjWHLI0pBygrK/N6huuqU2lpKWFhYe4kYw2lzenCgm2wYigM/xEh6XKf9ZckiVOnThEVFUVwcDAAmabtLDk2x+t6l3aaR2LIIPc5XEmEkpKS0Ov1NcsoinKode4aGLcNDDENrpMkSV73FGDEJ58QHRDAwioRW17ncFrg94sRnFakMWtB45kdvLl1obv8+Mew/Q64ZDNCZH/3+aofW26z0fGtt/jn0KH8szKpmi8Pkkv/+OKc04U7H0TIXo40YQ8IKp/H1/rcbJkF5mwY+Wuz6sIMk4nkN99ErFKuFgRO3XcfiZXPV6PboBHl8PfQhS7jtaysDEmSCAoKIiQkxOdazrr6oyg5+PHQdcQG9mVY+8frHBfanOUsP3E/ZbYsJnT6L2GG9o26d6IoYrFYKC8vp6KiAqfTiV6vd3vCdTqd25jLzs4mLi7ObYj7e7yx9OhRJn71FatuvJGRKSlN0oWLDx/mym+/5ePLL2dm375+GW/k5eVhNptJSpLXuf+tdKGPcpMti+8PXsPgxHvoETXVLUeBYxerTj3MNd1+ITezxCv53Lk+LszPz8disZCYmIjT6SQ/P98jl4O/dWG9Pd4vvign2/nkk0+Iiopi5syZLFiwgNmzZ3Prrbdit9uZO3dujd/X6/U1KjdfD6Mvqiqyqt+r6/imlNd2bHU5mnLNMGMyQ9s9wKDEf3CiaDkH8hayP+9r4oMGyluSRYwgICCA3Nxc96xdfn6+x4yQJEmo1Wr3mpbY2FifSqY528tVXp+2/DNnATuy3ufijv9HctjwJl23qbI0Z3lj+4e/ZWnJ56am8rYkiyRJPp/hus5T02f1pU3pQtEuGxvtp0Gl0e3r+NLSUne4nuuzUEN7BFQe2VEFVIQa2nucIzAwEIPBQFFRkfeuDFVlUalg8Puw4kLYMB1GrwBB02j9U/Xz18aOZchHH7H+zBmGV9kL1n2MJMntUH4Gxm1FqGGNe3PpQo/y1Fsgexlsuk7O9q7xvRbwna1bUQkCdw4eXKuOac1nrHp5s+pCawEcex8Gf4Cg8p3Fvs7nJuU6WD1BPpchqtnaJikkhA8mTuT2X37BKUmoBYH3J04kqZYBm6ILG6cLnU4nZWVlmEwmrFYrBoOByMhIgoKC6rWGs6b+eKRgMWW2bC7tPMenDNX7ul4TxIROb7HyxCP8cuRWLu383xp3bamtrmq12r0fuCTJe4q7PG5FRUXu/Bsuz192drbXfsT+Gm9c2qULtw8YwE0//cSfc+YQajA0Shfuysriuh9+4Mnhw5nZt2+j5amK3W6ntLSUuLg4VCqVu4/749z+KG/pcaEkSWxIe5lIYxd6RF3t0RbtQoeiUweSUb6OsMALKC4u9hlu3pjrNqROrTEudDgclJaWEhsbiyiKFBUVuSeKVCqVRz4bf+nCBq8cv+mmm5g4cSILFiwAYPTo0Xz88ccsWLCAhISEhp5OoRrylmSXM7nbZ0zu9jkh+kTWnHqar/ZN5EDRp0TE6jAajeTn5xMQEIDT6fSYzXSFiDRXAjV/sT/3G7ZmvM2olH/RIWx0a4ujoPD3ZP9LYMmGAf+p8RBJ+msLsao/LkG6WM5PqpoQTWBY+ye8tiMRBIHIyEjKy8vdS2FqRGOUs4iX7IVdDzemRj4ZlJjIdb168cDy5R5eRjf7nof0n2DEYgho5d8xQYDBH4DDDDvu83lIqdXKKxs38tiwYQRUy7D8t+XwW2CIlddqN5aYkfK2cek/+E2smpjVvz8n772XJddcw8l772VW//7Nfs2/C5Ikh/Lm5uZy+vRpCgsLMRgMtGvXjsTExDq3Q6wLm7OMHZnv0TfuZvea7fqgURm5pONrxAX15Zcjs8krP9BoGUDWrQaDgYiICNq1a0f79u0JDQ31CKuF5tuPGODVsWPRqdXc+9tvjfp+emkpE7/6iiu6dePZkSP9JldhYaE7EkABjhUuJdO0jeHtn0KoFg2kEjR0DB/H0cKlhIeHYzabvZYvnKtUXdudk5ODyWQCZC+4K+eEv2k7e0nVE0EQ3OEZ57oc0QHduSj5aWb0+o0+sTM5XrScbw5cwW7TXMSgM5jN8lqJwrI0ihz7MDvz0Wg0JCQkeG130RLUt00O5v/ApvRXGZH8DKkRY2s9trllaW4UOdquLG1FjsbSZPmL/oT9L8KAt8FQ836VrnWQvsKnArRRaAQDsYF9SQkdQbeoyT7PYTAYCAoKoqCgoMZQVzdBKXDhN3DkLTj5RQMqVHubvHTxxezLzeWrvXs9Pzj1lWx4X/glRPRr0PUaI0e90IXBBV/AiY/hzEKvj9/cvJkArZbZAwY0rxx+pFllsZtkw7vHw6CqPZCvVjlUGmg3tdmzm7toFxrKhO7daVfH9nzNTVvqJ43BbDaTk5NDWVkZxcXFpKWlkZmZicPhcGcMj4qKQucjcV1j2JP9KWqVjvNirvMor087qlVaRnd4ieTQi/j16Byyynb5RSaQ11OHhYURHx/vUd5c+xEDBOp0/8/eeYfHUZ1t/zfbe1VfSS7YgME0gw02PaFDEkihhJf0TgIhDQLpCSGkkEBeSsKbfCSkkIQ0IPRebHo13dhWX2l77zvfH+MZ72p3pV1pJa2J7utaZM7Mzt5zzpkz5znPc+6HG087jT+8+CL/ePXViuNT1Uksk+GUP/2JZQ5HU9KGychkMsTjcdxud5n3tFX6+HxzSeVCbBr+KQd0fRyncVlVHitdJ+KNP0uWICaTqXrq4jnEQrSP7O12OBxKuLm8la69vX1G22fqwS5neIuiSD6fn37y9jbiodfYWN3xQT6w1985ceX/ohLUPDRyIU8mv8TmxM/ZGPsczyW+x8bY5xhK3bNgA0s9dfJG4FYeG7yMw/ovZqX75AXlMh9Y5NG6XFqFx0wxK/7FPDzxMeg5aVoPoawtURpyJWMougmP7WBWOk/Bm3geUayRsxtJ4DGTydQnQtL1Ttj/cnjykxCsf2I6VZ302+186ZBD+Pp995HK5aRC30Z4/KPSb/W+p+7fmQ2PutFxGOz9TXjik1II/A6EUimu2LSJbxx+uKImPKc8moQ55bLlV1JquhJF/BnzWHImjD8IyblPj9oq7dMqPGYCr9fL2NgYABMTEwSDQSwWC/39/fT09DR9Mh/PjvHSxB9Z23MuGlV5rvV661ElaDhiybdY6T6FO948l6Foc3Niy55eQRDQaDRznrf6kN5evn7YYXzq1lvxxuNlx2rVSb5Y5Ky//514Nsu/zjxz2rGsEQSDQYxGY9k+5Vbq47lcDr/fT05+D80xNg3/BJO2jf06P1JWXlon7abV2PS9vBWSvN6JRKJMf2GusRDtEw6H0Wq1RKNRkskkHo9HEa02Go1V5zzNwC5neAMtEwIx3zwEQcBjXccxy3/MWatvY4njSCbym0DRRxV5JXEt0XRtdfm5xlR18lbwLh4e+B7r+77Knm2nLSiX+cQij0q0CpdW4TFTzJj/a1dI+Y7XXiuFNtdANpsllUphr+KRE0WRkegmPNb1uLX7k86H8ader3ktWaG3Lq83SHmte98Dj7xX2nNbJ6aqk4sOO4xMocDPH38c4tvg4VNh2TlS6rAmoyl9a/U3wLE3bPwfKErhoz/btAmn0chHD6jPO99KfXxOuBTS8OrPYNWXJeN7GiSTSQYGBirUdRW0bwCTBwb/1mSi1dEq7dMqPBrF5DBqORvMXEX9PTVyNS7jCnZznlD1eL31KAgqNvR+lX06Psjdb13AttD9TeOoUqno6upSst7Mh4H3rSOPZKnDwcdvuaVifK9WJ1+66y42Dg1x+9ln09bEcPB0Ok0ymcTtrtwCMN99XDYms9msIogXDocJBAJEIhGSyWSZCvdcYDDyCFtD93DEkm+hVlU+E3KdCILACudJvBm8A71ej8FgmHev93y2Tz6fJxKJUCwWKRaL9Pb2Kkrt8t+5wi5peC8CzLoO+m2VgmQg8rdX3s9tb3yaZ8Z+zWjsafLF+Vu1qoVtoft5YPs3OdjzRfZuP336LyxiEYuYG0TfgJe+DWuumHY/cyQSUV7CkxFKv0UiN0Gv7RBM2nachhUMR6b23DidTorFYn17pwQBDv4/0FolsbXi7CcoVr2e7x11FFc/di/5B04Cxz6w9popFx8WFCqNFHIefhFe/iG+RIJfPP443zriCHTq6gJi/3XYegMUM7Di09Oe6vV68Xq9Ff8ug6CSxAbnKdx8EbPD5DDquQyr9iVeZkvoTg7pvaBin+xMIAgCaz2f58DuT3Pftot4M/CfJrDcCdnz7ff759yTqFWrufG007h/2zZ+/cwzU5571RNPcN3TT/PPM85g9yoG8kwhiiKBQACz2dw0L7+sJJ/L5RQhu3g8TjQaJRQKEQgEmJiYwOv1MjIywtDQEAMDA2zdupWtW7cyMDDA0NAQIyMjjI+PEwwGlagvv9+P1+slnU7PSftkC3EeHbyMvTvOosO8etrzV7hOJJzeSjD1Bk6nk3g8Pm9e+fmGz+cDpGfE4/EohnY8HmdiYmLWqRKnwtyZ9IuYc1i1HkCAsoygKjb0XkQku43ByCM8N3Y9KkFDu3k13ZY1dFsOpNOyDxqVscZVm4+ByMPcv/3rHNTzWfbpPHvefncRi1jEJIhFSb27/XBY/tEpT52c23IyhqObsOn7sel7SeQT9NrWMxzbxAHdH695TbVajdPpVMJB1dMZjxozHP5PuGstvHAJHFA7c0a9+Pj++7L3yx/CH4/RdfzNUMUL0FIwL5HE1jZ+kL8MWuixWjlnv/0WmlVroJiHVy6H3c+TFmhqIJfLkUgkKiZTNUWnlpwJr/1MioqwLKt+ziJaArJxqdFoyOfzcxZWLYoim4avYKnjaLos1aNN8vk88XhcSfNaL/bv+hhalZmHBr5Drphkr/YPNIs2breb4eFhYrHYnO1ZlbGqvZ3LjzmGL919N+9cvpwVLlfFObe98QYX3HUX/+897+HIpUub+vuyKFhfX1/FsXw+TywWQ6VSKULEhUJB8XhW+7f8dzJUKhUqlQq1Wq38VavVaLXasrLJ56lUKvL5PIlEAr/fj9lsJp/PMzIyglarVfKyNyta46mR/0UlaDio+7N1nW839NNhWs2bwds52PNF9Ho94XB4Thez5huiKJYpl5dmWhFFUVmkCgaDFWlJm4Vd0vCejRplM7HQPGzGHtb3XMTjo5cjUkRAxSE9F7Kq41TlnGwhhjf+AmPxZxmObuJ57/9DEATaTXvTbTmQbuuBdJr3Q6tujiE+uU6Go5u4d+vX2L/zY+zfNfVEv9lY6PaRscijEq3CpVV4zBQN83/zWgg9BydtntbLK09SamVHGI5uos+2XuHRa1vP5ok/kS3E0KlrG0E2m41IJEI4HK4aDlgB626w4U/w0MngOhCWTB0xM12daJ77EusMY6ze+iH+Ec6xumN6CjNBU/vWktNJDt7Ku7Z+j87D/4OmgWu3Uh9vOpeBmyDjgz2+UHFINoLi8TiZTAaNRoPFYiFesge15oTSdSBYVsDgX2GvC5vLeRJapX1ahUejkMOqU6kURqNxzjRutocfwJfczPtXSWKHoihSKBTI5/Nl4cSpVAqNRoPdbm/IgNq74wy0aiMPD/yAXDHFfp0fmjVnlUqFVqvF6XQqnuBpFztnic+vW8ctr7/OOf/8J4989KOoBUHpW8+NjXHmzTdzyeGH86EmLx7K3m6r1VohopfP5/H7/SSTSWWLibCD12RDWavVYjAYqh6TP7PpYxqNBpPJhMViUbZE5HI5JeVdKBRCr9djtVrrW5yuAW/8OV7x38xJK66ecn4/+blf4TqJ58d/yzrPeTidTrxeL06nc05Dr2txaTZkwzoajaJWqyvSm8qh57BzsXYuskPtcoa3IAgtkR6gVXis7no/S12HE80MYdP3VaTy0amt9NsPo99+GADZQoLxxAuMxZ5hNP40L4z/DoB28147POIH0WnZD53a3DCXyXUyGnuKu9/6Mvt0nM2a7k/N4i4bR6u0zyKPSrQKl1bhMVM0zD++HZ6/EPa7TFIOnwK1UojJyBdTeOPPsbrjLIWHvngAapWWkdhTU6YIVKlUuFwufD4fdru9vhd6zwmw7w8kITT7KilEvAqmrZPXfwlv/RrdO+5leW6Qr95zD3ec3fwonLnoW9+Onca5qrt5X/wqENfXFR7fSn286VzEIrxymRRirpcWcGRvUjweJ51Oo1arsVgstLW1odfrEUURURTRaDREIpHak1pBkLzeAzfNqeHdKu3TKjxmimbzl/fmyp9cPs2moStYajqFmF8glN9elrJLNhjkSXskEiESiWAymTAajZhMJrRa7bQG2+7ud6NRmXhg+yXkCnEO7P7sjI280jpxOBzEYjGCweCcey9VgsANp57KPtdey+WPPsolRxyByWRS0oa9e489+G4T04bJSCQS5HK5CkV3kES0SjUdtFqtkqdZNsCr/a1VNlvI2inZbBatVqssjjgcDrLZrGKAy2mDLRYLZrO5bsM0X8zw8MD32d11Ch7bwTXPq/bcLHcex6bhnzEWe5oe6zq0Wi3hcJi2trZZ3fN0mOsxqFAoMD4+rgjGlSrey8cDgXItmbnyeu9yhrc8IGo0mgVNC9AqPADM2g70gquuCaxObabPtoE+2wYAcoUUE4kXGY0/w1jsGV6a+COiKNJm2nOHR3wNXZb9p/RgySitk/HE89z11hdZ1f4+1vZ8ft7rqFXaZ5FH63JpFR4zRUP8RRGe/BQ494fdz5322rLoS63QxLHYs4iIdFsOKuGhpdtyIMPRx6c0vAEsFosiMtPZ2TnluQr2ugiCz8DDp8EJT4HOWXHKlHUycjs8+0U4+DfQcQQ/PW6C/a67jru2bOH4FSvq41Anmt23hiIRrnr2FY4/4X9ZuuVs2PZ7WP7heecxGzSdy8itENtC4YjziUciFca22+1Gr9eX/ZYgCHR2dpLL5Ugmk8RisdpRF0vOhJd/AJHXwL7n7PlWQau0T6vwmCka4S+HEJca1vl8vqxsslE9nL2dbCHOno6zMenMaDQa1Go1Go0GjUajhBAHg0FisRhWqxW9Xk82myUSiRAIBNBoNIoRbjQaay76LHceg0Zl4N6tXyNbSLC+98sz2k8+uU7a2toYGxvDarVW1exoJnptNq4+6SQ+/K9/sX9XF4VCga8/8ADLHA5++573NL2PyaHBNput6jx4soCZIAjkcjmKxaKyh7v071T7rScb5DMx3AOBgGLoGY1GxaAWBAG9Xo9er8ftdpNKpYjH4/h8Pnw+H2azGavVOm1kx3Pe35AtxDm494Jp623yc2PUOum1HcKbwdvx2A7G6XTi8/lwOp1zGi0xl2NQNpvF6/UiCAJms5l0Ol3hyZ5sdIPUb4rFYtPve5czvAElbGyh0So8YOZctGojHtvByqpYvphiPPES3tizjMWf5WXfTRTFPG7THsoe8S7LAeg1lRPyRHac8cgbqLUiDw58k5WuUzjE86UFe5G3Svss8qhEq3BpFR4zRd38t94AEw/DSS9I4lHTIBKJ1EwhBjAU3UiX5QC0aiOiKCo8em0beGniD4iiOOVzL08ER0dHcTgc9e3LFAQ45P/B3YfAY2fDkbeCqvKFWLVOwi9JAm2rvqaknFrd0cHHDziAL+/Yj9hI+HY9aGbfuvSRR9irvZ13HPh+MA/A0+dC2wawrZxXHrNFs7gU8nl48fukOz+AdyKHWh3CbDbjcrkwGAzTvnOy2Sx2u51gMIjT6azuSXLsDfbVMPgX2Ofbs+ZcC63SPq3CYybI5/MEAgGcTieCIFQY0qWf0j27svEs/9Xr9YoxLZdnizEeeflmDvJ8Ck/H8poc1Go1qVQKkPYat7W1Kf1KXuhJJpNMTEwgiqKyN91oNFb02X77YZyw4irufusCcsUUh/dfgkpofPJf2qYmkwmz2Yzf78fj8cz5vOys1av5xeOPc8qf/6yU/fz445uaNkxGLBajUCjgdFYuxhYKhQptB1EUK8KMJx+XP1MZ57WOyXvFqx0rXdTJ5XJs27ZN2Rte2vfkj8vlUozwWCzG2NiYsrhosVgqFhcDyTd5wXsD71h2KQZNZTaSyaj23K9wncSjgz8kX7wIi8VCMBgkEongqrJnv5mYizEomUwyPj6OwWBQ9A7a29vL6kxehG1ra0Oj0ZBOpxVl87lYbNg1R9lFzBk0KiMe6zo81nWAFLLiS2xmLP4MY/FnecV3MwUxi9u4O92WNXRZ19BtWcP28IM8OngpItJLrdO8P4f2XbhLrp4vYhFvK6TG4Nkvwb7fBdse054uh8F5PJ6a5wxHN7FH26mAFOI3MTFBR0cHvbb1bBr+CZHMAA7D0il/R/b+BAIBenqmVldXoLXuFFt76duw3w+m/05qHB56F3QfB/tdWnboe0cfzcpf/pLfPvccnzrwwPo4zDO2hUL85rnn+Mfpp6MSBCnN2tjdsPGDcOxjoNZNf5G3AeQJdCKRQBy7l+7wc6T3vobu9u4Z7e2VJ5SxWKxqujxA8npvvxFWf6t1le//y5HL5RgZGakwsEoNGXnf7mSjpp4+89zI9eg1dla11RY8y2az+Hw+xbOaz+fZtm0bOp0OnU6nhBO7XFJkojzGJpNJQqEQgiAo46Eclt5jPYiTVl7LnVu+QL6Q5Kil36+aDqoRtLW1MTg4SDQard3nm4SRWIxnduRXl/GVu+/m/XvtRW8TRd6KxSLBYBC73V7VSJqYmKgom86TWRpS3kzDSxRFhoaGypTCZT0AeaEok8mQSCQqclrLfdZsNlMsFkkkEsp2GYvFInn7tSoeHvwe/fbDWOY4ZsY8lzqO5NHBSxkIP8JuruMUjYBaddyqiEQi+P1+7HY7brebYDCoaH3IKBQK+Hw+bDYbdrtdWVQxmUxzZr8sGt6LmBIalZ5uqyTCBlAoZvElX2Ys9ixj8Wd4LfBP8sXK3HsTiRdJ5HwVe84XsYhFzCNEEZ76rCRQVmeu6qlSiAHEMqNEMgP02dZXqID29vZh1XkYjm6a1vAGaZ/V0NCQojBaF2y7Sym2Hn6PJILVd1rtc/Mp6Tx9O6z/fYW3v8ti4aJDD+WbDzzAWatXY50jReTZ4PsPP8ya7m5O2X13qUBQwfrfwe37wovfbIrSe6tCnmDG43GSySQqlQqz2Yzb/xtYcibuJetmfG2VSoXdbp9Sy4AlZ8CL34DwC9I2jUW0HGRvpwx5kt2MSXM4PcDLvr9yzPLLa+ZADofDJBKJit9Tq9WKanUqlSoTbpIVsGWvtyiK5HI5gsEgfr9fEeAym5Zx4m7XcdfWL3DP1q9wzPLL0ahmHiau0WgayyoxC7wZCFCcFLJdEEW2BINNNbwjkQiiKOJwOCqOyYsbBoMBh8Mx557M6VAsFivC3guFQtW2kL3k1SI3isWisjhQKBQUTYHBzK2EM9vZz/I1ZXvD5AiO0n5aumheaoxqVEaWOo5mS/B2dnMdh9VqJRgMEo1Gq0YVtBpkob1IJEJ7ezs2m02pp8nebr/fjyAI9Qm9Ngm7pOHdKisurcID5o+LWqWjy3IAXZYDOICPUyjmeM3/DzYO/7jsPJEi0czQghrerdI+izwq0SpcWoXHTDEt/8G/wsh/4ISnpZzQ00BOIdbRUVvqezi6ScnbXTrplcMpe22HMBzdxOqOs6b9PZ1Oh9VqVfa61T1Z9pwCq78Nmz4EticlwbUdUOpELEpibKkROP5J0FQ37L+0fj2/euYZLn/sMX7wjqn3pjeCZvStNwIBfvfCC9xx9tnldWPshkNu2OHJPxa6ans3WqmP18NFNrYTiQTJZFLZl9fV1SV5IQJPgP8hWPfirHnYbDZFeMlsriIoal0BroMkkbU5MrxbpX1ahUejsNlsqNVq/H4/bW1tTRVDenLkKjot+7HEfpRSJooiqVSKUChEOp1WUhKNj4+XfbdYLFZ4CAuFArlcjmw2Sy6XI5fLkU6nyeVyindT9sQnk0mi0SigYa3t+zwV+Ta3v/EFTljxC3Sa+sRvq7WpLLQWCASmHOdni5VuNypBKDO+1YJQNcXYTFEoFAiHw1W3ixSLRWVfb3d3t7LPup6tKHMFtVqNx+NRVPB1Ol3NRQBBEJQ0ZZNV2ksh5xj3x95i6+Bf2N34EcSMiVhOykoih72XcpB/U84fXk1EbIXrJO7cch6pXAijVhJ+C4VC2O32OVMfb8YYVCqi1tPTg9EoKbqHw+EKb7ec9cLj8ZTd01yPhbtc/gg5JGehQ5hbhcdCc1GrtCxxHIUwqSsJqLDpK3MpzhdapX0WebQul1bhMVNMyz/th6e/AHt/HZz1pW6RU4hVNUJ2YDi6iV7rIUClIEkwGMRjXc9o7GnyxUxdv+lyucjlcsRisbrOV7D6G9D5Dnj4VMhGgEl18tJ3YPQ2aS+4sVLpVoZRq+WH73wnP9u0iaFIpDEONdCsvvXdhx5iQ18fxy6vsrfUczLs/nlp8SHtq/r9VCrF6Oiosvd0ITFVnRSLReLxOF6vl+3bt+Pz+RQhtKVLl9LR0bFzYvjyZeB5V01l+0Z4yBOxcDhc+wuyuvkUgkszRauMQa3CYyaQw2+dTidms7lpe0THYs8wEHmIQ3olnRpRFInFYgwPDzM2NiZpWvT20t3djdlsxuPx0N3drXw8Hk/FBF6tVmMwGLDZbLjdbrq6uujr62PZsmX09/fT3d2N3W7HaDQq+34BNIU29jd9h2h6lH++/HHe2v4KPp+PRCJRNc801G5TQRBob28nFouRTldGKzYLvTYbvz7lFNRyyLYg8KtTTmmqtzscDiuRK6UQRRGv10uxWKSzs1MRNmuFPq7X68v662zzzqtUKnQ6Hc+HfkmnZR8O3eMTSp8sFAqIoojZbKa9vZ3u7m7cbjdms1nxqMPO1Fml6LGuxaBxsDV8D4AitNrwe7pONKN95G0n+Xye3t5exeiWvd2yBgRI2w1k0bjS6L756Ce7nMdbDsmpJzXDfwOPVuBi0XVyWP8lyh5vARWH9V+yoN7uha6TRR6tz6VVeMwU0/J/5nwwdMDel9R9vUgkgt1ur1kfRTHHSOxJDu//Bul0umLSl8vl6DGvoSjm8cafo9d2yLS/q9FocDgcSvhj3avpgkoKH79rnWR8HvFPRCS1Wu3IXxFevhQO/1ddnsoP7rMPVz7xBBfffz83njZF6HqdaEbfenligj+/9BL3f/jDta9xwI9h4kF44uNwxL/L9iF7vV5lMiUbCnL9TveZi+dhcp0Ui0VFtVfmaTab6ejoUFL9VCC8GUZugeM2NY2Hw+FgaGhICUOtwJIz4LmvQOAJaJu+P8+Gy0KhVXjMFPI+12Z5qkSxyOMjP2eF6yTchj2IRCKEw2EKhQI2m42urq6KHN1yurqZ1KMgCMo+8MlbbmSPZi7XiSNxBY94v86TkW+yf+4SdFF72fcNBoOyp1wOg3e73RWGqdFoxGKx4PP56O3tnbM2//iaNRy32268NjHBnh0d9DVxX3k+nycSidDW1lbBPxKJkEqlMBgMyiJyK/XxZnN5I3gr4/EXeN+qm1Cp1IpWQFtbmyIc5vP5lOfEbDZXGNBynneZj0pQs5vrBLYEb2fv9tNRqVSK17vm1pxZYLZ1kkql8Hq96PV6Ojs7y8aCyd5uURSZmJhQ0rg1k0c92OUMb0DJfbfQaBUesPBc9mw7lV7rIYxH3qTTvhKLvmvBuMhY6DpZ5FEbrcKlVXjMFDX5j9wGgzfBsZtAXd+KejKZVCaWtTCe2EyumMRjW0fYH0Gn0+F0OslkMorhrsZIp2U/yTNeh+ENUvhjNBpVVqXrhs4OR/xLMr43/wCWf5TilpvglUtg/59A77vquoxKEPjZccdx5A03cN66daydQliuXsy2b33noYc4etkyjlq6tPZJagMcehPceSC8eU1ZqrhsNlt2aqFQIJPJKKGHpcq7kyGHZc7mUypQBFL/8nq9OBwO8vk8yWRSEbGZ0tguxSs/gs6jZ20Al7aNTqfDZDIRDofp6qry3jL1Qvvhkte7yYb3ZC4LiVbhMVM0k/+W4B2EUltZ5/4mg4ODiKKI3W6vS1yq2fWoUqmUFFMWyx6c5v4td2z5Ai9lv8/RvVcgZqT0SNlslmw2q3jnZYRCIUWwrRSyvkYkEqm6P7pZ6LXZcO7Y795MhEIhNBoNVmt5qtt0Oq1EYk0OpW+lPt4sLsmcn8eHr2BN96ewG/rLjqlUKkX9vFAoKKHVkSqRXbKwW+ni40rXiWye+CPRzBA2fZ+yNScWi005T5gpZlon0WhUEUibvBAje7tLy6PRKOl0uuai01z3k4YM71dffZUrr7wSv9/PO9/5Tj772c8C8J3vfIdXX30Vp9PJt771rfoVahfxtoJZ10mnyYJZ19wBdhGLWEQDyEbgyc/AHhdAW/3iU+FweFqv0XBkIx2mvRFzehKJAL29vahUKuLxOC6Xi2w2i9/vp9e6nrdCdwJT5xGVoVKpFOVUq9XaWLiofZXk+X7kffDSdzAgIiKAtrGJwRFLlnDannvy5bvv5qGPfGRBvSLPe73c/MorPPaxj01/sn0vWPNzeOaL0HGEEoLd3t7O6Oioclp3d7cSeleK0vQ39Xzk/LeTP9UgG+FyyCNI/UytViv7ceuOcIhvhYE/w9F31Xd+A7Db7YyNjSmejgrIOb0P+FnVFHaLePsgnY3zxPBV9OlOIZfQ43A4sNlsc7avtVEYNA5OXnktd731Re4d+gInr7yWjo5+isUi6XSaZDJZZljJ+aInLyrJQmuhUGjK1JGtiFwuRzQarUgJVigUlH3dVqu1ZYzsucTGoR9j1fWwb+f/THmeWq1WFo9yuRxer7dscVYQBCYmJpR3OoDbuCcOwzK2BO9gTfenUKvVivFttVpbInJAFlFra2urqtQvv2/kBZpsNksgEMDtdk+5d34u0dCTtmrVKq677jqKxSIf+tCHFMNbo9Eo4S21Vs4ymQyZzM49f5JoxM58eTImr9ZNLi/91HP+5DL5N+str4dLvefPRXkp98lcZnJPsymX/7+Z91Rv+VxxmW355HZpVt9rtHw2z02t8pm201xwmUm5zLHe56ba+TPBnI+Fz30F1EbY57sginW1XTabJZ1O09bWVvP+RVFkOLqJPtuh+P1+xUgPBAIkEglFOXZsbAy3fX+eTl9NPOPFXLLlZKp7slqtRCIRQqGQwqPuNnUdhAAI7KgLRMSnPgPdxyOY+6a8p1L86J3vZO9rr+Wfr73GaXvuOe35tcpnO/5864EHOHHFCjb01eZeVr7bp2DsLoTHzkI87knQGJXJk7yfT6fT1byObCDP5F5lVDPGRVHKWxsMBsu+J3tiSu9h2rHwlcvBeSB0vKNmv66He7XnRg7RDYfD1fte3/vgmS/AxMMIXUcvjoVVzp8JWmlemMlkiEQivOi7gUIxzxrPx3DZd45d9V57PuaFWpWZE3b7Jfdu/Sq3vvEJTtztapzG3ZSc4MlksixllbwtSH7G5evYbLYphdZadV4YDAbR6/VlC4nFYrFM4M7lclXMvd5u88Lt4QfZHn6QU/f8PQLquueRWq2Wrq4uEokEgUAAg8FAJpMhl8sxODiIy+VSFkVXOE/kjeBt7N/5CQRBUDJBxONxrFbrgo2FxWKRiYkJ0uk0XV1dynuuFLK3W1Ysl78j6yws1FjY8BLXLbfcwrXXXss555yjlF188cWoVCpuueUW/u///o/zzjuv4nuXXXYZ3/3udyvKE4nETgEJjUbpAKWS+3IuxHQ6ragBAhgMBrRaLalUqmzFXU4XMFksQM7LNrlcbrBkMllWLodnlApQqFQqTCZTGQ9BkNQHjUajolgpo557Kk2FodfrG74noIzLbO6p9CXY6D1ptVol+Xwp95nc02zbSRAk4ZzSdprJPc22nURRJJvNKi+9ZvW9Rtup9Jher29a35tJO6VSKYWLWq1uSt+bSTup1eqK56aee5p8rFHM5ViYGbwd/Vu/IbXhdooZEYNQqKvtotEoWq0WnU5HsVis2nbxjA9/6lX2sn6SbDaL3W5nfHxc6aOBQEBKgWM2k46rMKidvOV/iN3sJ9d1T5lMBrPZTDgcRqvVYjab6+6Pav9LGJn0UhQLpHybMZh6637Gek0mPr92LRfecw9H9fSg29Ee8zkWPj02xq1vvMFDZ5+tpI2p6xlb/QssDx2K+OyXSe79ExKJhCK843Q6lbRGSp01+RmTw9gn31M8HsdutxMKhZRjbW1tjY0b8SHUW28gfeANFHakFWvmWCiHWMZiMWVCX95OZgxtR6Ha/ieErqMXx8JdYCys9z2mVqsVZfuiOs5g9t+saf88Lntny88L37Hkxzw8/G1ufeNTHN37E1yGPWqmrAoGg7jd7op7MpvNhEKhilDwVp0Xykaf0+lUshGIoqgYYaIoYrVaUavV5PN5pZ1EUSzLsz7fz1iz54XZQozHBi9jletM2kx7ksvlGronmbcs9tbW1kY6ncbv9+Pz+fD7/ej1eroMh/N05hqGQ8/i0u+p3I8cKbEQY2EqlcLn8yGKIk6nUxkrJrdTKpVSUvfJaSmz2ayicp9MJhdkLBTEGS5ZnnzyyfznP/8pK3v88ce5//77ufjiiyvOr7ay2dfXRzgcLtsrMF/e4XrLF3plbLryxXtqLe61yhfvqbW41yqv556i0SgOh0PJ/9so5mwsLCQR/7MPdB8Pa6+p+z4LhQKDg4O0t7cr4VjVzn8zcDsbh3/M4bbfYLc5lNRjVquVWCymvPw6OzsZHx/ntcw1aLQC71z2o7rvSRRFxsbGUKlUShhhXXWQHEb491Jg50tUFNTw7m0NebwBQuk0K666im8ecQRfPOSQac9vdvkJf/gDRq2Wf55xRuPP2MSDiPcfg3jY3xkW12A0GhXV31opa+bjnmRPgzxR6+joUO5h2nsSBMRnvwyjd8JJLyLnYm82R1EUGRwcxG6343A4Ks9/67fw/NcQ3utFFDQV16jFveY9tciYV6t8lx4L62jrVCpFOBxWUoLZ7Xae9v2MicRmTtvzj6h3pF9s9bYTKfDwwPfYHn6Q43e7ki7L/mSzWQqFghJWq9PpyOfz9PT0KCJwpfD5fFX3vLbSvcq8xsbGEEWR7u5upTyRSOD1ejEajYqitUqlahnu093TTMaNRwYvZSz+DO/d809o1camcYzH44yPj2Oz2RQtjmcT38ZlWMmGvq+h1+uVOYOc4rFZ91RPeSaTwev1otVqy0TUJp8vc2xra8NqtZJOpxkdHVVyli/kWNiQx/vBBx/kH//4B5lMhpNOOolzzjmHG2+8kR/+8IcMDQ3h9/u56qqrqn5XFoeYDEEoF2ApvZlq54qiSCaTQa/XK+dNdf5sy2udC1TwmGsutcqr1clU588VF1EUSafTVXnM5e+2GpfS8slt04y+N5Py+X5uapW3EpdGnxu5fKoxoR7M2Vj4wiUIYh4OuBwauI5sNJfmt6x2/nDscdr1+6MS1IqYT2nKHLvdTjAYxOv1YrPZsKZWsSX2e0QKqEoMlenq1u12MzIyQjqdnjKtR1m5uQ8O/jXik59GEAuIghph3a+k8il+t1qZy2jkW0ceyfceeogP778/rpJwxrkeCx8bGuLurVt54TOfmdl7pfNohFUXwhOfoLj3v8lplpFKpYhGo0o4tUajUbxQGo2m5t7VZj57arWarq4uMpkMnZ2dUz5DFccyQYQtv4K111bsr27mWCgIO8Mo5S1zZdfpfy88/Vnw3ovQc2LDv9sIl9leu9Hyt91YWON8URRJJBKEQiGy2SwWi4Xe3l70ej3B1Ju8EbiFE1ZcpRjdta7TSvNCAQ1HLvkOWtWPuWPLuRy328/ota1HFEVFOyMcDmM0GhkdHcXj8VTsbXW73QwODlYVt2yleaG8h710gSCXyzExMaEsAHd1dSljWuk1purjM+Eym/LZzgtHY0/zeuBfnLLyV2jVxhlzqVYnFouFXC5HKBTC4/HQ0dFBZOQEXgr8luGRM9HrjIoyuizcN9t2rfcZjsViSlu3t7dPOUZEo1Flb7coivh8PiwWS5kY30KNhQ0Z3kcddRRHHXWU8v/nnispqFbzcM8l8vn8rHPfvZ14QOtwaRUe0DpcFnlUolW4tAqPmULh79sIr18FR93ekKiYvFI7XXoQUSwyHN3IMu0Zyu/29vai1WoRRUmZWqfT0dXVRSAQIBwO02E8kFdS/8tE4mW6LPvVzclgMGCxWAgEAng8nvpfaLt9HLqOk8LL21eXGd2N4nNr13L1U0/x/Yce4ucnnDCja8ykb33zgQc4fe+92bdzFqkY9/0u+eG76Hzrq4zu+TsQVBSLRbLZrGJ4lO7/VKvVihE+2SjXarVNFZWa0fP2xi9B3y4JnM0xD5vNRigUUvYvlkHnhO4TJHXzGoZ3M7nMN1qFx0wxFf9isUgsFlNSglmt1oqUYI8P/4Je23p6bevnjMdcQRBUbOi7EK3axF1vXcA7lv2QduNejEffoMO2El1S0ncwGAyMjY3h8XjKxNTUajUul2tm4pZ1oBl1IoqikvJKvlaxWFRSSOVyOYxGY4UHttk8moWZcskX0zwy+AP2bDuNbuuBc8LD4XCQzWbxer14PB726nkXzwV+icblxSrsSywWU94hfr8fl8vVlFR+tepEFKV9/aXp8aaaF5Tu7RYEgUAgQLFYVPQ7ZsqjWdh1ZAwXsYhFLGIRlSikpTzOy86BnsaMxEQiMW0KMYBA6g3S+RBO436o1Wp6enpqhi63tbWh1Wrx+8GqWsY2/8MNGd4gCeMMDg6SSCTKPPHTwtRLoc0JptllVtCp1Vx+zDGcefPNfG7tWlbuEGeZS9y/bRsPDwyweYdo6UwhChrGV1xBzwun4Bq6gqT9UHKGpRRVHmW/t16vV/aC5nI58vm8sj81mUySz+eVsDqVSlXVIJf/3azcyVWRi8HrV8J+l4Jq7hWKS1V75XDEMiw5C578NKz7lZTKbREtjUKhoKQpFMXaKcGGIhsZjT3Je1fdtEBMZw9BEFjnOQ+t2sK9W7+2o1REQMX6ngsxJA6gra2NYrHI6OgoPT09ZQa2LLTm9/urp9VbYKRSKdLpNH19OxdU/X4/hUIBh8OhKHLPNgqj1fHM2K/JF1Os66nU0moWBEFQsmKMj4/T09NDn+0wtkXu5h3LjlQM8/HxcaLRKNFoFJPJpHjCm7lYK29TSiaTiojadIhEIqhUKqxWq6Ly393dPbfvqgbQGvkRFrGIRSxiETPD5u9DNiSllGoQkUhk2hRiAFsmHsCs6sNu7CkLL68Fu91Od3c3Lu3+DEYeqxD7mQ5arRa73U4gEKi6D2s+cNqee3JIby8X3nvvnP+WKIp84/77OXuffVjV3j6ra6VSKTLaXuLuk3CMXYfntXNY8vyRWCf+quxzGxgYIBgMUigUMJvNOJ1O2tvb6enpob+/n2XLlrFkyRI8Hg/t7e1KH5HT+IyPjzM8PMz27dvZtm0bQ0NDjI2N4ff7CYfDxONxMplMWRqxfD5PPB5vrC9s+TWodLD8o7Oqk0Zgt9sVlf8KeN4FYh5G75g3PotoHPl8nkAgwMDAgLJ1YMmSJVU9c0Uxz+MjP2ePttNwGXdbIMbNw0rXyTv+Je74b5FNo5djsEkCa3KI7tjYWJkwmLxomkgkKgSwFhqyt9tqtSph8tFolFgsRmdnJ6FQCJvN1jLe7LmCP/kqL43/gUP7LkKvsU7/hVlA1lnJ5XL4fD5WuE5ke/gBsoUEgiCg1+vp3BGZ5Xa7UavV+Hw+tm/fzvj4OMlkctbv7nw+z8jICJlMBo/HU5fRLXu7HQ6HYrTb7fYpIyHmG7ukx3uhcq9NRqvwgNbh0io8oHW4LPKoRKtwaRUeM0JyGMPQrVKapcP+CnpXQ1/PZDJlKcRqIRqNMhTZSJtu/5qh39Xq0WQysXvXO7ln4F9sG3yVZf2rGgphdDqdxGKxsj239aBZbSoIAlccfzxrr7+ehwcGOGLJkoa+3wiPO7ds4cmREX5/2mmN0qxAPB7HJASxTtyM3FICRdxvXUxxrzMRjUsUFVY5562sRi97KwRBUDza1SALppV6y3O5HLlcjlQqRS6XUyZd8rUEQSCbzSpbCabtC4UMvPYz2PPLTfcuT9U2sqK+vC+2/KBFMr4HboK+2bfVdFzmC7LivazKvKshkUjg8/mUqI1YLIZWq1WElabygr7u/zeJ7DgHdn+6KVwWuj2jmUGYlOFBpAj6CNpMN36/n+7ubkZHR/F6vXR3dyseSjnNkt/vp6+vr2ne49nWibw9RhZUy2Qy+P1+2trayGaz5PP5ir3pc8GjmWiUS1HM8fDA91nqOIqljqPnhYdGo6Grq4uRkRGcrv1Qq7QMhB9kpVta3NHr9ZhMJlKpFN3d3bS1tZFMJonFYoyNjSnaMRaLZcq99dW4pNNpRUStu7u77rlDJBJBEARsNhsTExOoVCpcrsbmRnPdT3Y5w1sQhJZ4eFqFB7QOl1bhAa3DZZFHJVqFS6vwmBHe+g3CE59CI6t458INXyISiWAwGGp6CURRJBwOMxEYIVJ4nYN6P1VTGKVWPfa7DkIzaMSXeR7tsJXu7u66vRJqtRqn00koFFLSw0yHZrfpQT09/M+++/Llu+/miU98AlWdE9FGeIiiyLcefJCP7L8/KxqcIExGsVgkHo9jS21HKFF4B8n4Vie3gXUJNpsNm82mpI6TDZeJiQmMRkk8x2Qy1ZzsyIJptdpENsxlgzwajSqpzAKBAPF4nK6urqknU9t+B/kUrPzMzCqjBpLJJD6fj/b29poeFIfDwcjICNlstrIdl5wJG8+GXFwyxGeBVhiDZOXiaDSqTI6bvcd3LiF7Q4vFoqLgLastTzfRzxbiPD12Lft3fQSTdvbbSVqhPW36fgRUkrG9AwIq7IZ+dAYnw8PDJBIJenp6GBkZYXx8XMkgATu3+YTD4bqM2ekw2zqR9/fabDY0Gg2FQgGv16ssFA4NDeF0Oqfts63QNjJmwuXF8T8Qz45xworqAtZzxcNgMNDe3o7P56PPciRvBm9XDG+QFshlr7Rer1cM7UKhQDweJx6PE4lE0Gq1irhZtcW9Ui7xeJyJiQnMZnPVDBi1UCwWiUQiuFwu5bdlhftm1slsscuFmstpIBYq/LDVeLQSl1bh0UpcFnm0LpdW4dEwksPwxKcoTZ3Fk5+WyuuE/FKs5UkWRRG/308wGCRSfAWVoKHPua7mubXqUSVo8djWERZfAmBkZKShfJc2mw2VSkU4HK7r/Llo0x++4x1snpjgTy+9VPd3GuFxy+uv84LXyzePOGI2NAHJMySKInGhG7Ha633kNhB39huVSoXFYqGzs5Nly5YpxnAwGGRgYICRkRHC4XCZGFs9kA1zeSLW0dGhRFbIk7KBgQHGx8fL0kkpKOalSI49vgDa2YdUynliw+EwExMTFAqFKbcxyAtSkUik8mDPiSBoYOSWWfNqhTEoGo3i9/sBKa1UNBpdMC4zweTtC06nE7PZXNdk/QXvDWhUelZ3fLApXFqhPS26Tg7rvwSh5Plf2/N5LLpOdDqdIqImp+TKZDJMTEwonNVqNW63m1Ao1PBzXw2zrZNYLKZ4tEVRytct70GW9/La7fY559FMNMolnB7g2bFfc3DvBZi09QmENZOHzWaT9BEKaxmNPUky51eOGQwGjEZjxTtarVZjt9vxeDz09/djtVqJx+MMDg4yPDxMJBIp2+ogilI+7GAwyPj4OE6nsyGjG3Z6u00mkyL61uj2g/noJ7uc4Q2UNdZColV4QOtwaRUe0DpcFnlUolW4tAqPhhB7EyZ5MxELENtS9yXkVBvV9j3JSrHxeBybzUYg9zxdljVoVLVfYFPVY69tPcH8C+TzeUwmE16vt7pBUwVymFgkEql7b3Cz27TPbudLhxzC1++7j2QDE9F6eBRFkW8+8ACfXLOGJQ2E09dCPB5Hq9VS0HeTXP1zKZc5O3Kar/gMbPkVPHgKZAIV3xUEQfEwLFmyRMn5G4lEGBwcZGhoiGAwSCaTaXhSotFolHB2l8tFf38/XV1d5PN5hoeHGR0dLd8TOPhXSHlh98YEhORUMLFYjEAgwNjYGNu3b2f79u2Mjo4SDocpFqVnJ5fLTbkI5HA4iMVile2oNkhh5gPNEeJa6DGo1FPY1tY2o3zcCwVRFAmFQmVlwWCwrv4Zy4zx0sQfWdvzeTSq5m1lWOj2BNiz7VTO3PtWjvb8HJdhDyYSOxcN7XY7er2eiYkJJYw3mUzi9/uVerNarej1emVBZraYaZ0Ui0WCwSAOhwO1Wk04HCaVStHV1UWhUFBUruv1aLZC28iol4soFnlk8Ad0WQ5gd9e7FoyH2+2my3wAepWTLYE7y445HA7i8XjNhRqtVovT6aSvr4/e3l4MBgOhUIjt27czNjZGLBZTFoBCoRBdXV04nc6GjO5isUg4HMbhcODz+dBqtQ1tUSvFXPeTXdLwXsQiFrGI/1pYV1IxdAtqsK6o6+uiKBKJRKqm5CgUCoyOjpLNZunq6iIWixEqvEi/fcOM6fba1pPK+8EYJJvN0tbWht/vL5voTQWLxYJOpyMQqDQW5wsXHXYY2UKBn2/a1NTr3vzKK7wRCHDx4YfP+lpyyHAul0OlUmFc/Xl49zZSG26Hd2+DddfCCU9DchDuWAOBp2peSxAEjEYjbW1t9Pf309vbi9lsJpFIMDw8zODgIH6/vyHPgEajUfZ2y0a+x+NRxPrGxsYYHh4mFo0gvnwZrPg0GKp7d0RRVO43FAoxPj7O0NAQW7duZXh4GL/fTyaTQavV4nK58Hg8LF26tGKCPpWRZjabUavV1ReJlpwJY3dKooa7MGQRMqvVitlsnnJ7QStC3s5Qinw+ryyuTIWnRv8Xl3EluzmPnyt6CwqzrpMu8xqOWPJNBiIPMRR5DJCe7Y6ODjKZjLK9QB7rg8Ggco68X7eRCKVmQ1ajdzgcije0o6NDeR8YDIa6BLd2Zbzm/yf+5Csc1n/xgiq2C4JAV1c3XbojeM13a9m4aTQa0ev1FYtg1a6h1+tpa2tjyZIlitL4xMQEIyMjikL9TETyZG+3nDe+UW/5fGLR8F7EIhaxiF0Jpl44+Nfl3sx1v5LK60AikaBYLFbkKc5mswwPDyOKIh6PR1KmFiZI5MdmldvWpvdg1y8hrnqVQqFAsVikp6eHWCyG1+uddpIsCAJut1tRyl4IWPV6vn/00fzoscfwxuNNuWahWOQ7Dz7IZw86CE8TvIylE2Sn0ykZmaZeCm2H7+wbtj3g+Ceg40i45zB481qYxnCWJ0sul4u+vj76+/ux2+1kMhlGR0fZvn07ExMTSr9qFAaDgc7OTvr7+zEajSTe+AtEXyfi+YTSX9LptBISPTIywvbt2xkYGGBsbIz4jvawWiUNgSVLlrB06VJ6enoUD67BIHk0JxtpuVyuJmdBELDb7USj0cpzuo4BrQ2G/tnw/bYK5LBdWYSsLsG7FoNarcbj8dDV1YXD4aCrq6uurAsTic28FbqTQ3ovQBDe3tPgNtOerGr/AI8NXU6+KCn1a7Va3G43gUBAyX/d1dVFOBxWjCe9Xo/dbsfv98/ouZ4tZI+20+mkUCgwPj6O3W7HYrGQSqVIJBJKnua3KxLZCZ4YuZIDuz+LTV/f+30uoVar2bf3fURyWxgYf14pFwRBEUOtNzJNDgnv6Ogo80yHw+GGt7vI3m6r1UooFMLtdrfMfv5q2CVHnFZJGdAqPKB1uLQKD2gdLos8KtEqXFqFR8PY7ePw7m3kj7xH8mbu9vG6vxqJRCrEytLpNCMjI2i1WjweD8ViURLE0r6BRdeNXb90ymtOV4+9tvWMxp9Q9g5qNBo8Hg+5XI6RkZFpX9ZGoxGTyVSX13uu2vRjBxzAErudbz/wQF3nT8fjz5s3MxCJcNFhhzWDnjJZmbznsYKHxgzrfwcHXgXPfBE2nQP5+r1acgifx+NhyZIluN1uRfBo+/bteL1eYrFY1cn6VHWi0Wiw22y0TVxPsut0/Am9kq5sZGRE2XNqMBhoa2ujr6+P5cuX09fXR2dnJw6HQ/HYVpuMlxpp7e3titLtVPtYbTabtGd+8mKLSgt9729KuPlCjUGRSKTMM7SrjoWysrLNZsNkMk17H6Io8vjwFSxzvJMuywFzwqdVIHM5qPuz5ItpXvD+TjkmL0jJ+7tNJhOdnZ0Eg0FlLHG5XIrIZjN4NIJwOIxKpcJmszE+Po5Op8PtditiehaLRVlQm0sec4V6+uljQz/CYVjK6o6zFozHZHTaVuHQ78YbgdvLxkWTyYROp5tRX7Hb7YoGyEy2u8hRSclkEqPROOvtMnPdT3Y5w1sQBLRa7YKvcrUKj1bi0io8WonLIo/W5dIqPGYKwdyHxnMMgrmv7u+k02nS6XSZYRaPxxkdHcVsNiupZfx+P0ajkYn0M/Ta1k9ZR/XUY69tPWPxZzGYNEqYoE6nw+PxoFKpGB4erp43uQRut5tUKjVljtm5bFONSsXPjjuO/3vuOTZPTEx57nQ8coUC33nwQb6wbh2dltkpY4MUrZDNZgFpsiz/bk0eggArPw3HPga+R+GugyH6esO/q9FosNlsdHd3s2zZMsWI8/l8bNu2jbGxMaLRqBIWPjIyQjKZVMTOIpEIExMTDA8Ps23bNiY2/xV1+FmivZ/GarWWeWENBgMulwu3263k8220nfV6PWazGZvNhtPpxGKx4PP5aoabyxP/cDhcec6SM2H8PkhP3RemwkKNQZlMhkAgQFtbm1KPu/RY2AD/7eH78SVfZp3nCwvKY65RykWvsXKw54u8MH4D0cyQcry9vZ1MJqMYLhaLRVGwjsfjqFQqZbFUHl9mw6Ne5PN5IpEITqeTQCBAPp+ns7MTQRCIx+Nks9mGU0S1atvUwtbwPQxGHuXw/m+iEqbP6DFXPKph97ZT8BU2loljCoKAw+FQxvtGoNFoMJvNijBiI5E3srdbr9eTz+eVPPUzxXz0k13O8JaV7xZambBVeLQSl1bh0UpcFnm0LpdW4TFTzIR/JBLBaDQqYViRSERREJVfWMlkklQqhcNpZSz+NL3WqcPM6+HRbTkQAG/iWdrb20kkEiSTSdRqNT09PRiNRkZHRys9iyXQ6XRYrdYp1ajnuk2PX7GCY5cv5yt33z3ledPx+P0LLzCRSPDVDTPfO1+KWCwG7DQU6+WB+yA44VkwL4E7D4KBv86YQzWFdLVarSikj4+Pl3nGR0dHiUQiFItFxdvWHbwB+k+ne+XhdHR0KCHo3d3dFAqF6kJsDaK0TtxuN7lcTqm/arDb7eRyucoFn/bDwdAJgzfPiMdkLvOFYrHI+Pg4ZrNZ2W7y3zIWFopZnhy9ir3bz8Cmr3/Bstk85gOTuaxwnUiHeR8eG/qxUiZvMwgGg4phbbPZcLvdjI+Pk0gkFM9yvZoc0/GoB3JUFEiRPJ2dnWg0GiVlnN1ubzjffCu3zWSk8xE2Df2E/bs+gtu0csF41MJuzuNJ5sfJaAfwer2KoS0vlNYrnloKtVqNwWCoK21oKeTfSqVStLe3z3q7zHz0k13O8AYWZL9JNbQKD2gdLq3CA1qHyyKPSrQKl1bhMVM0wj+fzxOPx7Hb7Uq6ML/fT0dHh6IgKpfbbDZCuVcpFHN4bGtnzUOrNtJtWcNwdCN6vR6bzaZM5GSxH6fTyfj4OKFQqOZLz+VyTWsozXWb/vS447hn61bu3DK1inwtHpl8nu89/DBfPOQQ3FVU5RuFLJYH5d7u6Xgo0LvgyFthr4tg41nw9PlQmJl3S8ZkhXQ5FZAMl8vFsmXLFHVzl8uFOfUyqon7EPb+esW1TCYTPT099Pb2lgmxRaPRGU2Q5DrRaDSKV62Wkq0sClcxmVSpof90GPhzw79fjct8Qc55Pdkz9N8wFr7s+yuZfIwDuj6xoDzmC6VcBEFgQ9+FjESfYHt453YZq9VaFnIOkkq1w+FgfHycdDpNe3u7sq96tjymQy6XIxqNKu8Il8uF0WgEUMKYZ5pfvFXbZjKeGP45erVtTvtpPTxqwaLrpMd6EAHxcVQqFePj48q7XPZ6z0QZvFEuxWJR0SSQ84c3A3PdT3ZJw3sRi1jEIhbRGKLRKBqNBoPBwPj4ONFolO7u7jKRNTlMzOl0MhzdRId5H3Tq2edRBui1HcJw9HFAMrxk8RzYKc7S2dlJKBSqGf6r0WhwOBwEg8EFm0St7ujgEwccwFfuvpv8DDj85rnniGYyfGn9zAXrSpFOpxFFscLb3RAEFay+BI6+WzIk7zuqobzw02FyJEMsFqsM5XvlMug5BZz71ryOXq+ns7OTJUuWYDQa8fv9DAwMEAqFZpwCRk5VNJUir8PhIJVKVYr7LTlTCtVPDM3ot+cbiUSCaDRKR0dHw56lXR3pfJjnvP/Hmu5PotfsOinTmgmXcTf26TibTcM/JVdIATtVznO5XNn+XJfLhdVqxev1Ksri8yG0FgwG0el0RKNRTCaTIryVz+cJh8O4XK6604ftihiOPs4bwds4fMk3UataVyBshesktoXvoaOzjVwup7yzrVYrgiA0LJA2E8i/Iavw7yp4+/beRSxiEYtYBCB5RaPRqDKRSqfTeDyesjzehUKBYDCI0+lEo9EwHN1In605odAAvbYNRDIDRDMjqNVqZe9g6X4wi8VCT08PiUSCsbGxqsaUPBGbSThbs/C9o49mIBLht88919D3Urkclz7yCF9Zvx5Hg8JAtSDn2m2Kwm/XO+HE5wAB7jgAvPfOml9dKZ/CL8Pwv2Dvi+u6pkajUVLSOBwOIpEIAwMD+P3+KcXSqkFWzY9EIjVV8/V6PUajsVI4yH2wFKY/OPMQ/flCPp9nYmJCEaH7b8OzY9dj0DhZ1fb+haayoFjT/UkAnvNer5TJz1MwGCzbs9vW1obJZFI0QIBpU0bNBplMRtlbDpRFZQSDQbRabUU2jrcTcoUUjwxeyl7tH6DLsv9C05kSyxxHky9mGEs+oaSji0ajitc7HA7P6SKN7O0WRZHOzs5daiFxlzS8G1UynCu0Cg9oHS6twgNah8sij0q0CpdW4TFT1Ms/Ho9TKBSIx+MUi0V6e3srlDtlFVm73U4i6yOY3lJ3GrF6eDgNu2HWdjAclXJhywJZk5XKDQYDvb295PN5RkZGKgwplUqF0+msMNob4TJbdFosfP2ww/jmAw8QrWGsVePxq2eeIZPPc97BBzeFR7FYJJvNIghCzQlpw/Vh8sAxD8LSc+CB4+Gl74M48wlUqZp4R0dH9ZRPr/wIOo6C9saiANRqNQ6HgyVLlijhsIODg0qIbC1MrhM5h/VU+1jtdjvxeLy8zwmC5PWehbr5fPRXOXWYRqOpKUr1dh4Lw+kBXvH9jYM956NWNbY3uJk85hvVuGjVJg7p/RIvjv+BUGqrUm6xWDCZTGUh57I3XI6ScjqdhMPhhoXW6q2TYDCIRqMhk8mUGVOZTIZYLDa7xcWgD+PAGxD0zez7TUa1Onl67FpEscDans8vKI96oFNb6bcfzpbgHRgMBtrb2/H7/SSTSSXyqlGvdyNcZMPeZrMpWxGahbl+hhsyvF999VU+85nP8P73v59rr71WKd+8eTNnn302Z599Nps3b246yVIIglAzXch8olV4tBKXVuEBIIT8aLa8jBDyLyyPFqmTVuHRSlxahcdM0Qj/UCiknN/T01MhQCKHGbrdbkllPLYJg8ZBm2nPpvEQBAGP7RDF8JY9KvF4nFQqVXaunNZMo9EwPDxccdxms6HRaCq8L/PZphcccgh6tZrLH3204lg1HolslssefZQLDz0Ua5PSlfh80iSy1oR0xvWh0sKBV8Chf4FXfwIPngKZ6VO51YKsJm61WjGbzeWLPvFtUnh7nd7uapAXHnp7exUhtpGREUZGRkgkEmXGdK06cbvdpNPpmvtYTSYTWq22MtJiyVkQfBpiU+/5r8V7PvqrnDpMVoZeKB5zhen4PzlyFV2W/VliP3JBecwnpuKyzPFOPLZ1PDb0ozIju729nXw+XzauCoKgiJtFIhEMBsOUmQAa4VGKdDpNMplUlKnlMULWHTGZTDOP1HjkToSLPoz65xcjXPRheOTOmV2nSahWJxOJzbw88WcO678Yndq8YDwawUrXSQxGHiZbiGGz2bDb7YqIpuz1bnY/ASk6LxQKKZFzzcR8PMMNGd6rVq3iuuuu469//SuPPfaYUn7llVdy9dVXc8011/DLX/6y6nczmQzRaLTsA9JDVfqpVlZaXiwWlRyh9Zw/uazR8lrXnsyjUS7NKpfLqnGZSf3OprxYLCoetdne06za6eE7ES/8EPz0QsQLPyT9/zzVweRyuZ/M5F6byWU2z02z22kuuMykXBQbe25Ky2eD+R4Lw+EwuVwOo9FIV1dX2f44+ZxAIKAYRwDDkY14rIcAwrRcGhkLe23rGY09RaGYQxRF9Ho9VqsVn89XMW6oVCq6u7sxm82Mjo4qz5EoSiIuLpeLaDRKJpMp+835GgsNGg0/fOc7ueLxxxnYMcGQP9XGwl8++SQCcO66dU15xkRxZ35pq9Va9Rql48+M7rXvfYjHP4WYHEK8Yw0EnppxndUcC1/5MaJzf+g6ZtbtBJKB3N3dTW9vLxqNBq/Xy9DQkCL4U+u50Wq12O12/H6/ssVh8rXtdrtyHeWYfR+w7QkDf2m4/eZjLMxkMgSDQdxuNzqdrmZfeLuOhaPRpxmIPMTBni8qApL1tlGjXHaVeSHAes9XGU+8yJbgncr5arWatrY2QqGQEjEiitJ429XVhSAIFAoF0uk08Xi8Li71zAuLxSJ+vx9BELDZbMp4JooiiUSCdDqtGFgNt1NgAvH3V4J8rigi/u4XiP93OeJtf0Z87B7EV54D7zBiOjUv7TR5LMwXsjw88D2WO4+jz3bojPreTMpnO/702jagURnZGroPURRxuVzo9Xq8Xi8WiwVRFCsEMJvBRd5eJaevbGbdTPXcTNf36kXDuuu33HIL1157Leecc45SFolElH13tdRmL7vsMr773e9WlCcSCSWcRBb+yWQyZeFcOp0OnU5HOp0mn88r3g+DwYBWqyWVSpXtJTAYDGg0moqVa5PJhCAIFeVmsxlRFCvShVgsFmWQkaFSqTCZTGU8BEFArVZjNBrJ5XJlYTj13FPpPka9Xt/wPQFlXGZzT6V73Bq9Jzm9QzqdLuM+k3uaUTsFfGieegj9v25AXqsSRBHx978gO/gWomcpQlsn+p5+ciYr2ZJ6n6t2EkWRVCqFyWRCpVI1re812k65XE7pI3q9vml9bybtlEqlFC5qtbopfW8m7aRWqyuem3ruaabKrjLmcyzM5XIEg0El1ZPcJqX3mc1mSSQSSghqvpBjOPoEazrOVe61WWOhx3ow+WKKAf+TdJj2AySjMZFIEAgEykLG5LaT635iYoJEIoHb7Uar1SKKkrHk8/nK9q3O51j43pUrubKjg4vuuYfrTzxRKZ88FkYzGX782GN88/DDMWm1JJPJWT9jwWAQAKPRqNzb5HsSRZF0Oo3FYpn5M6b2wKH3Ytz8ZdT3HEZunx+T7f+YFGbN7MZCIe3FtPX/kV7zGwyAWCw2rZ1yuRxmsxmDwUA6nSYQCCgLTPl8nkKhgMlkKhs3ZMM0GAwqoeul92QymQiFQgQCgTLvm6n/DISBm0gsPb+inRZyLMzn8wQCAXQ6nfJs/TeNhYVCno1DP2Op7Tic+t2Va5fibTsvDPnJv/EKyd6l4GyruCcNblY5z+Lx4StY4jgMlWhU7kmv1zM+Pk5/f39Zf7Tb7UqqL9nrLS/kzmZemEwmyWQyinim3E6iKCrPmkajUQzxRtopN/AWxklGkQAUfF4YG0GIBBAiIRCLCIBoslC0uxAdbnC1o2nrJG9xkLc5KNrdiA43Opt9du0U8pMf3k5x5SpU7g6eHr6eRNbPUT1XkEgkdqF5oZY+y1G87ruNXoO0cNre3s7o6Cjj4+MYDAZCoZAy/2jGWKhWq4nH4+h0OorFIolEYpebFwpiI2Z6CU4++WT+85//APDJT36Sn/70pwiCwFe/+lV+9atfVZyfyWTKKjAajdLX10c4HC5TYi1dvSgjKq9UBn2kB97CsGQ3BFf7tOdPLgMaKq91bbnBzWaz8v1GuDSrXC6Lx+MVXBq9p9mWyx1Q7qSzuada3CvKgz6EFx5HfPYxeOMl0OoQMpV7+8SefkgmEMJSuKSoVoOjDdo6wd0J7g6Etk5Edye4OqQX1Y5w3NnUjfyisFgsDd9rM9tJ5iH3kWb1vVrcp7qnueAyk3KgoedGLo9Go4qg00xUpJs2Fk5Rj6IoEgqFFDGorq6uMkNBvp9iscjo6CharVZZPZ5IvMS/X/8IH1x9JyZt27RcGh0L//3aR+i2HsTannPL6iAQCNDX11cWBl96nUQiwcTEBGazWRHdSafTjI6OKrnAF2IsfHRwkCNuuIEnPv5x1no8ym+VjoXff/hhrn/2Wd74/Ocx7lg0qOf6tbgDbN0q7c9cunSpMvmdfI3S8acaGrpXUUR463rEZ86Dvg/AuutAY677OlXHwue+BqO3wUmbEVTqqvfarHYSRSn6Q84dbrfblXzApefHYjH8fn9FX5QRCoWIxWL09fXt7GPR1+E/qxBPfBEcq8u4THVPcz0W+v1+EomEkoat1vnJZBKv11s2TrwdxsI3A7fx6NBlnL7XPzDrOv975oWP3oX4+yslx4MgwDnnw+HHV9xTvpjm76+eQb/9cNb3fkX5fqFQYGhoCLvdXpG6S9beKBaLWCwW2tvbp+Qy3bywWCwyMDCAKIrKMydfJxwOEw6Hy57Fhtopm4Ff/wie30TpL4sqFVx2A7ja5RtGiIYQgz4I+yG08yME/YghP0QCCHIkjNGE4GxHdLZJc8WSj+Bql4x2o1lZnCyrm0fught3tk34w2fxD/M1HNH/LVa4Tpz+nlpsXuiNPc+tb36CM/e+FYtOiorIZrMMDw9js9mIRqO0t7crGiSzGQtFUWRoaIh8Ps+SJUvKdEJ2pXlhQx7vBx98kH/84x9kMhlOOukkzjnnHG688UbOP/98vvCFLwDwta99rep39Xp9hZiPTLzaw1gNwqN3we+vxLSjwwofOh8OP6H2+U0on+rc0k8zf7Ph8qAPzeBWhP7lCO6Oac+fD45z+rveYXjuMXh2I2x/Qxrs9l8PJ58Jbd1w8Ud3hhUBqFQIX7xUGmRzWclYD4yDfxwC4xCYgNeeh8CEtCdcFEFQgdMtGeVtnVK97vg3rk5wtUlG/nTcd7QN/csl475JfW8m5ZP760L01VbiIgYmGnpuSnnPBk0ZC6eoR1EU8fl8ipGTyWSqTnoAxeNduvdzOLoJt3EPzLr2snObNRb22tYzGHmYdZ6dAjLyCzoYDNLZ2Vn1dy0WC1qtlrGxMcbGxujq6sJoNGKxWAgEAnh2GL3VuNTi04x+dPiSJbx31Sq+fM89PPyRj1TUQTid5opNm/jRMcdg3OH9me3vynsw5RX6qc5t2jMmCLDy0wiuA+HR98PdB8Nhfwf7nnVfp+zf2RBsuQ4OulrKiT0Fn2aOPbKHIxKJUCgUKvY9W61WYrEYgUCArq6uiuvY7XbC4TDJZHLngoZ9T3DujzD4F3Du0xCfuRoLk8mkkjJw8mJWKbxer+Kt8Xq9mM3msvveVcfCgpjm6bFr2Lfzf7Do67ufestbel4Y9MEOoxuQ/v7hKlh9oGJoyudr1UY29H2Vu9/6Enu4343btAcgeUXb29sZHx/HZDKViU1ptVp6enoYGRkhFpP29pYeb7S/yKkhOzo6FO84SM9pOBxWsmw0XDeREMLV35UM6FM+iHj7TQjFIqJKhXDOeVD6ztdowNWO4Cp/5ynXBigWIBqWjHHFKPdJ13/thZ3GeiEvna83lhvlrjYEnQH+eUNJ2HuRR6LX4HHvzwrXifP2ziotn+3402nZD6uuh62hu9mv68OA5Gnu7OzE6/ViMpkIh8PKgutsxsJwOEw+n8dut1ddFG3KvFAUG5pDlPKuFw0Z3kcddRRHHXWU8v/nnit5LFavXs3vf//7Ri7VOKoNJjdeBXvvHEzmE4Ig1JzMziseuRPh91dKoTSCADsWIxYCc1Ynogjb3pCM7ec2gncYunrhgA3wwXNh6Uoozev4ofOlvlEsSuXnnLezj2h10OmRPtWQz0mDZ2CixDAfhzc2Q+A+6VixKNW1wy15x0u85mX/fvz+t3/b7KpcWui5mSmq1WOhUGB8fJxsNktPTw9erxen01m1rovFIoFAAIfDUTbhGYpuqlvNvBaPqdBrW8+z3l+TygUxal3KNdrb2xkZGZlSpVSv19Pb28vY2BjDw8N0d3fjcrkYHBxUFhoWom9dfswx7HX11fzztdd476pVZXXys02bcBqNfOyAA5ryW3I0A1DhjZqMOXnW3AfBCc/Cpg/BXWvh4N/AktOn/VoFlzf+F/RuWHpW87hNA5vNRpYQw77NOIxLicep6G+CIIn+DQ8PK566UqjVaqxWqzKZVLDkTNhyPez7fWlMqQNzNRbm8/mKLRi1MFn9vVHF6lZAtXp8cfyPFMUC+3V+ZEF5NA2iCPEoRIIQCU36W/IJ+ssdDyDNWSZGq86V++2H028/nEeHLuPdu/8WQZDmUhaLRYky6u3tLdMG0el09PT0MDw8jNfrpb+/v2Zu7anqJJPJEIlEFK2PUsjiWXa7vdGagqGt8MvvgM0Ol1wJDjeJDQcRnngRR8e+WDr2avyaKrU053O4Ydke1c8pFqU2Cvmkdgj5dhrkb74M4yNlbfPK6jQBd44PbD8AoTcCVkfjvGaBZvRXQRBY4TqBLaE7FMMbpDBsl8ulpPxKJpOKhsxMuGSzWYLBIIIg1MzM0AzMx/y04T3eC4aJ0eqDyTc+CTYHmK1gskh/zfLfkjJTSZnZCjp93S/Hqgj6EMZHJANuvgx/UZQ8ttkMZNIwMQaTRCMWcjECaq8INYx8Ht58SfJqP79JGriW7g4bjoEDDoXuvtrfPfwE2PtAxIlRhI6exupCo4X2bulTDYWCFIo02TDf+ho89ZC0QFSoTHGEKEpt1dkLK1aVeXjmC61gdMtYEC6iKE1MXn8Rfncl0DrPzUxRWo/5fJ6xsTFEUcTj8Sh76mqlmZLD0OU9dQCZfBRfYnNZGPi0aHAsbDfvhV5tYzj6OCvdJynlBoMBq9WK3++nt7e3Zh/RaDR4PB7Gx8cZGRmhs7MTu91OIBAoCw+bT6xwuTh37Vq+ds89nLL77uh2hPX6k0mufOIJrjrhBHRNyjMqK8WqVKq60qjMSX3oXXDkLVIasI1nge8xOOAnoNbVxyUXh9evlIzUOU7vVIot4dt4dPBSRIoICRX7Oc9DGDuU7u7uCn0Bm82mhJxPrkO73c7Q0BDpdHqnt6//DHj+Igg+Iy1O1Ilmt48c8aJWq6edoE7e+wiUhQ7vMpg0BiVzPl4Yv4H1vV9Gq57HnOUzmRfmc1Mb0nJZNLxzbqFSgc0JdhfYd/zt3Ef6t1ojvc9K58uCCjp6alJY3/tV/vbK+3g9cAt7tp2qlLe1tTE0NEQoFKpQj9br9XR2djI+Po7X66Wnp/b1ay38jo2NAVRElmSzWSKRiCLo1hCe3wTXXw77rIOPfgn0Bl7z/4tHh3c898MqDlNdUnafTYNKJdkjNgcsWVl5POiDCz9E3JRnvCvHk4fEWfu4Bctr/4G//1NyKK3YG1buDStWQ0f37OyUOtCM8WeF60Se8/6GQPJN3Kad9+1wOBQNmWAwOK1BW+uYKIqMj48r16y1yNMszPUcYtcxvDt6pA5YNpgIcManpL/JOCRiOz8To5CIQzIm/U1N2viu0dYwyi1TGOwWMFlh4z1l+2fkkHeKRckolg3jbBoyGelv6b8z6ZJzMpPO21Fe61iNPQkKikW46TrYdx14lkLPEtDPT17JyXs0GkYmDS8/I3m1X3gC0knYfV848XTYf31DRpHobCOhM0pcGmdSG2r1Do92J+xeGVJIsQDhoLRgcNO15cdEEX78FanvdfdBd7/UPj390qe9R7r+HGDWbbMrcRFFaaFmdABGB2FscOffZHzHi6x+j0CrorQes9ksY2NjaLVaRblc3mtU7SWVz+cJh8O0tbWVHR+JPYlGZaDTvF99JB65s/pYOAVUgoYe6zqGY5vKDG8Al8vF0NBQmWBn1WuoVHR1dREIBBgbG8PtdlMsFvH5fMRiMbq6uqZcXZ8LfPPII/ndCy9w9ZNP8sVDDiGRSHD5xo10Wyycs1+d9TkNSr3ddrt92udnTp81QSWlAHMfDI+dBcGn4LC/gql3ei5vXS8Z3Ms/2lxOUyCeHVeMbgCRIi+EruL4noMYGxurML7lSIpqfVGn0ykhlIrRYFkKbeulnN51Gt5z0T7RaJRUKjXl4hVIwouy+nCxWESj0ZDP56uGfrc0qoxBT/c/hU3nYXf3uxeOx5mfgb3WVDeiSw3sRIkgsd6ww5jeYVC3dcFuq0rKdnws1qkX7wUB8carpNBqdhgSz2+Co99V1ZCz6rtZ0/0Jnhy5iqWOozBoHIAU3dHe3q5sQZic31j2isfjcYLBYNWFnmp9XBQlscxCoVA1bDgQCGAwGBpLHyaKcNfN8Pf/B6ecBe/+HxCEqs/9o4OXYtA4seg6UQs61Crdjr9aVIL0b5UwBymlXO289rFDeVT7T0QVIIJ63TFw7tdh8C3Y8rL0ufm3EAtLHvCVe+80xvt2U7SHmoFmjT8OwzLaTHuxJXRHmeEtR7JlMhmy2eyUXu+puASDQXK5HIIgTDkvaAbmY6686xjernb40Pk7BxN5n0a94aGFgjTplg30yYa6bKT7xmDgzZ1liZi0IjkJcnMIogi/+wX88eqq5ynQ6UFnkP7qa/w128BZ67gB9JOukYzDpedPMsZ3LEL8+0bJ+BAEadGid1n5x91ZHp69UIjH4MUnJGP75Weksr0PhDM/Iy0eWBoXbFlQqNRSX12zAf5yXcVecy78qdSvZGPwxSfgzr9JiwwarbRS3t0PniU7DPN+qf008+cV2mVQLEJwotK4Hh2U6lOtkeqzpx/2XgPHnirVqU4PF3+ssm2m8Ai0MlKpFOPj4xiNRjo6OlCpVKTTaTKZTMV+aRnBYBCtVlvhDR+ObqTHuhZ1PV7IWWz/6bNt4MnRXyKKRSW0ESRvttPpJBQKYbFYqu7jkiGHBGu1Wvx+PyqVSsmqUW2v6lzDZTTyrSOP5HsPPcSH9tuPcCLB1U89xfXveheaJo21pXlRawmmzTu63gknPgePng53HAAb/gTdx9Y+v5CBV38Ke14Amuk99s1CNDOoTL5liBRRmeLYNO2KboA82Zc9xsFgsGpfdDgcjI6Oksvldm7VWHKmlPf8gB9LCxPzjEwmQyAQoK2tDZ2udvRBoVBQFuo6OqS9rq2yMNsQqoxBgdt+yuunhzhx0+6o/tJA5M5sUMiDd7h8XvjnkoV3q73cO710ZbmBLf/b0KTn4fATYK81pAa3YuhfDpufgpt+Ba88Bx+5oOq8ap+Oc3gjcBtPjfwvhy/5hlJuNpuxWq1VQ85BSumUSqUUtfN6RPai0aiU1aBK2HAymSSZTE67cFSGfA5u/CU88QB88muw7qidv1Xjub9n65emvaxkgGurGOY7y3Ye10r/ryo9Xl6WL2Z4Rv+vnT8gwGP6W+grfgrL8j1g+R5w3HulucnEqGSEv/kyPHw7/PXX0txl+Z47DfHle0oibi2Ala4TeXH8Rtb1fL7sna5Sqejp6WFwcBCfz9dwGHc6nSYcDqNSqbDb7XPu7SboQ12iyzQX2HUMb6gcTBqpFLVaGvysDe4XEUXJ0ywb6q8+D3+pVG3n3f8jPQQVxrJB2lc8V51lqsWIRAxGtsPwNunz0lOSkZdJS7w8S8uNcc9SybM/1wj5JUP7uY1S2K/BBPsdDJ/4mjRpnycP/Zyi1kLRbjv2Fu27bue51Ty0m5+Gu/8hRWqo1dCxw4DsKTHIOz1S33q7o1iUwvlHBkoM7AEYG5L6skYrhWj19Ev1evz7pXpq7669OlytbXYhbzdIXutQKEQ2m8Vut+N2u5UXWiQSwWQyle3dlpHJZIjFYnR3d5e9AEVRZDj6OPt3faQ+ArW2/9QROeCxHUJ68HsEUq/TZlpVdsxutxOLxQgGg4pRMBVkZWo5bFFGqVryfOFza9dy9VNP8dV77iEQj9Nrs3Hm6tXTf7EOyN5uQRCUNCktA5MHjnkQnrsQHjwBVn8HVl9S3fjc9nvIJ2DlZ+eVok3fD6igZBIuoMJu6MdslcJoJyt7l4r+Te6LBoMBnU5HJBKhrU1S/6f/A/DMF8G3EToOm4e72oliscjExAQmk6nm9hIoD9uUQ3lrqfu2PCaNQSIiT2yI05fopXfVmbBqiu82E+MjkvbMZHzmYth/Q1O9lHXD1U5BbwKzGY48WTLWfnUZfPdz0lxrj33LTlertBzadxG3b/kce7S9hw7zzog+t9vN0NAQwWBwZ1/fAUEQ6OjoYGxsDJ/Pp6SOqoV0Oq3k7Ha5XGWGlChK6cOsVmv9kRexCFzzfakNvvYTaR5eApuucluigIoP7HUzBo2TgpilUMxRELMUS/5dELMU5X9XPZ6jWMwq/y4Ud5blxLhSVhTla2RJ56NMjrYTKRLNDGHRlSySC8JOLaJDj9txn2HY8ips2QyvPAt3/FV63/YuK/eKO8vbZ76w3Hk8jw//grH4M/RY15Yd02g0tLW14fP5lIXBelAsFhkfH0ev15PL5Wa2378RPHIn7ND+EedQ+2fXMryhfDCZDwiCZAjqDVKHNlmklafJ3rJD3rEwE/epFiPMVikcujQkulgEv1cyxGWj/L5/73yBOdsqveOdvbN/cYwN7RBH2wTbXpd+Z//1Uhj57vsuzItprlHvQpEgSH3H1Q6rS0IU5T3JskE+OiCpr9/3b2khSKWSjEslXH2HUd7VKy3+lGIeVvHqRi0uxQL4vDvvdXSHoe0dlha/tLqdIfprDoXuHffd1tV4iP5sFvFaALlcDr/fTzabxWw243A4FCM6n88Tj8fp7q7UKZBTDJlMpoowvlB6K4ncOL22DfWRqLb9p87IAYuuE6dhN4aimyoMb9mTPTo6WqGYWwvy/ZTmCK3ne82GTq3muOXLuebppwEpMuqG55/n42vWzPrasrdbEITW8XaXQqWFA6+A9g3w+MfAvxE2/EESUJNRzMOrP4bdvwDa+Y1msug66bcfzmDkIaVsn85zlAmvvHBVanxP1RflsEefz4fT6ZTU5Y3d0HmUFG4+z4Z3MBikUCjQ09Mz5V5Jv99PJpNRUozt0pg0Bg33Zxn15Hhf7zehq/599rNG0AcP3Fo5Fi5f1TpzG89S+MZV8Nfr4acXSVlg3nV22bvTY1vHbs7jeHTwMk7d80ZUgnRMrVYrxrXZbK7QljCZTJjNZtLpNOPj4wiCUDWkOJ/P4/V6lRzMkw2pWCxGLper+u6qitEBSUTNYJTubdIcXBRFXpy4EZWgRRQL0h5vVBzWfwl2w5L6fqOJiGfHuWnzKWUeeAEVNv0UmkUyrA44YL30AWlOtP0NySP+5suw6T7JUdPWKTl4Vq6WDPHu/nmJbjVp3Xhs69gSvKPC8AZpETMSiRCJRKr2oWrw+/0AipL5nI5X8yjg3SIjQv2QH+gFC4fa4cmsqZq9ABDcHRh25DSfFvLEuKNHMl5kZNLSICYb5Ntel1Z/4lEpZLenv9JDbneV7RcSQn7M4yMInR7JsN7+huTVfnYjeId2KpGf9blKJfImY8H7icyjkbap+LKwU0Vzr5KJuyhKQitjgzuN8jdfhofvkFZ/BUEyRmVjPBZBeOzunQreH/wcbJgiFHQusfEehD9ds5PLfgdLiwSjOwzsfE76/55+ybBee+TOhQV3R1NF6WbVNguMaDSqGJmJRAKdTqeE7EUiEbRabdUXWzKZJJ1O09dX+aIfjm7Cpu/Dpq++R7cCrnZYdYC0+i7j7M/XPRb22tYzHN3EAV0fqzgmpwnz+Xx1hxy63W6y2Sz5fB5BEKZV/J4LDEejXPfMM8r/i8Cnb7uN41esoHcGeY6V6+zwdqtUKiV/bj1YkHGw//3g2BceeR/csQYOvxncaxFSI5i3XouQHIE9zp8/PjuQL2aYSLzIGsc5dCW7eEF1H5H0gHK8NOzV6/XS2dmpTBDNZjN+vx+Px1NWl3Iqu2g0urO/LTkTXvwmHPgLUE09xWpW+yQSCSKRCN3d3VNOTiORCNFolJ6enrJomFZ5XzaMkvlYUSzw+IYEexbW4ZxPo3sSj5aZF1ZrU50e/ufzsNcBcMPPpYX8T14obT3cgYM9F/C3V97Hq76b2bvjDKVcjqSYmJigr6+vIuS3ra2NwcFBjEYj4+PjimZCqRE+MTGBWq0mm83S3l7+7i0WiwSDwYr0YTWx+Wn41Q9hz/3h41+tCNMXRZHHR37Oa/5/ctKKq7Hqe4mkB7Eb+su9y/MIi66Tw/ov2SnwuGMRYEZ8dPpyx1qxKM0H39yxT/z2v0hb8UwWSSdAFmxbtrsSKVk2Z29CX13hPInHhn7Ehr4L0agqIxbkzCVer5fe3t4px6BEIkEsFlMi4Obc273D+Rg3F4jaC9giaiwJ5kT7Z5czvGFnnrUFww7V7OL4CKr5VDWfArOuE71BSpFQmiZB9rjKoerD26Q9NP/8nbSnyWLbGaKeSsCm+5TVIkwWySu7dCWsf6dkcPf0z+oeG8WC95O54iEIO/aFOWHPSaJNsfAOj/GOkPU3NsNbr5SSkfQI/nh18/jMFKIIzz8OBx0h9RF5b7uzfd70B1qljzQKWZDG7/fT3t6ueK+LxSLRaBSXy1VxX3IYn91urxqmPBzd2FAaMZIJSc3/9E9SdHeh+r/LG9pv1mtbz+aJP5MtxNGpKw1Jt9vN4OAg0Wi0rpeuTqfD4/EwNjZGNpslm83Oezj2m4EAxUlhuwVRZEswOCvDW/Z2GwwGBEGob2K6AwvSx227w/GPw5OfhXsOk0Kwt/8ZgSIgwMi/YbePzyulLcHbKeZS7PuTO9DmBFQ9OW57T0SZjEOl8S2L9MlGhZy3WIYgCNjtdkWATRAE6H0vPHUujD8w9V73HZht+8ipw+x2+5RiVIlEgkAgQEdHR9VFuV11LOTwE4jv0c+LY78nXniEA/e5dMF47DLzwjWHSqrb/3c5fPdc+PAX4UApQsOsa+fAns/w9Ng1LHMeg0m7M2JFVjkPBAIV6vcajaZME0FWOtfr9crCYSaTwWQyIYpi1fRh8vM0zU3B/bdIWz6Pfz+c9pGK+YIoijw5+kte9d3M8St+Qbf1QABMmva53yM8DfZsO5Ve23oiqUHsxiYuAqhUO51iR58ilQV9O/eJP/WwNHdXa2DJCmmL5yvPSnP2JoVVL3UcxaNDlzIYeYTlzmMqjhsMBgwGgyLs6PF4KrYaCIJAoVBQxrREIjH33m6AwASvrUrx6JFxRBUIRTjsYRt7zoH2zy5neJfmg1vIl4TobCM5F6rZM+EyV3VS6nEtDYHO52F8eKcxvu11eO2F8u+mEnDxlZJYxAKgZfrJfPOwOmAPx879W6+9AD+9sPK8sz9fPd3FXGL7m/Cn/60sP+rkygWEeUCr9JGZQKPRKOF9RqNRMcTi8ThA1T2ekUiEQqFQ1ROcL6bwxp9j744z6yfx8O1gMCIe/S6SmSzmw45HuPOvsPaIulKgdFkOQCVoGI09xVLH0VXvsXQiV8+LV877GggEmJiYwGg0zms47Uq3G5UglBnfakFgxSzyjhaLRUW4KJ1ON5TuaUH7uMYM638Hjr2lNFs7WcGTn4bu42sqoDcboijy0tjvWfWcCm1OqoeuUQ1tPjWbh37LoSu/o5wrG9+lYedmsxmn00kwGMRsNpf1KZvNRigUIh6PS8+doQ26jpXCzacxvGfbPqWpwyaneypFJpNhfHwcp9NZdWwQE0NkfC9haN8HwVxH2GsLoTRVFAgMRB6em1RRdWCXmhe6O+ArP4bb/gTX/RAOPx7O+DToDezdfjpvBG7hiZErOXrp95SvqFQq2tvblZDzyQs9drudaDSKKIqYTCZGR0eV50YURdrb2/H5fBVpwnK5HJFIhPb2aQzjfF4SrXv0LvjwBXBo5fMliiJPj17DyxN/5rjdfo7Huq6++phHmLUdkDVj1s7xlllXuyQ0J4vNJROw9VVJ7+m+f+88r0lh1Vq1iaX2o9kSvL2q4Q1StojR0VEEQWBiYoLOzk5FZyKZTGIymZQxTavVVt2S0HQ8dDvxf13Jo/8TR9zRNUQVPHpkjF5LkWZv7GoBWetF7HLQaCQv98FHw/s+Bqd8sPIcUZRSoC1iYSHvgSuFSiWFeMsqmvP12f/g6lx2UTXxhYZGoylTWxZFkUgkgtVqrZi8FAoFQqHQzr2okzAWew6RIj2WOkM08znpxf3O9+xU3D/2vTC0DV59rj7+Kj091oMYjm6qeY680h0IBOrjhTQ57OjoQBRFJa/5fKHXZuPXp5yCekc/VwsCvzrllFl5uyORCKIoKuHl850mbVYQBHCvqywXCxDbMm80hqMbieRG2Oulkj3aCOzzvJE3YneRzkfKzpeNb6fTidfrVbwugiAo6dxkqNVqbDZbmeI8S86EoX9ICu5zCDl1mDx5rYZ8Pq8YSlW3X7z1G/j3UowbT4Z/L5X+fxfB5FRRIPLo4KXEs+MLymuXgVoN7zkHvnq5ZIxdej6MbEclaDi07yK2BG9nLPZM2VdMJhM2mw2fz0exWK4WLqePkheh9Ho9gUAAURRRqVQkk0n0en2FwR4MBtHpdFNvoUnE4MpvwDOPwld+VNXoBnh27Ne8OHEjxy7/Gb22Q2ZWL29XmMySE+2AKjouxaIkUDdLrHCdxFD0MdL5cNXjBoMBvV6PTqcjmUxWjKfxeJxEIkFHRwfhcHhuvd2iCP+4Af74v0Tf/27F6FYOCyLRzFDTf3bR8F7E7FHLuFs0qBYesrr6DkNMXMi9Z63E5W2IdDqtKJxPRigUUrzB1TAc3UiX5QC06jrzpj75kLR6fmRJHu72Llh7ONzxt7o599rWMxTdVNM4lidysViMdLr+hTyTyYTBYCCTyRAMBuv+XjPw8TVr2Hb++dx++ulsO//8WQmrySGaGo1GEdJb6FDJhmFdScVUQ1CDdcW8UXhp4o/sZj4CS7I8yG/5diN6tY3X/H+v+j2Xy4XL5cLr9ZJMJmlrayMSiZDNZsvOs9vtZLNZUqmUVNB3KhRSMHb3XNwOsDN1mNvtrrmlolgsKmnDJu+pBSA5DE98ascWAKS/T35aKt8FUCtV1FxMlt/W2H0f+Pa1kor2D86DB26jy7wfu7vfxWNDl1MUy1PlytEVsvhVKWR9jkAgUGZIF4tFEolEWfYNkN5b8Xi8orwM4yPwwy9K+c8vuVISDquCZ8eu5/nx33Ls8p/QZ69TJPS/EdXm7AD/uUl6r88CHts69GobW0P3Vj0u668kk0ncbrcSLQSSg8Dv9+N2u8lkMkqe9zlBPge/+Qnc9y/4wnexHfS+Sq71Ct81iF3sDb6IlsSiQdXaOPwEuOwGUud+By67YU7SI+ySXN5mqJVCLJvNEolEppzYDEc30Wutc3+3KMJdN8MRJ0haDqU44QOSx3v7m3Vdqte2nnh2lEhmsOY58kTO7/c35L2WU5aEw2ESidlNJhpFr83G4X19s/J0w8693S6Xi2QyOWWaqJaFqRcO/jXiDoVkUVDDul/NW5h5IPkmI7En2Kfv47DnfkoyHxFQHX0qq7vO5mXfXygUc1W/73Q6cblcjI+PUywWMRqNFX1Rq9ViNpuJRHZ4zrU28JwshZvPAeTUYUajsWbeZDltWLFYpKurq/qCTeRVmGS4znc0wmxg0/cjTJrGztVk+W0PixU+9004/VPS/ulrvs86+8dI5nxsnvhz2alyVFEsFivLJCHD7XaTy+UqFj0FQSjLDCCr7E+pcv3q85InvqMHvn6FtMBbBc97f8uzY9fzzmWX028/vLF7/29DtTn7qR+CsB9+eL4khjxDqAQNy53HsSV4R81zTCYTOp2ObDaLy+ViYmKCcDiM3+9XcsGHQqG583YnE3DlN6W89l/9CeyzljeCtyCgUcaTWQnfTYNdbo93q6RSaRUe0CJcDj8BYe8DYWIUoaNnwY3ulqiTVuLh7sDYIimzWoVLq7TNTFHKP5fLkUgkqqZhCQQCGI3GmsJLscwY4cz2+oXVXn5GEu4773sVPOhfAXuvgTv/JuWwnQZ2/RIsum6Go5twTJHeRRZamyxuNRmlXPR6PRaLhVQqxfj4OL29vfMmttaMvlXq7S4Wi6jV6rpSsDSbR1Ow28cRuo+H2BYE64p5M7oBXpr4A92WA2nLdsCWVxA+eC709CPcfytsf4M9XN/m2bHreSt0F7u7T6l6DTlEe2JiArfbTSAQIJFIlNWtw+FgZGRkp6jfkjPh8Y9CPgma6s/eTNunntRhgUCAdDqNx+OpPnlNDsMLVZ7ReY5GmA2aqhLdBLTM88YMuQiCJMy1cm/49WUYL/06B33kVJ4Y+zXLnceX1avRaMRutysq56V9TKPRKHu7SyGKojKWgRRWnMlk6Oys0V4P3Q5/uhqOfjec/omaWU1eGP89T49exzuX/YiljqNq3Nou3jbNRrU5+zveIwnuXXo+fPIi2LfKNqE6sNJ1Ei/7biKaGcGm91Qcl73ect+ZHJkWi8UoFAo4HI6Z3l1tBH2S0V0owMU/h7YuXvb9lWfH/o9jl/8Et2lPopkhbPq+ORtHdjmPtyiK5PP5ed2318o8WomL6Gwjv2JvRGfbgvKAFqqTRR4ty6VVeMwUpfyj0WjVFGLJZFIJ6arp7Y5twqhx4zLWKbZ3181SmrcdiycV9XjC6dI+vInRaS8lCAK9tg0MRzdOeZ48kQsEAhQKhZrnTebicrkoFApotVq8Xm/FnsS5QjP6luztbmtrIxaLYbFYGhYFaqU+Lho95N2HIRorJ2JzhWTOx1uhO9mn43+kftvWhXjkidJ76tQPwZZX0G/dzh7u9/DSxB+nrCen06kY3UajkUAgUNafZMXecDgsFfScLP0d/U/Na86kfeTUYR0dHTW9QXK+3M7OzuqLTWP3wB0HgEoH+/9kwaIRmoE9207lzL1v5YTl13Dm3rcumLAatNjzNhsuvcvgkqtg33XseeWdOFM2Hh/6acVpLpcLlUpVVYPD4XCg0WiUCCytVluWO15OH+ZwOCqitCgU4KbrJKP7g+fCmZ+uaXS/NP5Hnhr5X96x7FKWOd9R85beNm3TTB6T5+wmM3z+29JCxy+/I6UkmwHHNtNe2PVLeCt4Z81zzGYzGo2GaDRaplsiR0rMibd7aCtcdoEUqXfRFdDWxZbgnWwa+glHLPkWSxxHYtZ20GHcXxLAmyPscoY30NBev7lEq/CA1uHSKjygdbgs8qhEq3BpFR4zRTqdVlKIKemMdkBOHyaL3NTCcERKI1aXUTe4RQr9O758P1RZPe65H/TvBnf/o6576LUdwlj8GfLFqYWoHA4HarV62j3bpVy0Wi12u51isagoQM/XZGc2favU263T6chkMjMOM2+lPj7fXF72/Q2rzkM/e0ves1POApVa4tHdJ6UyvO3P7N1xFqHUFkbjT015PYfDgdvtJpVKUSwWdxrZJcdjsRj5fF7ycnveM224eSN1Uk/qsGQyWZFmUEGxAC9+Bx48AZZ9GI55EPb6Crx7G6kNt8O7t817mrdmwKzrxKnZG/MCebpL8bZ53vQGOOc8VJ++hEPvVrMtfD9Dw+Xhw6Uh55O388hpD3M5aQtHLpcrE9KKRCIUi8VKwb9kQjL6Nt4LF/ywXEdkEjZP3MQTI7/gqKXfY7lz+tR9b5u2aSIqeKjU8N6PwKcukhTvf/0jyDTGVRAEVrhOZEvw9in1WxwOB+FwuEJgbU6UzF95Fi7/Cuy2F3zph2CxMhTZyIPbv8XBni+WRTvNddvskob3IhaxiEUsQoIsTDI5dC0Wi5HL5ZS8xNVQFHOMxJ6kz1anEM1df4dV+0sh5bUgCHDiB+CxuyEanvaSHutaCsUc4/HnpzxP1fixtgABAABJREFUEATa2tqIRqMNvRgdDgeFQgGLxaJ4C1sdk73dWq123nOS7+rIFVK86ruZ1R0fRLj7H1Io5dojyk866Qx49Tlsw1GWOo7mpfE/THtd2fiW07zJhgVIexdlLw4ghZuP/Aeys+9z9aQOy2QyeL1eHA5H5ZaM9IRkcL/+Czjs77Dmp6Da4Wk09VJoO3yX8nQvYp5w4GG0f/7/WDXcw8Yt3yH/7INlhw0GAw6HA5/PVxGNNPn/ZVHCfD5PKBRSPOYKfGPwowvANyqJqE2RZvQV3994fPhnHLnku6xwLWrFNB1rj5C8wltfhR99GQKNZQpY4TqRcGY7/tRrNc+xWq2o1eqyMVRGU1O+bbxXCi8/8kRpQUGrYzz+Avds/Qr7dX6YfTrPbt5v1YGGDO9//etffPKTn+SMM87g7rt3qnV+5CMf4ROf+ASf+cxnyGTmNn3GIhaxiEUsQoKcQsxms5VNYOQwPqfTqaQbq4aJxGZyxSQe28HT/1hgAp56CI5///TnrjkUHG64/9/TnqpTW+m07DtlWjEZcu7yRoTWNBqN4omUQ4UV9ekWRKm322QyKal5Fjr37K6GN4O3AbC79jB48DY4+azKcNW+5bD/evjPn9mn8xyGoo8RSm2b9tqy8Q0wPr5zQip7cWRvHt3HgdoIw9M/B9NhutRh+Xwer9eLyWSqXGybeFQKLc8E4IRnJNX1RSyiXrg7WXvC78matbz45LfgD/8L2Z1zfafTiUqlqlA5b29vr/r/wWBQEdFS8MZmuPSLYHfDxb+QFNZr4DX/P9g49GOOWPItVrpre8QXMUv07wbfuEoKQf/+efD6i3V/1abvpcO875Qia/Jeb0EQ6OzsVCJ0uru7mxNmLoqS1/7/XSHlqP/AJ0GlIph6kzvfOp+V7pM5qOdzs/+dBtGQ4X3qqady/fXXc9111/GXv/xFKTcajcoLp2Kvxg5kMhmi0WjZB6RJRumnWtnkcjnZer3nl5Y1Wj7VtUt5NMqlWeUyqnGZaf3OplylUjXtnmbbTs3g0ozyyeG/C9VOM31u5qKdms1lpuWNPDel5bNBM8fCXC5HLpdTwpDlcjl0S57Y1LqfochG2k17oVfbp2+7e/+F2N2PuNeaCi4V9ahSIx73PsT7b0VMJae9p17bBoaiG+uqA7fbTTabJRqNVr2nam3qcDgQRUnYx2azMT4+ruyxm6v+NdPxJxQKIYqSknkmkyGXy2E2mxt+xuSPPP4s1DNWjctUfbIZv1ksFnhp4k+sans/6ntuQ3S0wbqjyngo559yFrz4JB1+Ax3mfdlcstd7qt+12+3Y7XYymYxicIjiznzrsVgM1Hrofx/iwE01udczFmazWSV1mFarrTi/UCjg9XpRq9VK2jBRFBGLRcRXfoJ431GIPSfDcRsRLcur3tOuPhYuzgsruTdzXqjTOVi37EKeX5cluuVhxB+chzi8Tbnnjo4O4vE4sVis5Ds6TCYTDodDUbJOp9PKIqjC79G7EX92EeJBhyOe9z0wW2ve02v+f/Ho4GUc1n8xK12nNHRP/41j4XTl0z43Fjtc8EPEdUciXvF1xPtvkcaVafqeKIqscJ7IW8E7yzJGTD7farWiUqnIZrNkMhnsdruiVTOre83lEH9/JfznJsTPXoJ49LsQRZFoepg73vw8Hus6NvReWPG9Rp+b0vJ6MSNV8x/84Aece+65yv9fffXVqFQqrrrqKm677Tbe/e53V3znsssu47vf/W5FeSKRUFY2NBqNkns1n88r5+h0OuWBlUNXkskker0erVar7LeSYTAY0Gg0FXtOTCYTgiBUlMuTmslpESwWC4VCoSysUaVSYTKZKBQKZd+RFWdzuVxZjs9G7gmY8T1N5j+Te8rn82URCzO5J5PJRCqVaso9NaOdcrncrO+pGe0kP5TNuKfZtFMymWx635vpPSWTyab2vZnc02Se9dzTbFNTNXMslMdB+SWeSqXI5XKEw2FsNlvNfiff52D4MbrNByvHa7adCnj4DjLv+zj5HcemHQvXHonm3zeSu+/f5I5615T31Gtbz9OjV+MLb8eklbwiU7WdLLQmCILi6Z9qLJT/hkIhZY/u+Pg4HR0dZf1uocfCeDxOOBxGpVIhCAKxWAyDwUA2my373UbHDUEQ/qvGwq3BB4lnx1jKkfDAJeTO+DQ6tZpMOl05Fi7dncKqAxBv+SMr3/8+Hvdeyv4dn8Jq7Jj2ngwGA8lkkkgkgkajUaJLjEYjoVBIWhDrOx3hoZNJBAdA31b1nqYaC2XxKoPBgEqlUn5bbqd0Ok0gEFC2lRQKBdRqNemoF+0zn0Tte4DM/tehXvFhtGotqWTybTkWyvW4OC+cu3lhj/4o3MZ/svEsI8fe5UZ16flkTv0w+Q3HodFqcTqdSjSSPC7LeeZTqRTJZJJwOKzcJ8UC+b9cj+aBW8ie9lFyh5+IQRDQUP2dtSX4Hx4dvJSDOi6g13AsiURicSycr3nhqR9B1eFB/5dfk9/6OsLZn0djNE75PHXpN5DO/5StvkdZ0XFUzXuyWq2Ks0AURVKp1OzuKZPC8P9+hnp4K3zlctI9SykkEqTyQe4d+jx2wzKOXvoDMunsgoyFgtiAmS6KIhdddBHHHnssxxxzTMXxm266iWKxyAc/+MGKY5lMpqwCo9EofX19ygRRIbRjsKggWrICkc/n0Wg0CIIw7fmTy+T7qLe81rWLxWIZj3q4z0W5XJbL5Sq4NHpPsy0XRVF56U8OhZvvdmoWl9mWy/1Vq9U2fK/N5DKb56ZW+UzbaS64zKQcaOi5kctlITM5xLtRNGssjEaj+P1+nE6nEq4liqLizZVTDdVqu1QuxB9eOpZTVl5Pl2X/qe//zpsR7/sXXPb/QKMtu86UY+F/boKH/gM//C1oqj8DEkT+8NJxrOv5Aru73112/VptNzQ0hNFoVPJ1TzcWFotFhoaGsFgs2Gw2RkZGMJvNyvfrrfd6ymc6/gQCAcLhsBJ2NzAwgNvtrhBWq3fcKB1/quHtOhbe+sYnseo8HPlMv6Sw/71fI+yYUFUdf97cjHD5Vyh8+2r+FrmAla5TOLDnU3X9bj6fZ2hoCFGU9uTbbDby+TyDg4N0dXVhNuoR/+mBfb8HKz5Vdo16xkK/308ikShThC7lEggEiEQieDweRQdACD2L+MgHJI/7YX8D+95T1hns2mPh4rxw/uaFwdQW/vna2Ryz7HKWPBeDv14vpZ360PlgtjI8PIxWq6Wjo0P5vjwWplIpvF6vlNqxWED4zY8RX38RPn0x7H3glL/7VugOHtz+bdb3foW92k8vO7eee/pvHQub/ty89Spc+31o60L47DcQ7a6Kc0u53/3WBejUVo5e9v2a9zQ2NlaxQNTV1TWze40E4apvQyoBX/wBQqcHURTJ5GP8Z8unUQtaTlpxLTqNecHGwoZCzX/5y19y7733cvPNN3PddddxzjnnAPDlL3+Zz33uc/z73//mPe95T9Xv6vV6bDZb2UcmXvqpVja5PJvNNnR+aVmj5VNdu5RHo1yaVS6jGpeZ1u9syjOZTNPuabbt1AwuzSgvXZlrVt+bSflMn5u5aKdmc5lpeSPPTWn5bNCMsXB8fFwJbw2FQso+00wmQyKRoK2tTVndr3Xtkdjj6NRmOi37TH3/hTzc9y+EY05F0Oqqcqw5Fh59CkIygfDUw1PekyCo6LUewnB0U111IAg7hdbk35ZRq01VKhUul4tIJIIgSHvKotEo8Xh8TvpXo+OPKIqK59RsNiteE7PZPKNnrPRZa9Y9zbZ8PsZCX/JVvPFn2dd6KsL9tyKcfCbCDk90KY+y66xcDXvsi/rOm1ndcSav+v9Gvlhf+2m1WlwuF4Ig4Pf7ldR+VqtVUj1XaRD6P4Aw+Jeq15hqLEylUkSjUTo6Osomx/InGo0SDofp6uqSIl8AYcuv4O4NCG3rEY5/CsGxuq663FXHwnrqcaryeu+z3mu/3eeFbtNKVnecyaaRn5E/8liES65EGBtC+N65CG++TEdHB4lEgkQioXxHXlwJBALYbDb08QjCj78CIwMIX/8FwuqDpvzdraF7eHD7dzik9wL27jhjxvf03zYWzslzs2IvhG/8EqFYhEvPR9j+xpTcV7hPYnvkAXKFVM17miyuNuN2GhtCuOwCBI0G4eKfI+zQCSiIGe7Z9iWKYo4TVlyJTmOe8jpzPRY2ZHifd955PPPMM1x33XV85jOf4cYbbwTgZz/7Gddccw1//vOfy/KxLWIRi1jEIpqP0pe2/P+iKOL3+zGbzRgMhmmvMRzdhMd6MCphmh1HTzwI6RQcMQMRG7MVjjgR7vwbTJNDu9e2npHYExTF2nm6SzEToTWLxYJWqyUUCmE0GnG73fh8vpYQBZX3dst7H+PxOGazufm5TN/meGn8D3isB+N6+Hmw2uHg2rl9y3DKB+HJh9i9sJaCmJ1SFGgy7Ha7Eu7o9/uJRCLY7XbS6bTUt5acCeMPQmqs7mvm83kmJiZqpg5LpVL4fD7a2tqk47k4bPwfeOZ8OPBK2PAH0FqqXHkRi5gd1nR/mqKY53nvbySBwm9cBasPgp98Df3dN+O02/H7/WXh2dFolEKhgCs8AZeeD0azpFze0z/lb20N3csD27/BOs95rO6ojKZdxALA2QZf+4mU4eTyr0iq4TWwxH4EAioGIg/WPKeWCF9DeOMl+NGXoG83+PKPwOoAoCjmuW/b14lnxzhxxdUYNM7Gr91kLKYTW8QiFrGIXQzVXlTxeJxsNlsz1VApRLHIcPRxem3rpzsR7v67ZDybZrioeuxpMD4CL02dI9ljO4RMIYov+Urdl3a73WQyGSWl2nQQBAGXy0U0GiWXyylGjdfrrUh9M5+Qc0Kr1WrMZjPFYpFEIlGRIm4RUyOe9bI1dA/72N4L990CJ58JU6j6l2HP/WD5HujuupU93e/lpRKRtekgCFIERjqdVva5plIpjEaj5PVu3wAmDwz+ra7rieLUqcOy2Sxer1cReCPyCty1Dvyb4LiNsPIz0IAHZhGLaAQ6tZlDer/EixM3Ek5vk3J+f+h8+PRFcPc/cP72RxiSMXw+H6IoKqn3Ora/gvpnF8G+a3fkUp46JHdb+H7u33Yxa3vOZd/O/5mnu1tEXdDq4KNfhvd9DG64Av7yK6jyDtWoDCxzvGPKhUy9Xo/JZMJms2EymdDr9Y1xefIhuOJiOOQd8LlvSP0RaZ7z8MD3mUi8yIkrrsai62zsunOEXdLwbhUPQKvwgNbh0io8oHW4LPKoRKtwaRUejUJ+UclqsVqtlmAwiN1ur7mHrRTB1Juk8oHpDe+XnwHvEBxz6pSnTVmPrnY4+Gi4869TXsOkdeM27lFXWjEZWq0Wh8NBIBBQDOfp2tRkMmEwGAgGgwiCoOxFnJiYqNvQqgeN9K1q3m5BEJoSQdZKfXyuubw88RfshiX0bhoBixXWV2rR1OQhCFLKsU33sbfmHUTSAw31RTkCI5lM0t7eTiAQUATz8oUi9J8B2/9cF5epUocVCgXGxsYwGAySUb7tj3DnWrCuhBOfAdeBFderB63UT2aCVuHfKjxgbrksdxxLt+VAHhv68c5x86Aj4DvXIBSKdP36+/D8JhLDA+RffArXPX/D9Ker4bSPwIcvKNMKqYaB8MPcv+3rHNjzGfbr+nBTOP+3tE0jmBUPQZAW1i+4VPJ6/+IbEI9VnLbCdRLD0cdJ5YJVL6NSqejq6sJisdDV1VWe230qiCLcdTNcfzmc9mE467NKykhRFHl85BdsD9/PCbv9Eodhad23Nddts8sZ3oIgKOnLFnm0FpdW4dFKXBZ5tC6XVuExE6hUKrq7u3G73XR3dxOLxSgWizid9YVRDUU34jAsw6LrmvrEO2+GtUdKxnMN1FWPJ7wf3nwZtkztze61rW/I2AEpVZggCIRCobq4yF7veDxOJpNRXvqpVEryTjYBjfStYrFIJBJBrVYrHu54PI7FYpl132ylPj7XXLKFBK8F/sE+9vch3PdvOKm6t3tKHvusBc8yLPc+xHLnMbw08YeGOMip7uQFnVgshlqtlvrVkjMh8DjEt03JpTR1mCyWJkMURbxeLyqVis42O8JTn4XHPwz7fAeO+BfoZhZG2Ur9ZCZoFf6twmM+uAiCwIa+C/HGn2Nr6O6dB9yd8LWfIBx9Cl1//zWW730W1w0/wfbk/QhHnwLHv2/aaIzByKPcu+1r7N/1cQ7o+ljT+P63tM2881h1gLTdIBqCS8+Dke1lh7utB2LUunirtJ/MlkuxAH+6Bv75O/jkhXD8+8v61Qvj/49XfH/l2N1+Rrt5r7pvZT7aZpczvEVRVPYzLvJoLS6twqOVuCzyaF0urcJjppD553I5QqEQLper7pXi4egmem0bpj5p4E147XnphVYHjynrsWcJ7HewtNd7CvTZNuBLbCaTj07NrQQqlYq2tjYikQjhcJht27ZNG3puNBoxmUwEAgFASg/T0dFBMBisSHcyEzTStyZ7u/P5PKlUqilh5q3Ux+eayxuBW1ALOlY8nQKjBTZU93ZPyUMQpLzej97FPqZ3MRJ7gmDqzbo5lEZgmM1mOjs7KRQKRKNRio4DwLICBndGfkzmUiwWGR8fx2g0VijjiqLIxMQEuVyObmsK1b2Hw8gt8M4HYK+vziq0vJX6yUzQKvxbhcd8cXEYlrBv54d4fOQKsoWSMVetljRBBAG5VwqA+OBtEPRNec2h6Ebu3fpV9uv8EGu6Ptk0rv9tbTPvPNq74es/h/7d4IdflLJJ7IBKULPCeQJbgrc3h0smDdf8AJ54QNqysO7IssOv+v/B06PX8Y6lP8RjXdfQbcxH2+xyhjdUCgstFFqFB7QOl1bhAa3DZZFHJVqFS6vwmCmy2SyhUAitVlt3Op9sIYE3/jy9tkOmPvGuv8NeayTxnDp4TIsTTofnN8HoYM1TOsz7olEZGIk9Mf31SmA2mzEajQSDQYrFIsFgcNoXp8vlIpVKkUpJaqsWiwWHw8H4+HiFyupMUE+dFAoFIpEIKpWqzNstC3U1A63Ux+eKS1EssHniz+zlOBXNvbfBSWdMGco6JY/910NHD+0PvkiXZQ0vjf+xIS6lERgWi4WOjg7JUz0+Lnm9B26qySUYDFIoFJTtD6UIhUIkEgk8xafQ3LNO8m6f+Dx0HN4Qv1popX4yE7QK/1bhAfPD5YCuj6IStDwz9uvyAxOjCJPTLxWLMDFa81oj0Se4562vsLrjgxzY/dmmex3/29qmHjSVh8EopYY74QNw3Q/h3zcqoqorXCfhS75MJF37/V8Xl1gYfnYRDL0FF10Bu+9Tdnhr6F4eG7yMw/ovZpmzTmHNmfCYBXZJw3sRi1jEIhYhpeGIxWKKt7QejMWeRiVo6LasqX1SYByeflgKC2wWVu4NK/aCu2+ueYpapaXHupahBsPNQTK+ZWM7l8uRSCSmPF+v12OxWAgEAsr3XC4XOp0Or9dLcRoV9mZgsrcbIBaLNSXM/L8JA+EHSeb8rHpJJ03+Dj125hdTqSRRtoduZ1/raWwJ3UEyN7WXrvzrKtxuN+FwmGw2i9VqxWKxkEqliDhOhNDzEHmt4nvJZJJIJEJHR0fFHsNYLEYoMEGf70q0T5wJe5wHR98Fho6Z3+ciFtEEaFRGNvR+jZcnbiKQLIkO6ehBnDSGiSoVdPRUvc5o7CnueusC9m4/nbU9n18c/3ZVqFTwrrPh3G/CPf+Ea74P6SQu40qcht0ayhZRgfER+OEFkM9L3vVJivjD0cd5YPslrO35PHu2nTq7+5hDLBrei1jEIhaxC0IUReLxuBI2XS+Go5votq5Bo5rCo3rPv6Tw8L2mMM5nghM+AJvuh5C/5im9tvWMRDc1FOol58Auhc/nK0tnUw0ul0vJfQ7S/i45PLiRNGUzgeztVqvVWK1WQMrDLhtri6gfL038kZX24zDedZfk7dbqpv/SVFh7BDjb6N84hkXXzSu++tTIZcgp/eQ+1NbWBoA/30nesgpxkte7UCjUTB2WSqUIDL/Iki0fQTv8Rzjydtj3e4qI0CIWsdBY4jiCPvuhPDZ0GaK4Y8HS1Y7wofMlYxvJ6BbOOa+qXshY7FnueuuLrGp/H+s85y8a3W8H7L8eLv45jA7AD7+IMDHGCteJbAndPrP36luvwmVfgs5eKZWZozzbw0RiM/ds/Qqr2z/YNDG+ucIuaXhr6k0PMsdoFR7QOlxahQe0DpdFHpVoFS6twmMmCIVCZLPZhoxukPbQTbm/OxGDR+6oSwRHRt31uO/B0NkD9/6z5im9tvUkchOE0m/Vd02kvbGTjexiscjg4CDhcLjmi16r1WK328tC0zUaDV1dXcRiMWKxSoXWejFdnYRCIQCcTqcy0YzH4+j1+gpRrdmglfr4XHAZT7zEeOIFVr/RJqWROez42fNQqeGkMxDuv4197O/jFd/N5IupujnJ6cVSqRTJZBK1Wo3NZkOj0RBxnEhx258Qd0RUqNXqmqnDcrkc4df+Rv/m96BWq+CE56Bn+vubCVqpn8wErcK/VXjA/HJZ3/sV/MnXeDN4287Cw0+Ay24ge9734bIbpP+fBG/8ee586zx2d7+HQzxfmlOj+7+1babCnPLoWSLlane2w6XnscLnIZoZZiK5uTEuz22En14IB6yHL3xHimoqQSi1jTu3nMdy53Gs85w3a9pz3Ta7nOEtCAIGg2HBV8RahUcrcWkVHq3EZZFH63JpFR4zgZz3GaTUQ/WuIEfSQ8SyI/Rap0gj9tDtYLLA2qPqumZD9ahSSWJtD90ByeoCaDZ9LzZ9f0Pq5mq1Go/HQ3d3t/LxeDy43W5CoRBDQ0M1Q88dDgf5fL7MyDYYDLS1teHz+Uin03XzkDFdneTzeWVvt7w3XxRFJcy8WWilPj5XXF4a/wN9lkNw3vEQnHj6tN7uunkc/A6wWFn5rLTf/43Afxripdfrsdvt+P1+isUidrudfD6PZvkHUSfeJDLwCCDtJ6yWOqyQy5J44kK6Xv0owvJzEI55CMx9DXGoF8lkEq/X2xRhwYVAq/TzVuGxEFxseg8HdH2cJ0auJJ3fGX0kuDvQ7bsWwV25LWI8/iJ3bvkCK10ns6H3q3PK9b+5bRaUh9kK538PDj8By1W/oDvbz5YqY2lNLvffIgmpnXymlCt+8jaczBh3bPkcXZYDOLz/4qZkApnrOtnlDG9RFEmn0y2hBtgKPFqJS6vwaCUuizxal0ur8JgJSifI9exnljEc3YhZ21k7p2UuC/f9W8rbXeeqb8P1ePDRYDTBg7UNmZmkFdPr9RiNRlQqFUajEYPBgN1up7+/H6PRiNfrZWxsrEI4RaPR4HA4FGE2GTabDavVitfrVXKE14vp6kT2drtcLuUFn06nKRQKTTW8W6mPzwWXWGaU7eH72WdwiSSmVsWjNmMeGg2ceAbae29nlePdbJ74084w2jrhdDqVdHE6nQ6TyURK46HgWAMDf8br9eL3+3E6nWVRDmJqgty9x2Ib+T+Kh/4F4cCfg2rqvMczRbFYxO/3UygUyvQOdiW0Sj9vFR4LxWXfznPQq+08PXr1tDwmEpu5Y8vn2c15PIf2XTjnRuh/e9ssKA+VGj7wCfjEV1nxeJS3vP+mmCmfs1RwKRbhb9fDX34FH/0SnPLBigi8VC7EHVvOxabv4x3LfohKmL2nej7qZJczvIFp9+3NF1qFB7QOl1bhAa3DZZFHJVqFS6vwaASiKBIMBsvK6lHxBml/d59tQ+1JzhMPQjYNR5zYEKeG6lGjhWNOg3v/JRn6VdBnW483/lxD4b21uKjVatrb2+nt7UUURYaGhhRDQ4bD4UAURaLRnWnM5HBhtVrN+Ph4wy/iWnWSz+eJRqNl3m6QBLSMRmPTw9xaqY83m8tm359x6pfTc9tTdXm7G+Zx6LGg07PXqxZi2REGI49O/50SyOHjoVCIfD6Pw/H/2TvvMKmq849/7tSdsr0DS+8dREAUUCyIXWM3icaCJbFEYzR2Y9REzS+Jmthjb7ErKljBBiIKAtI7S9m+O7vTZ+75/TE7w8zOtpmd3bng+TzPPDNz5pbvKfed856ag9PpRPQ9i6y6D3E1N5jpdLqIJlH5FeoH49F5qwge8y36fu1v55cMQgjcbjfV1dVs3749cu9EGvG0hlbKuVZ0QM9r0etMTCv7I2ur36TK+VObOqpca/lw0+8YkHskh/W9CUXpGVfk55w3bdGjOqYcwYCT/o5f8bPzmblxW8tFtPh98PhfQyPjrr6r1a0hfcEm5m++EqPOwjGD/g+Dzpwymd2dJvul4y2RSCQ/V1qbzxwIBDpchTuo+tjd9B19stoYZi5EaMXxGXPAYkuV3NaZOQcCfvjmk1Z/LrVPQiDY0/hDym5pNpspLS2lpKQEp9PJjh07aGhoQAiBTqcjNzeXurq6GIdcp9NRUlKC1+uNa+xIlvB1oud2q6qK0+mUi6olgC/YyPrqtxlTOQxFb0i4sahTGE1w7BnY5n/MoOyjWVX5QsKXyMzMxGQyUVNTQ0ZGBmazmYbs2ejcOzA3rQCguroaR0MDrP0/+PQInNnTUY/+GmPuiJRFJexsV1VVsX37dnbv3o3H44lrhOtsI55E0hp9sqYyMOcovtp5L6qIHylU41rPhxuvoG/2DKb3vaXHnG6JNjAPHE/frMPYXFYLd10JG5vne9dWod+4GnZtg/+7CTavgRseaHWB14Dq5aPN1+EPujh28EOY9KkbJdYTyBIvkUgk+xHh+cwlJSXk5ORQUlJC796947Ygasle5wqCqp9emZNbP2DVd6HtOo48JfWiW5JhhcNPgI/eADW+cmbUWyixT2Cn45uU3lZRFGw2G3379iUnJ4eamhrKy8txu91kZ2ej0+kic+cjWoxGioqKqK+vp6mp9XnpnSW8/VvL3m6Xy4UQAputmxs8DiDWVb+NUWdh0Lx1MPsMMKWuxyOG6ceCAmO29mZP0/dUu9YmdHp45ERTUxMej4ecnBwa/JmoBYdS6HiHjIbFFJqryFl9MWLlLVQOuBfd1KfIsOV2WboQApfLFeNs+/1+cnNz6devH6WlpXENdp1pxJNI2mNqn2tp8GxnXfWbMeE1ro28v/Fy+mRNY2a/29EpcmX+nyODi09iW2kDvoMnwwM3wpP3w43nY/n3HXDH5VC1J7RdWNnAuHNVEeCzrTfh8O5gzuB/YzHm9XwEuog2ltVLkFSu+NoVtKIDtKNFKzpAO1qkjni0okUrOhIlvPK10WjEaDR2an5cuWMJRbbRmA1t9Kp+9AZMPrzV7V46Iql0PPLk0D2XL4aDDov7uU/WIayvfrtbtCiKQm5uLpmZmdTW1rJ7925sNltkhfPs7OyYId82m43c3FwqKysxmUydukdrx4Tndufk5KDT7Wv3bmxsxGazxYSlCi2V8VRpUYWf1ZUvM6p+NHqxB2Ye1306zBlwzC/I/+Btes2dxKqKFzliwF8Sul9GRgZ2u53q6upII5nf2AtT+Qv05gXEOhDmYspHvYG999QuzfMP92w3NTXhdDpRVRWLxUJeXh5WqzVuKkPv3r0JBAKhhd8MBgwGQ4eNeFpEK+VcKzogfVpspiImls7lu93/psg6BqevjrqgwsLtN9M7czKH978zLU63zJt40qGjb9Zh6HUmts0ewtCc3vDm04RrMApAQ12r5wkh+HLHPextWs6JQ58k01zaLfq6O00S+pd/++23ueSSSzjrrLP46KOPIuGff/45559/Pueddx67d+9OuchoFEXBZDJpYjVALejQkhat6NCSFqlDu1q0oiNZEtVf7vim7WHm2zbCuh/hmF90u44I2bmhObQf/i80zL0FfTIPocG7nUZv5/9TEtViMBgoKiqid+/eBINBamtrURSl1WHlubm5kUXaOuoRbE1HuLdbURSys7Mj4cFgEJfL1S3DzLVUxlOpZWvdZ3gDDQx/f2dolXxzO3vSp0LHESeA38fYyuFsrvuIJl9Fwprz8/MjZSDH1IRpzxsxlU3FW4Ulq5ScnJyErx3u2a6srGTbtm3s2bOHQCBAfn4+/fv3p1evXpHtzFpiNpsjjU42mw2zuZtGDnQjWinnWtGhBS2ji87GoGTw1vrz+Gjb75i/+bfYjaUcMeCulCyClSjpTg8takmXDr3OxMDco9lU+yEMHB5/gFChMv5/f+nuh9hS9xHHDv4XuZb43vBU0BNpkpDjfcopp/DEE0/w6KOP8uqrr0bCH330UZ5++mn+9Kc/8dRTT7V6rtfrxeFwxLwg9IcR/WotLDpcVVVcLheqqnbq+JZhiYa3de2WOhLVkqrwcFhrWpJJ366Eq6qK2+2O0ZFsnLqaT6nS0tXwcDlJJq6p1NKV5ybV+dQdWpIJFyKx5yY6vCukwxY2+SqpdW+kT+YhrcdzweuIkRMjQ7sS0dIlW3jMLxDbN8H6lXHH5mYMwmosYKfjm06Xx0TzNPw5PP+7sDDU29/Y2EhdXV3MdRRFobCwECEElZWV7aZ7a/anpqYGCPV2K4oSCW9qakKv12OxWFL2jEXrCNufdDxj0eGpsoWqqrKy8gWGukZh9ukQM4/rtucm8t1sQRx1Cr3f+4Fscxk/Vb6ScD7p9Xpyc3Opra3Fpu5GIbbxRkEl31TX6ecvvC5ARUVFq852aWkpmZmZ6HS6DtMm0ecmOrwryHph94SHw9JZL3T5anAFqmPyu8a9HpevJuk4dSWfDkRb2NXwdNYLB+fOYVfjUpx5ZkQLJ1fodFDUK+b8H/c+y+rKFzl64AMUWkd3W9oI0f22MKlmp7/85S/89re/jbmpTqejX79+lJeXt3rOvffey5133hkX7nQ6I8OaDAYDGRkZeL3emMWDwkP7PB4PgUAAt9tNMBgkIyMDo9EYqeCEycjIwGAwxK3OabVaURQlLtxms0USOxq73U4wGIzZx1Wn02G1WgkEAjQ1NREMBlEUJVJx8vv9MdvVdCZO0Yv5mM3mhOMExGjpSpy8Xm8kPNE4GY3GyLWjtScTp67mU7hiGwgEYrT3dD4JERr2Zzab0el0KSt7ieaT3++PPDfhYcqpKHvJ5JPb7Y5o0ev1KSl7yeSTXq+Pe246E6eurvqbDlu4pWoRJl02GaIMp9MZE0+lphLr91/iufQWMqL+eKLpNltoy8Yy4RD081/D029oXN71yTyEHXVf09eyb5uo7rSFer2evn37snPnTmpra3E4HGRlZZGRkYHFYkFVVbKysqitraWqqors7OxO2cJAIBBKa0UhJycnJp8aGhoi+dFyDnlXbaEQoa1RLBZLWp6x7rCFla4fqXatZdbH/VCPOgN3IAgBZ6fjlLQtnHoUto/eYIzjIJb432Ro1jkYddaE8slgMKAoCg1qEXnoYpxvoehRsobgbyefvF5vzEsIERnGHk5Xk8mEXq+PxLEz+fRzsoWyXtgz9cIK1wYg1hkRqFQ0bKTYau/xeuGBaAth/60X2hmMzVDMZrGMUb+8Et0LD6MIFaHo8J11Gea8QgLNNm9zw/t8V/Ewh/W+gz5ZU/H5fPt1vVARCbjpQghuvPFGjj76aI46at/y7meffTYvvfQSa9eu5c033+TWW2+NOzf8RxHG4XBQVlZGfX19zCIzYYcpTmhUD4HT6cRms6EoSofHtwwLx6Oz4W1dO9zaHNbRGe3dER4Oa2pqitOSaJy6Gh4ugOFC2pU4taW9s3FKlZauhofLq91uTziuqdTSleemrfBk86k7tCQTDiT03ITDHQ5HaIGkhoYY29VZ0mELP93yJxRF4Yj+d8fH85VHYcMquPVhlOY5xj1qC7dtQLn7asRt/45bTGVL3cd8ueMv/GrspzHDE7vbFrrdbnbv3o3FYsHtdmO328nPz484A42NjVRVVVFaWorVau3Q/lRUVOB0OsnJySE/Pz9yvN/vZ+fOnfTu3ZuMjIyU28Jo+9Ma+6Mt/HjLH6BqN8e8oiLufRoyLAlp6ZL9efMZgssX8fIZ5UwovYhRhWd3qL1luMvlYu/eveTWvkXuxhtQUBHocAy/n+yJ18ZdIzx6wul0Rip3FosFm80WSctOaW8nHH4+tlDWC3umXuj0VfDKTyciohqXFHScPeo9bKbipOLUlvbOxOlAtIVdDU93vfC73f+m3PENpw5/EVFbhWfHFjL6DkTJK4xce1v9Qj7degPTyq5nRMHpB0S9MKEe74ceeohPPvmEhoYGNm3axNdff83zzz/P3Llzufjii/H7/fztb39r9Vyz2dzq3KFwZrcWmdaOjT6nZaK0dXxXwts7tqWO7tbSWT0dHd9TWnryvlrS0jI82fKRai09+dy0Fa4lLUKIhJ6baN1doadtoSqC7Gr8lql9fh9/fVcTfLUAfnUVRC3s1aO2cMAwGD4eZcHrcMkNMT/1zpqMX3VR6VpNqX1Cwno6Or6ta1gslohD3atXL6qrq9mxYwe5ublkZ2eTlZWF1+ulsrKSPn36tLn3tqIo+Hy+mN7u6Ps2NTVhNBoj5aE7bGE6n7GW4V21hQ2eHWxvWMQJC/vAMeegWKxJaUna/hxzKoZP32akbxKrK19mZOGZMYtEdeY6NpsNq9VKvXIaDttUjN7t+M390Nn7kt18bHgIaLSzbbVaKSws7PQifNIWynphKmxhsuF2cwmH9b2Zr3bcjUBFQcdhfW/Gbi7p1vu2F3Yg2cJUhaezLjYk7zh+rHiaOs8WcvMGopqtKFEO756mZXy+7SYOKr2UkYVndKuWMD1hCxNyvK+66iquuuqqyPfLLrsMgFmzZjFr1qxELtUltLL4h1Z0gHa0aEUHaEeL1BGPVrRoRUeydEZ/tWst3mADfbKmxv+46H2wZcKkGd2uo13mnAH/uhVOPR8K9lXMMgw5FFlHUd7wTZzj3W1amsnLy6O8vJzc3Fz69OlDY2NjZPh5fn4++fn5+Hw+9u7dS+/eveP+eMM6wgu25eTkxKwWHe6RyszM7LID0x5aKuNd1bK66mUKAqWU7DHANSf2vI7MHJh5PCMXLObH46vYXr+IAbmJ130KCgrYsWMHQXMpweaVeQvz82lqaqKpqSkyHNNqtVJUVITVau2WFe+j0VI5SQat6NeKDki/luEFp9Ancyq1rm3kWfvHOd09TbrTIxqtaEmnjlzLQPItw9hc+yGTev02RkuVay0fbb6OEYWnM77kwh7V1d1pst/t460oSqe3z/k56NCSFq3o0JIWqUO7WrSiI1k6q7/csZg8y1CsxhbbhPl98Ok7cNQp0EaPbSp1tMvIidB7AHz0ZtxPfbIOobxxcc9pacZsNmO32yOLomVlZdG3b1/sdjsVFRXs2bOH3NxcAoEA1dWxiwiFdfh8vsgiOtErmQOROXZd2TqqI7RUxruqxRNoYEP1u4xZCsrRvwjtBZ8GHcz+BZbyagarB7Gq8oWkLmE0GiPlQVEUdDodFRUVVFZWoigKRUVF9O/fn5KSEux2e7c73VoqJ8mgFf1a0aElLXZzCX1zp6bd6dZKemhJixZ0DM47jk11HwIioqXes435m35Hv5zDmdo7fqRed9ITabLfOd7huXNtjc3/uenQkhat6NCSFqlDu1q0oiNZOqu/3LG49W3Evv0cfF6Yfmz8b92go10UBY49PTTsvbEh5qc+WYdQ7VqL2x+/xVe3aIkiLy8Pr9cbGe6r0+nIz8+nrKwMnU7Hnj17MJvNOBwOGhsb43TU1NS02tsNoWHm4YWgugstlfGuallX/QbmoImBG01w5Elp00FOPkyfzZiFTiqcP1LpXJXUZXJzcyN6gIizXVxc3CPOdjRaKifJoBX9WtGhJS1Sh3a1aEHHoNzZOH2V7Glajsvlosm7lw83/ZYi6xhm9rsVRelZN7Un0mS/c7yBDvdQ7Sm0ogO0o0UrOkA7WqSOeLSiRSs6kqUj/d6Ag0rnKspaOt6qCgvegJnHg8XW7To6xaQZkJULn70bE1xoG4VJn8muxiU9p6WZcM9kbW1tzB+xyWSitLSU0tJS/H4/iqJQWVkZs9qsx+PB7Xa32tsthKCxsbFbe7vDaKmMJ6slqPr5qfJVRv+Yge6o07pcZrucJseeSe6GSsqUUayqeDGpS7jd7jg9Pelst0RL5SQZtKJfKzpAO1qkjni0oiXdOmymQnplHsy6qjfZ4VjE+5suw24q5ciBf0WndF+jdHt0d5rsl463RCKRSDpmV+NS9DozxbbxsT+s/g4qd8ORJ6dFV6vo9XDMafD5e+CN2i5FMdA7czI7HZ1zvFNNTk4OgUAgpkc7jNVqpaysjLy8PAB27dpFY2MjTqeTuro6ALKzs+MWXwvvE9oTjveBwJa6j/D7HQxbmwFHnpJuOZBfBIccxZilClvrP6XRuzuh04UQ1NbGjuBo2bgjkUgkPwdsxmI218/ny9234PDuZEDOURh0GemW1W1Ix1sikUgOUModi+mVeTB6XYuW4/mvw5TDIbcgLbra5NBjACU05DyKPlnT2OVYjBA93zpvMBjIycmhtra21Zbw8FDyvn37otPpqKyspLKyMvJ7y95u2LddScvh55J4hBCsrHieYRvsmGf8AqxdH6GREuacRa9lleQqvVhd9UpCp4b3do8mEAikvfdJIpFIepImXwUba+fFhC0p/ztNvoo0Kep+9kvHOyNDGy0hWtEB2tGiFR2gHS1SRzxa0aIVHcnSnn4hROvzu7euD+3bfcwvekRHQpgzQvN3P3oDohyTPlmH4A7UUuPe0HNaosjJyYns1dkWRqOR3r17A7H7fUbvUwxE9vrtqd5uLZXxZLTsbvqOOvcmRq3MSNkIjZSkSXEvlClHMGZ1Juur38YXjB8R0RZ6vZ7evXtTUlJCUVERJSUl9O7dO60NMVoqJ8mgFf1a0QHa0SJ1xKMVLenW4fDuiNnrHUCg4vDuTJOi7k+T/c7xVhQFg8GgidUAtaBDS1q0okNLWqQO7WrRio5k6Uh/vWcrTn8FfTJbON4L3oDRk6DPgB7RkTBHnBhaYG3ZF5Egu6mYnIyBlDu+6Vktzeh0OnJzc6mrqyMYDLZ5nNFojHOeWg4hDu/pbbUmtyp3ImipjCerZdXeF+hfnknWlDNCW9+lSUerHHcWg76qxiAMrKt+J6FTzWYzNpuNzMxMbDZbWrf10VI5SQat6NeKDi1pkTq0q0ULOrLMfVFauKIKOrLMZWnR0xNpst853uG9T9M9F0orOrSkRSs6tKRF6tCuFq3oSJaO9Jc7FpNl7kN2RtQfWNVe+P4rmJ263u6Up6M9C2bMgfmvQdQ1y7IOobyDed7dmafZ2dnodDrq6+vbPEZV1TjH3O/3xwwhbmxsxGaz9chCWloq48loqXNvZWfj14xZYYWjTk2bjjbp1Q/9+MMYtaWQn6peRhWBjs/pLi1dQCs6kkUr+rWiQ0tapA7tatGCDrupmMP63hxxvhV0HNb3Zuym4rTo6Yk02e8cb4lEIpF0zE7HN/G93R+/CWUDYPj4tGjqNEefBru3w0/fR4L6ZB3C3qYV+ILOtEhSFIW8vDwaGhri5ueG0ev1lJaWkpWVBYT2/i4tLY30ggcCAdxuN5mZXe+5/TmwuuIFiqqtFI89A+waTbPjz2HEZ3W4fbVsrfss3WokEolkv2J4wSmcPeo9ZvX5J2ePeo/hBaekW1K3Ih1viUQiOcAIqB72Ni2nT9a0fYFNjaFFy2afHto3W8vkF8Hkw+HD/0WCSuwT0SkGdjd+lzZZdrsdo9EYWbG8NaxWKzk5OdhsNnJycmKGlDc1NWEwGNI+r25/wO2vY2PNPMb8aA01xGiVvoPIGH4IQ/eWsqryhbT3YkkkEsn+hs1UTLF1ArY09XT3JNLxlkgkkgOMPY0/IAjSK3PSvsCF88CeDQdNT5+wRDj2DFi/ErasB8CgM1OaeRDljsVpkxTu9XY4HPj9/jaPMxgM2O32uG3Ewnt3p3tu3/7A2sr/YXXq6D/wjND0Ay1z/DmM/tRBlWsNFc4V6VYjkUgkEo2y3zne4UVp0l1x0YoOLWnRig4taZE6tKtFKzqSpT395Y2LKbaNx6hv7m31++Czd+GoU6CFM9idOrpEnwEw5mBY8Nq+oKxDKHcsbrNXsSfy1Gq1kpGREbcPc0c6fD4fPp+vR4eZa6mMJ6IloHpZs/clRq+2ojvmjLTp6DQDh5PTezL96kpYVfFierUkgVZ0JItW9GtFh5a0SB3a1aIVHVrS0hM69jvHG0h7xoTRig7Qjhat6ADtaJE64tGKFq3oSJa29MdtI7bks5DzPePYHtXRZY49A374GvaWA6EF1hp9u9rdaqS78zTc693U1BS3VVh7OhobGzGZTJhMpm7V15GOdNJZLZuq3yfodzG0+HTIjN8Hvad0JMQJ5zBmkZttDQtp8HR+Kxyt5I9WdCSLVvRrRQdoR4vUEY9WtGhFB2hHS3fr2O8cbyEETqcz7fOotKJDS1q0okNLWqQO7WrRio5kaUt/k28P9Z6tlIUdb1UNbSE283jISP0WVt2ajkPHwIBhoX29gWxzf+ymkjaHm/dUnlosFqxWKzU1NZ3SEV4ptacXVdNSGe+sFiEEq3Y8yfB1VkzHnJM2HQkzdAwl9gkUuHJYXfVyerUkiFZ0JItW9GtFh5a0SB3a1aIVHVrS0hM69jvHWyKRSCRtU+5YjMWQT55laChg1XdQtQeOOjm9wpJBUUK93t98Ag21KIpCn6xp7OxgP++eIC8vD7fbjdvt7vBYj8dDIBDAbrf3gLL9m/KGr2mgglFZp0BmTrrlJIRy/LmM+SbIhuq38QYc6ZYjkUgkEo2RkOO9ZcsWLrroIk4//fSY8DvuuIOzzjqLyy67jN27d6dUoEQikUg6z07HYvpkTd03XGrB6zDlCMjJT6+wZBl/SGiV80/eBqBP5iHsaVpGUPWlVZbZbMZut1NTU9Nh63hjYyMWiyVusTVJPKs2/ZuBWyzYj7wg3VISZ+QEBgZGY/bqWVv9RrrVSCQSiURjJFQLGDhwIE899VSc420wGDCZTBiNRnJyclo91+v1xsyHczhCrcFCiJhKi6IorVZiwuHRr84c3zIsfM/OhndGS2eP747waO0ttSQTp66ERw+rTFWcOhveXVq6Gt4yX1JV9hIN78pz01Z4svnUHVqSCQ9r7Oxz09rxydCdtjCo+tnduJRD+9wYCt+6HmXDKsS5v4UE49naPTvS0tnjEwpXlNAWaK89CXPOpFfmwQRVP3ualtM7c3Kr2nvKFubm5rJz506cTic2my0SHv38q6qK0+kkPz8fIUSP2sLotNgfbGGtcz27dBs42XgqIisHEkyvzoR3qy0ElOPOZdQ3q1hteZkxRb9ErzNKW9gGsl4o64XSFsp64c/NFqak+f2mm25Cp9Px7rvv8uSTT3LVVVfFHXPvvfdy5513xoU7nU70en1ITPP+pl6vl0AgEDkmvCCNx+MhGAwC4HK5MJvNGI1G3G43qqpGjs/IyMBgMOB0OmPuFV6prmW4zWZDCIHL5YoJt9vtBINBPB5PJEyn02G1WmN0AOj1eiwWC36/H59vX09MInECko5TtJZk4xQIBGL+BJOJk81mS1mcuppPNpstJXFKRT6FH8pUlL2uxMnlcqW87CUbJ5fLldKyl0ycwjoSiVPL3xKlO23hztrv8QWd5BrG4HQ6sc5/HWX0wThzCiBK935nC8dOxfr2c/g/eQf9cWdRZBvD1povyNGNiotTtJZk45RIeczOzo70eofvH20LnU5npOwFAoG02EJFUfD7/Zq3hSvX/oOSChO2KedHft/vbOGg0Qx5bzA/+Faxue4jBufOkbawDWS9UNYLpS2U9cKfmy1URBJNlqeffjqvv/56XPiSJUv47LPPuOmmm+J+a61ls6ysjPr6erKy9u3R2ZnWCVVV0el0nT4+OgxS17oUrSNRLakKD2sPBoNxWpKJU1fDoyufXY1TV/MpFVpSEa6qaqQSka6WzbCOZJ6btsK7kk+p1pJseCLPTTjc4XCQk5NDQ0NDjO3qLN1pC7/b9R/KGxdzyrDnQvO6b74Y5bp7EcPGthmfzoan3RbOfw0+fQfu+S/La55nS93H/GLEK3Hae9oWBoNBduzYQX5+fkz+he3P3r17URSF4uLihK+finwK25909/JEa2lNu9tXxcsrj+PIPUfR78R7u1VLt9vC779k8U+3sPegEk4d9WqPakk2/ECzhbJeKOuF+6stlPXCA9sWJtTjXVNTw80338zy5cu59957WbNmDc8//zz33HMPO3fupLq6mgcffLDVc81mM2azudVItnwgW3tAw+FCCNxuNzabLXJce8d3NbytY4E4Hd2tpa3w1tKkveO7S4sQoZaf1nR05321piU6vGXepKLsJRPe089NW+Fa0pLocxMOb88mdIbutIW7GpdQlnVI6Psnb0PZQBg29sCwhTOPhw9egaULKZswje/3PILLX43NVBg5Nh220GAwkJOTQ11dHZmZmeh0uoj9ycjIwOVyUVJS0mP/E9Fh7aVHT2iJDu/IFq5Z/Q/sTTr6Tb8uoecg0fAesT8TD2P0xwNYM/on9jQto1fmwenT0onwA9EWynqhrBfur7awvevsd7awE+Fa0tITtjAhxzs/P59HH300Lry1Hm6JRCKR9ByeQB1VrjVM7fN7aHLAVwvggt9DFyvHmsFqCznf81+j4JBHyTDksKtxMUPzT0q3skhLd7jVO4zT6YwMm5O0TSDgYo3vMya5J6PkFnZ8gtbR6cg64nz6b7uNVfZn6DUs3vGWSCQSyc8PuZ2YRCKRHACUO77FpLdRZBsDC+dBZjYcND3dslLLUadAdQXKyu/onTmVnW3s593T6HQ6cnNzqauri5lLFt67u6s9gwc6G358EESQIZNvSLeU1HHwTMZs7cUO5xLqPVvTrUYikUgkGkA63hKJRHIAUO74hl6Zk9EFVPj0XTj6NGieQ3bAkJMPhxwJ8/9Hn8yp7HJ8iyqCHZ/XA2RnZ6PT6aivrweILBgj9+5uHxEMsNr5HiOaxmAsKEu3nNSh11M85UKKKk2s2vVsutVIJBKJRAPsd463oijY7fa09yBoRYeWtGhFh5a0SB3a1aIVHckSrV8IQbkjNL+bxZ9CMACHze5xHT3C7F/AlnX0qc7FG2yg2rUmfVqiUBSFvLw8GhoaCAaDqKqK0WhsdQ5rT2rSShlvS8uOH/9Lo8XDyPE909vdo2lyyJGM2VjExvoP8ATq0qulHbSiI1m0ol8rOrSkRerQrhat6NCSlp7Qsd853kIIAoFAq6vR/Rx1aEmLVnRoSYvUoV0tWtGRLNH6a90bcQdq6GOfCh+9AYcfDxmWHtfRI5SUwfhDsH70EfmWYZRHDTdPd57a7XaMRiN1dXU4HI60VyTSnR4dahGCVdUvM8gxCFvR8PTp6C4MRvqP/g0Wp8KaPS+nV0s7aEVHsmhFv1Z0aEmL1KFdLVrRoSUtPaFjv3O8gZg97NKJVnSAdrRoRQdoR4vUEY9WtGhFR7KE9e90fEOOuT/2dduhugJm9eyCYz2ejnPOhJVL6aOMoNyxJL1aogj3ejscDgKBQGRP0HSipTLeUkv1itfYU+BgzMhr06qjO9Eddhyj1+WyZu/LBFRv3O9ayR+t6EgWrejXig7QjhapIx6taNGKDtCOlu7WsV863hKJRCLZR7ljMX2yp8GCN2DqEaG50AcyA4fD0DH0+dFBpXMV3oAj3YoiNDY2Rj5XVVWxd+/eNKrRMEKwqvwpejWVkF86Nd1qug+jiWEDfk0g6GFz5XvpViORSCSSNCIdb4lEItmP8QddVDhX0MfZBzauhmN+kW5JPcOxZ1C88CcMipldjUvTrSaCz+dr97skRNPKBWwuqWbsgMvTLaXbMc04jREbs1i148m0D6WUSCQSSfrYLx1vnU4bsrWiA7SjRSs6QDtapI54tKJFKzqSRafTsbtpGQp6Sj9fB2MnQ69+adHR44w5GH1RX3o1FlHu+Ca9WqIoLCxs93tPk+70iCaiRQjWbHiEbH82ffoclz4dPYU5g1GFZ1Gvq2JX3Vfp1dIGWtGRLFrRrxUdoB0tUkc8WtGiFR2gHS3drUMbsUwARVGwWq2aWPlOCzq0pEUrOrSkRerQrhat6EiWsP5djsWUmEZi+P7btPR2py0dFQWOPYM+Kxsob/gGIYQm8tRsNmOz2SgqKsJms6V9VfN0p0drWvyrv2Ztn12MKf0VitKz1ZB0pYl95nkM3GZj5aaH0q6lJVrRkSxa0a8VHVrSInVoV4tWdGhJS0/o2O8cbyEEfr8/7cO1tKJDS1q0okNLWqQO7WrRio5kCesvdyymzw4j9BsEw8amTUda0vHgmfSpLcQZqKLOs0UTearT6SguLiYjI4Pi4uK0tuJrIT3itKgq63/8FzqdicH9zkmfjp5OE4uNMdaT2GXYTG3T+vRqaYFWdCSLVvRrRYeWtEgd2tWiFR1a0tITOvY7xxvA641fGTQdaEUHaEeLVnSAdrRIHfFoRYtWdCRLdeNmHL5yyr7cDsecHuoFTgNpS0eDgaxpZ5PlMFJe92V6tURTW0Vg9fdQW5VuJdpIj2a8Xi/qT8tY3Xs7I/NOw6DLSJuOdFA441JK9ppZteb/0q6lJVrRkSxa0a8VHaAdLVJHPFrRohUdoB0t3a1jv3S8JRKJRAJ7XN9hC9jJUQvgoMPSLSc9TD+WPrstlO/8IN1KQnw5H248H8u/74Abzw99l4QQgu1LH8KVKRjZ/8J0q+l57JmMYRablO9xeSvSrUYikUgkPYx0vCUSiWQ/ZW/jEvps1aEcdRro9emWkx7MGfTJP5y9ui0E/M6evbcahKZGqNgNW9fD4k/huX/htAbY3cuH0xqA5x6E8q2ggeF86Ua/cRWrSzYy2H4UFmNeuuWkhb6H/h57k541q/6RbikSiUQi6WEM6RaQDHqNVDC1ogO0o0UrOkA7WqSOeLSiRSs6kiGo+qlwfc/w8lw4eXZataQ7HXtNnYvY8C57ljxOcfZh0Kc/5Bd17mQhwOcFZyO4mkLvMZ9bCQu/u52xDrVOx7rhLr6a2YTQgaLCYYvsDL/jcjCaILdg3yuvMPZ7biHYsyDFc8LTnTcRaquoX/RvKmb6OazfxWmVks400WXnM9ozme8zPmdcwKWZ/NGKjmTRin6t6ADtaJE64tGKFq3oAO1o6W4d+53jrSgKFosl3TI0owO0o0UrOkA7WqSOeLSiRSs6kmX7rncJCD85fQ+FjPTFQwvpaMwupbghl21738CwYR5ZDgP2KafBgKHxDrSrcd93V/N7wB97QYsVbJlgzQSbvfmzHVFYTNBmwWcz4rfq8Vn0+M0KPjP4DUEaXTv4vu45aJ5qL3Tw5eFN+I86jkyRg7HJh6nBhbG+CdOuPZh+bEBfVY0S3uvbYISc/Fac8qhXVm6nnXNn1VocVSvJKhyLvWhkClM8AYSARe/jfPtBvj/SQckuI3nOjTB9UFrkaKG8Dp18A9+vP4Wflv2Foqxx6c0fNFJOuoAW8lRLOkA7WqSOeLSiRSs6QDtaekJHQo73li1buPvuu2loaOD111+PhK9evZp7770XgD/96U+MHj06tSqjCK84ZzQa07rsvFZ0aEmLVnRoSYvUoV0tWtGRDOsW/4UvTW+BDt4c8BaHLYbhh9ySFi2aSMfaKjLqnKwf4WP9SE9zT/PLDF9aApnZCKuNQKYVX6YZfy8rPlsmfqsBX4YOvxl8JhWfQcVvCODT+fCrLnzBJnxBJ361OvQedOILNiEI7ruvB/AoGHVWTHo7oIs43REUWMHHqIofn9UJVgGl0T/rMemsGMnAJBSMgQZMvkaM3s2YXEGM1X5MWz2YXAGMPh2mgB6jKRuTJQ+jtRCTvQhjVinG3FKUvOKQc56dy7pv7+Ur41uhnvcdcNjmU1svI+Eef58XfB7wNr/7vOD1hF7hz3HHRH2OvLc4zutm3XAXX/6yKTS5TcC6RX9j+KiDQg0MPYwWyqsxvw9Fjbl8V/AReD9qP3+6mXWL/9K5cqJhtJCnWtKhJS1Sh3a1aEWHlrT0hI6EHO+BAwfy1FNPcfrpp8eE/+tf/+Lf//43iqLwxz/+kcceeyzuXK/XG7NSnMPhAEKRjF62XVGUVpdxD4cLIfB6vRgMhk4d3zIsfM/Ohrd37WgdiWpJVXhYe2takolTV8KFEPh8vhgdXYlTV/IpVVq6Gh4uJ0ajsctx6kp4V56btsKTzafu0JJMOCT23ITDu7rNRFdtobNqLV8Z34rpVf3K+BZ9Kk/DVjgi7vifgy107l3F1oG+uJ7mZUo1Qf1e/EEXAjX2Gugw6m2YdDaMwo5JtWEM2jBhx6izYTUWYtTZMOltoeP09n3fY8JthG/s9FXwyk8nxtxLQcepw1/AZipGCJWg8OINNkUceV+wCb/qDDn7gdDnkKPfhF914Qw3AAQa8QUaQ+eJnQhle2yiCDBWKJjKFfR+cOSoselheott73+OIaiE5qar6r73tlCU0NoBOh3omt/1erA3f2/5W8x7BuhtBDwOdpor9zVIKPDVDAd99q7Glnt4TJ7Cz8MWOqvWsjO/Nj5/Pv4aA8a4e3YXAfzszKuMtyUVp2IvHtWqdi3ZQlkvlPXCzsYpui6WjvqGrBfKemGYlAw1b2hoICcnB4DGxsZWj7n33nu5884748KdTmdkPL3BYCAjIwOv10sgEIgcYzKZMJlMeDweAoEAbrcbgIyMDIxGI263GzWq8pCRkYHBYMDpjF1oJ7wpestwm82GEAKXyxUTbrfbCQaDeDyeSJhOp8NqtcboUBQFvV6PxWLB7/fjCw8b7GScgsF9PShmsznhOAExWroSp+g/wUTjFDYiHo8nRnsycepqPoXTIRAIxGjv6XwSQuB2u7Fareh0upSVvUTzye/3R8qI2WxOWdlLJp/cbndEi16vT0nZSyaf9Hp93HPTmTi1/C1RumoLHVUrES1GGgsdOKpWobP3/1nawsoMV6j3ORoF+luOoHfJNIw6K0G/HqPO1vyykp1Z0Gac/H5/q+XR5/OF4qQCKghhQDHoIv9NYOfg4j/wXcUDCFQUdBxc/Afw23H6nc1xsuL3glG1YqQQmx4ybKE4NTU1dSqfrFYrAdVDQ1N1s9MectwNigdPw26qdn+JQ1kRlx5YrBhNxaDTo+gN6ExGVEVBpdmh1ulRDAb0JhNBAWpUZUKv16PT6QgGAq2GBwKBmMqHwWBAURQcjm3gIwahC+VZUVS8fk620FG1Mn5pWwUUFMzYiK7DKYCi0yGEGhuugKK0E66qRFcFw+HR8QmIelqO0BA6qNr1PdbCEZq3hbJeKOuFnY2TEAKPx4Pdbk9LfUPWC2W9MIwikmiyPP3002OGml9yySU88MADKIrC9ddf3+ke77KyMurr68nKytonqBMtNE6nE5vNhqIoaWvZVFU1RkdntHdHeDisqakpTkuicUpFy6bL5YoU0q7EqS3tnY1TqrR0NTxcXu12e8JxTXXLZrLPTVvhXWnZTLWWZMKBhJ6bcLjD4SAnJ4eGhoYY29VZumoLnVVreWXHr2Kcb0WFs/s+n5Yeby3YQqevgldWn4BQonrJhMLZo+dhN5ckHKeuhjd591Lp2ERR1uDI/ZO5TrL55Kxcwys7fx1fRsqewxY1h7cn8qnJu7fNvLGZijsdp1Rp1IItTMUznIrw9spJZ3q8020LZb1Q1gs7G6foulhryHqhrBeG6e56YUI93jU1Ndx8880sX76ce++9lzVr1vD8889z9dVXc+WVVwLwxz/+sdVzzWYzZrM5LjycwK1FprVjgcjY+5aJ0tbxXQlv79iWOrpbS3vhrWlp6/ju1BLu5ejp+2pJS8vwcItvotdJtZaefG7aCteSFiFEQs9NOLyt3zpLV22hvWgkh20+dd+8TBUO85/a7qJIB7ottJtLOKzfLXy14+5IT/Nh/W6OcXp70g7YzSUYs3Ixm81psYX24lEctqWVMtLsTPWUFuhc3nQmTqnUmG77k65nuGV4Z8qJlm1hdLisF8Yj64WxYeG6WLryQ9YLZb0QSK7HOxU4HA6ys7OTbimVSCSSdJBq25Xs9Zoq1+CoWkVW4Zj9ciXi7qDJV4HDu5Mscxn2qN7UnytaKiMyb+LRSv4kq0MrtlAikUjSSSK2a7/bTkyI0AT8tnoSfm46tKRFKzq0pEXq0K4WrehIFlvhCAxZA1vtMepJtJSONmMRBjUbs1GmCWinjIDMm9bQSv5oRUeyaCVPtaJDS1qkDu1q0YoOLWnpCR2d2wxUY0RPnk8nWtEB2tGiFR2gHS1SRzxa0aIVHcmiFf1a0QHa0SJ1xKMVLVrRAdrRohUdyaIV/VrRAdrRInXEoxUtWtEB2tHS3Tr2S8dbIpFIJBKJRCKRSCSS/YW0DTUPTy0P79uYyHlOp5NgMJj24Qha0KElLVrRoSUtUod2tSSrI3qv2VTpiL5uIuftz+l4IGuROrSrRSs6tKRF2sLUoBUdWtIidWhXi1Z0aElLT9jCtDne4f2+y8rK0iVBIpFIkqaxsZHs7OyUXAekLZRIJPsn0hZKJBJJ52xh2lY1V1WV3bt3k5mZmXCrQllZGTt37kzrqpda0aElLVrRoSUtUod2tSSrQwhBY2MjvXr1Qqfr+mwdaQsPPC1Sh3a1aEWHlrRIW5gatKJDS1qkDu1q0YoOLWnpCVuYth5vnU5Hnz59kj4/Kysr7QVFSzpAO1q0ogO0o0XqiEcrWpLRkYrenTDSFqYerWiROuLRihat6ADtaJG2MDVoRQdoR4vUEY9WtGhFB2hHS3faQrm4mkQikUgkEolEIpFIJN2IdLwlEolEIpFIJBKJRCLpRvY7x9tsNnP77bdjNpulDo1p0YoOLWmROrSrRSs6kkUr+rWiQ0tapA7tatGKDi1p0YqOZNGKfq3o0JIWqUO7WrSiQ0taekJH2hZXk0gkEolEIpFIJBKJ5OfAftfjLZFIJBKJRCKRSCQSyf6EdLwlEolEIpFIJBKJRCLpRqTjLZFIJBKJRCKRSCQSSTciHW+JRCKRSCQSiUQikUi6EUO6BbSGz+fjuuuuQwiBz+fj3HPP5fDDD4/8/swzz1BQUMAJJ5wQd66qquh0qWlP6IqOVNGRhp5mf9UTXS5SWUaiaas8XHvttej1em666SZyc3NTft+O7n/66afz+uuvd9t929Ly+uuvk5+fz8iRI7nhhhs6fW536O1ITzrSqDNIW9h5DT3N/qpH2kJpC6UtTI+OVLG/2h6t6ZG28OdrC9NpBzXpeD/xxBMcd9xxzJkzB4B33nmHiy++GI/Hwx133AHA//73P+bPn09xcTG33norhx56KCeeeCKzZs1i8uTJadFxww03cP7559OnTx8OPfRQTjnllG7X8NVXX/H5559jsVgoLS3F7/ezevVq/ve//zF37lyGDBlCbW0tc+bM4aijjuoRPYsWLWLgwIHodDpuvvlm7r//fnbs2EFOTg533XVXlzUkqueTTz5h0qRJrFixgv79+zNmzBh+8YtfpFRHmG3btvGb3/wmEv+TTz6Z+fPn88tf/pKamhquvPJKMjIyOPHEEzn55JN75P5r1qzhjjvu4A9/+AN33XUXXq+XYDDIP//5T2655RaEEKxfv56LLroopZWFyy67jBNOOIGzzz6bu+++m+rqahobG/nHP/7BO++8w/Lly2lsbOTf//43ixcv5vHHH2fIkCEpu38iegBcLheXX345zz77LB9++CF79uzhwgsv7DY9nUHaws5rkLZQ2sKO7i9tYcd6QNrCVOqQtlDaQmkL96ElW5guO6jJoeY//fQTBx98cOT7c889x5NPPsndd9/No48+CsDs2bN5+OGHWb16NQBWq5Ubb7wxZcY1GR1erxen08mcOXNSVlA7q+HRRx/liy++4C9/+QuTJ0/mp59+AuD888/n/vvv58knn+wxPcceeyy33norq1evpqmpiVWrVvHQQw+l3Lh2Vs+cOXO45pprALjkkku6zbiGiY7/6NGjGTlyJDfddBOPPvood911F08++SQvvPBCj97/jjvu4Msvv2Tbtm3k5OTQ1NREeXk5FRUV/PWvf2XatGkp1/HEE08wbdo0Ro0axRdffEF2djZGo5G1a9cCYDQa2bVrF8uXL+eRRx7hySef5LLLLku5js7qsVqtmM1m6uvrefPNNzn99NO7TUtnkbYwcQ3SFratR9pCaQs7o0fawtTpkLZQ2kKQtjCMlmxhuuygJh3vUaNG8f3330e+q6oKgKIohLcdz87OjoRFf0+njszMTJ5//nlqamr43e9+12MasrKyACgsLATAZDLh9XoBCAQCqKpKMBjsMT02mw0AIQRCiEgedQeJ5FHLz91FdPyjiU6L7kyTlvcP30tVVQ499FDuuOMOnn76aXJycrpVzyWXXMInn3zCypUrGTVqFHfccQePPPIIkydP5n//+x9//etfmTx5Mi6XC51Oh8FgwGw2p1xHZ/SEOf3003n22WdRVTXyXKUTaQsT0yBtobSF7d1f2sKO9YSRtjA1OqQtlLYQpC0MoyVbmC47qMmh5pdccgnXXnst7733HsFgkPHjx3PppZficrm49dZb+eabbzSpY8+ePdxzzz3o9XpGjRqVFg0tefzxxykvL2fu3Llp0ZOZmcnIkSP5/e9/T15eHrfeemtKdCSrJ51ceuml3HrrrVitVs4555weu29xcTE33ngjt9xyC2+99RbXX3899fX1PPTQQxQVFXHjjTfy008/MWnSpJTf22q1MmPGDJ555hmuvfZa3G43N910E6Wlpdx3330sXbqUmTNncumll/LHP/6RkpKSlGvojJ4wRx55JL/97W/5+9//3q06OotWyre0hV3XI23hPqQtlLYwUbRSvqUt7LoeaQv3IW1hem1hOuygIlo2v0gOGC644AIefvhh7HZ7uqVINMqbb77Jd999R1VVFf/5z38wmUzpliSRpBxpCyUdIW2h5OeAtIWSjpC2sHuRjrdEIpFIJBKJRCKRSCTdiCbneEskEolEIpFIJBKJRHKgIB1viUQikUgkEolEIpFIuhHpeEskEolEIpFIJBKJRNKNSMdbIpFIJBKJRCKRSCSSbkQ63hKJRCKRSCQSiUQikXQj0vGWSCQSiUQikUgkEomkG5GOt0QikUgkEolEIpFIJN2IdLwlEolEIpFIJBKJRCLpRqTjLZFIJBKJRCKRSCQSSTciHW+JRCKRSCQSiUQikUi6Eel4SyQSiUQikUgkEolE0o1Ix1sikUgkEolEIpFIJJJuRDreEolEIpFIJBKJRCKRdCPS8ZZIJBKJRCKRSCQSiaQbkY73AYTP5+OGG25g8ODBjBgxgjFjxvDss89Gft+2bRt6vZ7x48czbtw4xo0bx/vvvx/5/ZlnnuGUU06JfP/kk0/o1asXixYtAqCiooILL7yQgQMHMm7cOMaOHctll11GTU0NADt37uSkk05izJgxjBkzhvHjx/PZZ591KU7PPPMM69ata1NjV7ntttt48cUXU3a9Cy64gN69ezN+/HjGjBnDjBkzYvQnw+7du5k+fXqKFEokBx7S9iVOd9q+8Ovpp59u95z6+nr++te/pkyDRCJpHWkjEyfVNnLVqlXMmjWLcePGMXr0aA4++GBWr17d4Xl33HEH11xzTau/LVy4kPnz50e+b9u2jZycnBQplnQHhnQLkKSOCy64AK/Xy48//ojNZmPbtm3MmTOHQCDARRddBEBmZiYrVqwAYN68eZxzzjnU1dWh1+tjrvXGG29wzTXXMG/ePCZOnIjL5WLGjBmcd955bNy4Eb1ej8/n46mnnmLXrl3k5+dz+eWXc+SRR/Luu+8CUF1djcvl6lKcnnnmGXJychg+fHiXrtMWf/7zn1N+zeuvvz5iJP/6179y66238tprryV9vV69evHll1+mSJ1EcuAhbV/idLft6wxhx/vGG29s9fdAIIDBIKspEklXkTYycVJtI8855xzuuusuTj31VCDUGGE2m7t0zYULF1JfX8+xxx6bComSHkD2eB8gbNy4kbfffpvHH38cm80GQP/+/fn73//OnXfe2eo5Rx55JI2NjdTW1saE//e//+X666/nk08+YeLEiQC89NJL5Obmctttt0WMsMlk4vLLL2fs2LEAlJeX07t378h1CgoK6Nu3Lx6Ph5KSEnbu3Bn57aabbuKGG26I6Lzttts45JBDGDBgAH/5y18AePLJJ1m2bBm///3vGT9+PB988AEATU1NnHPOOYwZM4ZJkyaxZcuWyHWff/55pkyZwsSJE5kxYwY//vgjAEuWLOGggw5i/PjxjB49mkceeQQI/Rn985//BOC9995j7NixkWPeeeedRLMhBiEEDoeD3NzcSNiCBQs47LDDOOigg5g8eTKff/45EDKeo0eP5oorrmDcuHGMGjWKZcuWAfEtmO+88w4jRoxg3Lhx3HDDDRQUFLBt27Z201IiOVCRti+ElmxfNG63m3HjxvH6668DsHjxYvr3709VVRWXXXYZjY2NjB8/nkmTJgFw+OGHc9VVV3HIIYdwzDHHAPDAAw8wefJkJk6cyLHHHsv27duBUE/QmWeeyYknnsjQoUM54YQTWL16NbNnz2bo0KGcc845qKoKQGNjI5dccgmTJ09m7NixzJ07F5/Pl7J4SiRaRdrIEOm2kS3ToKysjKKiorh7AfzhD3/gjjvuiHzfuXMns2bNYvjw4Zx44onU1NSwYsUKHn30UV588UXGjx/fakPBd999x6xZs5g0aRITJkzoUieQJEUIyQHBq6++KsaOHRsXXltbKwBRWVkptm7dKrKzsyO/Pffcc2LWrFmR708//bTIy8sTRUVFYseOHTHXufzyy8VVV13VroaXXnpJ2O12MW3aNHHttdeKRYsWRX676aabxJ/+9CchhBAej0eUlJSIbdu2CSGE6Nevn7jyyiuFEEJUVVWJrKwsUV5eLoQQYubMmeKtt96K0ZiVlSW2bNkihBDihhtuEHPnzhVCCPHVV1+JOXPmCI/HI4QQ4osvvhAjR44UQghx0kkniZdeeikmXYQQ4vzzzxf/+Mc/hBBCjB07VnzzzTdCCCGCwaCoq6trN76tcf7554tevXqJcePGiV69eomysjKxdetWIYQQmzdvFlOnThUNDQ1CCCE2btwoSkpKhMfjEZ9//rnQ6/ViyZIlQgghHnnkEXHMMccIIURMvlVUVIi8vDyxdu1aIYQQ//3vfwUQuUd7aSmRHIhI26c92xd+ffHFF0IIIdavXy/69Okjli5dKgYMGBAJb5kv4XjPnj1b+Hw+IYQQL774orj44otFIBAQQoTy7rjjjhNCCHH77beLAQMGiNraWqGqqpgxY4aYMmWKcDgcwu/3i3Hjxol58+YJIYS45JJLxLPPPiuEEEJVVXHRRReJ++67L+F4SiT7G9JGasNGPvDAA8JqtYpZs2aJm266Sfzwww+R36LvJYQQ1113nbj99tuFECE7V1hYKPbs2SOECKX3JZdcEvnt6quvjpwXnY91dXVi/PjxYvfu3ZH0Kysrk3XCNCN7vH9mhHsX+vbty6WXXsrdd98d8/vQoUPJycnhhRdeaPc6r776KuPHj2fAgAE88cQTQGgYzY4dO7juuusAOPnkk7n//vsBuOKKK3j22Wfxer289tprTJ48mX79+kWud+655wKhVtCBAweydevWNu8dbvkMf968eTMQ6gn+8ccfmTJlCuPHj+fKK6+ktrYWt9vNEUccwV133cWf//xnvvrqq5he6DBHHnkkV199Nffddx8rV65Mep7M9ddfz4oVK9i1axd33nknp59+OgDz589n06ZNzJgxg/Hjx3P66aej0+nYsWMHAIMHD2bKlClx8YpmyZIljB07NjK06vzzz8dkMsUck0haSiQ/F6Tt6znbF36F16YYOnQof/vb3zjkkEO4+OKLO1yz4pe//CVGoxGAt99+m08++STSI3XfffdFbCbAMcccQ25uLoqiMHHiRA4//HAyMzMxGAxMmDCBjRs3Rq5z//33M378eCZMmMCXX37Jpk2bkoqnRHIgIm1k99rI6667ji1btnDxxRdTW1vL9OnTefXVVzt17vHHH09JSQkAc+fO5ZNPPunwnG+++YYtW7YwZ84cxo8fz1FHHQXA+vXrE9YuSR3S8T5ACFcwwgtZhFm8eDFlZWUUFhYC++bwbN++nRtvvJGzzz4bj8cTOb64uJiFCxfy7LPPxgxTnjBhAkuXLo18P+uss1ixYgUzZ87E6XRGwnNzcznttNP4+9//ziOPPMLzzz8PQO/evZkxYwavvvoq//73v/nd734XozMjIyPyWa/XEwgE2oxrW8cKITj//PNjKn579uzBYrFwzTXX8P7771NaWspNN93EFVdcEXfd//u//+Ppp5/GarVy/vnnc99998Udc9VVV0UWDlq1alWbGqPT6fvvv6eqqgohBEcffXSMvl27djFkyJCE06A9UnUdiWR/QNo+bdq+lvzwww8UFhbGDCltC7vdHvkshOBPf/pTJF6rVq2KuX/LNGkvjd54443IddavX89jjz2WcDwkkv0NaSO1YyOLi4s555xzeOSRR7jlllsii7cZDAaCwWDkuOh0bw1FUdr9PRznUaNGxcR5x44dzJo1q8NzJd2HdLwPEIYMGcKJJ57I3LlzIwtWbNu2jeuuu45bb7017nhFUbj11lspKCiIzGcJU1paysKFC3nxxRcj83/OPfdcqqurufvuu2OMQ/TiGPPmzYt8F0KwfPlyBg0aFPn96quv5uabb6a+vj7S8tYRWVlZNDQ0dOrYk046iRdeeCHSG6KqamSe9Pr16xkwYACXXHIJN910E0uWLIk7f926dYwaNYrf/e53XH755a0e8+CDD0YM2JgxYzrU9Omnn1JQUEB+fj6zZ8/mk08+YeXKlZHfo/+sOsPUqVNZuXJlpMXyhRdekPMUJT9rpO3Tpu2LZt68eSxYsICffvqJb7/9NtLLk5WVhdvtbteGnXLKKTz66KORuaZ+v5/ly5cndP/wdf72t79FKuJ1dXWyx1vys0DaSG3YyLfeegu/3w+EFo5cuXJlJA0GDx4cqQ/W1NRE5qyH+eCDD6ioqABC89vDadReGkybNo2tW7fG9I6vWLFC1hnTjFwu9ADiueee45ZbbmHMmDGYTCb0ej3XX389F154YavHK4rC3//+d8466ywuvfTSmN9KSkpYuHAhs2bNQlVV7rzzTr744gv+9Kc/MXjwYHJycrBYLIwfP57TTjsNgEWLFnH99ddjMBgQQjBs2DAefvjhyDWnTp1KdnY2l156aada6yA0pOa6667jH//4B/fcc0+7x06fPp377ruPU089lUAggM/n4/jjj2fSpEk8/PDDfPbZZ5F0+fvf/x53/k033cT69esxmUxYrda4P5zOcv/99/PMM88ghMBsNvP666+j0+kYPHgwL730Epdeeikulwufz8eECRN46aWXOn3toqIinnzySU455RTMZjNHH300drtdbh8h+VkjbZ+2bF+Y8847j7POOovLL7+cBQsWkJeXx2uvvcbhhx/OxIkTGTJkCL/+9a8ZO3Ysdrs9UhGO5rzzzqOmpoYjjjgCCFVYL7zwQiZMmJCQtn/84x/ceOONjB8/Hp1Oh8Fg4L777mPw4MFJxVUi2Z+QNjL9NvLNN9/kxhtvxGw2EwwGmTx5cqTxYu7cuZx++umMGDGCgQMHMnXq1Dj95557bmSUZNjOnnrqqTz//PORtP71r38dOSc3N5f333+fP/zhD1x33XX4/X769u3L22+/nbB2SepQhBAi3SIkPw927drFpEmT2LBhA5mZmemWs9/S2NgYSb+3336bP/3pT6xduzbNqiQSSVtI2yeRSCRtI22k5OeCHGou6RFuu+02pkyZwl//+ldpVLvIQw89xLhx4xg9ejT33XdfZI6QRCLRHtL2SSQSSdtIGyn5OSF7vCUSiUQikUgkEolEIulGZI+3RCKRSCQSiUQikUgk3Yh0vCUSiUQikUgkEolEIulGpOMtkUgkEolEIpFIJBJJN5K27cRUVWX37t1kZmZ2eusAiUQiSTdCCBobG+nVqxc6XdfbLqUtlEgk+yPSFkokEklitjBtjvfu3bspKytL1+0lEomkS+zcuZM+ffp0+TrSFkokkv0ZaQslEomkc7YwbY53eMuAnTt3kpWVlS4ZEolEkhAOh4OysrKUbXsibaFEItkfkbZQIpFIErOFaXO8w8OIsrKyEjKwQgiCwSB6vT6tQ5G0okNLWrSiQ0tapA7taumqjlRpl7bwwNMidWhXi1Z0aEmLtIWpQSs6tKRF6tCuFq3o0JKWnrCF++Xiah6PJ90SAO3oAO1o0YoO0I4WqSMerWjRio5k0Yp+regA7WiROuLRihat6ADtaNGKjmTRin6t6ADtaJE64tGKFq3oAO1o6W4d+6XjLZFIJBKJRCKRSCQSyf6CdLwlEolEIpFIJBKJRCLpRhJyvBcuXMj06dO57LLLWLhwYST8888/5/zzz+e8885j9+7dqdYYw6bazXy8fQGbajd36332Fx1hUrGVRyrQig7QjhapIx4taCl3OPiyvJxyhyPdUpJGC+kI2tEB2tEidcSjFS1a0QHa0aIVHcmiFf1a0aGl/zetpIlWdIB2tGhFB2hDS088NwktrqYoCna7HY/HE7Nc+qOPPsrLL7/MmjVreOqpp7j11lvjzvV6vXi93sh3R3OkhBAIIWLuEf09OvyJH/6FKp5Dp8Bn22Dh9l9zycSr2zy+ZXh40nsi4a1d+6nlDxJsoePiCVe1q727whVFQVEULBZLTBwSjVOqwq1Wa1yeJhOntrQnEqdUaOlq+KbazWyoXsPQwlEMyRvU5TglG+70VdAQ2InqK8NmKk5Z2WtLe0dxii6v6Xhunlq+nEvnzUMVAp2i8NgJJ3DRhAmdilNr90iEVNjCrqZjqp6x8PGt2R9pC7VhCy0WS1ryo7XwsJauxqmr4am2P/uzLQTY1djIhupqhuTn06d5UTNpC/dfW/jf5cuZm+D/m7SF0hb+3G1hT9ULE3K8p0+fzsyZM6moqODaa6/lxRdfjNxUp9PRr18/ysvLWz333nvv5c4774wLdzqd6PX6kBiDgYyMDLxeL4FAIHKMyWRie9POiNMNoFNAiOe44v3FBFQTCB2ghF6KDkXRIVQFlFCYgg6dogdFQagAuuZE06HX6QEdQhUoii70Gwp6vTEUPzVUoVPQIYSTEcXzY3QE1edZvecoxvQahd/vx+fz7UvgduJkMpnweDwEg8FIuNlsxmg04na7UVU1Ep6RkYHBYMDpdMakn9VqBaChoQGDwRApCDabDSEELpcr5ni73U4wGIxZPECn02G1WgkEAjF/gnq9HovF0uk4GY1GdDodfr8/RnsycVIUJS48kTg11H1PTdU3FJdMx5Y1Puk4dSWfnv/pMXSGl9ApUN4EC7f9mnOGXpR0nJLNp9V7X2fJnr8BAlCY1utGRpWcnpKyl0w+7anZREX9eopzhpGf2TclZS+RfNrV2Mil8+Yx1FbB2KwKVjqKuWzePKaXljKkuLjDOLX8LVG6agvD8QwEAgQCgcixPf2Mhcuj3+/H6XRG7E9PPmMt4wTSFkbHSQiBqqpkZWX16DPWWpyEEAQCAbKystDpdCkpe8nEye/3R54bs9mcsrKXTD653e6IFr1e3+O2EOCldeu4/IMPIpXNB48+mvPHjOlUnLRiC4ON2xGODShZQzHnDvpZ2EIhBG6g0u1mc2Ule5qa2Ot0sqm2lhfXrImcqwoR+X8bWlIibaG0hZE4bautZUN1NUMLChhYUPCztoXheqHa7EBHPzeprhcqIokmS5/Px7nnnsvrr78OwNlnn81LL73E2rVrefPNNzvd411WVkZ9fX3MthFttU58sHEeu5vuiAtv8vTCpM9sPif8UkERCNTYMESr3xUEKPHHhMOVqHMUAhj0wZYyEGIQB5XOItcyhHzLUDJNvZqd+O7v5RFC0NTUhM1mi1Q209GyGS6A4QevK3FqS3tb4WFj5PF42LL5Jn7Uf4dQFBQhGBeYRGHxjahKAEEAlCACP0IJoOJHEEAlgMCPKprf8aMSQBV+BH6Cwt98rB9V7PuuCj8B1YvT78bpc+IKePAGPPiCTrIz6olOBiGg3pOJTjGhUwwYdHoMOiMGnQGjzoBRb8KsN2I2mDDpjegUAzpFH2k0UhQDOkWHgr75uz7yueV3RdGhYCCguvhh7+Nx6T6z353YjMUYdGb0ijn0rjNj0GWgV0zodeZQQ1UX8yn6BbBs2wuscjxMuBFgTNbvOHjAryLnRZeb7iqrz/74I+vW/oHBQ2sjZWTThjxmT32CIwYM6DBODoeDnJwcGhoaktprtqu2MBwuhMDpdEae+3T18qiqGqOjM9q7I1zawvhrhMuI3W6Pu1+iWroaHq0l0bimUktXnpu2wpPNp+7Qkkh4ucNB/3/9K1LZBNArCluvvpqy7OwO46QJW7jpSVh6KQoqAh1Mfgxl8MVpsYU76utZtWsXY3r3jqRfonkEUO/xsLuxMea1t6lp3/emJvY0NuJtdiYMOh2ldju9MjMx6HR8vXNn3DU/+/Wv2/1/O+BtoXMnnqpVWIrGgrUPLfm52cInf/iBP3/4IoOMNWz253PbnPO4eOLEn60t/Pd333Hlhx/S29DAEGMtG/157Apkd/jchMMTsYUJ9Xi/+eabLFiwgPr6en73u9/xq1/9iueff565c+dy8cUX4/f7+dvf/tbquWazGbPZ3GrkW3sYWzK0YCS7GolzZKaX3EH/rH4xBbrl546+t/e5JTuadrIhcF2kxxtAFfBtuYdq13sU2uoAL0adjTzLYPItQ8mzDiXfMoTcjMEY9ZYO45pseGfTMpX3bE9Ld14/2tF2u92RP28luIkV+u8iBUUoCisMy6D2jFavFXNd9OgUIzqMce8KBlShxxNQcPmhyS9o9KnUe1XqvUG8QQVVGLAZbGQZi8g0NZFjqW+hG5zuIUAhroAXT9CPO+DDG/ThCfjwqV70ihudIjDoBBaDDotRj9Wgw2LQkWHQkWFQMBt0mA0KJh2YdQKjLohRpwJBhPAjRKD5FcQXbGo1rl9uvxMVtdXfwugwoFNM6BUzesXU/Ln5najvmFAwoiMUriihzzphDDUyEHoPqh7Wev5DyOkGEKxyPExgvYpBZw01gIgAgiBCCb2HGkmCzQ0jQQShuIW+B1AJhuKqBPc1mjT/rorwsc1hwo/L78IbcDNoaBARVUYGD62ln3kXMCBSxlotI22U7UToqi2MDm/53Hfns90Z2xN9TE/YmY70dHT8gWAL2w1zlWOoWQW6MSi2sm67Z2fDky0fqdbSk89NW+Fa0LKptjbG6QYICsHmuroYx7Gt66TdFrrKUZZeCs3/ZQoqLL0UTDkomYPBmAWGrNC73tRhfDob3lrYUz/8wJ1Rjsztc87jookTI8cLIXB4veyJdqCbXy3DPM29dnpFoaTZoe6VmUmp3c7Y4uLI916ZmZRmZlJgtaJr1lTucNDvn/+Ma0wZkp+fcJxSHZ42W7j5Kfh2Ltbmxhll8mMw+OIe1RIdvqdiLTu2f0vfflPoVTKyR2yhKgTeQAB3IMDm2lq+XXQnW/u/h14RBIXCZYs2cezg5yNTTVJ1386Ep9MW7nI4uPHTT3lh5UouzPqBx4ui0qTyRIbk/75T10nEFibkeJ922mmcdtppke+HH344ALNmzWLWrFmJXCphhmSYCezdwdclZZFequl7dzC84WbIKAC9FQzWNt5toc+Gdo7R6ePu2Zoj3k/0o2bhUOpz10d05NYN5eLRd/Pk6tXctWglIwvhgvEFDMkL0OTfwo69X9Lk2wsoZJv7kmcZQr51GPmWIeRZhmIzFnX5D+xAJ+xou91u3G43Pp8PBbAotWR715Ph+gmDYwUbPauhuCj2ZEVh6t6dFHuc6IVAL9TQu6qiVwyh3l1dBjp9BqouA68w4lT1NAV11Pt11PkFVR4VZ0DBLYwYjVZ6W7LItGSTbc0hrzCXAnsuefY8dPoMhC6DXQ2b+SywMuLcAShC8MvsvpTa+kDQBUE3BNwozZ/VgBOf34nf14Tf70INOBEuN0rQjU71oBdejMKLCS9mxU+GEqAtgkKHFxNNBjPvDh4Yp+OszT9iC/gJKHp8pvzQy5iL35iD35jd/MokYLARMFoJ6jMI6k2oioqKD1X4CDa/h78HRBNe4SMovKHfhbf55SOo+vCrbvY53WEE6z2PNfewh3v5Dc1Ov6HZiQ99V6LDw+9Ch14FnaqiD/rRB73ogx70QTf6oAt9wIUh0IQu0IQ+0IhJBKk3mfmhsFesCkUhI7AOOCy5ApoOXOXoq1eBMgbacKp6gpaVCIlGaK5sWsI9gVMeh0EXdXzegY5GnhstMCgvLy5MrygMbiVckzRuhLgGZBW+aqWhXWcOOeAdvQwd/K63xPYAAdvq61nSwpG5dNEm3ll/Ng1eb8Shdvn9ISmKQrHNFuNAjywoiPneq9mh1ie44FSfrCweP+EELp03j2BzvfW0ESPadKgOSLy10PBT6FW9FLY+TTjHQo0zl8CyK5vr/xlRL0voXZfRIrxlmKWd31o5Jur3Lxfdy7S9d9NLEQQ3KcwvuIHBB1+P2+/H7ffjCfjw+Lx4An7c/lCnjNfvwxvwx372+/EG/fgCfrwBP76Ar/ndjy8YCL0H/PiajwmoAXQIFKDE0MgHvUJlFUCvCB4peo/v9vxEn6xD0pZtPYYQuJt288qSd1m0ZiFTsrz8/RBBYfW7kXKiVwSPFc9DZ3AAqX12EnK800rjRkY0VFPmbMBhMpPl82IP+CHTFirgASd4KyHgCjk1ce9OCLazKbrOHOeMK5F3277fhMovKl/FWWuI6LAFVrKj95XcMWECtx5yCM+tWcPdXy7D5fdz0YTZXDnlNnpn6ql1b6TGvYEa90a21X3K8j1PEBQ+zPrsZmc81DOebxlGTsYA9DpTp5MnPB8q3aRKRyAQiDjaHo8Hn8+HwV+J3beeAvcaTE0r0TWsQPFUhPI/dwKNeaNYmu0A4Y75Y1SEYMCkV7HbBkPQTTDgYm9DFeV1leypr6TCUUNNUy01jXW4vQ4ylAA5RuhjM1JiMVCYpaNfoUKuUZBpEBhUL6iNEKgE1QMNbqj1hMpX0A1BDwNVH77sfL4q6RtpoDls7w6GNN4NxsyQ5nCZiny2gNkKtnzQl+0LiznGCoZQmNBn0BQ0UOuDah9UelQqPYK97iAVbh/VLhe1tZu4f899fF26T8e0PTtYNewNDu5Ths5bicVTidVbieKtBE8FuCvAuT702VMBIuzgK2AugIzi2JelOD4sowh0xpg8bfLu5eWfTiDa+VZQOHnw/8g0l6DX69Hr9SiqFzyV++7vidIVE14B3pp911P0oftmFIO5CDJ6QXYxm11GHlq5DZc+j+uOOIUh9iDLd/8prjEiK3tSSspuj6ARp+rLz25j2p6/RCoRX5bewvRZf+5xHdEcaLYwKVzl8O3cUCWT5srmt3PBNgCyR4IpF/TxPY3dTdrzRiPPTTTpTJMXV67EpNdTrNQxyFjDluYhp/uNk5Y5hNDmPFHOt6KHEzeBKQf8jo5fAQd4q6FpS+u/t2gsVtHjUaw4yaAxaKI2YKQxAI8XbYtUO/SK4NGi97hIHMXE/mMiw8DDryKbLWGHOhEumjiRYwYNYs3evayvr+faBQv4bOtWZjUPme1puq2MRxzsNfsc7YY14Al1dGEfEKoLtMaY2yBzaKjepsbW32Je4d989fHHqJ7444OtdTDsYzohaRAqJ7Or/4r64V/Rd7XvTd/8SsCsNxmMMf7UsGXH4tw0DFv2wNBwfGvv0LulT/N7Kei6z21MaTnxN4Fza+i5btra/NqCcG4l2LgFi+rmN8DZJblk5AxB0VnjLqFDhcZNrU5N6ApJzfFOBQ6Hg+zs7M7PDXKVw9v9iDOwJ2/rfKIItbmXsRWnvD2HPTrMuR2qvoy7tJp7EO68o2gwjoKCKVhzS3l3yxb+sWQJKysqOHnYMK6ZOpXpfftGDf0IUO/ZTm2zM17r3kCNawPuQA0KenIzBkSGqedZhpJvGYrFGN8S3eSrwOHdQZa5L3ZTcefSQmMEAoGIk+12u1Gdu8hwrcbmXYfZ+RNGx48o3r0IfQYiexzB7PEEssbhyxyLP2MQzkAdX1X9gQxdIcEKN47cjRFHU1QOZIN+Lpvq6thQU8Om2lp8wSAmvZ7BeXkMzc9nWH4+Q5tfw/LzKWhlPlJCNG1HvDsQp0G/r4EmqKIkUl5TQLnDwZ1P/YoHes3HaTZh8/q4dvexWIZdyn1HH43VaGz/AkIFX90+R9ddEev4tnyp+xa8EKZ8hLmIoKmAgD4PvzCx2/dZXGNEGaPRqU70/urQK2p4vNBloJoKUE1FCHMRZBQizMUolpDDr7OUoLOWolhKUMx5oOyrzPiDQe5ctIh7v/qKSw86iAeOOSYS359WXcNi3xcRHYeYZjBqzD87laYJ265UX69VW6iDIxeBpWRfmNg3pD8qMInfo8P3hVXVbCZvyWmRVnOAgFCoOuonSotHdBwPSeoJuKBiIWx+Esrfav9YvRXMeSEn3JQXerX8bsptDosKN2bF9fh1Cld5qIcyc0hqbKAahEATBBqbnaTG5s8tvzd/9uyFnW+0uIgODp8HxbPS0hCRTj7avJk5L77IksNhUvmdkTnSSgKNEWm3hQCbn0IsvRRFBBGKPjSMOIHGFCEE9R4P2xsa2F5fH/O+o6GOqoYqvJ46snRe8gx+Btn1DLDr6WtV6JUhKDarFHg308+xIO7avqxxmPqfAcVHQP7BcY3RPcU18+fz4qpVfD93Ln2bpxDsV3hr453rhp+aHWyaGxRHQc4oyBrZ/D48NNo1Fb5DIggBqj/GKV9fWc7LK5ZRveNjHi6cF3fKipI/MGDQLIwGI2a9Eb3eAM0LRYMu9B5+oWu2vy3Dwp+VNsKbz1N04NrD2q9nxowgPnTvDr6sO4byuj1ML9AzJU+QFawOpZ+vtjnddM2dLX1ad8ytvcHSO9Q5lCiJ/j+ofnDuCDnWzq0xzjXOraHGNAj9z9kHgn0AlUoRr2xzsaha4bARM7loxi/IsuXvu38Xykkitmv/cbyhywY2JbSWOehg4AVQvxJRtxwAn2U4gdzJmHofwffBQfxtxU7eWbeO8SUlXDN1KmeNGoXZ0HrLkctfs88Zd22gxr2Bes82BEGsxoJmJzzkjDu8O/lhz+MIVBR0HNb3ZoYXnNLdqdAqQgj8fj9Go7Fdp1UIEXG03W43voYdGBw/YnatxuL6CVPTKvS+CoQuA79tBF77GDzWUXiso/FZBoESSrfw6odBxcnimj9h1FsZknkb459+mWH2SsZkVbDKUcy6piImFRYyMj+fwXl5DMvPZ2RxMf1zcjBEtbC1Nq+kM2FtzlvUQnkFnvj+e/4y/yUGGGvY6s9nztjDeW/jRow6HQ8fdxwnDB2akvsIVcXnrMLn2IHPsZNg024UXxUmtRZTsA6TeyP6uqVxrayi90mInPGopkKCpgJUUyEBQx4BQz6qYiWoqqiqSjAYJBgMRj63RK/Xo9Pp0Ov1lDudXPHpp2xtaODho4/mhCFDIj3qOl1oR4Od2z/H416JxTKOfgOP7PQekmmvbFZ8Dp9279SerrBm8AOMnHxdWu7dWRt0wOgQAhpWw54FsHv+vkbhvElQvZiYhhRFD7OXhoY8+upClVlfbeizr7b5e/Pn6HBfHc1bgey7jim3HQe9FYd993zE8j/sc+7G3QO9j+ucwxz9W/TnYOzquCFtOjBkhkYVGbP2fTZkhhrR937UejoqBsgeAbkTIHd86JUzLhSHbiRd5XVbXR0nPPUANw4V/LLpr8SVk26obHaGZK4Xnls9sLnHPnpuNYTmtu5taopypqMc7ObPjc0rJNuMRvrl5NAvO5u+2dn0y86OfO+Xk0Op3d56T7WrHPXtfqEesmYECsrAC6F2GdT/GHICCw+DosNDjnjeQd3aexhdtgKqylHPP4/L7+fL3/yGjDbqnt2iw7mTQN1aDLkj2lxnIoKvDup/iu/FjnGwR4ac7Iij3exgt0cP1MWEEDH1E38gwLyNG3l0+XK+LC9namkpvxqQzaWV56S9sbrJV8Erq49HtBh9ePbo91lV4eOORYv4aPNmTh85kttmzGBMfia4doF7V8gHCr+iv3sqiNgRc36zM97SMY8KM0Y935ufQjSP0Io0/g28MJTvYWe6aWtsD7a7PPS/pOjB2jfiXGMfALaoz+ZCKpxObv7sM/67fDknDx/OA0cf3eo0m66UkwPW8Q4EAlTtWI7asAF99jCyS0dhNpt7ftP19jIn4ISapfj3LCK49wuMDcvQBxsR1jKc2Qczv6GYf2zSs10p49JJU7h00iSKbB0YDSCo+qjzbIn0ite4N1DjWo9PjV08S0HH2aPnpaXn21m1nobyZWT1PghL/hACgQDBYJBAIIDf78fr9RJ07g452c7VmJtWYXauxuCvQFVM+Kwj8GWOIZA5jmDOeETmCPTGDPR6fcTJjgxHVhQCgQBOdx2f7ryGoOpnrO12fr/oOxa0sqLnC0cdxdSSklZUdw/hxVT03j0YvdtRModgyhlIRkYGJpOpxytaOxsaWL17N6N79aIsO5tGr5fbFy7kX99+y0nDhvGvY49NuCVcVVV8Pl+kAcXj8SBEaGtBo9EYybPwsbjKKVo8OTL8FUCgp/7w5ejt/eLyuaPGm/AfXfSfXTAY5JU1a7h+4ULGFRbyr8MPpygjI/J7a+auoKAAm82GoZOVkbRXNttqmT36m9BQsJh0a+NzF45ZXVnJNQsW0NSwja9LH46pRAjRfFrWCCg7FfqcGqpg9lBZb7kyarroVh3eGtjzMexdAHs+Avfu0JDJ0tmhV/HhoYpoqiqbQg05u9EOeWecdm9t685xS3TGWCe5rc+G5u+Rzy2PzQz1brSV3m09N7O/B18V1K3Y93KsDcXb1q/ZCR8fes+bEKrkpShPu728Bn3QtAkc60KvhnWoDWtx1a7GrnhCzmFrw2KP/DxUjjog3bawtYXEFOCMkSOpdrvZXl/PTocDX3NDbb7Fss+RbuFU98vOJi9qb+WEae9589ZA5aJQo2nF5yFn0pAJRdNDTnjR4aFGn1bWGkqWlmWroqmJiY8/zuxBg3jqpJN6xj625lANumifg+1Ys8/RdqwB957Qebb++5zr7FHNzvaIjh3sdnBVb6Bu53fklh2MtaDtzgYhRKS+0NF7+HP4BdDg9fLa5s28sH49lW43Jw8axMWjRzO2qAi9Xs93i+/lmMZ/YlAEAaGwwH41Uw69mczMTEwmU4/ky+7G73h/42Vx4ccPeYxemaEpd1/v2MEdixbx6ZYtnD5yJLfPnMmoojaG7UPI1nj2hBz0tpxz9+59UxcNmSEH3JwPVV8TNzxfZwa1eceDjOJQo0u0c20fGAqz9mmzAcsbCPDgt99y1xdf0C8nh3/Ons2RAwe2mzah1e9Xk1E4uuOGoigOWMe7pqaG+vr6Vn+L7u0Kv0f3cIV7uVLVq+mq3kDj7uVk9zkIW+GwVjUJIXC7nDh2LkFft4Qs7ypMDctQnFvwKVaWevuw0NkbS+lMjp3yS0b1HtSpdAizy/EdH2xq/+HpKQLrH0P//RURA1s14C+4co/E7FyNybmaDGezk+3bi1BMBDNHoeZOROQehK5gErrcMegM5jijE+4d9/l8ca+g8PKj8x78NDDIegdXfraMTfX11Hs8MY+wTlHYcuWV9MvNjVzT6/VGnEWPx4OqqpF9XTMyMjCbzTGOWMstelp+bvkOoTIevbefXq9HVVWEECiKEtlj0GQyRfaT7a65UE1NTVRWVlJUVBTZWkgIwQ+7d/PbDz9kVWUlN02bxm8nTgzNmIv6M4l+BQKBNnucw0Q/hy1fxh3PkbXu+kg5qRvyN9y9zok00kSnX/j5DTvj0U55dFi4zDi8Xq54/31e/ekn/nLEEfxh2rS43omws15bW0tjY2MkPDc3l7xOLiiU7somkJbRFG6/nz8vWsT933zDScOG8dCcOWxZ9gCH7PlLpBJxbd2p3HXGzWRXfRga6lz7PVjLoM8pIUe8cHq39/IccI63GoDqJaFe7T0LQj1oxkwoPnKfs23v37qOJCsRKSPogV3zWl/savrb0OvYHh3i/eVnt8WU18VtrUkQcIdGEkSc8eVQ92OoIcGYs69XPNxDnj0iqWHEKSsnvjpoWLfPwQ6/mjaDCILBDlnDEVkjeGOXyoIqI3899bfk23PhvaH0xPDKzpDo9T7fupVZzz0XFz6rf38m9+4d41j3zc7Gbur8ujnJ0OnnzVMZ64g71oExG4pmhBzx4iMgZ2zM1KmEtbRStpaUlzPj6ad5aM4cLp3UzXXEpu3w7kDiFr/LKArFH6Ic7Khe7C462K2xd+/emLqY0WjEYrG06lBH71UNofp+a75Fy7ANdXU8+sMPvLB6NdlmM1ccfDBzDzoormPN7Xazas1XNNSvIztnOAP7TcDj8eD1ejGZTNjtdjIzMzvdEZAMTb4KXl59PLHr7bTeaffl9u3csWgRn2/dypmjRnH7zJmMKCxM7sZCDeV9tGNe/Q1sfzn+2HH3QJ+TQ2XEED//ut3bCMG769dz3UcfUe/xcNcRR3DJQQdh6EQnbbI2+YB1vB0OB1VVVZHv4cp8a9uE9RQ6nY6+ffu26zAJEdpbtra2FlVVybN4yfKtRlR9Tf3OT8lyrkFBZStlGIoOo+/g49AVHdZhy3pouMgJzfuVh1E4Z9Q87OYe6N1VAwRcFTSWLybnhzNjWs4FoZZnoZhQs0ZB/iR0BQej5E0KGVd97B9gaw623+/H5/O16qjqjQpf7r6ZBs9W7KZbuOCdLxlZWMgrv/gF761bx+/mzycoBHpF4eFjj+WyyZPbjIYQAp/PF7OYWzAYRK/XY7FYyMjIwGKxJNxLHQgEcDqdVFdXR3pV9Xp9TDy9Xm8krhByNqMd8fArkfuqqorf7ycQCERGGzgcjshzEf3MQGgo3v82beL+5csptlr5yyGHMLW0NDKSJNwCHAgEYvIiIyODjIwMjEZjzBDutrQKIdi5cydq0w6M3u34zf3Q2ftSVlYWGSEQ/gMMO+LRn6Pfo59xnU7Hytparlq0CL2i8Njs2Rzcq1ecwx49MiYQCESc78zMTPLy8vafHu9metKp+nzrVubOm4fT5+Ph447jtBH7hsXt3ruGnTu+o7DXBI5/50vGFRfz8i9+ESoHzh1Q/jbsfAuqvggNO+59YqgnvOTo5OaCtcMB43g3bdvnaFd8Gupxzjuo2dE+FgqmdMrR00J67KlYS9Eno+KGV15jegSXqQRVCIJCEFTVbn0PqCr1Hg+9DQ0MNtayyZ/H3mAO2665pnOLianBkCMbccRXhF6evaAzhf7Xooeq546LHU7ZCuG9hTMK297ubd/Bauh5aulcO9Y1D/MkNL8ye0Ro+G30y9ILFIVHly3j6vnz+eKCC5jSp9mx7qHhld1xvba2zup0nqaYpJ83957Q2gyVC0OOeOPGkK0smrnPEc8elZAj3paWx5Yt48oPP+SL3/yGqX26MMdZiOZF6bZGzbGNmm/r3BZq9GnJiBug7y9Co6KM9uTvnwA7duyI1LEg5ExbrdY457m19/ZG1KpC8OHGjTy4dCkfbd7M1D59uGryZH4xciSmNnwCVVWpqKjAYDAQCAQoLi5Gp9Ph8/loamqisbGRQCCAxWIhMzMTm82W8lG9bn8tL68+nqDwE3a+xxT9iql9rmnznEXbtnHHokUs2raNs0eP5raZMxleUNB1MSmeg7+6spLfL1jA51u38rvJk7l95kxyLZ2vZ0jHO4pwpT364TEajZFKe1vnRFfkw69gMBjjmEQngaIoGAwGDAYDOp0uppct/DB6vV5qampizsnNzSU7O7vdB0QIQUNDA3V1deh0OvLy8rDb7ShBNxs2zOfHn97EWv8dh1rKydG5UC290RUeCuFXzri43qJ11W/z1Y67m51vBZ1iYHDusUzvdws6JcEWs6AvZEi9VaGXp+V7ZeQ34akCX13rw9TC8T34UZSBv4lxssM9jq31YIedOqPRGON0mkymmJ5NVQT4bOtN7G1azsaai/jLlxu4fto0/jJrVqRFa2dDA2srKhhRXBzZj7SzhOdGRS/2FnbEw054eMh4Rw+m3++nrq6O3NxcjO0sZBZ2lsOOeNgpD7e+htMhegh3dNmOLs/hc8JlWVEUfL59i55lZ2djsVjieqNr3G6u//hjnl+5krOGDeP6CRPIbr6XxWKJxDvZYfLBYJDt27fHPW/9+vVLuKc/HHevz8f9ixdz9zffcOawYdw1bRoWvT6SLtGt1+H0CD/PbrcbVVU7tCMtSXdlM0x45IbZHD9SJFXUud384aOPeHrFCi6ZOJG/HX00ORkZbepYvncvU558kmdOPpnzxo6NvZinGna9F+oJ3/NRyJaVHhtywnsfH1qFuIv0RJp0i46AEyoWhRztvQvAsR4ySvb1aJccHdo2s7t1dANP/fAD3yy6k8eK3ov0NF9aeSLb8k6jV1YWekUJvXS6uHddO7919j18jbXV1dy5aFGcvs/PP5/D+/dPPoLuvbHD1OtXgGMDIMA+KL53vNkJbnMYbsANjRtacbDXhxaH1RlDUwtaOtdZw0IjIdog3Nv58HHHMfegg2J+E86d+GvXYszrxDzcKLRgC+/75BP+9M03qEKgUxTunjqVa2bMSEuZT9nz5ioPOeIVn4ec8aYtoR1Fig4PTQEoPiLkuHYwHas1LUIILn73XeZv3swPc+dSbG/H+Y2sDL01fo6tc2vIbkFoLYfo4b/2AaC3w5Lz6bFFzdrB7Xaze/fuyPdevXphScAZa4nD6+WZFSt4aOlSttfXc+aoUVw1ZQqTe/fu1PntlRMhBB6Ph8bGRpxOJ0IIbDYbmZmZWLoyFSKKL7bfRaVzFccM/Ae1zu2srX0Jnc7I7EH/6PDchdu2cfvChXy1YwfnNDvgQ6P2iE+KFIzgq3G5uH3hQh5ZtoxjBg3i/445Jqme+WSf4QPS8U5lpb0l4d7W6B611r63RfRw9JycnA4d8GAwSH19PQ0NDRiNRvLz8yMP1J7GRh79bimf/PghBxm28OteTYzTb8bo2hIafpM/JeSEFxwKBVNh5+s0ff9bHCYjWT4/7nG38aHnE4rt4ziy750Y/I4WDnTlvu8tnWt/fVSkdCFDby4MvTKKwFyI35CLM2DBIzIJGvMQpgIyzHryl85uMXdXh/+4jQTNpXEOdtgZas3B7nhhNpUvdtzF1rrPeXvdiXyxPcCzp5zCicNaH+6fCqIXgws74oFAAJ1OF3HELRZLSubnRJfFQCAQccTDZbG1YVB6vR6j0YjRaIw4xtHzq9trsIpe5C4cr2VVVdy+dCkVLhf3zJrF3EmTUrb1idfrjRmmrtfrMZuTG2q6s6GBX771Fiv27uWxE07g7NGj444Jp2fLXvRwXoYpLi6ODMHvCC1UNrsbIQSvrVnDVR9+SHZGBk+ceCIz+vXr1Ln3fvklf/36a1Zedhn9cnJaP8jfBHvmh3rCd88LORRFRzTPCz85NFf9QEYIqF+1r1c7vCha4fR9znbOmB6bG98dOH0+/rxoEQ988w0qJN/TnCJa6x0FWHrxxRzcyQpzp/E3hfK3fkXIGa9dDg2rQkPvzQUhR7m1eY2WstCiQYhQj2dWK73X9gEJT9eoaGrioOb5vU+mcH6vFmyh2+3m+40b2d7YSL/MTPpkZREMBrvl/zltOLfvc8QrPgfXjtC81/BCbcVHhFaDjo5fO6tEewIBpj/9NJkGWHDqDIzuHbG91mHHOrIytKV50aqoebZhB9s+oO2RHZufgqWXhnq+FT2kaYHZQCDA9u3byc7OJhAIUFRUlFQv8qbaWh769lueXrECi9HIZQcdxGWTJlGa2XaDV1dQVRWXy0VjYyMulwu9Xk9mZiZ2uz3pelOVay1vr/sVxw3+D72zQiNB9zYt570Nl3DmyDfJzujb4TWEEHze7IB/s3Mn540Zw60zZjCkKw64qzy0dVfm4IQaZvzBII8sW8YdCxdSZLPxf7Nnc9yQIcnrSJID0vGGUKU93LsXdi6SLXyJEt1Tu2fPnnaPVRQFi8VCVlYWGRkZbTYMRA93tVgs5OfnR+LjCQR4adUq/rlkCWuqqvjN8FKuGwLDxDqUqm+g7vvQcvqtUJ81gA8L7dj8XmaXb8asBkOrtpoLIg40GYVRTnWsc01GYehPX9FFhmE3NTXhcDgijp/FYiEvLw+TyRTqeVz7CLbV16IQjMzxbiw6E0jOwW4rDxaXP8Caqrd55LsZ6HUD+d8ZZ9C/lcp9d/f0RDusHo8Hv98f+aMP/9mbzWacTidVVVUUFhZit9sjQ7ajh4FHf49u4AkPkzYYDJHyHn6FHcroHvLwueHnIjxSIHp6Rhi73Y7X643oju7RNplMBFSVfy5Zwh2LFjG2uJhHjj+e8SlanC4VefPGmjVc8t57jCgs5MXTTmu1DLR3/0RHz0SjhcomdF8ZL3c4uOL99/lw0yZuPPRQbp4xo91VcFvqCKoqhz/7LHpF4dNf/7rjRpugL1SZLH8Lyt8JDZstOGTf4myZnV/7Qgs9vBDuQVyDMW/kvh5ETzXs/bi5V/uj0PDSzKGhXv/S2VA8M+VzG9OVHh9u3MgVH3yAPxjkoTlzqHG7uWzevMj0n8dOOCFm5eme4qkffuDSKB0Dc3PRKQpf/OY3nVrktEuogVBPdt2KUDnf8b/4Y4ZfG2p4yhoR+r9OQZ4FVJWjnnsOZzsrWvdEL093XS88dNdsNuP1eikuLkZV1UgjudvtjvufS2bqWGfokedNiJBTHO2Iu3eFRlKEHXFvFeLHW/aNphhxfWgF8Khe64BjC4p7V2gKSGRl6AHxPde2AaG6YZLxSXY0RSpxOBzU1NRQUlJCRkZGQnkjhOCTLVt4cOlS3t+wgQmlpVw9ZUq7OxN15pqJlpNAIEBTUxNNTU2R+eBhJ7yz0+SEELy34SIshjyOHvRARIfJZOKdDedTZBvDoWV/TCgen27dyu0LF7KkvJxfjh3LrTNmMLiT6+W0vFaiabJg0yZ+v2ABuxsbuX3mTH47eXKbQ/w7i9PpZO/evZSUlGBL4D/hgHW8QRtz1lwuF06nE4fDQVZWFjabDZPJFJkn7HQ6Y4b2hh2y6Lm70Ubf5/NRU1ODy+XCbreTl5cXGZYshOCzrVv557ffMm/DBib37s01U6Zw+tABGLf+F364Ol7g8OtoyhvLh45X0emMzBnwAFbroE4bzvAD4HQ6aWxsjOmhDC88FnYa/X5/ZBRCeAVvv7kf5txBkXikan7Kd7sfYfmeZ/nHkskcPXAO9x99dJuGr6fLSSAQiJkjHs7/8Nzl8Nzn6B7rtpzq6DnTidDaEH6v19vqmgdWq7VTPQE7Ghq4ev583l2/nqsmT+bPRxxBZhcbu7qSN06fj98vWMBTy5dz64wZ3DJjRqcWzIimq6NntFDZhNSXcVUIHvnuO/706aeMLCzkiRNPZExxx7sjtKZjW309Yx95hFtmzOCPhx7aeRFCDS0kVv5WqDe8aXOo57fPqSFHPGdch8Mr0/3/EDeEuNecUGNC7fedXhQtVfR0euxpbOSaBQt4fc0arpw8mbui7EXLnRXSRbSO7IwMjnzuOXzBIJ+ffz55XRh+mhA9uLfwdQsW8OyPP/L93LltjkDpiXmN3Xm9jvS3NrIregqVxWKJmc6WLGmxP0KEegorPw8543s/CY1ibIm5MNSbGNVr/UNjBmd88B13Hf8rzh3XPQ1hWrDJu3fvxmAwYLVaO63D6fPx/MqVPPjtt2yoqeG0ESO4esoUpiUwLa0tupomPp+PxsbGSP3carVit9s7nA++qfZDvtj+Z04f+TpZ5t4xOjbXfciXO+7h3NEfYjYk1oMvhODjLVu4feFCvtu1i1+NG8etM2YwsHlB485eo7NpsqGmhmsXLODDTZu4ZOJE7jriCApT0HDachE+m81GSSc7nKTj3QP4/X5qamrIz89vde6uqqo0NDRQX1+PEAKz2RyZO6yqasxiYWFnXFVV6uvr8Xg8ZGdnk5OTE9OStaGmhgebh7nkZmRw44R+XLHnzJi9I1V06E7ZDtY+eAINLNh8NW5/LXMG/5vsjLZbG4UQMUNaws5iy+IRdgxbvhRFweVyxSwklspVGb/Z+SSrKh/jqR8O4Q/TLuXMUaPaPT7d5SQ8nSB6Ff7s7GxsNlvEse4JXUIIqqurcTgckbCcnBzyExwS9N769Vz54Yf4VZV/zp7N6SNHJq0/2bxZvmcP57zxBu5AgBdPO43D+nY8JKotwqNnPB4PGRkZCY2e2V8qm4mwpqqKS957jx/37uWeI4/ktwcf3OnpBW3peP7HH7no3Xf59uKLmVCaxNBxIUIrS+98K+SI160IrXAadsILpsVtv5PQYlXJEHCDr6Z5+6ya0DZB3pp9Ya4dsOO1+POGXgV9z+j0omipoqfsoCoEjy1bxo2ffsqg3FweP/FEJvXqlRYtHdFSR63bzeHPPIPFaOSTX/2qyw2LnaYHdiZ4dfVqzn3zTRb88pcc1c42Oge6493y2JaOeDAYxGAwxDniidLk3UtFwwaKs4f2zAK3rbH3M/jsyPjwNraIe+Cbb7jt889ZfNFFjOuGLVfT/dyHh5mXlpaiqmqHOrbV1/PvpUt5cvlydIrC3IkTueLgg1PaWJiqNBFC4Ha7Iz3hiqJE5oO37Nn3B928tuY0huSfyMG9rojToYoAr/x0IqOLzmVc8a+T1vPR5s3cvnAhy3bv5vxx47hlxgwGdMIB70ya1Hs83LVoEQ8uXcr0vn3557HHMrYTnQOdZfv27TGjTo1GI307Wc+UjncP0Fkd0Q54eA641WqNW0grPOw1PDc37KBnZWWRl5cX0xNX53bz1PLl/GPJEo5VFsUsWnN55YncftHzkblz/qCbT7b+kRrXOo4d/BB5GUMjPdXhPZij512HCTvdZrM58hB31HvdUWNEsry/4UnKGx/lo81HcO+RN3ZqIYd0l5OuDmdOJa2trp5MpcLl9/OXL77g/m++4cgBA3j4uOOSHlKUSN6oQvDPJUu48ZNPOHXECB474YS4Bb6S4edU2WwLbyDAvV99xT1ffsnRgwbxn+OOa3tedoI6hBCc9frr/FRVxbJLLsHSVZvQtDVqhfSvQlNiep/UvEL6kbDthdYXq2oNNdi873QrznN7YUF31EWU0IJwpvzQXqTm/OZh85/E36+T+yKnmp6wgz/u3cul8+axurKSu444giunTGl1FEq6bXJ7Oiqampj+9NOUZmby4XnnYU3h/1e7WrpxZ4LVlZVMffJJbpkxgxsPO6x9HT9jWxi9mGr4FV50M3oKVkf/mdEL3SroOKzvzQwvOCUhLSkhwdEUQgjOfuMNvtu1i2Vz56Z81Ee6n/vwekplZWW4XK5WdQgh+GL7dv717be8s349IwsLuXrKFM4bM6br/1ut0B1poqpqZJSq2+3GYDBEtiYzmUx8t/s/bKx5jzNGvolRb2lVx4q9/2VN1eucPfrdxBdnbhG/+Zs2cfvChSzfu5cLxo3j5hkz2p0S2F6aBFWVJ3/4gVs+/5xMk4kHjjmGU4cPT3l5qq6upqGhIfI9kUX4DnjHOzzHO91/3onoaOmA5+bmkpmZGXFkVVWN2V7K6/Xi9Xoj54eHyURvM/XZtm0c/fzzMYvW7Apk89mvf82hvXtHHGyvz82y6vup8CxlrO2P5Bpie4vDi3KZTCacTicejyduyHt3pElnrvfw0ocwGZ5lW91J3Dbzpk4bwXSXk+5cDDAZ/H4/9fX15OTkdLlRZE1VFVe8/z5Lysu5afp0bjj00ITmOiWSN3ubmjj/7bf5escOHpozhwvGj09ZfiZbRrRU2exKGf96xw4uee89ql0u/nXssZw9enRS12lPR63bzZhHHuH0ESP415w5CV+7TTyVUP5uqCd87yegGCHobHGQAgMuAOGLd6ijF5IE0Fv3Oc9hR9qU1yIsL9bJNubE9bj35BDiztCddtDp83HnokX83+LFHD90KA/NmUPfdnqF0m2TO9Kxs6GB6U8/zYjCQt4+66yk52+mQktXafB4OPiJJxhdVMQbZ57ZqV7gn7MtbHmtcKdEeOpY2BG3Wq2RNVyi/8db39oVBuUeS7a5L1ZjQdSrEIsxr0uOTYckOJqiyedj6pNPUpadzbxzzknZYqqQ/ud+586dWK1WXAYDaysrGVFUFOm9dvv9vLx6NQ9++y0rKyo4efhwrpo8mcP79+9Wrd2dJuH54I2Njfh8PoKGOr6s/R3Ty25laMHxberwBOp5adVxzOx/B4Nyj+myDiEEH2zcyO0LF/JjRQUXjh/PTdOnt9q431aaLNy2jWvmz2dTbS23zJjBNVOntrvmTLKoqsr27dsjC9h5PJ7IVm+d4YB2vPd3WnPAs7KyWn34wn8A9fX1kWEk0fOEq30+pr32WtwqrTN79eLa8eMZ3dzzHFqMS2V1w+PscM9ntPUa+mUfjt1ux2q1EgwGqa2tjbQ25ebm9tiidW1R7/Fw4ycPML7kbUz6s7hwwvVp1ZMMqVzBW2sIIXhh5Uqu++gjcjIy+M/xx7c7lDEZ3t+wgd+88w59s7N56Re/6PqWFSlCK5XNpO/n9XLjJ5/w6LJl/HrcOP5+zDHkW63ddr9PtmzhmOef58PzzmP24MGpv4HfAWsegJ/uiv+t4FDIGtqxQ63v+giKCBpZybc7+WDjRq54/30CqsrDxx3HKcOHp1tSSthUW8uMp5/mkLIyXj399ITXj9ACqhCc+uqrbKip4duLLyarG/9z9ndb2BnCa95EO+JCCEwmU6RHvC7wEx9uvjzu3BLbRAQq7kA1Ln81ATW8k4aCxZCLJdohNxTEOOjh3wy65PKvqWEFjoZlZGVPwp49vsPjN9bUMOmJJ7hq8mTumjUrqXtqDZ/Px86dO/mktpYrPvwwsuXc3446ijq3m8e+/56AqnLxxIn89uCDOzUken/D6/Xy8ZbrcftrmGC9MzIU3Waz4Xa72bNnD6WlpVib6wBf7riHWvcGTh72TMo0CCGYt2EDdyxaxKqKCi6cMIGbpk9vt6F2S10d13/8MW+tXcv548dzz6xZ3bZ6PIRGRtTV1dG7d28aGxvJzs5OaGToAe14CyEi8zLT3WreFR2JOOAQ6kGtq6ujoaEhspohwBPff8+NX38dMSiXjx3LBoeDj7duZfaAAfxu7FhGNPesWywWtnvfYlXN0xzW908Myj6Burq6yKrqeXl5ZHRhCG+q8uaHPXv4w0f/4oxRn9I/51zmDP592rR0lQNdR53bzU2ffspj33/PWaNH8/djjqFXB8axIy2eQIA/fvwxDy9dyvXTpnHXrFldXqkyGR1toZXKZjL631m3jt9+8AEmvZ7HTjiBowd1fsXwtmjy7qWqcTOFmYPanNd47YIFvLJ6Nasuv7x7nHyt9TQ7d+KrWYMpf2TaVvKF1D/3uxsbuWb+fN5YuzZu8bSe1pIsHelYU1XFjKefZs6QITx7yinournnK9VpcvcXX/DXr79m6cUXd3of2/3dFvr9fmpraxMepZcM4bQKO+JerxdnYDdLmmIXulXQcfboedhNxZHz/KoTl7865uUOfw5U4/JV4QpU4ws2Ra5j0mfGOecWYwE2Y2GMg27S71tcKtlh7++tX88pr77Km2eeyckpakxL53NfU1PD5qoqDvnf/+I6qAbm5HDdtGn8etw47CZTj+rqyfK6y7GUDzZdwSnDnsem9IvZHzya8EJi9Z6tvLbmdE4a9gzFtjEp1SKE4N3167lj0SJ+qqzk4okTuWn6dPpkZbGzoYGf9uyhX14ez69axd8XL2ZSr178c/bs1G/32AJVVdmxYwd2uz0y2iXRaZmJ2K6E++udTiczZ87kjjvu4IQTTgDgggsuiKzI/K9//avbe/WiexHTSVd06HS6iLPd0NBAbW1tZChwaw64Xq+noKCA7OxsamtrqampwWq18ttDDuGYgQNZvXs3I0tK6J+Xh9vtZml5Of9ZvZoT33mHI/r147aZMzm8pIQSLseeUciXO+5hl3kzQ7POimnt6ipdSRMhBI9//z3/WPIi10xdzMjCs5je95q0aEklB7KOXIuFR044gQvGj+fy999n+MMP85dZszpcnKstLT9VVnLOG29Q7XLx0a9+lfJe9M7q2F/orP49jY1cNX8+b65dy3WHHMIdhx+eknmsna3g3XPkkXy8ZQtz583j9TPOSH0FzNoHpjweP7wyDU53WI9f5GKydvMWVZ0gFWU8qKo8umwZN332GYPz8vj24ovjFk/rKS2poD0dIwsL+ehXv+KIZ5/livff55Hjj+9WhyGVaTJ/0yZuW7iQV08/vdNOd3fo6En8fj9VVVW43W4yMjJSvrBrS8LbxYbnfqqqytfbX0OPlSAeQo1/OoZZ5uKsg2BGQ2Qqn0lvx6S3k5PRv917BFRPmw56rWcTrsYluPzVeAJ1kXMMOgtWYwFmfRZVrp8i4QKVr3bcTZ+sQyKNAG1x4rBh3DJ9Or966y2+u+QShhUUJJtMMaSjbAkhaGpqosLvj3O6AZ446SRmDRjQY3pUVY2s7RReEK27y6sqAiwuf4Bh+SdTaBsBhHa0CTua0fkS3oknJ2MAZVmHsrryJYoH3JtSPYqicPLw4Zw0bBhvr1vHHYsWMejBBzm0rIxF27dH8ik3I4NnTj456elviRLeKjm85hWE5nsHg0HykljHqCMSzu2//e1vnHnmmTFhFouFQCDQ7vzRlnOWw6ssCyHi5sG21gkfDo9+deb4lmHhe3Y2vDNaOnt8a+HRDrjD4YhxwDMzM2MKnaIoGAwGioqKIg74nj17sANTm1ejrK2tJSsri9ljxnDywQezsqKCe7/6ilnPPcehZWVcPWECE7ImMD7zD6xs+gcWoHfG71uNf6JxCn9P5jpNPh+XzZvH4vLF3HjYMoYXnMBhZdfGXC+RfOqKllSGtywjqSp7iYZ35blpKzxa++Tevfn24ov5z3ffcctnn/HMihU8cvzxTI5qqWxPi6qqPPr991z30UccM3Agn/761xTabN2aT2HtLZ/hcHhbce3qIKGetIVCCP67YgV/+OgjBubmsvTii5lYWpoSW+j0VUScboiq4GVOxW4uiTnerNfz/CmnMOWpp3hmxQouGD++w+snGq4MughKjsFVuYqMwtFgKwMheuwZiyZV9qer+RRdPpLVEl48bU11NX854giuOPhgDDpdwv99+5MtnFBSwofnncfRzz+PzWjk/qOPjuhLZT6l0i5vravj3Dfe4LpDDuH0kSN/NrawoaEBtzu06GF1dTV+v5+CgoIee8b2Nv3AurrXOKLsPrz1dtzqXiy6EopyBkR2NwkEAihKaCeb8JasGRkZre5uoigKesVMpqk3mab4/89oVBHAHaiN9JS7/NVUNK2McbwhZJsbPDtiet/bitNtM2eybPduTvvf/1hy0UWt9gbvD7bQ4/EQCATQtaJfrygMyctL2Ia1FS6EIBgMEggE2ny1XMAY9pXXlrvMpMoWrql6Hae/gkmlj8T8rtPpKCoqYs+ePZGwguZGFiEEowrPYcHmq2nstQe7qaRb8umUZgf8v8uXM3fevJhjHV4v0/v1S0kadBSuqiq1tbUYDAb8fn+k17qgoACr1YrooA4RDk/EFibkeH/88ceMHDkSj8cTE/7vf/8bnU7Hgw8+yLx58zjppJPizr333nu5884748KdTmdkkQqDwUBGRkZkq58w4cXEwg9S2MiGV9oOr0IZJrwCZfR+bBBq6VEUJS7c1lzBd7lcMeF2u51gMBgTX51Oh9VqjdGhKEpkT8jwauFhOhOncKuTyWSiV69eOJ1OampqqK2txW63RxbzaBmnrKys0MIJLeYRh1fhFEIwyG7nidmz+d3o0fzfd99x9nvvMa6oiD9OncrMXvfx5Z6bcXqrOXLQXQQDxPwJJhqncKNLeDGSMGazud18+n7HDn757rvYTLXcMuN7+mVP59CyG+PyI5F8Cj8QgUAgRnsq8qkzcQrnkxCh7R6sVis6nS5lZS/RfAqv2hrW3pU4hWntebpo9GhOHzmSaxcs4JCnnuLCceO4/bDDyM3IiMQpPEQvrN0F/Obtt/lk61bunTmTi8aNi8yt7M580uv1Mc9wW3FqmU8tf0uUnrKFm+rquObTT/l21y5unjaN3x10EIbmMpgKW1jp3hS3mJBApapxM3ZzSVzeDc/N5Z5Zs7hq/nwmFRYyoHmBla4+Y2GsVitYetNkMxMUFpTm33vqGUuFLUz1f5YQIrJYZqJxqm1s5M9ffsm/v/+eOYMG8dIllzCooCA0vPZnYAunlZXxv1NP5RdvvEGGovCnadNSnk8tbWGycXK43Zz6yiuMLSrijunTAX42tjAjI4NgMBhZB6exsTEyrDm6Mtwdz5g/6GTh9tsZnHMiA/MPZ69/LzmiN6qqRtLbYrHgdrtxuVyRsudwOBBCoNPpYrZlDS/elkje2U3F4LNhNfQHAxQYJrK57sMY26ygwxjMjzgIHT1jj86ezeEvvsiF777Liyef3KU6VLpsocvl4sVNm7j7u++YUFzMyspKgkKgVxT+M2cOuXp95FodxSncExoMBiP5IkRoDaaWTrVer0en06HT6dDr9ZhMJrKzszGZTJEdhML7cOt0OhobGxFCxAzFT4Ut9ItGvt/zKGMLL0T1mXH6nDFxgtAzBMTsrOTxeMjRjSbL1JcVu19gap9rujWfWtsZJygEm2prKbZYuvQ/3Jm6RfhZDAaDlJSURMKFEJGGwVTbwoTmeN988804nU7WrFmDxWLhrbfeilnx7ZVXXkFVVc4999y4c1tr2SwrK6O+vj5mPHxnWqsDgQAGgwFFUXq09yA6XFXVGB2d0Z5IeCAQoKGhgYaGBvR6fWQIeks8Hg+7d++OfC8tLcVisUSu7XA4qKurA0L7N9eoKn/7+mueWbGCEYWF3DCtjCD/pNA6gln9/xrZZiAZ7eHC21YrbmvXeWHlSi57/31OGprP8UPfptA6jKMH3Y9OMXYpn5LR0h3h4fIaXqkxnb08yT43bYV39Dx9tGkTv/vwQxq8Xu4/+mh+NXYsEFo9eF1VFcMLC9lQU8Ov336bfKuVl047jdFFRd2WBq3h9/vjnuH24hR+pnJycpKe19jdttAfDPLA4sX8edEiDuvbl8dOOIGBLRaNSYUtdPoqeOWnE+MqeGePei+uxzuMAI567jm8gQALL7gg0sCSqvIohEgoT7urfKXK/nQ1n6LtT2u0peWDjRv57QcfEBSCB489NrJ42s/RFs7bsIHT/vc/7pk1iz9Mm5bSfEqFXVZVld+88w6fb9vGsksuobB5O56fky30+/00NDSQmZmJ0+mkvr4ei8VCfn5+xLlo6zpdeca+2HEXexqXcdrwlzEZbJ2uF4bz3ePx4PF4IrvZQMhZMJvNkV7x8POSSJ6ur3knajSSwvS+NzMs/5SEnrGVFRVM++9/uW3GDP546KEdHt9eXHvaFlY2NXHOq6+ypKKCfx17LBdNmMC22lpWlpczrqyM/lHOXlhfMBjE7/d32FttMBgiixbr9frINFuj0Yher0ev13cYp3B5zcrKipRXs9lMQUEBJpMpJbbwq533srfxe04b8UrcCvot7U9tbS2BQIDeUSMU11W/zdLd/+ScUR9gMnR+9GGiz9Ouxkb6/fOfMdMB9IrCtmuuoXcr6wWl8v8gvPieTqejd+/ekf/J7raFSS2u9swzz1BQUMCrr77K888/z3XXXYfb7aauro4nn3wSm63jeW1aXL1Si4SHKoUd8PA2ZOEMV1WVyspKbDYbTqeToqIiFEWhqamJ2tpaVFUlJyeH7OzsmEaScoeD+7/+msd/+IHxJQoXTVhEgbWUYwf/iwxDdrfHy+33c/X8+Ty9YgX3HXUwvTIfwW4uZfagfyW9iqdEe3gCAe77+mvu+fJLDikr48j+/bl90SJUIVAIOWJXTp7M3446qlv2y+wOtLKgUGss3bWLS957j50NDfzf7NmcP25cXGUnlaytfoOvdtzT/E1het9bOlzEZ2dDA2MeeYTrp03j5hkzuk2bJHF2NzZydfNaAFdNnsyfE1g87UDm1dWrOffNN3l4zhwuP/jgdMuJ4T/ffcfvFyzgq9/8ptsXIWqJVm2hz+ejuroat9tNTk4Oubm5nd4WqLPsaPiSjzZfy/FDH6fUPqHL11NVFa/XG3HEw710iqJEnPDwMPXOzAlu8lWwaNvtqAQ5cegTSWl6edUqfvnWWyz45S+7fb2VVPHpli388s03yTWZeO2ssxhVXBxxLhsbGzGZTBgMhkgjSXQPaXgEQtiZbvlqrfEgFaS6vNa4NvDWuvOYPfhflGVN6/B4v9/Pjh07KC4uxm63A6F1Bl5efTwTSy9lVOGZHVyhazz1ww9cOm9eZETCYyecwEUTJ3brPf1+P+Xl5aiqSt++fbu8yN0Bv6q52+2O9Oqmi57WEe2AGwwGcnNzsdvtkdac8MIibreb2trayFyFnJycdveN3tvUxP8tXswLK7/gt5MXU2TN4PSRj5NrSXzhnM6myabaWs547TWqnE5ePO0Yqlx/xqi3ctzg/2DUp2aRt59rOdGqjk21tVz87rss2r49JlynKGy/5hr6pKHxLdk00UplM1q/0+/n1s8+48GlSzlz1Cj+OXs2xc1/oN1JlfMn3l7/a6yGIvrnHMGhff/YqfNeWb2aX731Ft9ceGFKnYV0l/P9VUd48bQ/ffopQ/PzefzEE5lYWpoWLd1NsjqeXr6ci997j2dOPplfjRuXVi1hFu/cycxnnuE/xx/PxV2oqB5ItjC6F6qpqYmamhoURYmsUpwKPIF6Xl9zJkPyjmNKn2va1dEVwr3i0Q65EAKDwRBxxsO94y0dNSEEO2uXsWD7ZZwx8nVyMpJbSOzaBQt47scf+X7u3Fb3X+6Innru/cEgt37+Ofd/8w2/GTWKW6ZMoX+f0OKaNTU11NfXxxxvNBojw8GjHevoYeLhzzqdLqXa2yqvTqeT6urqLpVXIQTzNs7FpLcze9A/Oq2jpqYGp9NJ3759I5qW7X6EzXUfcebIN1CU7t1aMbyq+ajS0sg+692F1+tlz549kcXTcqNGBPaELey+pR+7kdYWKUgHPalDr9eTn59PTk4O9fX1VFVVUVdXFykwVVVV6PV6AoEAWVlZlJaWdqpVtMRu576jj+aGQw/lwW8XsqX+Xzy5/Gyshj9w4YQ5CfdCdpQmb6xZw2/eeYdpZWW8f86pLN39BxRFx7GDHkyZ091ZLT2F1BGax3PbjBkc+fzzMeGqCM3lSYfjDdrJm2QodzhYtWsXNX4/t37+OaoQvHv22Rz//+ydd5hkVZn/P7dyjl3d1XFmmBkGZgZhBiQrOSNBkaRgAsE1oLvm3f2tGV3dXcU1YF5RokQHJCgiIEEFBhjiwISO1VVdOcf7+6P63qnqqu6uqq7uvgP1fZ5+uvvUrXO/J9xzz3vetO++S8ZhIvEMdv0K+kxHEsq80vD3Lty4kS2vvsp7b7+dpz/8YcxtTOeilDHdW3hs9fn48O9/z0tTU3y9gYwErSKZTDI5OYnX622bANQqWhmbD2zaRDKf5wN33olJq+Vd69cvGxcoH5qfd8stvO/AAxckdC+Uh1Iwk78gCHK+4lAohM/nw2Qy0dXVtWDt1l+Hv4lB4+Dgvtrc3e3sR41Gg8VikbWQolj2K5YE8VgsJvvmzgzcls/nyUdcuA3recF/E0cNfb4lDt868USenpjgnTffzKMf+EBLlmmLPbdeD4W4+Lbb2BEOc9v553OAToenQpiaOd4mkwmtVkupVJJ9riUfdOlnJiqF8NmE89nKZgruyWQSv99Pd3e3PLaCIGCxWDCZTAuarzsiD+BPPs95+9/S0PVSW51OJ/F4nGg0imP6gGW95zyenfwVw9FHWeFYXOu0AZsNp1q96O+GdDqNz+dDo9EgiiL2OkL+Ys/XvVLwfjNjpgDu9/vlz0qlEoODg1U+TY3CbTLx5eNOJ5g6ihu2fZxc6Zsc9YvHufiAd3DlIYcsOM9hrljksw88wPf/9je+fOyxfPaot3Lf658gV0xw5r4/Ra/puBu80bFvVxcqQajx5akXXKODufHzp5/mw1u2yH15/KpV3HHBBUtuFuxLPEOX4QC02SH86VsplnKoVY2tFf97+um85Uc/4jMPPMAPzzhjkZl2MBOJXI4vPfQQ333iCc5at47bLrig7QdgUoqWQCAgB7fx+Xzo9Xr6+/uXVfPdCj526KEkcjkuuvVW7tRqOW3t2mXhkS8WOf+WW+izWvn+6acvC4e9BSqViq6uLqxWK1NTU4yMjOB0OnE4HC3Nv9dD97Ez8iDn7Pd/S+4WJ5md6/V6WatWKpWqtOLJZLIqkFSPcCKvBH/CIX0fRa+p9ZmdD1q1mpvOO4+Df/IT/umee/jFWWcp6rn97XPP8ZG77+bQ/n6evfJKLKIop9uF8mFFKBSq+k4+n8fr9c7aDlEUq4Rw6adYLNb8n8/n6147E5UCeKFQQKzgWWmtsJD5WiileXL0uxzQfTF2w2BT/Si5sobDYaxWaznYo9bDaucpPO//7aIL3ksB6fDXYrGQSCRwu901liL1DkXajY7gvZdCEsC1Wi2BQABAPrlrRfCW4DbZ+ae3/oIHd36ZKw/5E7/amuebjz7Kpw4/nI8deij26WiIzWA4GuX8W25hZyTCA5dcwjErBnhgx7+QyI3zjn1/hknrnr+SDvZ6DNhs/OTMM2t8eZZL2723YjQWqxK6Af6yaxfRbHZJBW9RFJmIP81q/SXYtesoiTleGX2U9UPHN/R9h8HAr889lxN+/WvOWLt2STX1b3ZsefVVPnrPPYiiyG0XXMBZ69a1rW5RLEd5TSQSpFKpuoFtstksu3fvlrV5er1eUZv5ufD5o48mkcvxzptv5g/veQ/Hrly55Bw++8ADvDQ1xVMf/jCGRcxZ/UaCXq+nr6+PeDxOMBgkHo/LKYMaRTIX4K8j32Rz72V0mfZfRLaNQ4pqXSloDg8Py77L3drDeT17Ha8G7+KAnve0dI8ei4Vbzz+ft//qVxza16eIOAfxbJaP/eEPXP/883ztuOP4zFFHoRIExsbGZDdMQBaQKyEFTJvNDVMQBDlQWiuYKbhXCuzpdFq2UigUCuzevRubzYbFYqkKrNbKfH3W92tEihzk/VBLvCVT6UgkIqc4O6D7Pdz28sUEU6/iNu297+hYLEYgEMDpdCKKImq1usYkXBRFpqam5MMa83SgynZjr1yxDS0If4uB5eYhimKN30o7JotK0HDCqq9g1bn50OYbyBbez9WPPsW3H3uMjx96KFcdfjhdszz8M/vk7ldf5dI77mBjdzdbr7iCHouJB3d+kanUy7xj359h0bXXj3AuLsuFDo89+NDmzZy8ejWvTk2xb1fXovvyzAcl9Emz2B4MVgndsCf9xlIeYkSzu8iVYjg0+6EVLJhVg/hTz7GexgRvgGNXruTTRxzBB++6i+c/8hG622BmppQxVSKPsViMq+69l9tffplPHnYYXz7uuAVbM8Eev7hEIkEymaRUKslmkmazmWw2W5V9o6enR04BJcUtkYTwys3nYmGhY/PV444jkcvxjhtu4I+XXMJh076kS8Hlhuef5/t/+xv3vfe9DLVx/VTKfG0VjfAXBAGbzSabn09MTGCxWHC73fO65omiyCPDX8WqH+Ag7wcWxGMxIQgC3d3d8vOmEjSsc72LFwI3saH7QlRCa8LkYQMD/O9pp/HRe+7hQK+XIwcb16i2u0/+MT7ORbfeSrFU4tEPfEB+/iSfeFeFFZ2UJs9qtWI0GlGpVLI/92JhNsG93p5dEARSqRSRSKTuOtjofI1nJ3h28v84euiL6NSNv0crx0YQBFwuF4FAAJvNhlarxW1aR6/lYLb5r+eYlV9qui+awWI8O1Kfh0Ihurq6sFgsDA8P43K5at4zwWBQPqTJ5/Mkk8lF0Xovrrf8IkAQhKow729mHlJUxkrMTH3QKgRB4LCBT3JI30fRqX/B3Rf38Z2TT+b6bdtY+d3v8pn778eXSNR8R+qTQqnEF//0J8668UY+vHkzf7r0UrwWM48Mf43x+N84fe0PsBuGFsxzLv7LPT4dHvUxaLdzwurVyy50K6lPmsFatxvVDM7LYbI/HPobOsGJQSingHNo9iclvN50PV857jj6rFYuu+uuWVMdNQqljKlSeIzF4zwyMsJwNMr3n3yS/X/wA3ZHo/z98sv5r1NOWZDQLQnbgUCA3bt3MzExQaFQwO12s3LlSnp7e7FarahUKvR6PWazme7ubsxmMyaTCbvdTn9/PytWrMBut5NOpxkdHWVkZIRQKFSVp7WdaMfYCILA/5xyChds2MCpv/0tz/p8S8Ll+clJLvv97/nGCSdwQhujTCtlvraKZvmr1Wo8Hg/9/f3kcjmGh4eJRCJzrj+vBG9nPP53jl3xFVTC7On5lNCPer1ezj2s1WrZ2HMeybyfkeijC6r38oMP5n0HHsh5N99cs/+bDe3sk5Io8u2//pUjf/5zDu3vZ+uVV1YdesXj8ao81ZI5tyAIeDwe2edfv0yZGurt2UulEn19fQwNDWGz2arWwWAwSDabRaVSVc3XkZERotFo1Xx9cuy7uI1rWetq3PWk3thIQn+lef7G7ot5LXwvqfzUAlrfPJeFQhr/UChET0+PrNFXqVQ12u5UKkU0Gq0qC4VCC96T1MNep/GWIv8tlgnA3sRDrVbT398vn/JJCe3beZJ3YM+lGDQOHtn9NTb1XsbLH/0oN73wAl9/5BH+9+9/5/LNm/nMkUcyaLczEo3y/NgY3XY7n37gAZ6bnJSDPYmiyOOj32Fn+I+cvvZHuIyL6xunhPHp8FA2F6XwaBZKMNlPpVLsDj6Jx3gAZrMZlUqFPbcfr6V/iSiWmoqAqtdo+M2553LwT37Cz55+mssPPrhlXkoZUyXwmBkHQK9W8+2TTuKfFhA8TRRFstksiUSCRCJBsVjEYDDIWTZme/eoVCp6enpIJpP09PRU9YlGo8HhcOBwOMjlciSTSeLxOOFwGJ1OJ2uAFhoQq7IN7RgbYfq5S+bznHTddTz8gQ+wX1fXonGJZDKce9NNnLZmDZ85cv4UQYvFQ4lolb/BYGBgYIBYLCanm+rq6sJoNFZdF8uO8cTo//DWvo/hNM4eHVwp/ahSqfB6vfj9ftLpNCZdF6udp7AtcAMrHMcsqO7vn346z/7yl7z7llt48NJL0c6z32xXn/gSCS69/XYeGxnhZ2edxSVveUtNfYlEoirdbjKZpFAoyMHCEomEYvfsko+10+kkn8/La2wkEkGr1crrYOV8jcVieDweQvlt7Iz8ibPX/aqpd2+9sREEAbfbzfj4OA6HA71ez5D9bVh0PbwU+B0H9125KH3T7mdHFEX8fj/JZJK+vj6MRqOcHaqrq6vqHtlsFl+dw9P5XBJaxV4neHdQDb1ej06nQxRF+YSz3VjnPguD2s6fdn6BTCHMew74DBdt3MhtL73E1x55hB//4x8cPjDAX0dG5E3eKoeDZ664Qk4/8dTEj3l56nZOXXMN3eaNbefYQQdvJkgm+9vGx9nY17ek1gPJZBKfz0dMfIUDXZfg9XhJJpMMlN7KixPXEEq/jtvU3MHahu5u/vOkk/jkffdx7MqVrHV34j4sBPXiABRKJc7df/+mhW4pkrK0ESwUCuj1ehwOBxaLpaHsGY1Cp9Oh0+lwOp2ygC9tMg0GAxaLBbPZ3NZ7LgRqlYpfn3MO591yCyf8+tc88oEPsE9FNOV2oSSKXHL77WjVan559tl7pXCsVAiCgN1ux2w2EwwGGR8fx2q14nK5yvmexSJ/2f0fdJn2Z2P3RctNtykYjUaSySTJZJIN3Rdyx8vvJZR+DZdxTct1GjQabj3/fA7+yU/4l/vv55rTTmsj4/r4w/btvO+OOxiy23nmiivqvh+y2Sy5XI6enh5gj7YTqEoXtdxoZM+u1WplIVw6jEwkEoTDYVkI93q9xGIxRkaHeTr9TdY6z2jb3tpoNGI2m5mamqKvrw+VoGaD5yKe8f2MA70fWPKggs2iVCrh8/nI5XL09/fLFg6RSAS1Wo3VuifIYD6fZ2JiApPJhMPhoFgsLpoiU8JeZ2rewfJgheMYTlvzv7wWuocHd/0rUOTdGzaw9YoruPbMM3lkeLhqkzccjcobvOcmf81W3y85cZ9v0Wc9ZJla0EEHbywM2Gy8bXBwSTXdktBtsBZJFXz0WvakMer37ItB5WFn4LGW6v7YoYdy9NAQ7739dvIzguF00BzmigPQKHK5HKFQiJGREUZHR0mlUthsNoaGhhgYGMDhcCyqAKzX63G73QwNDcmbp3A4zO7duxkfHycWi9UETVoOSFGfN3g8nPjrXzMWi7X9Hl97+GH+smsXty9D5oK9AVIk4mQy2XIdGo2Gnp4e+vr6yGQysjnv85PXE0y9yjErvrTouYzbDZVKhcViIRKJ4DHtT4/5QF4I3LTgegftdm467zx++Pe/c92zz7aBaX1kCwX++b77OOP663nfgQfy2Ic+NOuhbCKRkIVa6f9CoSC7u+ytkA4iBwcHGRwcxGKxkEwmGR8fJ5fLERQeJVnw4S2dTSwWa5tptMvlIpPJkEqlgLICriTmeT10b1vqXywUi0XGx8fJ5/NVQnexWCQajeJ0OuXDjmKxyMTEBFqtlu7ubgwGAyaTSXbVWCyXhL13Nnaw5Oi1bubMtT9lIv4U971+FfliCkEQWDmt1a6EtMl7aeo2/jb2fY5b9TWG7G9betIddNBBWyAJ3U6nk7RmJ1qVGadxtfy5Wq2m23Qg47GnavzYGoFKEPjl2WfzWijE1x95pJ3U33RoNQ5APp8nHA4zMjLCyMgIiUQCi8Uib/qcTmfbTL4bhSAIGAwGurq6WLFiBX19fWi1WoLBILt27WJiYoJ4PL6seagNGg23X3AB/TYbJ153Hf4FCIAz8Yft2/nyX/7Cr845p2lT9jcDRFEkEAjIGs5W1p5KGI1Gea7v9m/lH+M/4OCej2PV97WJ8dJAOozQ6XRyqrGN3RexPXg3mUJ0/grmwXGrVvGfJ53Eh7ds4ZmJiTYwrsYrU1Mc8fOfc/3zz/OH97yHb598MrpZtI+iKMprlfS/5KOsJG33QqHT6XC5XPJ6rDUUeTn2f6zUvwuDuhwUbXR0lGw225Z72Ww2gsEgoiiiVZtY5z6Hbf7rF8XvuR0oFAqMjY0hiiL9/f1V76qZ2m5JKy4IAl6vd0kPZ/Y6wVsQhEUzqd4beSw1F7dpX85a9wviuTHu3n4lmUJ41k2eSfs0fx2+mrcN/RurnScvOrdKKGV8OjyUy0UpPFrFUvKvFLpdLheTyWfxWg5CJaireAw630q0+EpN3tRG0We1cu2ZZ/K1hx/m8ZGRpr+vlDFdbh4DNhsnVwTfmisOQKFQIBKJMDo6yvDwMPF4HJPJxMDAAENDQ7hcrgWlqJTQjj4RBAGj0YjH45EDuKnVaqampti1axc+n49EIjGnEL5YY2PW6dhy0UWYtVpOvu46wtPRlOfCfFxeD4W4+Lbb+MyRR/LO/RcvfdVyz9eFQIqiD3vSM0nB/oLBIIlEglwu15SwIAgCNruZ1wrX0qU/CGNyU1Uu+rm+t1z9KOXzjsfjTE1NyYcRsVgMg8FANBplpeNYDBoHr0zd0ZZ7furwwzl73TreefPNhGaZ7832iSiK/PKZZ9j8k5/QY7Hw7JVXcsqauU3jM5kMhUJBFrzj8TiFQgGj0SgLX0qa4+3gotPpeD1zM0adi8NXXY7NZkOj0ZDL5RgdHWVsbGxeAXw+Hk6nk0KhQGzaimeD50LCmR2Mx//WMu9WucwHqd1qtZq+vr4qa6xCoUA0GpUjmUv+3/l8Xn6HtItHI9jrBG9AEQ8OKIcHLC0Xm36Ad+z7C0pigbte+RAOQ5KfnHkm6mkOakHgx2cO8NzkNzls4FOs6zp7ybhVQinj0+FRC6VwUQqPVrEcQjeAL/EMPZaDanh4LZvIlKbwR3e0fOp+3vr1XHLggVxy++3EW6hDKWO6nDxi2SyPjY7ynyeeyIOXXsquT36SD23e4xYgmd2NjY2xe/duotGoHGhqcHAQt9u9KGZ27ewTaYPU3d3NihUr6O4uR9f3+/3s3r0bv98/ax7xxRobu8HAfe99L0VR5LTf/rah+Tsbl1Q+z7tuvplD+vr42vGNp+hrFUp5bppBpWZTghSsT6PRkMlkCAQCjIyMsHPnTkZHRwkEAkSjUTKZzJwHNM9M/IJEzsdJ+36Vvr4+0uk0w8PD85rzLmY/iqJIoVCQIzAHAgHGx8fZtWsXO3fuZGxsjGAwSCqVktuWz+cxGo3lA6miwHrPebwQuImSuDDLACi39ednnYVFp+Pi6fRes13XCKKZDBffdhtXbNnC1447jrsvvpieBtI5xeNxjEYjGo2mak44ZlhjKmmOL5RLKP0aLwV+xxED/4zJaMHlcsluQGazmUwmw+joKLt37yYcDsu5w5vhodFocDqdhMNhSqUSVn0vKx3H87z/+gVxnw2t9kkmk2FsbAyDwVAjSANVqdqkXN3pdLpGQF8oj0ax1wneUuS75TZ1UAqP5eJi0ro5c99rMWm7uOuVD/HO/R289NGLue1dG3nsgwcgCD9hc+9lHNB98ZJxqoRSxqfDQ7lclMKjVSwF/0QiUSN0ZwtxQunteC2bang4DavQq+2kVTuYmppqmdv3Tj2Vkijyqfvua+p7ShnT5ebxs6efxqjR8KGNGxkqlXCq1RSLRWKxmLxRD4fD6PV6+vv7GRoaoqurC71ev2ibjsXsE8mX1ev1snLlSrq6umT/vV27dhEIBEin0zKHHTt2LMgfeC64TSYeuOQSguk0Z914I+lZNrwwe5+IosgVW7YQzmS44V3vQrPIZpDLPV9bRb30TMViEYvFIqdfWrlyJUNDQ/T09GAymeTIxmNjY+zcuZPdu3fj8/kIhUIkk0ny+Tz+5As84/s5Rw19HpPWI1uA2O12pqamGB8fr3uw2K5+lAIaJpNJwuEwk5OTjI6OsmvXLlmbH41G5UCHLpeL3t5e+vv78Xg8NZr5RCKBRqMhGo2yX9e5ZAoRdkf+siCOEsw6HbdfcAFPjI7yHw89VLctjfTJ4yMjHHTttTw9McETl13Gp444osaSsh5KpRLJZFI2IY7FYpRKJbRabVV0eiXN8YVykbIEDdgOr3LhFAQBvV4vr4MWi4VCoUA4HGZ4eJjR0VEikYj8zDTCwz4duFXKP35A93sYiT1KJLOrJe5ztamVPkmlUoyPj2M2m+np6akxGZc09pJvdyQSIR6P4/V661pyLcU8UUZo0A72SujUVk5d830e3PlF7nj5UgpiBhCZ8kO/9XA2eS9fbooddNBBi0gkEkxOTuJyuar85PzJ51AJGjym9TXfEQQVXstBpNQ7yGQOI5lMyuZ/zcCm13Pduefy9l/9ijP33Zdz9ttvQW15MyFfLPLdJ57gA+vXE54q512VUqVIAqrT6cRgMChKA9QuqFQqrFYrVquVYrEoRwQeHx+vus7n82E2m/F6vW3n4LVY+NOll/K2X/6Sd918M3dceOGs/qn18IO//51bXniBRz/4QbpMprbze6OgkZSqUi5rrVaL2WyWy0ulkhwJO5vNkkqlykJJKcs/El/Eqz8Se3EzsVhMjrbvcrmwWq1MTU0xOjqK3W7H5XK17B9aKpXI5XLk8/ma3zO56/V6jEajbCpbLBYpFAokk0mKxeKc2vt8Po/L5SISieB0rmCN61S2BW5klfOElnjPxBqXi9++852cdeONHNLX19R6XSyV+Oajj/IfDz3EpQceyDWnnYalCdcWyarFbDZTKpUIh8NAWdv9RlzfAHZF/sxE/GnOW3/zrNeo1Wp6enpwOp34/X75oCgajRIMBjEYDGi1WhKJBN3d3bO+p1UqFS6Xi6mpKWw2G93mA/CYNrDNfwNHD31hUdrXKOLxOH6/H4fDIZuRz0SltlvKkNHT01OTMnApsddpvDtQFjQqPUcM/DMFMQ3sOSEaj/+NZN6/fMQ66KCDljGb0A1lM3OPaf2sKUV6LAfhTz2Lw+EgGAy2HPTqqKEhvnD00Vx2111MxOMt1fFmxM0vvEAoneaitdUp3dRqNStXrsTj8cgb+Dc61Go1NpuNvr4+VqxYUSMg5XK5Rbv3kN3OHy+5hGd8Pi6+9VYKDT4Hfx0e5lP33ccPTj+dQ/r2roBey4HKCMTNRCJWqVQYjUbsdjvd3d0MDAywatUqAtq7KQlpDvZcRT6fJxQKydrx4eFhObWd0+kkkUiwe/duEomErCmbGV1dMg9Pp9NEo1FZY15pHj41NUUqlaJYLKLVajGZTPIhgiRcx2IxWVuXyWQQRVEOgCVp91esWME+++xDb29vVT9YLBZZc5lIJNjguQhf4mmCqVfaNg5n7Lsv/+/tb+fS22/n5ekDv/kwFotx4nXX8Z+PPcZv3vlOfnH22U0J3bAnN7dKpSIajcrvm1YOfPcGFEoZnhj7bzZ2X4TDsHLe63U6Hf39/XR3d1MoFBBFEbfbjU6nIx6Py6bXc2l4rVYrWq2WUCiEIAgc0P0etoe2tCVIX6uIRCL4/X7cbjdut7vu+6xS251OpwkEAnR1dS373OgI3h0sGPHceE2ZSIlYtvngSB100MHyYi6hG8CX3CqbmdeD17KJSGYHRmtZMxONtv5y/o9jjmGV08kH77pLESaCSocoinzn8cf50KZNrB0YqPqsp6fnTSFszwaNRlOj3fZ4PIt6z7VuNw9ccgkP7drFB++8sybF20xMxOOcd8stfPCgg6p88jtYGvgST/Ni8EbevvL/0du9it7eXlauXCkH8rPZbAiCIOdULhaLiKLI5OQku3fvlgOaBQIB2TxcMmcfHx+vMmeHPb6klZrvYrEomwzXE6pXrFhBf38/PT09dHV14XA4sFgssqAuxT6Q5rbk310oFLDZbEQiEVzGNfRaDmZb4Ma29t+/H3MMx6xcybk33TRvfIO7XnmFt/z4x2QKBbZecQUXbmw+B7Vk0WKxWGQXAikv+96cQmwuPDd5HcVSls29lzX8HUEQsFqtDA4OyvnqK10lisUiPp9v1nesIAi43W7i8TjZbJZVzuPRq+28PHX7gtvTLKTsBcFgkO7u7ho//kpI2m6NRoPP58PhcMgHUMuJpmZmMpnkkEMOYcuWLXLZn//8Z973vvfxnve8p8aUazEgCAJms3nZNxBK4aEELjb9EMKMqSSgwqYfXBY+sPx90uGhfC5K4dEqFoP/fEJ3sZQjkHyhSvCeyaPLuB9qQU8g9Twul4twONxyih+tWs1vzj2Xv+zaxQ///vd5r1fKmC4Xjz/t3Mlzk5N86ogjZH9tk8mE2WxetJykjUIJY6PX6zGbzbLGox3R2ufDxu5u7nvve7nzlVf42D33VG1uK/skXyxy/u9+x5DdzjWnnbbovCqhhLFZCNrBP1dM8tDuL7Ff17kM2Y+u+kytVmMymXA4HHR3dzM4OMg+++zDwMAAHo8Hq9VKqVSSta2lUolEIkE2m5XHW6VSySbjZrNZrqtSqF65ciUDAwN4vd5ZhepGodfr6erqkk3wp6amsFqt5PN50uk0G7ov5PXQvaTz4Zb7bCZUgsB1555Lvljk/XfeiSiKNWOTzuf52D33cO5NN/GRQw7h4fe/n1UtpvxKJpOoVCpMJhPRaBRBECiVStjqZG9Q0hxvlUsi52Or75e8te9j6NTWpu+rVqvlg5yZMQokX+nZIvebTCaMRiPBYBCVoGWD5wJeDNxESZw9hkUzaKRPpEOtaDRKb2+v7NdfD5K222azyW5FrnnSaTbKY6Foysf7W9/6Fueff35V2Y9//GNuuOEGXnzxRX7+85/z7//+73W/m81mqwZaCk8vimLNi2i2KKRSealUkk+zGrm+sky6Z6Plc9VdyaNZLu0qrzwxncmllTa1Um7WdnP00Bd5dPgbiJQQUHH00Bcxa7vla5ZjnOY6vVvKcSqVSrLPWbvmXivlrT43s5UvZJzazaXV8maeG6l8oZpXpa6FiURCNt2y2+11ufiTL1AU83Sb3iJvqmauhSpBQ7d5IxOJZxjse5vsU9bd3d3SGO3rdvOdk0/mX+6/n+NWrmR/j0exa2El2rH+NPuMfeexx3j3+vWssNtlbZzNZsNsNtedu2+2tVAQBHp6esjn8ySTSVKpFFarddHXws29vWy56CJO/e1vMWm1fPukk+RrpPn6L/ffzytTU/zj8svRqdVNrwULLX+zr4VPjP43AgKH9l0lr20Sl9nqkHy/zWZzTUAmaa7pdDrUanXNRr4el8o1tRHu87XJbDYTiURkX95sNiuXDXnfjlHr5qWpW9nce1nb5pFdr+f2Cy7g8J//nG/99a+854ADeDUYZF+3m1g2y0W33kowneaB976X4/fZp+F1qd54xOPxKm23VquVDylmXgt71p/l2m8sdC3829g1OI2rWes6c0HrQ2V+60pks1mGh4fxeDxV8RCketxuN6OjoySTSda5z+Fp30/YEfojq12nzst9ofvCUqmE3+8nk8nQ29uLwWCYsw/C4bAcUFCv18sWII3IJIu9FjYseD/wwAOsX7+eTCZTVS6KIiqVihUrVjA6Ojrr96+++mq+/OUv15Qnk0l58mk0GgwGA9lstkpDIi1uUq6+dDqN0WiUgwOk0+kqP0LpwZsZtVTKzTazXNqUpFKpqnLpga5ss3S6ls/niUQisq+cWq3GaDTKwTEkNNKmyhMmvV7fdJsAgsFgld9eK20qFApVL8Fm2jRgOIl37nsI4dQu7PpBDOoumWsrbVroOEkPlU6nq+K+1OMkiiLpdBq3241KpWrL3GtlnKRTbqPRiF6vb9vca2Wc0um0zEXSJCxk7rU6Tmq1uua5aaRNC42GrMS1MJ1OE4vFcLlc2Gy2muulsRsJ/w2Hbh8KWRWlfHrWtdBr2cRo9AlSqRRms5lwOIzRaMRms7U0dpfstx93vvQS77n1Vv76wQ9i0usVuxZCeWOTz+dRqVRV47GYz9i2QID7Xn+dxz/wAZLJJOl0Wv7ucj1jSl4L9Xo90WgUq9W6JGvhJrebG88+m/Nuvx2bXs8XjzpKXgvv3LmTH/7979x/ySX0TgtxSzlOb/a1cCT2V14J3skJA98jn4E8yabmI9RuyqX/tVotuVxuWfaFoVBINjU3Go1MTU3h8XiYnJwkHkuwxnYOL/pv4SDv+ygVhbY9Y6vMZn548sl84O67+eKf/oQICIBapeLkVau4613von9ay93qMyaNgWRVJQgCuVxOPgSZOU6iKJLJZOjq6tor10J/6lleD9/HGat/Riq1J2d6q+PkdrtJpVLyWqjVahHFcpyCyclJVCqVHDfBYrGQy+UolUqy9URfXx/7ut7Bs77f0KM7uql1oxKN7AtLpRKRSIRisUh/fz9AVf0zx0nK4KFWq9FoNNjt9qr7LvdaKIgNiun/+q//SjKZ5MUXX8RoNHL77bejUqm48MILuf7663nppZe47bbbmtJ4Dw4OEolEqsxC5ju5kSaGZAqwVBq6meVSCoNKk4Tl0NxJZVKAiUouzbZpoeXSBKyXfH6px6ldXBZaLs1Xi8XSdFvbyWUhz81s5a2O02JwaaUcaOq5kcpjsRgOh4NoNFrXpG0+KG0tjMfjBAIB3G637C8129jd9/pVWHR9HDX4Obm83lo4Fn+Ce1+7ivcd+Bc0KgOTk5MUCgX5pdkIx5nlk4kEb/nxj/nQpk1cfeKJnbVwRvn777iD4ViMBy+9FCjns5b8Rd1ud10tx5t5LdRoNIyPjzMwMFDX5HyxxumuV17hvFtu4ZsnnMC716/nzhdf5LMPPshXjjuOzxx1VGctXOK1MFuM8rsXz2eN6zQO6/9k3XbOVweUA/VlMhni8ThWqxW9Xi+7eyznvtBkMjE2NobRaCSdTmMwGMjlcuj1eqwOHTe8cDpvH/p/7OM8ua1cRmMxVnz3u1ReJQC7rrqKwWk/24U8Y5FIhFgsRl9fHyMjIxgMBlkwqzcHKtefelDyWlgSi9z5yiU4jWs4dsVX2sYln88TDAbl94MgCBSLRUKhELFYDI1GI1tOSenZdDqdfIBT0oW55cV3cuban+G1HFSX+2xtmslltme4UCjI/ue9vb3yAcFcbZUCHEpZD2bm9Z6rb2Dx18KGNd5f//rXAfjVr35FV1cX73vf+7juuuv48Ic/zGWXXUY+n+db3/rWrN+XFqGZkDq4XmPqXVv5nZmdMtv1Cymf69qZPBabS6N85rt+qbgs5X2VxGVmeavzo91clvK5ma1cSVxEUWzquankvRAoaS1MJBI1Qvfs14tMJp9lreuMmjk9k0e3+S2ASCD1An3WQ3C73YyMjJBIJGb1y5qPu9dq5WdnncW5N93E6WvX8rYVK2a9/s22Fo7GYly/bRt3XHCBvKFIJpMYDAZSqRSpVApBKFsjqFQqVCpVU3+36x2npLXQYDBgMBiIxWKzBllbjPlx9n77cd2553LxrbfymQcekAUT53R6m85auLRr4V9HvoVeY+eQvn9qeO7VK5MsydRqdY2P6HKMqVQupYPy+/14PB78fj9Op7McZM21grWuM9gWuJHVrlPayuW1UIiZYo0I7IhEGJr3XTN3uXRgbLVaCYfDsvbS4/HUNRGe+f9yjsd8f9e7/tXgXUSzI5yy+pq2ctFqtXLEcuk6yQ/cZDLh9/vlyP/ZbJZ0Ok18OsNIIBDAbrfTbz6Sbf4b6LVuapnPbM9woVBgfHwctVpNX1+fLEDPVXculyORSCAIAr29vbLbQaNclmItbDqP9/vf/34AzjzzTACOP/54jj/++Gar6aCDDjroYBkRi8Xk9BqNRPoMpV8nV0zQM32yPRd0ajNu0zp8iWfosx6CVqvFbrcTDAbl1C+t4Kx16/jQpk1ccvvtPHvlldgNhpbqeaPhmiefZF+3m9OmU4jlcjlEsWzOKMFkMmEymSiVSnLeXymasvS39NlMNCq01/uschOVSCRkMz8lwGazEQgEcLlcdbUii4Wjh4YAqgSTK7ds4dQ1axhoQXPcQWt4PXQ/O8N/4uz9/m/W9IhvBJjNZrRaLZlMBovFQjKZRBAEYrEYGzwX8ruX3k0g+QIe84a23XOt241KEKoi+asFgTUNBLiaD1IEeL1eTzgcxmazUSwW5wy2tbciW4jxj/EfsMn7Qcy6xc3CUAmz2Ux/fz8+n4+pqSm8Xi9Op1O25pqcnCSZTOLhRLZGv8r24adxW1bK7h4LPZTLZrNMTEyg0+nwer0N7xkmJycB6O3tXZLgma2gacF7uSEIwrLnYFMSD1AOF6XwAOVw6fCohVK4KIVHq1gI/2aFbgBf8hksuj4sup6GeHjNB+FLPCP/73Q6icfj05qW1jdf/33KKWy69lo+ce+9/N855zTEZamxlDxi2SzXPvUU/3PKKaimNzupVKrKTFDSYMx1+i9BMvubKaDX+zufz5PJZOYV2qWfYrGI0WjEbDY3xGUxUDk2FouFYDBIIpFY0jQz24PBGm1gURR5LRRaFsFbKc9Nq2iFfyof4K8j32RT72V4TPsvG4/FwkwuLpcLn89Hf38/ExMT6PV6YrEYQ45V9FsPY1vgRo4zf7Vt9x+w2fjJmWdyxZYtFEURtSBw7ZlntmV+Swd4iURCtuqRUr3NBiWPzVx4euInaFVmNna/Z8l56HQ6BgYG5NR4PT09mM1mzGYzXV1dTE1N8ZaVp7Lrtd8ymr0Xo+pS2d/eYDBgNBrluELzCeKVXNLpNBMTE5jNZjkoayMIhULkcjmcTifGaQuiZrEU82SvE7xFUaRYLNaNEvlm5KEkLkrhoSQuHR7K5aIUHq2iVf6tCN0Ak4n6+btn4+G1bOKV4J2UxAIqQYNKpcLtdhMIBLDZbC0LXhadjt+cey5H/eIXnLl2Le/esEdLo5QxXUoeP33qKUxaLe854AC5LJVKoZ8OQCeZZjba35KQrFKpmh6jSqG9UkCPxWJycJupqSkymQw9PT3z1LY4mDk2VqtV9stbqjmzmNrAVqCU56ZVNMtfFEUe3v1VrPo+Nnk/sGw8FhMzuZhMJlnYdrvdTE1NyS4pG7ov5I87PsNh/Vdh0na1jcOHNm/m5NWreXVqin27umTf7oVAMjO3WCxEo1FcLhehUGhev1olj81sCKd38ELgZk7a59uLYpHRCA+VSoXX6yUcDuPz+XA6nTidTqxWq+xn/xbve3l85Dsctc9VqDGQyWRks/RQKIRKpZKFcKPRWGXaPpNLOp3G7/djt9txu90Nj1UikZAjmddLhdrOPlko9soM8zOjSS4XlMIDlMNFKTxAOVw6PGqhFC5K4dEqmuXfqtAtiiK+xDNyAJVKJJNJhoeHa6J69lgOIl9KEUxvl8ssFgs6nY5gMNgU75k4bGCAf3/727liyxbGplMQSVDKmC4Fj3yxyHeffJJPHHoo+mkhWYrkWygUZKE7GAzi8/kIhULE43E5Gu9swWVaRaXArtPpZO22x+Ohq6u8oZc0VYFAYNacsYuNyrGx2WxypPOlgqQNVEt+lW3UBrYKpTw3raIZ/q8E72A8/neOXfEVVEJ73R6U1I8zM724XC7i8bjsj67RaMqpxWxHY9F5eWnqtrZzGLDZOKynp21zO51OUywWyeVycsA4i8XS0CGhUsemHkRR5PHR79BnfStD9rcvGw/YM3d6enqIRCJMTk4iiuX0YrFYjCHzcWhUel4N3iXHOOjq6mJoaIgVK1bQ1dWFSqUiEokwMjLC7t27mZycJBaLkc+X84AXCgUmJibw+/24XK6mhO50Oi2bmHd1dS1YYF7sebLXabw76KCDDjpoHpLQ7fF4mo5AnMhNkMz78ZqrNd6SUCeKIqFQqCqokEnrxqYfYjLxjGzKKQgCXV1djI2NYbPZWjYHA/jXt7+dP7z2Gu+/807ue+97ZTPrNxNufuEFwuk0Vx5yiFwmCZCV0aIrtQmxWEwWeKUAOzN/NBoNGo2mbSf+Go0Gk8mE2WzG7XZTKBTkyLMzc8YuNbRaLWazmVgsJqdhWgpI2sBt4+Ns7Otrizawg/kRy47xxOh/89a+j+E07rPcdJYUkv9tJBLB4/EwOjo6nbIpxwbPBWz1/YqDet6PWqVM31goazZ1Oh3pdJqenh4mJydnzZaxN2N39C+Mx//Bu/a/adk19BKkg3Ofz8fo6Cher7c8n8IJ9ve8m23+G1jvOR+VsCdehkajwWq1yv730iFnOp0mFArJ2mW1Wk0ul8NisWC1Whtucy6Xw+fzyVr0pVzDW8VeqfHuoIMOOuigcUSj0ZaFbgBf4hn0ajsOw8qq8kQiIec3zefzNVpvr2UTvsTWqjKDwSD71i5E46pRqfjNO9/J4yMjXPPkky3Xs7dCFEW+/dhjXLZ5sxwRG8pm5vWClxWLRfr6+li5ciWrVq1iYGCA7u5uLBYLarWabDZLOBxmfHyc4eFhdu7cyfDwMBMTE0xNTRGNRkkmk3Lgtmah0WhkzZTRaGRwcBCr1YrP55PTzS0XpNz1S81hwGbjbYODnYBqSwRRLPGX3V+iy7Q/G7svWm46Sw5Jc5lIJABwOBwIgkAkEmFf9zsolNLsCP9xmVnOjlKpRCKRQBRFzGaznIPa8AYLslkoZXli9L/Z0H0BTuOq5aZTBZ1OR39/PxqNhrGxMSwWC6lUilWWM0jm/QxHH57z+1qtFpvNRk9PDytWrGBwcBCdTifnGk8kEsRmWLHNBklLrtfryefzTWnJlxN7pca71Yi47YZSeIByuCiFByiHS4dHLZTCRSk8WkUj/KPRqJx3sxWhG5DNzCtfaqIoMjU1VXXdTK2313IQfx/7vpyiQ4Lb7WZ4eJh4PN4yJ4A1LhffO/VUPnrPPZy4zz5smJFOZjmx2Dz+tHMn2/x+7rjwQrlMijhbD4VCgVKpJEcdny2Vk5TfNZ/PUygU5L9TqZRsFghlQbpSQ16pMa/X9mQySSAQAMqaE8nn32w2EwgEGBkZoaurS85tu5iYyU/yO4zFYgsK/NcOLssFpfBoFY3wf95/PcHUy7xz/xsRhMVpr5L6sR4Xyc82HA7T3d1NLBYjmUzS1dXFvu53sC1wA2tcp7X1GWxXn6RSKXl98ng8TExMzJoKcDF5tANzcdnm/y35UorN3g8vK4/ZoFar6e3tJRQKMTU1hU6nIxkpscZ5Ks/7r2el47iG6hEEAZ1OR3d3N8lkkqmpKbq6uhqygCoWi0xMTKDRlOPHSMHc2oHFnid7neCtFFMCpfAA5XBRCg9QDpcOj1oohYtSeLSKRvi3Q+gG8CW3ss59dlVZPB6nVCpVlUnCmqRx9Zo3kS6EiGVHsBuG5Os0Gg0Oh4NQKCQLYa3ig5s2sWX7dt5z223cdv75DEejrHW7l1WLuBRz69uPPca7N2xgZUVO3FwuJ5uRm0wmstksHo9HTgfWSMosaTNULxWLKIoUCoUqgVyKbJ7P52VNuFqtrhLINRoN4XCYUqlUczhjMBgYGBggEong9/tJJBJ0dXUtWsqxemMjCAI2m41IJILT6VwyrYlS1iDJDUHy+93b0Eg/htM7+Mf4Dzhy8LPY9ItjmqyU8YS5ubhcLsbGxmQBdnJykmAwyHrPBbwQuAl/8nl6LG9ZdB7NIhaLoVKpMJvNZLNZVCpVwxGo95axSeb8POP7BUcM/DN6zeKmR1tInwiCgNvtRqfTEQgEEEWRVbZzuC/0IaZSL9HVRKYAjUaD2WymWCw2lPFCFEV8Ph+iKOJyuRgfH6e3t7ct6/ZSzBPlHP80COm0q91BYfZWHkriohQeSuLS4aFcLkrh0Srm498uoTtTCBPJ7KwKrFYoFAgGg1gsFrxeLx6Ph+7ubtRqNaFQSOZk0w9g1Lir0opJkMwcw+Fwy9yg/KL8yZlnsiscZu33v8/xv/41K777XX7+9NMLqnchWOy59dzkJPe//jqfPuKIqvJUKoVKpUKr1ZLP57HZbHKQs3ra7WYh+YQbjUZsNhtutxuv18vg4CCrVq1i5cqV9Pf343a7Ze1DKpUiGAxWuSSMj48TjUblVGSCIOB0OhkcHKRUKjEyMkI0Gl2U/pttbKxWq2zKulRQwhpUKBQIhUJEIpFlMbdvB+brx5KY56Hd/48+66Gsc5+zbDyWEnNxMRgMmEwm+eBTp9ORSCSwagcYtB3FC4Ebl4RHM5AOh0qlEg6Hg2g0it1ub1jY2lvG5m/j38euH2LfGQfdS82jUVitVvr7+xEEgXzMitd8CM/7b2i6HrVajdVqnfdwWBRFJicnyefz9Pb2EovF2qrtXop5stcJ3lAdNGY5oRQeoBwuSuEByuHS4VELpXBRCo9WMRv/SCTC1NQU3d3dCxK6AXyJZ9GoDHSZ9gPKLya/349Wq6W7uxuTySRrHrxeL8lkUvbREgQBr+WguoK3SqXC5XIRjUarTJhbQbZYJJ7LybmRS6LIFVu2MNqgr9hiYDHn1ncee4zjVq7k4L6+qnLJx95oNJLP52XN0FJA0qobDAasVqscBbe/v79mM5XL5YhEIoyNjbFz505GRkYIBAJkMhncbjcul4tgMMj4+Ljs+9dO1OsTaePXqH/hYnJZSvj9fuLxOFBO9bbU7W8X5urHZ3y/JJ4d5+0r/m3RrRmWezwrMRcXl8tFKpWqSu03NTXFhu4L2RH+I8mcf0l4NAppjtpsNtmyp9l3m9LHZjLxHK+F/sCRg5+pClC21DyahV6vZ2BgAIAeTmRH6D5S+cCicAkGg6TTaXp7exFFkUQigcvlautzvdjzZK8UvDvooIMOOqiPSCRCMBiku7tbjiS6EPgSz9BtPkBOuyNpKru7u2tedgaDga6uLqampuTo2l7LJnzJrXXrtlgs6PX6BacX2x4MMvN8uiiKvBYKLaheJWI0FuOGbdv49JFHVpWXSiWy2axs/j+bufhSo1Qq1WhRRVFkYGCAlStX0tvbi8VioVgsEgqFGBsbIxQKyVr7kZERpqamatwaFgM2m41MJqOoDfpiQcpEIKVjgnIqnoUe1CkNgdRLPDPxM44a/DwmbeP+wG906PV6zGYzoVAInU6HwWAgkUjQYzgYm36AF6d+t9wUqyAdCDmdTqLRqBwU8o0CUSzx2Oi3We08Ga9l0/xfUBh0Ol350FR9EAaVh6dHrmu71jgSiRCNRunp6UGv1xMKhdqq7V4qdATvDjrooIM3CNotdMN0YDXzQUD5JDgYDNLV1TWrUGez2bDZbHKkaq/lIGLZEVL5qZprJT+xZDK5oDzKa93umnRiakFgzRIHyloKfO+JJ9jX7ea0NWuqyqX+0+v1pFKphn0fFxtqtZr+/n68Xi8OhwOv1ytrwdVqNSaTCafTidfrZeXKlaxYsYKenh7MZjM6nQ5BEIhGo+zcuZPR0VGCwaAcTb/dGzspQvLeqvVtFKIoEggEiEQieL1eXC4XZrMZk8m0V/p4z4ZCKctDu/4fq5wnsNp18nLTURxcLhfpdJpUKiUHKQsEptjYfSEvT91KoaSMA6hcLkc+n5cP6DKZDPY3WPq9V4O/J5LZwaH9Vy03lZZht9vR6fSsspzNa9G7mJgcaduBaTwel/c2UvySZDK55MEw24G9coVVyimXUniAcrgohQcoh0uHRy2UwkUpPFpFJf/FELrzxTRTqZd5a99HKZVKTE5OYjaba+qf2Y9dXV1ks1kmJyfx9q5BqzLjS2xlH+eJNfeQ0osFAgF6e3splUpz/hSLxbrlXzvsMP7tyScpTQtjnzniiGUNsLYYcyuayXDtU0/xvVNPrbE2kMzMTSYT4XBYFryVMMf1ej06nU6OPjuXWaCUQ1yKbCuKIplMhmAwSDabpVAoyP7farVajs5uMBjQ6/UNtXeua2w2G4FAAJfLtSR9t9TjUyqV8Pl8ZLNZ+vr6MBgMJJNJkskkVqt10YLaLTbq9eM/xn9IthDlqMHPLSuP5cJ8XHQ6HRaLhXA4LM+FTCZDv/14/lb6X14P38c691mLzmM+SBZRbrdb1nK2ErNCqWOTK8b5+/j/cmDPB7DoepaNx0IhpavL+I7kVeE37IjcR6lwGl6vt6EDvdm4pFIp/H4/brdb3nuEw2E5Qn+7sdjzZK8TvAVBUIRZgVJ4gHK4KIUHKIdLh0ctlMJFKTxaRSX/cDhMKBSip6enrZpOf+p5ALrNBxAKhSiVSnKUbAnFYpFUKoUgCKhUKlkQtlqtBINBJsYncer2Y2fgMcy5A2YVqAGGh4er2qdSqap+JC2plLKq8ueDZjNv6+1ldzzO/738Mre//DJfOu449MugwVusufWzp5/GotNx8QEHVJWLoigL3sViEYPBIAtQSpnjrfaJ9L2BgQE5JZlarcbpdAJlK4xUKiUH6dNoNFWCuF6vr4qaPx8PKcd8PB7HURExfjGw1GtQoVDA5/NRKpUYGBhAq9Xi8/nkuePz+TCbzXi93iXj1A7U68eJ+NNs81/Pyav/B4PGsWw8lguNcnG5XAwPD5NKpXC73YyNjREJJtnXfTYv+G9kX9c7FuQ/u9A+kd4v0oFdIpGgu7t7yXm0EzO5PD3xM9QqA2/pee+y8mgHzGYzZqODodIpTOTvYyWnMTo6Sk9Pz5z3mo1LNpvF5/Nht9vl9VjSdvf3tz87wVLMk71O8JYizmm12mVNlK4UHkriohQeSuLS4aFcLkrh0Sok/slkclGEboDJxFbcpnXks2Xfbq/XK0eXzWazZLNZMpkMoigSiUSqvisJxNlsFptqHf7sk3JU7JlCs0qlIplMEo/HZYGg2TGRtJ290SiHrVzJUTfcwNcfeYSvHNdYTtF2YjHmVr5Y5LtPPsknDjus5jAhn89TKpUwGo0kk0lZKFXSHG8HF7PZjMFgIBgMEggE5MjqKpUKURTlOZnNZonFYnLQPq1WKwvixWKRaDSKx+Op+7xIqcVisVhTUZNbwVKOTy6XY2JiArVaTV9fn6yBmhm8bjGC2S02ZvZjrpjkL7u/xDr32QzZj142HsuJRrlotVqsViuhUIj+/n50Oh35fJ4Bw6m8kL4BX+IZeq2bF53HbJAO1Lq6uojFYqjV6obyPLebRztRySWa3c02/w2csOqbaFSGZePRrj6R3Md6UiewI3sHonUYc24t4+PjdHV1zeoiUI9LPp9nYmICs9mM2+2Wr5W03QZD+/trKebJXunjrZQXg1J4gHK4KIUHKIdLh0ctlMJFKTxaQSqVYmRkZNGE7lKpxFjsKZza/fH5fKjVaiYnJ6siUJdKpSo/W7vdzqpVq9hnn33k9FJutxubal/i+Z043Ca6urpwuVw4HA5sNhsWiwWTyYTb7UatVhOLxVp64Wk0Gmw2W1lw0mr539NO4+pHH+VZn6+d3dIw2j23bnrhBcLpNFccfHDNZ1IKLKPRKOdCXSweC0E7uKjVarq7u+nt7SWVSjE8PEwymUQQBAwGA3a7ne7uboaGhli1ahV9fX3YbDZEUSQcDlflE5/NR9xms5HP5xcUd6BRLMX4ZDIZxsbG0Ol0VUI3UJOzVvL13dtQ2Y9Pjn0XgMMGPrWsPJYbjXJxOp3kcjlSqRQOh6MsfCQMDFqPbktqsVb7pFQqycK2TqdrOoVYu3gsBiQuT4z+N73Wzax0LP0BcSWPdsJgMOC2rsCrP5Jt/hvweDx4PB6mpqbknN/zcSkWi0xMTMjZU6QxXwrf7sWeJ00J3i+99BJXXnkl5513Hj/60Y/k8i996UtccMEFXHnllYyPj7edZAcddNBBB3vg8/nwVQiUC809XCgUZHPdyclJhoeHeX3HawSSz2PIrwLK+Tp7enoYGhqS8zV7vV66urqAskbC4XCgUqmqNkZ2u51e24GAionY1lk5qFQq3G430Wi05RefpL1JJpO8c7/9OGvdOj5w553ki8WW6lMKRFHk2489xuWbN+OsYwYXj8fLeVTzeYxG4xsqQNZsMJlMDA4OYrFY8Pl8TE5OUpwxziqVCqPRiMPhoKenR56rgGwtUg+Sj/kbIchaMplkfHxcNiGvNLsvlUrE43G0Wi02mw2TydSWfO/LieHoo7w8dTvHrPgSOnXzmtE3I6TxD4VCmM1mVCoVWq2WXs3J7Ir8mURuYll4hcNhRFHE4XCQTCZlF6Y3CoajjzIae4IjBj697Fr4dsPtdtOvOY3R+GOE0zux2Wz09fXJ69HMTBeVKJVKTExMlNORer1VfRMKhTCZTIui7QZI5iaZTD1NMje5KPVDk6bm+++/Pz/+8Y8plUpceumlfOQjHylXotGg0+nQarWz+kRJ5l8SpBeaKIpVpx+CINQ9DZHKK38auX5mmXTPRssb4dLo9YtRXsl9JpdW2rSQcun/drap0fLF4rLQ8pnj0q6512z5Qp6b2cpbHafF4NJKucSx0eem3vWtoB1r4cx0R5Kg2sh8zOfz5PN5mYeUExXKwXb0ej02m414cYpiLItDs59s/l0JURTRaDQYjUZMJhNGoxG1Wo0oijXcezz92P2r2eF/jEH7kTWbDOl66YUaDAblF26z81Gv15NIJEgkEvzvaaex4Yc/5DuPPcbnjz563jraVd7utfCB11/nBb+fOy+4QO5fqX4pXZfJZJI1AfXWnzfiWiiZNZrNZqamphgeHqarqwuz2Vx3IxuakV5uampqVrNVm83GxMQE+Xy+6iBjb1oLY7EYU1NTOJ1OHA5HzfWRSARBEOjv7yeVSsn9NnOOzdYmJayFlX2YyUd4ZPdXOaD7YryWTQ3Npc6+sFzucDiIx+Mkk0nsdjuxWAxLaR1W3RAv+G/m0P5PtMSl1fVHCqIIyIdrVqtVditppE0z1xslrYWFUo4nxv6b/T3n4TSsbqlNCy1fzH2hRqNhwLWZ17LreN7/W96+4t8wGo309/czOTlZ5fddyaNUKuH3+ykWi/T19VWNdyaTIZVK0dfXtyh980rwDh4d/gYiJYRRFUcPfZF17nPavhY2fSx+11138aMf/YhLLrlELvviF7+ISqXirrvu4mc/+xmf+MQnar539dVX8+Uvf7mmPJlMyhHkNBoNBoNBjlwqQcpHmslkKBQK8iZTCiCTTqerQtYbDAY0Gk3NabbJZEIQhJpys9mMKIqkUqmq8srUBRJUKhUmk6mKhyAIqNVqjEYj+Xy+SlvTSJsqT+n1en3TbQKquCykTZUvwWbbpNVq0Wg0sgnqQtq00HESBAGNRlM1Tq20aaHjJIoiuVyOUqkk+7G22qaFjFPlZ1KE4XbMvVbGKZ1Oy1ykdEILnXutjJNara55bhpp02xaskbRjrXQbrdX5b6WfHor2ymKIiqVikKhQDKZpFAoyD6vKpVKjjJtNpvlSNIWi0Vu50TkaUyqXly2st9foVCoOx8lXpIQP9vYea2b8MWfIxAIVAk7M8fOZDIRCoVIJBJYrdam18J8Po/BYCAcDuN2u/mfU07hii1bOGloiP0q/MT2prXwW48+yjvXraNLqyWZTNadj1JgOylKtTQHJF7L8Ywt5VrocDhIp9P4/X45Un7l8yTlBa9EsVgkn89TLBZr2iQdJAWDQdmNY29ZC7VaLX6/n0Qigc1mQ6fTUSwWUalU8jgVi0UikQgulwuVSrXXroWV+8LHJr6JVm3hkL6PdvaFNLcvFIRyUKlgMIjT6ZRdVvryp/Dy1PWss70HjcqwZGthIBCQvx+Px8lms3g8npbHSUlrYTI3yXOBX5HJh9ns/fAbdl+o1+sZ0J3Bi8H/5a19H0WvtpPNZuWDnfHxcTweDyaTSY4bE4vFyGazDAwMlPuqov5IJILJZEKtVleVt2OcUnk/jwx/A5jeP1Hi0eFv4FIfSJd9ZVvXQkFs8cjyjDPO4O67764qe+KJJ3jwwQf54he/WHN9vZPNwcFBIpEItoqUL0t1Ctho+XKfjM1X3mmTsrjPVt5pk7K4z1beSJtisRgOh4NoNFq1djWKdqyFxWKRyclJ+Rq3202xWKzSYktChmSRJL1Y9Xo9Go1mzvaXSiW2vPhxdGorJ6/7Ro2WoRGOM8t3Rx/mwZ2f523WX+Lt6a/ySZ95veRDPjg4WLcP5xu7QqHA8PAwXq8Xk8nE6ddfTzST4eH3vx/1tKmtkubdXG161ufjoGuv5R+XX87m3t6ato6OjpLP5zGbzZRKpboRqZXWJol7o+XN3DOfz+P3+8nlcnL6GUEoa8crN2CiKBIMBjEYDHWjJAuCQCQSIRKJMDQ0JPNT+looiiJTU1MkEgl6enqqfLgrrw8EAmSzWfr7++s+33vLWiiKIsncJC9P3c4zk7/g7HW/otu8QTHzcW96xorFomw1kslkyu+RYpq/hC7jsIGr2K/r3CVpU7FYZPfu3QB0d3eTSqVkDejePk6vBO/gkeGvAyIg8Lahf2Od++y9uk1zcQ+Fg9wz/F42dJ/H5r7L5HJp/QgGg9hsNgwGg+z/3dfXJ2vCJWQyGcbHxxkYGECn07WVuyiK/H38Gp7zX1dz3elrfky/7a1VbarX1mbWwqY03g899BC33XYb2WyW008/nUsuuYTrrruOb3zjG4yMjDA1NcU111xT97tSWo+ZkF6I9RpT71pRLEcu1ev1VS/C2a5faPls1wI1PBaby2zl9fpkrusXi4solvOt1uOxmPdVGpfK8plj046510r5Uj83s5UriUuzz41UPtea0AjasRbKp7TTabxGR0eBalNxSdCeKyflbPWHQiFC+Rc5rPuTsk/oQtdCr+UgimIOwRwkENhzEFDveinFjRRZulHulWMq+eiazWauPfNMNv7wh/zg73/nqsMPn7f9SloL/+vxxzl+1SoO7uur+51cLiebmc9M9TbXHG+Fy0LKl2ot1Ol09Pf3E41GCQaDJBIJPB4POp0Og8FQxUOj0TA2NobVaq0JMgbI0Z6lHNet8JmrTe1eC+vl6K53fS6XIx6P09vbWxURfm9cC18J3skjw19DEmRC6e10mzd09oUt7As1Gg0Oh4NwOExPTw9jY2N0dXXTGz+e5/3Xs1/XuU3P01bWwnA4LFss6vV6/H6/fKDY6jglsj6mEq/TZVmNRV8/Xd6Cnj2xSK4YJ1uIkyvGyBZjZAtxssVY+f9CnERukh2R+ypqEHl0+OsM2I6om7/7jbAvdDpcDPlP54XATRzofR9qlVb+3OFwoNfrmZiYkN1M1Gq1vG5V1h0OhzGbzXPGoGiFYyj9On8duRp/4gVAoLyOTH+OCrthqKF6mlkLmxK8jz32WI499lj5/49+9KMAdTXciwnpYVxuKIUHKIeLUniAcrh0eNRCKVyUwqNZxONxOeKyKIpYrdYaoatVpNNpxkMvkRdj9NsbSyPTSD8aNHachtUkhO30GPfB5/PR399f92BAo9HgcrkIhUJVJsPNcLHb7YyPj5PP5xmy2/nPk07in++7jzP33ZfVixgRdSaPhWAkGuWGbdu468IL634ej8eBsgCTTqfr+israY4vFRdpU2c2mwkEAoyOjsp+zpU8pCjogUCAwcHBqsBjUN4EWq1WYrHYogV1alefSDm6i8Vi3ZgMlQgGg3JshnbzWEokcpM8KmsPYT5BZimgpH5shYvdbicajZLNZjEajWQyGfZ1nssfJ7cwHv87/bZDF5VHPp8nFovJz2cikUCr1dY9GGsUL0/dwaPDXy/77qLi6KF/Zb+uc2quK4l5soVElbA88+9sMU6uEJsuT0wL2DHypWpTYwE1eo0NvdqGXm1Fp7FRKtUGDRUpEcuOvGHnq0qlYqP3PF7fcSPbp/7Aft1nVX1uNBpxu91MTU0BZWuHZDJZZRGXyWRIp9Oy+Xk7kC+mecb3U56b/A0DtsN594ZbGI//o2aeLMa4vPFDn3bQQQcdvMFgs9lQq9VMTU3NGUyqWUgm7FntLkzaLqy69r3ooKz1nkw+ywErL2FsbEzWZNTjLvmBhcPhqmjUjcJgMMgpaLq6uvjwwQdz0wsvcPnvf8+fLr20Lf212LjmySdZ53Zz6po1dT+Xgg9JWu+ZguObHVqtlt7eXuLxuKz9drlcJBIJ2c/P5XKRTCYJBoN1U2nZbDZGR0dlzZASUZmju7+/f86o9qlUilQq1dZN7HIhlh1GpFRVttyCzN4OtVota727urqYnJxkYGAd3aFDeWb81y0J3s0gFAqh1+vJZrM4nU4CgYAcGLAVSIczYoXv7iPDX2NH+IGyoD0tOOeKcfKlap9qlaCtEpz1ait6tQ2Trhuneh90atu0cF0uL/9f/lujMtZwTuQmuXHbmVVzVkCFTV/fpeqNApe9lwHjiTw3+VvWed5RY5UlvcckSNH1peuk/9u1/u6OPsxjI/9JSSxwwqqrWek4HkEQsOkHGLAezmR0Oz32tbNaRiwUHcG7gw466GAvg0ajwWQyYTabMZlMbUkfJYoigUCgHPiquJ0e80FtF069loN4bOTbqFTlNCGjo6NEIhE5OFwlBKEcsdrn88kBopqBIAhyEDopgNTP3vEODvjRj/jp00/z4Tr5sJWEaCbDtU89xTWnnVZ3HIrFIrlcDoPBQCqVoqenI2jUgyAIcqosv98vp+HT6/VYrVY0Gg0ej4eJiQksFgvGGenaJM1bNBqt6wu+3MhkMkxMTGAwGOjp6Znz8EXya7darYo9RGgGNv0QAqo3nSCz2LDb7UQiEfL5PNrpgI4bui/kz2OfIpTchcu8clHum81mSSQS2O12CoUCxWKRUqnUUvwACfUOZ0BEqzLiMh5QJVBX/q3XWFELhra+Ay26Ho4e+tcl0aoqCYIgcFDfpdz5+oWMhP/GkOsw+TMpK0clCoUCpVIJtVpNOp1um7Y7kZvgsZHvMBx9mA3dF3Jw75U1KQfNuh56TBbMusVLRbhXCt7NbsAWC0rhAcrhohQeoBwuHR61UAoXpfBoBZI5drtyNicSCZLJJAMDAzz+2rNs8FzU8Hcb7UevZRPZYoxwZgcu4xq6u7uZnJxEr9fXNSWU0pQFg0F6pwOLNcPFYrEQDAaJx+PY7XZWu1x8/fjj+fT993PamjUMzuI/3g4sdG799Omnseh0XLRxY93PpdztOp2OXC5XIzC2i0c7sZxcpMi3kouGFDlfCkBmtVoJBAIMDAzUCK92ux2/34/b7W7K7aERLKRPkskkk5OTWCyWhlxN4vE4+Xy+7rOkpHnSKJQoyCipH1vlolKpcDqdhMNh+ffKwSOwTa7kmdHrOH7ff2tKIG2URygUks3bpRgdNpttQZY8GlXte0VAxRGDn1mWebJf1zkMWA+XDzAWS6vaKJZqvnbb19CjP4ytE9cx6DxUnj+SlU6hUKBQKMgZVqR1th3a7pKYZ5v/Rp6auBanYR/O2e86ukz7zXr9YvfJXmeXJggCOp1u2c0ElcJDSVyUwkNJXDo8lMtFKTxaRTv55/N5AoEALpeLoipGLDtKr2VT23lYdL1YdF58ia3l/y0WHA4Hk5OTNamepLrdbnfD6TpmclGpVNhsNqLRqByR9BOHHcaG7m6uvPvuutFO24GFjk2uWOS7TzzBVYcdhn6WgxXJPE+KaF5vc6qkOa4ELjabDbMTwoVtaIwZBEFgZGSEiYkJTCYTpVKJcDhc8z2pfyWf+nZhIX0Si8Xw+Xw4HI6GhO5SqUQoFMLhcNQc1ilhbFrFfl3ncOHGLZyx9lou3Lilru/uUkFJ/bhQLjabDUEQqgJ5buy+iOHk/UTigbbzkHI022w22a1DSj3VKiKZ3fxp52ex6QYRpsUdJRzOWPRehlyHL7vQvdTz9aDeS5jMPoE/8lpVuRQM1W63VwnZ6XSaTCaDawExWSYTz3L7S+/lGd/POaz/k5y17pdzCt1L0Sd7neAtiiLpdHrRNkx7Gw8lcVEKDyVx6fBQLhel8GgV7eIviiKTk5MYDAYcDgcTiWfQqsw4jfX9ihfKo8d8EL7EM/L/LpcLvV6Pz+eryhMqQYrSHgwG571HPS52u518Pi9rOtUqFT8/6yz+uGMHv3nuuYY4N4uFjs1N27YRzWa54pBD6n4upYuTcpFWBqJpJ492QglcXotsYcuuC3km+RUe8L2fhOEf9Pf3IwiCnJ4vEolU5cmFPebqsVisrfxb6RNRFAmFQgQCATweDy6Xq6FNonRQIwWYWygPJcGs7cap2YBZu7yuAErqx4VykbTe0WgUi8VCNBplX88ZqFRato3fVnetXggPSbOZy+XQarWkUilMJtOcQQLnwlTqJX7/6odwGtbwrvU3cOGG33Pi0DVcuOH3y3o4A8qZJ0vNY9B5GHbtPmyd+E3dNIiVXKR1zmKxtKSBzhSiPLL7a9z16odwmfbl3etvZb3nPFTC3BZLS9Ene53gDVQlQl9OKIUHKIeLUniAcrh0eNRCKVyUwqNVtIN/OBwmn8/T3d1dFkASW+mxHDjvC6pVHl7LJiaTW+X/BUGgp6eHUqkk5/GcCZfLRbFYrAnC0ggXjUYjbxwlrPd4+I9jjuGqe+/FN22y3W60OjaiKPLtxx7j8s2bcdRJBwV7oplrtVpUKtWsZuYL4bEYWE4u9YIsPTr8dQqqKF6vl6GhIdndYWxsjFAoVMXXZrNVHeC0C830iRSHIRKJ4PV6G/Z9LRQKhMNhOdbBQnkoEUrhrxQesHAulb0K/WEAAHXNSURBVGbeuVyOfLbE/p53MZK9h2Bwqm08UqkU6XQap9NJIpGQ0yO2qu0ej/+DLa9ewYDtCE5e/R00KiNmXQ8ew4GYFeJPrZR5spQ8BEHgLd73Mpb5E6Gob04ukra7XvyXuSCKIq8Gf88tL76TicTTnL72hxy38quYtO6G61jsPtkrBe8OOuiggw4WjkwmQzgcxuPxyOanvsRWvOaDFu2eXstBJHI+ErkJuUytVuP1ekkmk3I+z0qo1WrZ17CVl6LdbieVSpHL7Unn8pkjj2SFw8HH7rmntYYsEh7YsYMXAwGuOuywup+LoigL3sViEYvFogjTVqVjrgjYUD7E8Hg8DAwMIAgC0WiU3bt3EwgEyOVyaDQazGZzQ4c/iwEpR3cymaSvr69u6rjZIOVFXqyUaB28MSEIAk6nk3g8jslkIhqNssHzblJFHzuDj5DNZhd8j0rNpiiK5PN5RFFEq9XOeaA4G3ZFHuLe1z7Ovu53cOyKL6MSWtOYd7A4WOs+Fa3ayDbf72a1mhBFkXA43LS2O5zewd3br+DR4W+wwXMR79r/RvqtixuFvxV0BO8OOuiggzchSqUSk5OTWK1W2VQ5V4wTSm/H26B/dytwGvZBr7ZVmZtD2aS8q6uLqampulpFu92OWq0mFAo1fU+9Xo9er68S6rVqNb88+2zufOUVfvfii803ZJHwncce4/wNG1hRxyQYyoclxWIRQRDIZrOzmpl3UA0pAnYl6kXAluahKIq4XC6y2azsBy5FkK8Xj2AxUSgUGB8fJ5fLMTAwgGEWS4h6yOVyxGIx3G5354Cmg6YhRf5XqVSkUim0ONjHeSITxftntVBqBqlUimw2W5XmT4ps3ux8fTX4e/6447Mc5P0gRwx8GkHoiDhKg1qlY73n3Qxn7iEcDta9plltd6GU5u9j/8utL12IWqXnvPU3s7n3MtQq5QQ6rMReOSuVkgZDKTxAOVyUwgOUw6XDoxZK4aIUHq1iIfynpsqmgpU5sicTzyMIajzmDYvGQxBU9FgOkgOsVcJms2Gz2ZicnKxJMSIFWovFYnNqWupxkVKLxWKxqlP2g7xePnfUUXz0nnsIplI131sIWhmbrT4fD+zYwaePPHLWa+LxOGq1Gq1Wi1qtnlcIU9IcX04uFl0PB/a8v6rsqMHP1Q2yZLVaMRgMsna5r68PQRAIBssbxampqbb5AM7XJ7lcjrGxMQD6+/ub9nkNBoMYjca6WQOa4aF0KIW/UnhAe7hIWu9kMolOpyMWi7HBcyH+7D+IpHfVtVBqlIek7bbZbGg0GhKJhDy/m7XOeG7yNzy8+yscOfhpNvdeXldof6ONTTuwHDzWe95NTgyzPfBA1Xter9fLc8JqtTak7R6OPsItL57Pq6Hfc/yqr3Pq6msWnE5wsftkrxO8BUFAq9Uu+8mtUngoiYtSeCiJS4eHcrkohUerWAj/RCJBPB6vyfvrSzyDx7QejaoZQbp5Hl5zfcEbygcBGo0Gn89XI9xIectnC7Q2FxeLxVI3MvW/v/3tuI1GPnXffQ3znw+tjs1/Pf44x69axeZZUqeVSiUSiQSlUolSqTSvmbmS5rgSuORKCTymjZyy+ruo0GHQ1I+WKwgCHo9HzitsNBplP3BJ67179+6WXR8q7zNXn2QyGcbGxtDpdPT19TWdOjCdTpNKpebVdithbBYCpfBXCo92c7FYLHKKp1gshtuwni7TegLCQwSDwZpD0kZ5JBIJ8vk8TqeTdDpNsVgkm802lUJMFEX+PvYD/jZ2Dceu/CrrPec3zWOpoRQuy8XDqHWy1nUGI7l7ZAs2iUsmkyGbzc6r7U7kJnlgx2e4//V/ZqX9GN69/lb2cZ604LYsRZ/sdYK3KIqkUilFRANUAg8lcVEKDyVx6fBQLhel8GgVrfIvFAoEAgGcTmeNttSX3IrXctCi8/BaNhHOvE6mUOsvKwgCXq+XQqEga+Ur4Xa7ZYGiGS5SZOrK1GIAeo2GX5x9Nr99/nnufvXVhtswF1rpk5FolBu3beMzc2i7pZRqoihSKBTmNTNX0hxfbi7FUp7XQ/exX9c5dGkPZpXzOLaHtsx6vVarxeVyVQkWWq1WzoFtMBhkP/CpqamWzM/n6pNkMsn4+Dhmsxmv19t0LmNRFJmamsJqtc6rwVnusVkolMJfKTzazUUQBFwuF+l0GkEQSCQSbPRcxO7EfQjqfN11ej4ekmbTbrej0WiIx+Po9Xry+XzDQQNLYpFHR67mef9vOWX1d1njOrVpHssBpXBZTh4buy8mUniJsfAzZLNZRFEkmUzK2u7ZLHtKYoHnJ3/L7148j2RuknP2+zVHDH4anbo9LldL0Sd7neANNJzGYLGhFB6gHC5K4QHK4dLhUQulcFEKj1bRLH8pdZhOp6s5US6WcgSS2+hpUvBuhUeXaX/Ugp7JxLN1P9doNPT09BCLxWpMGXU6HXa7fVat91xcZotMffjAAJ887DCu2LKF6IxUUq2i2T753pNPsl9XF6esXj3rNfF4XDYx12g0DZnEKWmOLyeXkdijFEoZVjlOpFQqscZ1BsPRR8kUavN2S7Db7Wi12ipfVik3fKFQYMWKFXg8HtLpNMPDw/h8vqZT0dTrk2ZzdNeDpE1sNAeukuZJK1AKf6XwgPZyMZvN6HQ6tFot0WiUVY4T0KiMRDRPkkwm6x6EzsUjHo9TKpVwOByUSiX5UNFsNjfkTlEs5Xhw5xfZEb6fM9b+iEH77AeWc/FYLiiFy3LxcBlX0289jPHifbLWez5t92TyeW5/+RKe9v2EQ/s/MZ2Te/+2c1vsPtkrBe8OOthrEAqg3r4NQoHlZtJBB0QiEbLZrJw6rBJTqZcoivlFjWguQa3S0m3eWBNgrRJGo1EOtjbTp9vpdDacXqwS9VKLSfjq8cdj0Gj47AMPNFVnOxDNZPjJU0/x6SOOmFXIKhQKpNNpeVPQiWbeHLYH72al41hZM9JvPRSDxsHroftn/Y5kcp5KpWTBAMoCeTabJZfLYbVaGRgYoK+vD1EUGR8fZ2xsjEQi0bTWpNUc3TNRKpWqtIkddLBQSFrvbDZLoVAgk86zv+c8Xo3citVqIRAINCywVM5PtVpNMplEFEWy2WxDKcTyxRT3vf5JfIlnOHPtT+mxHLjQ5nWwDDig+z1MZB4lnBgllUqRSCTqarszhSiPDH+du175AC7D6umc3O9uKuWpktARvDvoYLHwyL3w+fdh/MGX4PPvK//fgXLwJjsUyWazhEIhPB5PXY3CROIZXIbV6DWNmfktFF7LQfgq8nnXg81mw2w24/P5qnxp1Wo1LpeLcDg8p39hPdRLLQZg0mr52Vln8dOnn+bBnTubqnOh+MlTT2HV67nogANmvSYej6PRaCgUChSLxU5qqCaQKUQYjj3CWtcZcplK0LDGdRrbQ3fP+V29Xo/T6SQQCMhzUKfTyabmUBZKjEYjvb29DA4Ootfr8fv9DA8PE4lEGvIDbzVHdz1I7hTN5sDtoIO5YDKZ0Ov1aDQaotEo+3e9k0TOR0r7spwCqhHEYjFEUcQxnblBCqomPVdzIVOIcM/2jxDLjnLWul/gNq1daLOWHm+yvcdsGLAdgV0/iJ8H5YCqleMviiLbg3dzy4vvYiL+FKev+SHHrfoaJm3XHLUqH3uf4B0KYNz96vJPWKXwUBIXpfBYbC6iCPkcJOIQ9MP4btjxCrz8LGx9Ap78M/zhZvi/7yFMazwEUYRffw8evAuefbJ87c5XYHy4zDERh8Iipqh5s4xNo3iDHIo0mlZISh1msVhm9Qv2JZ5pycy81fHssRzEVOpFCqXZTbsljaNKpWJycrJKgyhFwp2ZXqyRKN8zU4tJOHblSq44+GAuu+sukjME82bR6NjkikW+9+STXHXYYejU9U/wpdzdkmm5tEltJ4+lwHJx2RF+AL3aTr/tsCoea11nEki9QCQz90GL0+lErVZX+bLa7XYSiUSNUK3T6fB4PKxYsQKbzUYkEpnTD9xgMCwoR/dMFItFwuEwTqezKb9wJc2TpqGEd4qSeCwSF0nrXSgUyGQyqEtW9nGezItTN9HV1UUkEqk50ITquVUqlarmZ6FQIJVKUSgU5k0hlsz5+f2rl1MoZThr3c+x6QcaJ6+UsVHS3mOZ+0QQVGzsvphdiXvkfUAgEMDn8xHJ7OTu7VfwyPDX2OC5oJyT27YEObmXoE+askF66aWX+N73vsfU1BQnnHACH/nIRwDYtm0bV199NQBf+MIX2LhxY/uZAjxyL8Kvv4daFEEQ4JKr4O2zB1NYNMzkcelV8LZl4KEkLkrhUY/LhVfC5qMgm4ZspvyTqfg7my7/ZDLV12TTda6b/j2bBkNvBIMBEIAZZoaiCHf8GoqFcj31oNaA3gAGI+gM5br0xj316qY/00+XN3Ld3/+CcN33lTk2lVwKBchnIZeDQq78W/q/8nde+iwHuWz176qyiusryzMZSMWRXu+CKMJ118CGg8HlWZ5+aQGCIDRsRir5Q3d1ddXd2Ihiicnks6xxndYciQU89z3mtyCKJQLJF+i1HjzrdSqVCq/Xy+joKKFQCLfbDexJLzYxMYHdbkev1zfUJ1JqsUAggMvlqhFOvnXSSdy9fTv/+uCDfPfU1p6TZsbmxm3biGazfPjg2fsgm82Sz+fRaDQIgtCwtrsZHouN5eSyPXQ3q12nohLK95d4uE1rcRn3ZXvwHt7a/9FZvy8IAt3d3YyNjWG1WjGZTJjNZjlKvqNOznW1Wo3T6cThcJBIJIhEIkSjUcxmMw6HA4PBQLFYJBKJyC4EAwMDTacLm4lQKIRGo2lKY66kedI0lLL3UAqPReZiNBoxGAzk83kikQgbPRdyxyuXkuufxGg0EggE5PR7UDu3IpGIHOgSykEEBUFAEIQ5g0VGM8Pc89o/YdZ2c8rq7zZnmVWvP44+pazsKBYgny//XShM/575M12ez0MxX3t9VR11vif9nU7Bzper9x7/91144s9gMoNWC5rpH61u+rcWNLo9n8nllZ9r5/lcB2p1ue1z9ckyzNe17tN5cvQaRrL3YNesRS+42RV+hF0Td9BrOYR37X8zdsPC0oM1jCXqE0FsIXRbqVTi0ksv5Te/+Q0Al19+Od/+9rcRBIHPfvazXHvttTXfyWazVX56sViMwcFBIpFI1QtCEIT6EWnDU4ifu1TWIFZCFARAANX07+mHWBTKf0s/gqDac738oyrPRUFVFpNUqhl1lD+T6y8WEQIT1fcH6O5DUGsquItlQWt6/ERx+n9JGBNBQCwXIU4X79GOVvXB9PcE+c/pekolhGR1ahwRwO5EUGtBJSAKqjJ/1Z4+EFUque0IAqhUCCrVdL9UfKZSIch1TPeXqvzwCipVmZFKVRZutj6BMJPHgYeXH/5ScU+bxBKUpN+l6fJSuU2lEojlMkQRsVSSyxDFcnmpVL5eqkMUEaQyUSwvgPFoFZd6ELW6GcKrHsFgRNRXCLV6A+gN0+XVZeiNFeXTn2l15T4TBMSgHz7/vur5qlIhXv2rsnBXKkEui5DLQjaNmKkQ/nMZhGxmT1k2DdnyddXlew4EpHKhAa25CAhmK+L0WO7prOk5L/8ryAu1wPSzIF08/XzIYy09g/KfwvSMlYoFhFIBcXK8Zp4IOgNiIYcwh3+YKAjl/tXqEHT68vhpdaDTN1mug4APYcv1tff49LcQ9iv7is1cg+S2iiKxWAyHw0E0Gm3JHHTBa+F0uRQF1Gw2yxuXetenUil8Ph+9vb0Yjcaa9gCE0q9x28sXctHGu7HovHXbX1N3KIDw+fdNr0dliCoVXP0rBHf3nNwl3P7ye1jpOI7NvZfPe73Uju7ubqxWq1zu8/kolUr09fUBZbNFqU/qtVX6e3h4GIfDUeNTKAgCf9i+nTOuv55HPvABjhwcnL0PZimXIqOaTKaag47K60VR5KBrr+WEVav4n1NPnXXeBQIBcrmcHP11aGgIrVY77zhJc2S2DW0zbVpoeSWXetfXG6d2cIlmdnPLS+/inftdj8u4b81z87z/N2zz38CFG34v7xFmq39qaopUKsXAwAAqlYpQKEQikWBoaGjeNomiSCaTIRqNkkql0Ol06HQ6EokEarUar9eLwWBYUFtzuRyjo6N4vd66ebtnqwcae25mli/7WlhnXygCgsmKqKrdBQjlXVdNWfl7jZfPLKNUQkglqopEALOtYm+1pwZ5fylt8Ge8P8WK96z8/qRirytLbsI0H+TrKBURJsequVSsy7DwZyyTyTA+Pg7A0NAQ9+z4MC7jWg7v/QwjIyN0dXXJh4OVa2GpVGJ4eBi3243NZkMQBEZGRigUCthsNjkQ4Mz7TqVe5r7XP0GXaX9OWPUtNKo9GvR5141QoGYvJsK8e8RKiJIAq9bIwqyg1laXT/8WtDpEjQbUFcKwWoOg1SKGgwhP/Km2/kPeDla7LKQL00K8mM/tEdzzOYRCHjFf/ntPeR6hOL+7lSgIskAuqNSIieiMvZiAcP5liKvWQXd/mU/FWtDo/Ghk3ZhZfvcrH2U8+YRcplWZedvQv7HKceKc78+2lJdKEAnC6y/BT79ZPU8aeG6k8mbWwqaPOO+66y5+9KMfcckll8hl0WhUPvGdmSNVwtVXX82Xv/zlmvJkMol62rxOo9FgMBjk4A0SdDodOv94XaGb8z9M1tNXFtLEEoig02lRCwKZdLpCSBXR63UI0y8/EBFK5c/0Oh2iKJLLZKaF5XK5QaejVCySz+fKgh4iav842r9U+4QJQH7/TWj7V1AslihI2lAB1GoNWq2WQj5PUSwhLboatRqNVks+n58OSDFdrtWiUavJ5XJVS7tWp0OtVpPNZOUFVuUbQXf/72q45N56LNrBVYjFErms1KayYGrQaikVChTyObmtgiii02imy/MI4rQADGjVakqFAsVCYVoIFlEJoFGpKObziMUiQiJWM5EEoJDPI5ptqDQa1BoNhWJxWlgvC/YarRZBrSFfyJcPPqYPAbQ6PYJKRS6flw8GEFTo9HpEQSCXL0yXlfvMYDRSEkXyhSKqyTF0D9xaM03S7/k4pX0PQGU0Y3Q4yBeKVSZR8tzLZGrnnk5HZjrHpAS9Xo9WqyWdSpXHr1CEQhqDwYBGoyGpN6G54Er0N12LIJbKD/B7P0FSb4KKID1mmwNRtNdEBLVYLBSnzbkkqFQqTCYThXy+arOiVqsxGo3kczly6bQsuGuKBfS7Xobrvl8zNhz3DvJdXkpFSdgV0Wg05bmXzU4/T+UZqNVqUasEshKX6XKdTocAZLOZPcp9seJ5yuUAUX5u9ZEphMk7a7mcfgHFodXkKAvXolaHWm/AYLWRQyiXqzXl52Oh4wQIkSCmu2+oXmAFFSmLA2OphCAIVYGUoBxpVdpAzPysWSx4LdTpyEy3X4rObTAYyu2sCL4F5bHz+/3ypkfiLgmE0v/DkScxa7yYtT2USqX687FYrJqPmpGdGGa+iEolsmO70bu7yefz9Z+xija59RuZiD8DveXNXN2xmxFQLBAIoNfr5bqNRiPBYFAWHKQ+kV6KlWNXCSm1mFqtlq+VnrETV67kog0b+MAdd/DYpZdi1uvLz1gDbZL6HcptqhyPmW36465dvBgIcMf558tzoBKS8BSPxzGZTIji9HOq0TQ0TpKwZ7FYKBQK9deNBttUOffmGydgz1pYkQItnU5jMplQqVRzPmNztalynBpp04tTd+LQr8Zl3Fe2HJDmiF6vZ43rVP42dg07p/5Kj2nznG2S4gNMTk7Krg6FQkEW5Btpk9Vqxe124/P5SCTKwpoUKNBgMCxonCKRCHq9HpPJ1NQ4qdXqmudm5hpRr03LvhbW2RcKACecRa6rl5K4p506rQ61WlU1jwD0urKlTGaGFZpBXz4EyeaqAzsaDQZKxRK5/J6xUPtG0d17cw2P/NGnol2xD8V8fg93UUSlUqHTasnnc5QKe8ZIo1ajUavJ57J7xkis824uf4BWM/1uzmb3uLX5x9HNELyFUon0S89hOOqEtj1jer2ebDZLMBhkjfUcnpz8Tw7t+xhWq1V2yVCpVFVrYTQaRaVSySbme/YJyGvFzHXDn3qWh8e/wJD9aI5Z8WXSqSxZKvZQc60bo7vgpmvR1Jkj2XPeR3HFWtBoUen0GMwWciLkS2JZcNZo0BiMGEzm2dfCBvYbsGctTI3uxvTkgzXCXerM9yA63I21qd6+0GAgn0mTTSQQpjXyarGIQa0mn0qRz6TKSpl8HrVYQjexG+HuG2f0iQj33ISQKLtgiQYTJY8XobsfoXeAnKOLottLydMLZisGo7FqnCQ0sm5UQZdkPPlkVVGhlKbHcqCc111Cy++sRJxSwIdqqvyjCU+hDk4iTo4iBP3lA409R1h7+qRUIj28A72zq61rYdOC91lnncVZZ53FGWecwcUXXwyUX0bRaJS5TOC+8IUv8M///M/y/9LJptlsrvFnknzwqtDdhygINRNWOORt6J11HO0FoXZTOP1CqVcuAPqZgr0goBJFqpiEAvDwPTVaHs3pF4C7G7UoUuOlJwhoRLG2swUBbb3DBEFAN0t5FcdQAB64tYaL9qRzEdzdc7apxjtwnvIaTzFBKJtjTPMQZ54oqlSo33fVHtPd6T6o16aZfSCN08w+aGicQgHEP95Ww8XwlrdWcdFqVXVN+urOPWb3f5M0iDNhNpvhhLMQNx1BengHxqF9ENzdmOu1SRDq+vSp1eq65dLGeya0Wu10mypO26y2+s/N209DO8tz09DcY8841SuvO07hKcQH76rlcuSJqJ1d1PTk9NyoZ3i5oHEym+GSqxB/c03ZWmL6UMTUP1QlrNW0aXqcGgmUNBcWvBZClWasUktV2U5RFPH5fGi1Wnp6eqpOjme2Mxx4kV7rpubm4+CqafVM9Xjq+lcAlfOxGpVtGnS8lYeH/0BJLDQ0dtIBgs/no7+/XzYTLxQKhEIhTCYTRqOxRnNXr00Gg4FwOCxvMCuh0Wi45vTT2fijH/Ff//gH3zjhhIbbBOW+z+fzGAyGmhP7yjb94OmnuWDDBlZNa3rqzTtJOJMEEUlT1Mg4VZ7Qz79uzN0mCS2thRVcVNNWQXM9Y3O1qRLztUkUS+xOPMD6rvMRBAG9Xi/7xktzRCd46LcezkjqQfbxvG3eNnk8HiYmJnA6nfJBTzwex2KxNNwmQRDo7e0lmUwSDAbp6uqS52Cr45ROp8lms/T39yMIQtPjVO+5kfpptjYt+1o4277wbaeia9O+cGa5tN+o6t1QAO67pXZfePyZc+4LZ9v/LXhf+Oi91VwAw3X/g/Da8winnIfZW+sb3ewz1tXVxdjYGKlUin2HTmVr8Ee8EryTjZ73kE6nSafTdHd3y2uhRqMhnU7j8XhkC5xwOIwgCJhMphotodlsZnf0YR4a+wLr3Gdz5OBnEAQVZnM1l7rP2GsvwH2/Q7P1CcSV+9adI7ojTqh2LZttvzG9brRjLTT1D9XsPYRLynuPeds0jbrjJAhojCY0RlNteT3ZIzyFeM9Ntc/N//sBoskCgQmYHEPlH4fJMXh1G7rJMYRoOZ6KaLKApxd6+jF390FPP0z/FqbfyY2uhROJl2CGwCtSIpYdodfS3fhamEmj94+jD0yU+fvHy78DExiCgbICTKOBrt5p7n0I6zdBdy+ipw/UasR//VCt7DC0T0NtamYtbErwfuihh7jtttvIZrOcfvrpXHLJJVx33XVcddVVfPzjHwfgs5/9bN3vzjZxJeIzy2rg8iBcehXiddUTFpdnVpORuvU0WV5T5u6GejymTRHacc+Gy+fh0nCbFlreAI9Fua9CuVSVuzyU9KaysNdkPW3hskzPTd1yJXF5+6mIGzaTHt5RXlibmB+zfdYoFrwWVpRL35m5WYbyJjaTychmsbPVI4oivsRWNnk/NOd9666FK9Yi7npVjmggXPxPTa2FXusm8qUUofT2WfNxzjww6OnpYXR0FL/fj9frRRAEnE4niUSCqakpEokEXq+37kuyEpWpxepd6zaZ+OHpp/PuW27h3Rs2sLm3t6V5N1tfPjMxwR937uTpD3+47vhJiMfjVZr8ysPtRsZprrqXuny2v+erp9V7+hJbSeYm5dgFsz03a91n8Ojw1zl66HNoVMaaeiphMpmwWq0EAgEGBgaw2+2Mj4+Tz+dn9c+uV49Wq8VsNpPJZDCZTPJ3W2mrlIbMYrHIwkAz9YiiWNMnjdx32dfCzr6wtrwel/d+HGwOuPcW+PfLEQ46Ak45D9ZuaPmeBoMBk8lEKpUincqyvuvdvBC4mY3dF+PxeBgfH8dms8nzMRqNotVqq1xN4vE4UnTzmffZHrqbh3d/hU29l7HZe/n865gownN/g3tvhtdehIOOgM//N8Ka9fDIvfPuCVvpg5bKZ+w9mFaSNVrPkuwLB/cp/1TWA+WYR/5xBP8YTI6X/37lWXj4DxALly80WcoCuCSQ9/SDpw96+sBsreFj0w8hoEKkVHEvFTb9YPW1ogiJGAQmECSh2l8hYMfCZY4GE3RPC9cr94W3HlPm4ulFcLrL7rKVbapEC/KUVN7MWtiSj3c7EIvFZE15U75BoQClyTFUPf3LGwhJKTyUxEUpPBTGpVQqNRVddlGgoP5QEpdWxqbltWsR6puNv+Tr2dXVNW+d8ewEN75wJuftfwtO4z5zXluFSBA+dym871OUzBZUP/kmvPdjcMSJTbXhphfOYYPnAjZ2X9Twd6T2OZ1OOWXSyMhIlfmZ2WzG6/XOWU8mk2FsbIzBwcFZo4Rf8Lvf8fLUFH+//PJZo47Xw3xz67233YYvkeCPl1466zXFYpFdu3bR09PD5OQkOp2OwcHmAs0oYv2ZxlJzeXj3V0jm/Zy25n/3FIYClHyjqLwD8vpTKKX5zXOncPTQFxoKMFgsFhkZGcFqteJyuRgZGcFsNsuB/5pBO/okHo8TCAQYHBxsKThbMpnE7/fT3d3dVER1xayFSnmnKIXHXFxeexHu+x088xisXg+nvhsOPGw6vlFzyGazjI6OotFo8PRaufGFMzh+1TdY6TgOv99PJpNhcHCwKvaANL+ktbfemva8/3qeHP0fDh/4FzZ2Xzg3iUK+nEnmvt+VhcEjjodT3g29M9ZJJY0NClmX29kn6WRZCPaXteXIwvkYxKPlayw2WTNOd5/898sj1/Oo8feIKhBKcPTUMexnPnmPUO2fgMB4OTgdgNVRFq6nBWo8039394Jlj2/6UvZJM2vX3hfG0uVBcHYtrGPfSDyUxEUpPBTGZaFagbZAQf2hJC6KGJsFoB5/KXWY0WhsKPq1L/EMerUdh2Flczd/5F5wdcPhx5d5HHkS/HlL04K313wQvsQzTQneOp2O7u5uWRiVfK0qUS+tzUwYDAb0ej3RaBSPp/5L9vunncb6H/yAbz36KP9+zDENc5xrbg1Ho9y4bRt3T7trzYZ4PI5arZbN2FoRbpQ0x5eSS6GUYUf4jxw99Pk9hY/cC7/+HiopqNV01FqNysgq54lsD93dkOCtVqvp6uqSU/TZ7XZCoVDTKbxg4X1SKpUIhULY7faWhO5SqYTf76dUKhEMBusGBFQ8lPJOUQqPubisWQ9r/h9MjMD9t8K134CunrIG/PDjy0FIG4QUTyCVSkHBwGrXqWzz38BKx3G43W45j30ul5OvlSDFg6rMCCCKIk9N/Iitvl9x7Movs8Z1+uw3z6TgL3+AP95eFsiOOR0+dQ7UczGYqz+WCYp4xtrZJ0YzrFhb/pmJlCSUj00L5ePw/N/LAnUiyn7AgNlFzF7EFlVjSb4IjknwDpaF6bces0eL3d1b1movFpZgnijjGLwJSBFJl0lRrzgeSuKiFB5K4tLhoVwuSuHRKmbjHwqFKBaLdHd3N/Ry9yW34rUcRGVE53lRKMBf7oFjz0QUykFHxGPPgB0vw+7tTbXDa9mEL7G16XGwWCw4HA78fj/5fL5GcJ5NkJ4Ju91OPB6f1Uer22zmmtNO46sPP8w2v7+hOuebW9974gn293g4efXqOeuJx+NYrVbZz3uudDut8FhKLDWX3ZG/ACIr7MeVC0IB+PX39vi+imI5jeB0vta1rtMZiz1JMtdY/lbJDzkQCGCxWOT2NYN29Ek0GqVUKtVNaTYfcrkcIyMjciCofD6/4IBpywGlzHOl8GiIS+8gvO+T8M1fwaYj4eaflvNK/+FmmBGhfS5IVh6hUIiNnguZSDxFMLUdtVqN2+2WI/9XHuhIZuYqlUpe00pikb+OfJPnJn/Dyav/a3ahOxqG234Jn7kE7v8dHH8W/Oev4d2XzS50N9IfSwilcFkyHiYzrFwLhx4L73gPfOgz8MXvwndvgo/9BwCWpJq+cR2W5LRV2WWfhU9/s3w4etq74eCjYWj14grdLE2f7HWCdwcddNBBB/WRSqWIRqN0d3fLwbjmgy/xDF7LQc3daOvj5c3ZUSfvKetbAeveUtZ6NwGvZRPpQpBYdrQ5DoDL5UKv18tB5KTNnVarres7Wg8Wi0XOxzwbLtq4kVPWrOGDd95JYY60d40gksnwk6ef5tNHHDHnwUg2myWXy2GxWMhms+XsAk2Yur/ZsT10N6scJ6BVT/ts+8erAk4B5Uwd/nJapF7LZsy6bl4P/6Gh+gVBoKuri3w+TywWw2q1Eo1G29mEeSHlAXe5XE3PjXg8zsjISM2BUygUWnaBoIMlhMMN7/pgWXg9+Tx48C747KVlQTw0/yGUTqfDaDSSzWaxalbhtWzmhUA5Yrbkzw3ldHXSvJIEGylQZLGU58+7/o3Xw/dy+tofMGR/W+2NJsfKB2efuxSeerQsaH/z/+C088t+xR3snRhaU6tdVqnKpuNvUHQE7w466KCDNwCKxSJ+vx+73V43h289ZAoRIpkd9Fg2NXezB+8qn15bZpiyH3cm/O0hSM4uxM6ETT+IUePCl3ymOQ7sCbYmmcn29PTIqXGaqUNKLTabwCEIAj8+4wxeCQb57hNP1L2mUfzkqaew6fVcdMABc16XSCTQ6/VIOaDb4UP7ZkEqP8Vo7HHWus/YU9jdN+cGTxBUrHGdwavBLQ0LnhqNBrfbTTgcxmQy1eSlXmyEw2HUanVTc0NyRfH7/XJ8hEoUCoWqVEgdvElgNMMp74KrfwkX/xNs+wd84f3wi+/A2K45v9rVVdY0B4NBNnou5LXQH8gUwqRSKflZqrSmkA6o7HY7+WKa+3d8ion4U5y59qd4Z76Ldr4CP/oa/NtlMLIDLv8cfPUn8PbTmjKL70ChcHnKQc2mXXRElQqmA729UbH3+Xh30EEHHXRQBVEUCQQCqNVqXNOpqRrBZOJZ1IKeLuN+jd9sbBe8+jxceEXtZwcdCcYfwWN/hJPObag6QRBkc/N17rMa5zENtVqN1+tlbGwMQSin3xIEgVgs1rD5rc1mIxwubxRnCy7Vb7PxXyefzMf/8AfOXreOtS0E0soVi3zvySe56rDD5gzUJpliOp1OeZPaiL9+B2W8FroXk9ZDr+XgPYUuDxx6DOKTD+2JZvuO91Zt8Na6Tmer7+eE0q/iNq1r6F6SK4CUQ1uyOFls5HI5otGoHNm/EWSzWSYnJxFFkf7+fgwGA2azmcJ0bmAp33DHsuJNDI0WjjwRjjih7Id77y3wH1fCWw4tB2Jbu7HmAEvSeqdSKYY8R2PUOnk5cAeu/AlV14VCIYxGozzXCiS577WrSOdDnLXu59j00wHRRBFeeKp875efhY1vhU9/C/Y9QDE+2h20EW87FdZXR3p/I2Ov03gLglCVa/LNzkNJXJTCQ0lcOjyUy0UpPFpFJf94PE4qlaK7u7up4E6+xDN0mw9ArWoiKNOft8Dq/csmYjN4oNHA20+Hh7aUzXgbRI+lHGCtVej1etxut5yeBsrawEY1d5WpxebChzZt4qjBQT50112U5tCKzja3bnj+eeLZLFccfPAs3ywjnU5TLBaxWCykUqmWhSElzfGl5LI9dDdrXWdUxy0oFWHHKwgnnov46W+VgwCFqn32HYaVdJs28mro7obvJQgCHo+HbDaLTqcjkUg0bHGxkD4JhUJySqf5IIoikUiE0dFR9Ho9g4ODcponvV6P2WzG5XJhNpsbdtFQEpQyz5XCoy1cBKEsbH/222V/XK0Ovv1ZuPpTZVPvUvUcl2JqhIIR1nedz4tTN5PLV1t/FAoFIpEIAAZriS2vXk6+mOId+04L3cViOUL5Vz4K1/y/shn8f/wQPvnVshvTAvr1DTU2bzAeAIK7G8NBh9Wkdl1yHkvQJ3ud4A0oxv9IKTxAOVyUwgOUw6XDoxZK4aIUHq1CFEVyuRxTU1Oyv3MzkAKrNYx0Eh7/Exz3jhoeMt5+WjkFyMtbG67Wa9lELDtMKj/VOJcZqBRMS6WSrDVuFHa7nXQ6PWc0dEEQ+Ok73sFTExP8+B//mLO+mXNLFEW+8/jjXL55M/ZpoWc2xONxTCYTpVKJUqnUdFC1uXgsJ5aCSzC1nVD6Vda6ZwRneuZxCE/B6Rcg7nsAnH5BeS5Hw1WXrXWfweuheymJhYbvqdVqcblcsrVFM/OulT5Jp9Mkk0ncbve8G8RCoYDP5yMUCuHxeGY9nFPSPGkFSuGvFB7QRi777Acf+Tf42s/K+Z1/+i34t8vhL3dDrixcS3E1EokE+7rOIlOIUrS+Rm9vLz09PfT29tLf3088HieLn/uH/wmt2sw79v0ZZtEKf7oTvvgB+L/vloXsq39ZDrA1I5/0QvCGHJsFQik8QDlcFpvHXid4i6JY5TfyZuehJC5K4aEkLh0eyuWiFB6tQoq+6ff7MRgM2O32pr5fKKUJJF+s9ambC4//CXS6coTRCh5V/ejsKkfJbSLImtu4Fq3KxGTi2ca5VEAURUKhUFWZIAiEw+GGx7cytdhcWOV08s0TTuBzf/wju6e1N/X4zJxb973+Oi9PTfHJww+fs/5SqUQymawK1tVKxOrZeCwXlorLa6G78Zg24DCsqv7g/tvgyBMRrfYyj4MOL8/Vh6rn6T7Ok8kWo4zFnmzqvna7HZ1Oh1qtJhKJNNTOVvpEFEWCwSAWi0XWWs+GVCrF6OgohUKBgYEBOZhVO3goCUrhrxQei8alp7/sf/utX8Ohx8Ctv4TPvQ+23ACJuKz1TsaKrHWfwSvh32E0loMbSr8judf5R/zfcRhWcrr3avR331kOmPb76+HoU+A/r4MLrwR3T/t48yYYm72Yh5K4LAWPvU7w7qCDDjrooIxkMkk+n284dVgl/MltgEi3ee4gXzJEER78fWNBbY49E7Y+0VBUXACVoKHbfEDL5ualUolCoVBTViwW5VRcjWC+1GISPnrooRzY08OHtzQeiOs7jz3GBRs2MDjPAYmkNTWbzSSTSdRqdcfntkGUxALbQ/ew1nVG9Qevv1j+Oemde8pU6nIcgj9vkbV2AAaNg0Hb0Wxvwtwc9pic5/N5isUi6XR6IU2ZFclkkmw2O2csB0k4n5iYwGKxMDAwgE7XCUTVQZtgd8I57ysLyWdcCA//AT53Cfrbf4UxHScWi7G+63wmk1uZSr0sf22772GeSXyJfv0BnPy3fdF+4YryYe5Z74Vv/V851ZSlE0Sygzc2OoJ3Bx100MFeiHA4LGtGNZrm42T6Eltxm9ahU9cPJlaDl7eWU7occ8a8l7LfgdDTBw/f0zAfr2UTvuTWhq+vhFqtpr+/H6/Xi91ul80epaBpjQrHjaQWA1AJAj8/6yz+smsXv9o6P+enJyb4086dfPrII+e9Nh6PY7FY5MOE2YK9dVCLsfjfyBQirHadXP3B/bfBWw4r5y6uxFEnl31VH/9jVfFa9xnsijxErti4yTiU/aWlSOGRWawhFgJJoHY4HGi19eMy5PN5xsbGiMVieL1eurq6FOHD2cEbEAYjnHgOfOMXZU34y1vpveaLeO78JerX4/RZ38rW4R8TePU2Xtl9PU9O/Rurxj0c992XUb/2Mrz/U/D1n5dzcevntt7ooIM3CjqCdwcddNDBXoZisUg4XPZNbdUsqpy/uwkz8wd/Dwcd3liaD0Eoa70fvhcK+Yaq91oOIph6hVwx2TinCuj1ekwmEwaDgZ6eHjnYVT6fJ5VKNVRHI6nFJKzr6uIrxx3HP99/P+PzCOr/9fjjnLjPPhzk9c55XT6fJ5PJVJmZN+tC8GbG9uDdDNmPxqCpSJPlH4en/wonv7P2C3oDHHtGWTCvCMQ3ZDsajcrAjvCfmubgdDrRaDSk02ny+cbmfqOIRqOUSqVZXQ8SiQSjo6MIgsDg4GDn0KaDpYFGA4cfD//xQ4SrvoomFcfxvS/i2LqbXalH+SPf45HgfzOwS8XRL61B9Ymvw7//bzklZceap4M3GfY6wVsQBCwWy7Kf4CqFh5K4KIWHkrh0eCiXi1J4tIJKM9bK/KiNoiQW8Cefx2s+qLEvhAJl0/Hj31Hz0az9eOSJkEnB0481dItu80YEQYU/+VxjnOpA4iJpHkOhEFartSmtt81mo1AoNCSs//MRR7Da6eQjd99dVX9lnwxHo9y0bRufPuKIeeuLx+NVQYoEQViQibCS5vhic8kVk+yK/Jm1rjOrP/jjHeUI/OveUp/H8WfB1CQ89zf5K2qVjtXOk5s2N5fql9KJBYPBea9ttE+kwzan01njelAqlQgEAkxOTmK32+nr62vKCkZJ86QVKIW/UngsGxdBgA0HU/jEV3n9gvfw0io/cu4+AUZW5Mi87/2wYfOSpwV704+NgnkoictS8NjrBG9RFCkUCopwwFcCDyVxUQoPJXHp8FAuF6XwaBb1AomFQqGm2hFMbydfStHTaETzv9xdDqyzX+31s/ajyVLWgjzUWJA1jcpIl2l/fImtjXGqg0oukoBSKpXIZrMN+9w2mlqszFnFL88+mz9s385NL7xQl8d3n3iC9R4PJ69ePS/3eDyO1WqlVCqRz+cbShU1X51KmeOLzWVX5E9oVHqG7HsC/5GIw6P3lbXd0xupGh4ONxx2LNx/a1V9a91n4Es8TTw73jQXo9GIwWAgmUzWxB6oRDN9Eg6HUavVNRYQ2WyW0dFRUqkUfX19uFyupjeNSponrUAp/JXCY7m5WCwWUvo44gwJQ1RBLPD8kvOBztgomYeSuCwFj71O8AbIZDLLTQFQDg9QDhel8ADlcOnwqIVSuCiFRzOoF0isUCg0nLMaymbmNv0QJq17/ovzubLJ+PHvmFVLMWs/HnsmvPo8jO1qiJfXvLB83pVcpGBXyWQSo9HYlM+tw+GYN7WYhAN6evji297Gx//wBwIVlgeZTIZIJsNPn36aTx955LzCUCaToVAoYLVaZR9zq9XaMOe56lUKFpPLq8G72cd5EmpVhYXAX+4uB2s6+G1z8zjpneV5umu7XOQxbcSuX8H2UONxCirR01OOyuz3++e8rpE+yefzRKPRKqFaFEWi0ShjY2PodDoGBgbkyNGtQEnzpBUohb9SeMDycREEAXf/wQgzXklCCWyeBoN5LgI6Y1MLpfAA5XBZbB57peDdQQcddPBmRWUgMYfDgdfrpb+/v6nI15OJrY37dz/1aDnq8xEnNE92aDWsXt9wajGvZRP+5DaKpfb4xhqNRqxWK/l8nnQ63fALVa/XYzAYGtJ6A3zxbW/Da7HwiXvvrSq/9qmnsOv1XLhx47x1xONxjEYjGo2GWCwm8+9gfsSzE0wk/lFtZp7PwYN3loM/zWd2PbgPrN9cpfUWBIG1rjPYHrq7Je2HRqPBZDKRTqcXHOE8GAxiMBhkn+1iscjk5CTBYBC3201PT08n8n0HioJ31Vs5MHSiLHwLJTg6fy6W7vXLS6yDDpYZTQned9xxB5dffjkXXHAB999/v1z+/ve/n8suu4wrr7ySbDY7Rw0ddNBBBx0sFFIgscrfjUIURXyJZ+ht1Mz8z78vC93GFgM1HXdmOWVMen4/9B7LgRTFLFPpl+e9tlG43W5KpRJarVYOSNcIGk0tBqBTq/nFWWdx8wsvcOfLZe65YpFrnnySqw47DN08QlFl7u5CoUA+n0en06FSdc7GG8Fr4T9g0w9Wp8Z78qHygdHbTm2skpPfCf94GIJ7NNRrXKcRyw7jT21riZfbXbYo8fv9TVmkVCKTyZBMJnG73QiCQDqdZnR0lFwuR39/P3a7fdn9IjvoYCZUKhVDB/4zR6u+yWGJD3KS+Xuseevnl5tWBx0sO5rKQXPOOedwzjnnEA6H+fSnP83JJ5dTdhiNRgqFwpwpLrLZbJVQLp3oi6JYE5Sm3umyVC6KYtU1810/s0y6Z6Plc9U98/NmuLSrXOJej0srbVpIuSiKqFSqtrVpIePULi4LLZfmSSWvVtu0kPKFPDezlbc6TovBpZXyep810qaF+v4s91oYzQyTLoToMW+af+yGX0N4/SW49KrW18LNR8GNP4bHH0Q4/h1z1qNX23EY9sEXf5pu08a2rIVqtZquri78fj/5fF6Odj5f3SaTCZVKRSwWw+FwzHv9IX19/MsRR/CRu+9mH6eTXz79NLFslss3b553XJPJpHxPaT5YLBb581bXjcr15426FoqiyPbglqrc3WKpBA/cBm87DQwmqJijsz436zdD7xD86Q549+XlIDu6XryWzWwPbqHbtHFWPrNx1+l0GAwGstks4XBYzr3d6DMsiiJTU1OYzWZ0Oh2hUIhwOIzVasXtdqNWqztrYWdfqNh9oUqlQmvfB619Hwogu0sspE2dtbCzL9zb94XNJ38Fvva1r/HRj35U/v8HP/gBKpWKa665hi1btnDWWWfVfOfqq6/my1/+ck15MpmUTaQ0Go38kqr0YdTpdOh0OjKZjKx9SKVS6PV6tFot6XS66jTZYDCg0WhqIv2aTCYEQagpN5vNiKJYE8XWYrFQLBarzBNVKhUmk4lisVj1HbVajdFoJJ/PV/kFNtMmoOU2zeTfSpsKhULVS7CVNkmmde1oUzvGSdpoL6RN7Rgn6aFsR5sWMk6pVKrtc6/VNqVSqbbOvVbaNJNnI21qNoL4TCz3Wrg7+gRGjRurrn/esdM/cAeq1etR96+kWCi0vBbqDjsBzZ9/j3DcmfO2qUu/kbHoU6x3X9y2tdBkMsmpxQKBAA6Ho6FnzGAwEIlEZMuC+ebjZw45hF9t3cqBP/4xIiAAv926lfcdUNbEzjZOsVgMi8VCOp2WzdsFQaBUKrVlLRQE4Q27Fo5HthLN7qbPcCyZTKasCHjub2gmRkhd9nnEZLLhtVDz9tPR3/4rCqdegNZmJ51OM2Q+ka2BH3GA4wrMJlvTa6HNZsPv9xOJRMqCiFbb8FqYyWTIZrO43W7Gx8fJ5XLY7XYMBgP5fB61Wt1ZCzv7QsXuC2e69kjjs5A2ddbCzr5wb98XCmITYrooinz+85/npJNO4sQTT6z5/MYbb6RUKnHxxRfXfFbvZHNwcJBIJILNZttDqIETmkKhgEajQRCEZTvZlAIcSTwa4b4Y5VJZPp+v4dJsmxZaLooixWIRtVpddZrXSptm495om9rFZaHl0nzVarVNt7XdJ5utPjezlS/kZLPdXFopB5p6bqRySQMajUar1q5Gsdxr4V92f5lCKcWJ+/zn3GOXjMNnL4EP/gvCIW9f2Fo4NQlf/ADCZ/4TcW2tv3Pl9dtD9/DE6H/x3gMeQKVqXKM331qYy+UYGRkBYHBwEJ1ON2/dxWKR4eFhuru7sVgs814/Goux8nvfo1RxnVoQ2HnVVQxMj+1M7oVCgeHhYfr6+lCr1YyMjKBWqxkaGpJNzVtdNyrXn3p4I6yFj438J6HMa5y59id7yv/rC2C1w+Wfq7l+zucmn4MvvB9OeTfCye9EFEVyxQS/ff4Ujlv5NVY6jmuJ++7du+VNf39/v2yNNRcXURQZGRmRN45arZbu7u6qseyshZ19oZL3hSMjI1W57LVaLYODgy23aTbujbTpzbAWNlve2Rcuz1rYlMb7+9//Pn/84x+JRqO89tpr/PWvf+W6667jX/7lX0in04TDYX72s5/V/a5er6/rhyh1cL3G1LsWyhsoacI2cv1Cyue6diaPxeYyV3k9LrNdv5hcstksZrN5ye+rJC4zy6WxabaednNZyudmtnIlcRFFsannRiqf7bNGsdxr4WRyKxs8F8x//WMPlFOCHXTkvNfOuxZ6vPCWQ+HPWxD2rR/VVrq+17KZbDFKNLsbp3Gftq2FOp0Ol8tFKBQiFArh9XrnrVtKLSZppOe7/rVQqEroBiiKIq+HwwxWpIGqrCdZoZGNRCIIgiCbuc/X1kbWjdn6o5W6F1re7rWwJBZ4PXwfh/Z/fM81IzsQXnoG/v37MMvzNOtzo9PDcWeVzc1POBtBrUavsbLScSzbQ3ezynl8S9xtNhuxWAxRLEcidzqd83KJRCIUCgXZjW+2NGGdtbCzL1TqvtDj8TA+Pl71f7PjupDyN9Na2NkX7j1rYVOC9yc+8Qk+8YlPyP9feeWVAPzXf/1XM9V00EEHHXSwDEjlp4hlR+aPaF4qlSORH3P6/BGhG8Vx74Dv/wdEguXcybPAqu/FrO3Bl3gGp3Gf9tx7Gg6Hg1gsJudX1jTQNrvdzujoKNlsdt4gdmvdblSCUKPxXlPh11gJUdyTu1sQBOLxOKIoytGrO5gbI7G/Uiil2cdZYYF3/62w34GwYm1rlR57BtxzYzma/6HHALDWdSb37/gUmUIYg8bZdJU2m41wOCz/lny2Z0MmkyEUCiEIAl6vd8H53DvoYDkguehoNBoKhUJTQUA76OCNik7I1A466KCDNwl8ia1oVWZcxnmEkheegpC/8YjQjWD9ZnB1wyP3znup17LwfN71IAgC3d3dAAQCgYa+I6UWkwI/zYUBm42fnHkm6unTb7UgcO2ZZ8pm5jORy+XI5XJYLBay2axsltlJI9YYtofuZoXjWHTq6Xzn4Sn420Nw8rtar9RigyNPKgvw0wco/bZD0avtvB5+oKUqJcuJfD6PwWAgEAjMauYYj8cZGxtDEAQGBwc7QncHey1UKhVerxej0YjX6+1kaeigA/ZSwVsp+SqVwgOUw0UpPEA5XDo8aqEULkrh0Sqa5e9LPEOP5S2ohHm+9+ffw+aj59RMN81DpSprEx/+A8yTostr+f/tvXmYXGWZuH2fU2tXVXdXb+nOxhYaMWFJWKIQBpKwBhIBze+SGZ1xHESYcdQZRxFBLsOHGJeZbxZ0zCiOOplvfsqFIIawhCUQQBgUEiEJSIeQPZ10eqt9P98flap0dVV3V52uqvN28tzXxUX66beq7vec9zx93jrvsoDe8JayPrtSl4aGBhoaGohEIgXzD8ejkq3Fbj7vPN7/4hd58qabeP+LX+Tm884bs2wwGMTlcuF0OgmFQui6TkNDQ1VvUFVq49V0iaWG2TO8qWA1c579DUybCWddMDmPK2+E3T3Qsw0AXbNzeus19PSXtx99KZqamohGo7S0tBCPxwkGgwUumUyGQ4cOcfhwdjuzjo6OMeej1gKV2okZVPFXxQPUcRGPYlRxUcUD1HGptceU63hrmkZDQ8Ok5xYdLx4quajioZKLeKjrooqHWcz494Y20+mdP36hvl5463fZoeHV9lh0FQSH4Q+vjlusyzefUOIgoURvWQ6VunR2dgJw6NChst7X6/XmtxYrh9nNzVz9gQ8UzOsezchh5oZhEAqFgOo+7VapjVfbZefgBly2JmY1fTgbiEXghfXZTvM4X1yU5dE5E879cPap91G6W5fTF9nGUOx9U75utxun00kkEqG1tZX+/n7S6TQNDQ0kEgn27duXX5Xd5XIVbCdXa1RqJ2ZQxV8VD5VcxENdF1U8VHKph8eU63jnJr6PNUzrRPNQyUUVD5VcxENdF1U8zFKpfyIdYiDaw/SJ5nc//xjMPAW651Xfw9eUnTe7cfwnhy3uObhsTfSGtpTlUKmLzWajqamJeDxONBqd8H01TaO5uTm/QFY1PCKRCIZh5IeZp1IpMplMVYcWq9TGq+3SM7CeOa3L0LWj8/Rf2gB2B1x0eXU8rvpY9guiQ/sBaPOcQWtDNz39j5vyHbnIWmNjIw6Hg4MHD7Jz50727duHy+Wio6ODaDRKW1tbXW9AVWonZlDFXxUPlVzEQ10XVTxUcqmHx5TreAMF+7dZiSoeoI6LKh6gjot4FKOKiyoeZqnE/1D4TTRNp8M7Toc6EYeXnso+7a7gxr+i47hkBby9GXr3jllE03Q6veeamuddrkt7ezuQfepdzh/ZpqYm0ul02ft1TuQRDAbxeDzYbDZCoRB2ux2bzTbuoltmUKmNV8tlOLaHw+G36G69NhtIp+Hph2HpCnBMfPzK8uiel12g7elHjoVar2PH4OMYRmacF45NY2N2Lno4HKa9vT1/g2ez2Whvb88vvGbFHH+V2okZVPFXxQPUcRGPYlRxUcUD1HGptceU7HgLgiAIlXEotIV2z1zsunvsQq+9kF3R/MNLaydy6gfglG54fvwnh501WmAth6Zp+P1+0uk0w8PDE5a32Wz4fL6yyk5ErgM/cpi5pmW3EbN6qN1UoGdgPS3uObQ1fCAbeOPl7BSGxcur9yGaln3q/dunIZSdYnB66zWEE4c5GHrD1Fvquk5jYyOBQIBUKpWPp9NpBgcHicVitLWVt66CIAiCMPWQjrcgCMIJQG9oy/jbiBlGdlG1RVeCa5zOeTVYvAJe3gDx2JhFpvsWMBh7j3iqvHnVZsjtpzwwMFDQERqL5uZmYrEY8Xh8Up8bCoWw2Wx4PB5isRjpdJpkMikrWJeBYWToGXic7rbl2S8pDAOeeii7Ennj2HPqTXH+Jdn3fD47NcLj6GBm04fpGVhv+i1zUxz6+/sL4sPDwzQ1NdV1QTVBEAShvkzJjnc5e6/WA1U8QB0XVTxAHRfxKEYVF1U8zFKufzqT4HB4K13jLaz2/h+zKzmbeGpY8XG88NLsE8X/3ThmkXbPB7FpzopXN6/ERdd1mpubMQyjrO3FcluLlfPUezyPYDCIz+dD0zRCoVB+eHkthhir1Mar4dIb2kI40cvpLcuygZ5t2XZ75Y3V97DZ4PIb4Ll1kMwOP+xuvZb3B58hlZl4bYBSOJ1O3G53yS96msdZjK/WqNROzKCKvyoeoI6LeBSjiosqHqCOS609plzHW9M03G635cPxVPFQyUUVD5VcxENdF1U8zFKJ/5HIO6SNOJ2+c8cutHEdzDsPumbVzCOPy51d4XzjY/m9kkdj0510eM/iUAULrJlx8fv9QHaxs3Lmbzc3NxMKhcbdWmw8j0QiQTweLxhmbrPZcLvdVd/GRKU2Xi2XnoHHmNG4EK+zIxvY8CuYf1F2JfJaePzJ1ZCM578kOsW/GIBdQ89XaH6MXAe7s7OTzs7O/MJr1Z7fXy4qtRMzqOKviodKLuKhrosqHiq51MNjynW8DcMgFospsfKdCh4quajioZKLeKjrooqHWSrx7w1tpsU9B7d9jCdqwSH43aaytxAz61HA4utg73uw850xi3T5FlS0srkZF5vNht/vR9d1+vr6yGTGXzjL6/Vis9nG3VpsPI9gMIjT6cTlchGNRslkMqRSqZoMM1epjVfDJZWJsXPwGc5oO7p3d+++7MrjV320dh4NXrh0GWx4GAwDu97AqS1XTGq4udfrxW63k0wmCYfD2Gw2S+d2q9ROzKCKvyoeKrmIh7ouqnio5FIPjynX8QbKmotXD1TxAHVcVPEAdVzEoxhVXFTxMEu5/r3hLXT55o9d4MUnobkFzllYU48COmfCvPPz82dL0eWdT19kG6nM2HPBq+HS3NxMJpPBMAwGBgbGLTtyW6jx/jiX8sg94c6tbh0MBmloaKjp/G6V2vhkXXYPbQIMTm5ekg08/QiccgacXt7Wd6Y9Lr8BDu2Dba8D2dXN9wf+l0hy4ukJpci1oaGhIUKhED6fD32cvcfrgUrtxAyq+KviAeq4iEcxqrio4gHquNTaY0p2vAVBEITyMIwMh8ZbWC2Tzq4wftl1oFd3qPOELFmefdIeLD1nutN3DoaRoS+8vaYadrudpqYmbDYbw8PDxGLjd/Qr3VosRzQaJZVK4fP5yGQyhMPhmm0jdjzSM/AYp/iX4rA1ZEdp/PZpuPpjFW19Z4rWDrjgUnjqVwBM952H1zmNHQNPmn7LWCyWH10xNDREb29vVVQFQRAEdZGOtyAIwnHMYGwn8XRg7Cfef3gNAoPZuaz15pyF0NSS3Tu8BE6bj9aG7ppuK5bD7/eTTCZxu9309fWN+zTb7NZiub277XY7kUgEyG4l1dDQYPncNtWJJI+wL/Aq3blh5s+vz47SWLCoPgJXfTS7//zenWiazumt101quHkymSz4WZU9bAVBEITaMSU73qo8GVDFA9RxUcUD1HERj2JUcVHFwyzl+PeGtuBzduFzTi9dYOO67Crjjf6aepREt8Fl18IL67NP3kvQ5Ztf0crmZl0cDgc+nw/DMEilUgwNDY1bfqKtxUZ75J5w54aZh0Kh/HZitdxGTKU2PhmX9waewuNoZ4bvguwK48+tgytuzK48Xg+Pk7vhA+dk53qTXd18INpDf+Tdyt8L6OjoGPfneqNSOzGDKv6qeIA6LuJRjCouqniAOi619qio4/3rX/+aW265hY9//ONs2LAhH9+4cSOf+tSn+MQnPsGBAweqLjkSTdNwOp2WPx1QxUMlF1U8VHIRD3VdVPEwS7n+vaHNdHnHGGbeuw+2vwFLPlJzjzG55GoY7Ietvy/56y7fAg6F/kDGGHsV8Wq5tLS05FccHxwcLHoqOZLxthYr5REOh9E0DY/HQyaTIRKJ4HQ6yWQyNet4q9TGJ+vSM7Ce7tZr0TQdXnkW0qls26mnx1Ufg9eeh6F+/O5T6PDMo2dg7DUKxsPlcuH1epk2bRperxeXy2XqfaqBSu3EDKr4q+Khkot4qOuiiodKLvXwqKjjfcMNN/DjH/+YNWvW8Mtf/jIfX7NmDT/96U/52te+xk9+8pOSr43H4wQCgYL/ILvYzMj/SsVGxnM3LLmFcCYqPzpWaXys9x7tUalLteK5WCkXM8d3MvFMJpNfpXeydZrseaqWy2TjuXZipq7VdJnMdVPt81QLFzNxw6jsuhkZnwz1zoWHwlvo9J1buj4b12Gc3I1x6hmm2+Okc2GTH86/BGPjYyXLd3rnk8yE6Y+8O2F7rPScjo45HA68Xi+JRAKXy5Vf5Xys8rmtxVKpVEG8VP4JBAJ4vV50XScUCuWPncvlyi+sVa1rbKRHLv9YcY2NjE8mF/ZHeuiP/pE5rddipNMYGx6GS6/FcLlrdt2UjJ91AXR0YTz7GwzDoLv1OnYMPEnGSFVcJ03TmDZtGjabjWnTpuVv9Kw4T5VeNyPjk0HuC2sTz8XkvrDQ43jIhdV0kfvC0m2h1rnQ1C7h3/zmN/nc5z5X8KG6rnPyySezb9++kq9ZvXo199xzT1E8t5UGZBe4cbvdxOPxglXlnE4nTqeTWCxGKpUiGo2STqdxu904HI78RZ3D7XZjt9uLFr7xeDxomlYU93q9+YM9Ep/PRzqdLlhoR9d1PB4PqVQqv5erpmnYbLb86rQj52qVU6eR+8G6XK6K6wQUuEymTiOHTVZaJ4fDkX/vke5m6jTZ86RpGoaRHTI60r3e58kwDKLRaP7mulptr9LzlEwm89eNy+WqWtszc56i0WjexWazVaXtmTlPNput6Lopp06VLqg1mnrmwpQ+RCjRS7N+ZoG3x+NBi8fg5aeJ3/hpUkd/Z1kuXLICvvtlIrt3YrR3AsfOnZby4nPMZO/AazQYs2ueC/1+P/v376e5uZnh4WH6+/vx+Xwl62Sz2bDZbAwODtLQ0JCPj86FuX/n9m8OBAK4XC7C4TAul4t0Ol2TXGgY2a1RGhoaLLnGqpUL3+1/jFbXmTjT04j9/iXcfQfh8o9Ykwuv/Cj86j8JL15Bl2sR8dT/y77hV5ndvEhyYYXIfaHcF9brPB0vuVDuC6d+LtSMCrrphmFwxx13cOWVV3LFFVfk4zfddBP/8z//w9tvv83DDz/M3XffXfTaeDxecAADgQCzZ89maGiIpqamY0JHO0xFokfjhmEQDofxer1omjZh+dGxXD3KjY/13rn5ejmPctxrEc/FQqFQkUuldZpsPNcAc410MnUay73cOlXLZbLxXHv1+XwV17WaLpO5bsaKmz1PtXAxEwcqum5y8UAggN/vZ3h4uCB3lUs9c+GOgSd4Zd/3+OTZz2SH6I6szwvrMR7+GXx3LThdE9a/prkQMO75m+z2YitvLir/wu5VpDIxLj/122O+TzVz4YEDB9B1HYfDQTAYZNasWdjt9pLlh4aGGB4e5qSTTir4rJH5Z3BwkGAwyOzZszEMg127dtHR0UFfXx8zZszA7XbXJBeOzD+lmAq50CDD/33rWs7t+kvmddwE//hVaO1Au/kr1uTCZALj9j+HFZ+ApR/h6Z1fxq67WHrqtyQXVojcF8p9Yb3O0/GQC+W+8PjIhRU98b7//vt55plnGB4eZseOHbz88susXbuWz372s3zmM58hmUzyne98p+RrXS5XyTlMuQNcqjKlyo58zeiDMlb5ycTHKzvao9Yu5fpMVL5eLvX8XJVcRsfNto9qu9TzuhkrrpKLYRgVXTcjvSdDPXNhdpj5fPTR24QZBjy3Du2Sq8HlHvP9y3WpSi5cshwe+Tnc8BfgcBaU7/It4PWDPyx4fS1zYUtLCwcOHGDWrFmEw2EGBgYKhgOPpKmpicHBQSKRSNFNXa58bu9uXdcJBAL5oeW6ruc73RPVqdz4WPW28m/TRP8e7332B14jmhpkTss1aHt2wB/fhG/8+6RcJpV/nC60JSvgmV/DkuV0t13Hxve/TiIdwmkb+6a+Ji5Vip8IubDc9yknXvNcWMX4ZHNhtV3q+bnHWy6shYsK+Ucll3rkwormeH/hC1/g9ddfZ82aNdx2222sXbsWgKVLl/Kf//mfrF27lhkzZlTylqawchGSkajiAeq4qOIB6riIRzGquKjiYZaJ/HvH2r+7Zxsc2A2Ll9fFoyw+tBRSqey+3qPo8i0gkjxCMFF6KlO1XdxuNy6Xi+HhYTo6OggGg0Sj0ZJlx9paLOeRG9I3cjVzn89HNBot+RSo2qjUxs249PSv56TmS2hwtGRXFJ97Hsw+re4eBSxZAYNHYPMrnNR0CXbdzfuDz1rjUiVU8TCLKv6qeIA6LuJRjCouqniAOi619phy24lpmpad91fjm5Wp4qGSiyoeKrmIh7ouqniYZSL/WGqYwdh7dHnnF/9y4zo4eyF0dNXco2zcDXDxFfB88SrRza6TaLC3Trifd7VcNE2jpaWFYDCI3W6nsbFx3L29R28tNtIjGAzm553m5qJ6vV4ikUjBvPBaoFIbN+OSSId5f+g5uluvg/7D8LsXsvtp19mjiCY/XHQ5bHgYm+5kTstVpvb0VuX8qOJhFlX8VfFQyUU81HVRxUMll3p4TLmOd26+yFg3QCeah0ouqnio5CIe6rqo4mGWifwPhf6ATXPR7vlg4S+G+uGNl2Dpirp4VMTi62DnO7CrpyCsaRqdvvn0hrbUzcXj8eB0OhkeHqatrY10Os3g4GDJsqO3Fst5ZDKZ/DBzOLZolKZpNd1GLIdKbdyMy66hZ7HpTk5q/hN49lGYflJ2HYA6e5Tkyo/Ce9vhvbc5ve06DoZeJxivbDtVVc6PKh5mUcVfFQ+VXMRDXRdVPFRyqYfHlOt4AwWr0FmJKh6gjosqHqCOi3gUo4qLKh5mGc+/N7SZad6zsOmOwl9segLaOrNDduvgUREzToYzzy351LvLO3HHu5oumqbh9/sJBAIYhkF7ezuDg4MFq6mOxO/351dDzXmEw2EMw8jP/Q4Gg/lh5k6nE7vd1MYiFaFSG6/U5d3+9cxpuQpbLJltt1d9FKrwJKIqx2TGSXD2hbDhV0zznEWT6yR6Bh63xqUKqOJhFlX8VfEAdVzEoxhVXFTxAHVcau0xJTvegiAIwvj0hrfQ5ZtfGEyl4IXHs0+WdUXT/+Ll8NrzEA4WhLt8CxiO7yaaHKibis/nw263Mzw8nN9SbKwh5x6PB5vNlt+LGI6tjqrrOslkkng8js/ny6/yK4xNKHGQg6HXs8PMX3wSXC5YuNhqrUKu+hi88Vu0I4eO7un9uOVPbARBEAR1UfTOSxAEQTBLKhPjSGR78cJqW34L0TAsusoasXKYfxE0eOHlpwvCbZ4zsOsNZT31rhYjn3pnMhk6OjqIx+MEg8GSZXN7fxuGQSaTIRKJFCyqZrfbsdvtxONx6XhPwI6BJ2hyzWSaay48+2u4/PqC1e6V4MxzYdap8MwjdLdey3B8N32RrVZbCYIgCIoyJTvebnfx9jdWoIoHqOOiigeo4yIexajiooqHWcby7wtvwzAyTPOeXfiL59bBh5aAt7EuHqaw2+HSZfDCehgx5EvX7HR6z6E3PP4Ca9U+p42NjWiaRiAQwOFw0NLSQn9/P6lUqmTZ3BDzVCqFzWbLL6CWW808FovltxGrByq18XJdDMOgp3893a3Xob3xEoQCcOl1dfeYEE3LDn9/6SkaU41M951PT39li6ypcn5U8TCLKv6qeIA6LuJRjCouqniAOi619phyHW9N07Db7UqsfKeCh0ouqnio5CIe6rqo4mGW8fwPhjbT1nBG4b7C+3fBu29lt0Kqk4dpLl0GfQfh7S0F4a4JFlirhUvuqffQ0BCZTAa/34/dbqe/v7+orM1mo7GxkUAgQDgcznfaE4kEiUSCxsbG/Grm9Wh3KrXxSlyORLYzFN/F6S3L4KlfwSVXg686XxZV/ZhceBl4fLDpCbpbr+O9wQ2kM6XXAai5i0lU8TCLKv6qeKjkIh7quqjioZJLPTymXMfbMAxCoZDl86hU8VDJRRUPlVzEQ10XVTzMMp5/b2gznaPndz+3DubMhZPm1M3DNC3tsODiokXWOn3z6Y/8kWQ6Uj8XoKmpCcgujqZpGh0dHYRCISKRYo/c1mKJRKLgabfT6cThcNR1frdKbbwSl3cH1tPlW0DTrgHYuxOuvNESj7Kw22Hp9fDso5zaeBmpTIw9gZescTGJKh5mUcVfFQ+VXMRDXRdVPFRyqYfHlOt4C4IgCGOTMVIcDr9ZOL87EoZXn63aFmJ1YckK2PIqDPTlQ51Hh84fDr9VVxVd1/NPvQ3DwO1209TURF9fX9EKqLqu43BkV5JPJpMkk8n8MPNEIkE6nZb53eOQziR5b+DJ7KJqG34F510MHdOt1hqfy5ZBNILzjd9zin9xxcPNBUEQhBMD6XgLgiAcRwxEe0hmIoUrmr/yDDjdcN4iy7wq5gPnQOdM2HRsiya73kCH54P0hsaf510LmpqaSKfT+YXV2traMAyjaG/vQCBAMpkE4MiRIwwODpJMJvOrmTscjrpsIzZV2Rf4LalMlFNjZ8Kbr2VXDlcdjw/+5GrY8DDdLdeyN/ASsdSQ1VaCIAiCYkjHWxAE4TiiN7SFJtdsPI72bMAwYONj2adyqq0KPR6aBkuWw6YnIZXMhzt98zloQcfbZrPR3Nycf+qt6zrt7e0MDQ0Rj8fz5Zqammhvzx779vZ2NE3D5XLVfZj5VKVnYD0nN1+G69mnslMj5nzQaqXyuPwG2LeLmQfcuGzN7BzcYLWRIAiCoBhTruOtaRoej0eJCfgqeKjkooqHSi7ioa6LKh5mGcu/N7S5cJj5O1vg8H649Nq6elSFi66AWATeeDkf6vIt4HD4LTJGsqh4rc9pc3MzqVSKcDgMgNfrxePxFOztbbfb8Xq9+P1+PB4PkUgEn89HOp0mFovVteOtUhsvxyWWGmb38Ca63ZfBK89mVwy3wMMUHV1w/iL0DY9yeus1ZQ03V+X8qOJhFlX8VfFQyUU81HVRxUMll3p4TLmON2D5icmhigeo46KKB6jjIh7FqOKiiodZRvsbhkFvaAtd3vnHgs+ty+6N3dpRN4+q4fHCh5dmn9gfpct3LmkjzpHIO/V1IdupbmxsZHBwEMMw8gutJRIJAoFAQbnW1lbS6TSpVAqfz0c0GkXTtPyCa/VCpTY+kcvOwadx2RqZ9Vrv0QX2LrLEwzRXfQy2/o7u9HkcjmxlKLbLOpcKUcXDLKr4q+IB6riIRzGquKjiAeq41NpjynW8DcMgHA4rsfKdCh4quajioZKLeKjrooqHWUr5B+L7iKb6jz3x7j+cXaCsyluITeRRVZasgJ6tsO99ANz2FvzuU0tuK1aPc+r3+0kkEvkVzXOd7JF7e+c8gsEgbrcbu91e123EcqjUxstx6RlYz5ymK9CffyK7krlus8TDNKedCafPpW3jZlobuukZeHzc4qqcH1U8zKKKvyoeKrmIh7ouqnio5FIPjynX8RYEQRBK0xveTIO9jSbX7Gzghcehaxacea61YpNh9mlw+lx4/tjQ3S7fAksWWANwOBw0NjYyNDSUjzU3N+N0Ojly5Eg+lvsD7vP5MAyDaDQq87vHYTi2h8PhN+ne05Zdl2DRVVYrmeOqj8Grz9HtWcKOgfUYRmbi1wiCIAgnBBV1vHfu3MnNN9/MypUrC+KrVq3i4x//OLfddhsHDhyoqqAgCIJQHr2hLXT55mefqiYT8OIT2QXKFBnCZZolK7JzfqPZudVd3vn0hrZY1qnx+/3EYjGi0ShAfsh5OBzOz//ObR3m8/lIJpOkUinpeI/DjoHHaXHPoe2p38Li68DltlrJHPM/DC3tzHkzQzhx2LIviARBEAT1qGhPk9NOO42f/OQnRR1vu92O0+nE4XDg9/tLvjYejxes/JqbD2cYRsEjfU3TSj7iz8VH/ldO+dGx3GeWGy/HpdzytYiPdB/tYqZOk4nnfq5mncqN18plsvHR56Vaba/S+GSum7HiZs9TLVzMxHOO5V43pcqboZa5sDe0mbnt/ycb+/2LkEigXXT51M+FCy6GX6yBV56DJcvp8i0gnh5mMLaLFvepRe61zoUOhwOv18vg4CANDQ0YhoHT6aS5uZm+vj5mzZpFLBajoaEBXdcJBAIF24jVKxeOPBYq50LDyPDuwHrmJi6E/tcwlqzIPvWugUvNc6GmwxU34Fn3/zHzby7k3YH1dPnOq5uLmXjO/XjKhfW83yjlUm75WsTlvnDq5sJK6jTZeM1zYQV1OpFyYVU2E73zzjvRdZ3f/OY3PPDAA3zhC18oKrN69Wruueeeong4HMZmy87jstvtuN1u4vF4fq4cgNPpxOl0EovFSKfTAEQikfwWLdFolEzm2JOP3Jy63JOHHLmV6kbHvV4vhmHk5+zlGLkSbQ5d1/F4PAUekN1qpqGhgWQySSKRyJevpE6A6TqNdDFbp1QqVfBH0EydvF5v1eo02fPk9XqrUqdqnKfcRVmNtjeZOkUikaq3PbN1ikQiVW17ZuqU86ikTqN/Vym1yoVJhgnE99Bs+wDhcJiGZx9F+/BStAYv4VCo4LOmYi50fmgptucexfiTa/A5p9Ng72BP/6s4/dMK6jTSxWydymmPLpeLgYEB4vE4hmGQSqVwuVwEg0F6e3uJx+N4vV7C4TChUAi73U4qlbIkF2qaRjKZVDYXHo78gVDiIHNeOEzq/EuJ211w9PdTMhfOX4T30bWcfng2L/ue4NyWv8GuH3uCL7kwi9wXyn2h5EK5LzzRcqFmmPjKcuXKlTz00ENF8VdffZXnnnuOO++8s+h3pb7ZnD17NkNDQzQ1NR0TKuPbiUwmg67rZZcfGYPqfbs00qNSl2rFc+7pdLrIxUydJhs3DCP/2ZOt02TPUzVcqhHPZDL5mwirvtnMeZi5bsaKT+Y8VdvFbLyS6yYXDwQC+P1+hoeHC3JXudQqF+4aeo4Xdq/iz895Dn3PLrRvfh5j1Rq0WaccH7mw/xB87a/gH1ajnXkuz+78GrpmZ/Ep/0+Bez1z4cGDB9F1nc7OznwsHA5z6NAhIPtkfMaMGezevZuurq78H/B65sJc/rH6Kc9Il9HuL+75JqHh97j233oxVq2BmSfX1KUuufDhn5H+wyb++6M7uGT2ncxpvaYuLmbjx1MulPtCuS+cqrmw0jpNNi73hcXxWufCip549/f3c9ddd7F582ZWr17N9u3bWbt2Ld/61rfYu3cvR44c4d/+7d9KvtblcuFyuUpWcvQFWeoCzcUNI7tIjdfrzZcbr/xk42OVBYo8au0yVrzUMRmvfK1cDCP7zU8pj1p+rmouI+Ojz0012p6ZeL2vm7HiKrlUet3k4uPlhHKoVS7sDW1mmvccbLoDnl8HHzgHbdYpE75PuXHLc2F7F5y7MLvI2pnnMr1xAX84tLbgdfXOhS0tLRw4cIBkMonT6Swqn0wmGR4eRtO0ghXN65ULxzse1fzMcuJj5cJUJsbOwadZ1DMXzrow32Zr5VK3/HP5R7Bv+BWnZs6hZ/BxTm9bZp3LBPHjLRdOVH6ycctzYRlxuS+cermwnPeZkrlwgrhKLvXIhRV1vNva2lizZk1RvNQTbkEQBKF+9Ia3cHLzZRAKwv8+Dzd/xWql6rN4Odz/DRjqp9O7gFDiO4QSh/A5Oyd+bQ1oaGjA7XYzNDTEtGnTMAyDgYGBgjKBQACXy1XwDbpwjN1DmzCMNKc8txu+cKvVOtXD3wYfWkz36+/w+Pl/IJLsw+PosNpKEARBsBC5ExAEQZjiJNJh+iN/zO7f/fIG8DXB/Ius1qo+c8+D1mnw4pO0NszBafNxqMR+3vXE7/cTDAZJJpNkMpmCOWaQHT7X0NBgkZ369Aw8xqlDs3F0nQpnzrdap7pc+VGm/+9evHorOwaetNpGEARBsBjpeAuCIExxDoffRNN0pjXMhecfg0uXgb0qa2eqha5nn3pvegItY9DpPdfy7Zo8Hg9Op5OhoSFsNhszZ86kq6sLv99Pe3s7kF1ARigmkuxnX+AVul8eyu5/Pcmhy8ox+zS0uedz+v52egYet9pGEARBsJgp1/HWNA2fzzfpuUXHi4dKLqp4qOQiHuq6qOJhlpH+vaEttHs+iP3tbTDQl+14W+BRFxZdCaEAbHmFLt8CesNbrHM5+pktLS0Eg8H8yuZer5e2tjYgu+Kqw+Gom89oN1XaeCmX9wafwpP2Mj3QBhdeZplHTbnqo3S/0MdA9F36I+9a6zIGqniYRRV/VTxUchEPdV1U8VDJpR4eU67jbRjZbVtKrUZ3Inqo5KKKh0ou4qGuiyoeZhnp3xvaTJd3ATz3Gzh/ETS3WuJRF3xN2U7a84/R5VvAQHQH8VTQGpejeL1e7HY7w8PDBR7hcLhga596o1IbL+XSc2Qdp7/jQF9yQ91GaNT9mMw7H3/DaXTEptEzsN5alzFQxcMsqvir4qGSi3io66KKh0ou9fCYch1voGAPOytRxQPUcVHFA9RxEY9iVHFRxcMssViMdCbJ4fBWujInw9bfw5IVlnjUlaUr4O0tdASasGkODo146m3FOdU0Lb+VSG6/0Gg0SiwWw+Px1N1nJCq18ZEuA9Ee+mPv0v2OCy6r3wiN0R41R9Pgyo/SvTnFjv7HyRiFawCocn5U8TCLKv6qeIA6LuJRjCouqniAOi619piSHW9BEAQhS3/0HdJGnM7f7YVZp8Lp86xWqj2nnAGnnIFt0wY6vPPotXiBNYDGxkZsNhuBQACARCKBYRiysNoY9PSvp33QS8vZK8BznM+B/9Bi5uxvIZ4aYn/gNattBEEQBIuQjrcgCMIUpje0mRbXqbg3bco+7VZgvlZdWLIcXn6aLvdZli+wBseeeg8NDZHJZEgkErjdbtlGrAQZI82Ow+vo3qbDFddbrVN7HE7cF9/I7P1eevrXWW0jCIIgWMSUvCNQ5UZGFQ9Qx0UVD1DHRTyKUcVFFQ+z6LpOb3gLnaEOyGTgQ0ss86g7F14GmkbXXo2+yHZSmbh1LkdpbGwEIBgMEo/HLR9mDmq18ZzLgeDviGaGmeNdDO1dlnnUlcXX0f2Ok12DG0mkQ9a6lEAVD7Oo4q+KB6jjIh7FqOKiigeo41JrDzVqWQGaplm6WI1qHiq5qOKhkot4qOuiiodZNE2jocHNodAfmL51ABZdBS63JR6WHEenCy65ms7nt5MxUvRFtlt+TnVdx+/3MzAwQDqdtvxGwurjMZZLz75fMnu3g4alf2qpR13xNXHSrOuwJw3eH3zWWpdRqOJhFlX8VfFQyUU81HVRxUMll3p4TLmOt2EYJJNJJVa+U8FDJRdVPFRyEQ91XVTxMIthGBwJ7SCeHqbzrYHs0GuLPCw7jpddh/P93bTqs+kNbVbinMZisfznHzlyhN7eXstcVDgeo13iqRC7wi/THTwDTv2AZR5WHBPb5f+H09510LP/QctdRqKKh1lU8VfFQyUX8VDXRRUPlVzq4THlOt4A8XjcagVAHQ9Qx0UVD1DHRTyKUcVFFQ+z7B/+Pd6Eh8aTF0LnTMs8LDuOnTPgrAvo6nVy6OgCa1af02QyWfBzIpGwyCSL1cdjJPF4nF0H1qGnMpx07s2WelhC5wy6jQs4mH6HYPygtS6jUMXDLKr4q+IB6riIRzGquKjiAeq41NpjSna8BUEQBOgL/J6u3RlLthBThsXL6Xqzn97QFjJG2mobOjo6xv35RGfH3l9w2v5W7OdeYrWKJUy76Gaahmzs2PN/rVYRBEEQ6ox0vAVBEKYofaE36BxugXMutFrFOs65kK5QB8lMmMHoe1bb4HK58Hg8NDU14fF4cLlcVispQzi8hwPufZzReSMospBOvdG6z6L78Ex6jqyzfFilIAiCUF+m5F8+m81mtQKgjgeo46KKB6jjIh7FqOKiiocZQr1bCduDdHVeBrq19bD0OOo2vB++nsaQg97QG5afU13X6erqwufz0dXVZfkCa1YfjzwDfex7/Z9pCtqZtvDTlqpYekw0je7T/oJhV4C+/teUOT+qeJhFFX9VPEAdF/EoRhUXVTxAHZdae0y5jnd2Jd8GJVa+U8FDJRdVPFRyEQ91XVTxMMWLT7L7l3+LIwGujRvgxSctU1HiOF5yDV377ezf/RiDOx8l3Pe2dS5AuO9t8RjJi08SvvcT/NGzhZPes6O99rxlKiq018bzP0LXYQ9vb/tXJc6PMu3EJCqcU5U8VHIRD3VdVPFQyaUeHvZKCu/cuZP77ruP4eFhHnrooXx869atrF69GoCvfe1rnHXWWdW1HEFuxTmHw2HpCVLFQyUXVTxUchEPdV1U8aiYgT7eee3bvLI4BBr84pMDXLLpO5w573xorf98YiWOY5MfvI3ssb3Dnvg7aHvgkvdu5MyLvl53lXde+SYvOR7B0KncIzf02DAAAwwKfy4qU+L/GGAYvPP693jJve6YxzvLOfO8L+d/f6zsqM8YOfzZKPHzSA+DEj8fcwADhgd457Vv8+KfB0GDrefGaDnR26vNRqPWTk/ju/TEvzd126siKHFOFfJQyUU81HVRxUMll3p4VNTxPu200/jJT37CypUrC+L/+q//yg9+8AM0TeP222/nP/7jP4peG4/HC1aKCwQCQLaSI+c5aZpWct5TLm4YBvF4HLvdXlb50bHcZ5YbH++9R3pU6lKteM69lIuZOk0mbhgGiUSiwGMydZrMeaqWy2TjuXbicDgmXafJxCdz3YwVN3ueauFiJg6VXTe5+GTnZU42F4Z7t/LSZdlODIChw0uXBpjVuxVvy+Ki8idCLgwf3k7PzMMFx+RF5yPsWr8RO7ZjHcSRHcNsRY+96chOZMHvRncoR7/HsX+n9Ax7T4oVezz8OPa0VuJ1tSFlM9h7SqLQw/sYu57aMMKjPqRsBnsXH3NhjPZ6IuXCcN/b7GjbU9xO1j2NPVO/4ZYpPc3eGaHCXOJ4hFmHbsTXOa+ku0q5UO4L5b6w3DqNvBez4n5D7gvlvjBHRR3vsRgeHsbv9wMQDAZLllm9ejX33HNPUTwcDufH09vtdtxuN/F4nFQqlS/jdDpxOp3EYjFSqRTRaBQAt9uNw+EgGo2SyWTy5d1uN3a7nXA4XPBZuU3RR8e9Xi+GYRCJRAriPp+PdDpNLBbLx3Rdx+PxFHhomobNZqOhoYFkMlmwfUw5dUqnj63E63K5Kq4TUOAymTqN/CNYaZ1ySSQWixW4m6nTZM9T7jikUqkC93qfJ8MwiEajeDwedF2vWtur9Dwlk8l8G3G5XFVre2bOUzQazbvYbLaqtD0z58lmsxVdN+XUafTvKmWyuTDQnMaIFb7W0CHQnEY/QXNh3/7Xj3XscmhAgwe3sxMDsu+h5X4BNpsdA+No/OiLNR2bTccwKIhruoau2zAMg4yRyb+Hpuvouk4mY2BgkIz1gvZ+kYfROROHazq6TUfTbKQz6WzH/qiPrutouk46lTrWHz96LDU0UulU9o2OatptdgwoOF5o2WNsGAbJ4B7Qeoo9Zp6C3TMr726z2chkMkeP77G62mw20ukMhnHsGOhH65qNH7vJ0G22o/E0xohvE2w2O5quEQjtg8yWAhVDh8PuCNNGnMMTKRcG+t7EGD3RTwOtuQ2XY9rRNpYLa+g2HSNjFMY17WjbG3U+NB1N18ikMwXnIxdPpzPkvyhKHAYtVKBh6NnrydPxQeVzodwXyn1huXUyDINYLIbP57PkfkPuC+W+MIdmmPjKcuXKlQVDzW+55Rb+8R//EU3T+MpXvlL2E+/Zs2czNDREU1PTMaEyvqEJh8N4vV40TbPsm81MJlPgUY57LeK5WCgUKnKptE7V+GYzEonkG+lk6jSWe7l1qpbLZOO59urz+Squa7W/2TR73YwVn8w3m9V2MRMHKrpucvFAIIDf72d4eLggd5XLZHNhOHmYX7x1HYY24omQoXHT2evxOqYVlT8RcmH48HZ+sfcvCjozWgZumv1f4z65q7bLeB7eaXMrfn+z56kcj1odg9HxULyXX2xdXtxez3oMr7Oz7DpVy1GFXBjue5tf7Pnz4vNz0lq8HR+sWl0nipu9bnJxq3Oh3BfKfWG5dRp5L1YKuS+U+8Ictb4vrOiJd39/P3fddRebN29m9erVbN++nbVr1/LFL36Rz3/+8wDcfvvtJV/rcrlKbquSO8ClKlOqLJAfez/6oIxVfjLx8cqO9qi1y3jxUi5jla+li91uL+lR689VyWV0PPeNb6XvU22Xel43Y8VVcjEMo6LrJhcf63flMtlc6HN2csnJX+elPfdhkEFD55KT78I3ohNT6r0nG1c5F/o653HJzhuPzVXNwCXJY8Nlx3qfaruU41GLzx0dK9ej1i4APldX6fbq6qqoTtV0tDr/+KbN5ZL3SpyfEV+K1MPF7HWTi1udC0fG5b6wGLkvLIzl7sWsOh9yXyj3hYC5J97VIBAI0NzcbPqbUkEQBCuodu4y+36hxCEC8b00uWaP2+k+kQgd3k6g7y2aOs4etxMjHha4SHstQpXzY9ZDlVwoCIJgJZXkrqrM8a4nhpGdgO9yuSb9bevx4KGSiyoeKrmIh7ouqniYxeuYhj3TjMtR/MSonqh0HL0dH8TedFrJp2jiYS3SXotR5fyo4mEWVc6pKh4quYiHui6qeKjkUg+PKbePN1Awed5KVPEAdVxU8QB1XMSjGFVcVPEwiyr+qniAOi7iUYwqLqp4gDouqniYRRV/VTxAHRfxKEYVF1U8QB2XWntMyY63IAiCIAiCIAiCIEwVLBtqnptantu3sZLXhcNh0um05cMRVPBQyUUVD5VcxENdF7MeI/earZbHyPet5HVT+Tgezy7ioa6LKh4quUgurA6qeKjkIh7quqjioZJLPXKhZR3v3H7fs2fPtkpBEATBNMFgkObm5qq8D0guFARhaiK5UBAEobxcaNmq5plMhgMHDtDY2FjxtwqzZ89m7969lq56qYqHSi6qeKjkIh7qupj1MAyDYDDIjBkz0PXJz9aRXHj8uYiHui6qeKjkIrmwOqjioZKLeKjrooqHSi71yIWWPfHWdZ1Zs2aZfn1TU5PlDUUlD1DHRRUPUMdFPIpRxcWMRzWe7uSQXFh9VHERj2JUcVHFA9RxkVxYHVTxAHVcxKMYVVxU8QB1XGqZC2VxNUEQBEEQBEEQBEGoIdLxFgRBEARBEARBEIQaMuU63i6Xi2984xu4XC7xUMxFFQ+VXMRDXRdVPMyiir8qHiq5iIe6Lqp4qOSiiodZVPFXxUMlF/FQ10UVD5Vc6uFh2eJqgiAIgiAIgiAIgnAiMOWeeAuCIAiCIAiCIAjCVEI63oIgCIIgCIIgCIJQQ6TjLQiCIAiCIAiCIAg1RDregiAIgiAIgiAIglBD7FYLlCKRSPAP//APGIZBIpHgz/7sz1i8eHH+9z/72c9ob29n+fLlRa/NZDLoenW+T5iMR7WYyKHeTFWfke2imm1kJGO1hy996UvYbDbuvPNOWlpaqv65E33+ypUreeihh2r2uWO5PPTQQ7S1tTF37ly++tWvlv3aWvhO5GPFMSoHyYXlO9SbqeojuVByoeRCazyqxVTNPar5SC48cXOhlXlQyY73j3/8Y6699lqWLVsGwKOPPspnPvMZYrEYq1atAuDBBx/kySefpLOzk7vvvptFixaxYsUKli5dysKFCy3x+OpXv8qnPvUpZs2axaJFi7jhhhtq7vDSSy+xceNGGhoamD59Oslkkq1bt/Lggw/y2c9+lu7ubgYGBli2bBlXXHFFXXxeeOEFTjvtNHRd56677uJ73/see/bswe/3c++9907aoVKfZ555hgsuuIAtW7ZwyimncPbZZ/Oxj32sqh45du3axac//el8/a+//nqefPJJPvnJT9Lf38/nP/953G43K1as4Prrr6/L52/fvp1Vq1bx5S9/mXvvvZd4PE46neZf/uVf+PrXv45hGPzxj3/k5ptvrurNwm233cby5cu56aabuO+++zhy5AjBYJB//ud/5tFHH2Xz5s0Eg0F+8IMf8Morr/CjH/2I7u7uqn1+JT4AkUiEv/7rv+bnP/85TzzxBAcPHuSv/uqvauZTDpILy3eQXCi5cKLPl1w4sQ9ILqymh+RCyYWSC4+hUi60Kg8qOdR827ZtXHjhhfmf/+u//osHHniA++67jzVr1gBw9dVX8/3vf5+tW7cC4PF4uOOOO6qWXM14xONxwuEwy5Ytq1pDLddhzZo1bNq0iW9+85ssXLiQbdu2AfCpT32K733vezzwwAN187nmmmu4++672bp1K6FQiLfeeov777+/6sm1XJ9ly5bxd3/3dwDccsstNUuuOUbW/6yzzmLu3LnceeedrFmzhnvvvZcHHniA//7v/67r569atYoXX3yRXbt24ff7CYVC7Nu3j0OHDvHtb3+biy++uOoeP/7xj7n44ouZN28emzZtorm5GYfDwdtvvw2Aw+Fg//79bN68mR/+8Ic88MAD3HbbbVX3KNfH4/HgcrkYGhri4YcfZuXKlTVzKRfJhZU7SC4c20dyoeTCcnwkF1bPQ3Kh5EKQXJhDpVxoVR5UsuM9b948Xn/99fzPmUwGAE3TyG073tzcnI+N/NlKj8bGRtauXUt/fz9/+7d/WzeHpqYmADo6OgBwOp3E43EAUqkUmUyGdDpdNx+v1wuAYRgYhpE/R7WgknM0+t+1YmT9RzLyWNTymIz+/NxnZTIZFi1axKpVq/jpT3+K3++vqc8tt9zCM888w5tvvsm8efNYtWoVP/zhD1m4cCEPPvgg3/72t1m4cCGRSARd17Hb7bhcrqp7lOOTY+XKlfz85z8nk8nkrysrkVxYmYPkQsmF432+5MKJfXJILqyOh+RCyYUguTCHSrnQqjyo5FDzW265hS996UusW7eOdDrN/PnzufXWW4lEItx999389re/VdLj4MGDfOtb38JmszFv3jxLHEbzox/9iH379vHZz37WEp/Gxkbmzp3L3//939Pa2srdd99dFQ+zPlZy6623cvfdd+PxePjTP/3Tun1uZ2cnd9xxB1//+td55JFH+MpXvsLQ0BD3338/06ZN44477mDbtm1ccMEFVf9sj8fDpZdeys9+9jO+9KUvEY1GufPOO5k+fTrf/e53ee2117jsssu49dZbuf322+nq6qq6Qzk+OS6//HI+97nP8U//9E819SgXVdq35MLJ+0guPIbkQsmFlaJK+5ZcOHkfyYXHkFxobS60Ig9qxuivX4Tjhr/8y7/k+9//Pj6fz2oVQVEefvhhfve739HX18e///u/43Q6rVYShKojuVCYCMmFwomA5EJhIiQX1hbpeAuCIAiCIAiCIAhCDVFyjrcgCIIgCIIgCIIgHC9Ix1sQBEEQBEEQBEEQaoh0vAVBEARBEARBEAShhkjHWxAEQRAEQRAEQRBqiHS8BUEQBEEQBEEQBKGGSMdbEARBEARBEARBEGqIdLwFQRAEQRAEQRAEoYZIx1sQBEEQBEEQBEEQasj/DxoD4a385pa3AAAAAElFTkSuQmCC", - "text/plain": [ - "

" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plot_results(averages, criteria, \"BioASQ\", \"ORKGSynthesis\", font_size=8)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "a052a3da-e40b-49be-bcc7-980ef375eb92", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.16" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/experiments/plots.ipynb b/experiments/plots.ipynb new file mode 100644 index 0000000..472aa8d --- /dev/null +++ b/experiments/plots.ipynb @@ -0,0 +1,258 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 38, + "id": "1be657cc-56bd-4d67-a55e-dc79f0cdeced", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAI4CAYAAAA/PH0eAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8ekN5oAAAACXBIWXMAAAsTAAALEwEAmpwYAACAT0lEQVR4nOzdd3zV1P/H8denu2XvvYcs2YKATBVQFEVFQBRxgBtFcSKKe4EiX9w/FdyCylJQEEFQhuwtG9kbCqW7/fz+SFpu29tSpCPC5/l43Edzc06Sk5B73zknKRVVxRhjjPGagPxugDHGGOOPBZQxxhhPsoAyxhjjSRZQxhhjPMkCyhhjjCdZQBljjPEkCyhz3hORziIyXUQOi0isiGwUkddEpFi6ettFRH1ex0Rkpohc4medc0TkDz/zX3CXfTHd/Hoi8omIbHPbECUiK0XkTRGpmc39aCwi34vIDhGJE5G9IjJbRAad6THJLhHpICLDRSQg3fyq7n7emVvb9tOWOSIyJ6+2Z3KfBZQ5r4nIU8AvQCxwJ9AFeB/oDywWkUrpFvkFaAW0AR4EagDTRKRqNrb1BvA08LSqPu0zvzewHGgEvAp0Ba4DvgWuBaZmY90XAQuBksBj7n48CmwAepxu+bPQAXgWb3yX3Ou+zDkiKL8bYEx+EZGOwIvAKFUd7FP0u4hMBJYCnwEdfcoOqepCd3q+iGwG/gB644SLv+0I8DbwAPCIqr7pU1YHGIsTQr1UNcln0RluqN2ejd15ADgGdFbVOJ/5X6Tv3ZyrVHVdfrfB5Kzz4sQ1JhOPAUeAJ9MXqOo2nMDpICIts1jHMvdnZX+Fbjh9ANwP3OcbTq6HcD6H96ULp5R2JKjqB6fZD4DiwNF04ZSyjmS3LaEiclBE3vLTzv7ukFwd9/1YEdklIk1EZJ6IRIvIJhG522eZ4Ti9J4CElKHPdKsOFJHn3eHGYyIyVUQq+tn+QHdIM1ZEDonIxyJSPF2dB0VkvYjEiMhREVkiIj18ytMM8YlIQRH5n8+Q5wER+TVlH433WUCZ85KIBAHtgZmqGptJtSnuz05ZrKqq+3OLn7IA4FPgDmCAqr7rp86lwGJV3X/aRmftL6COiLwvIi3c/UvDDa9PgX4iEpau+C7gd1X922deYeAr4AvgGmAx8J7b8wT4P+Bjd/oSnKHPVunW+yRQE6cX+KBb/oVvBRF5FXgH+BXojjM02RWYLiKBbp2+wEjga+BKoC/wHU4wZ+Yt4EbgOeBydx9XAEWzWMZ4iaray17n3QsoAyjwShZ1wtw677rvtwNf4gyNhwD1gN+BjUCxdMvOcZdV4PksthEDfO1nfqC7nSAgKBv7Ew5M9NlmNDADGAAE+NSrDiQBt/jMa+gu09tn3lh3XkefeaHAYeBDn3nD3XpB6dpT1Z0/J938Ie788j71koBn0tVr49a71n0/Blh2mmMwx3d7wBrgzfw+1+z171/WgzLmzNwEJABxwFqgAXC1qh71U3cDsBm4X0SanOF2TrrbScAZPqsJICKBIhLk8woAUNUYVe0B1MfpgUwHmgMf4vRExK23FedBj7t8tnUXcBD4IV0bolV1dsobdXpgG8lkODMT09K9X+3+TFnH5Tg9zS999wtYBJwA2rn1FgON3SG7y0QkIhvbXgz0F5GnRKR5Sm/M/HdYQJnz1WGcJ/eqZlEnpWynz7zpwEVAa5z7R+HAD36GzAAO4QzhHcd54KG+nzq78P+F39rdznPp5s/CJ7iAZ3wLVXWdqo5Q1euB8jjDaZ2Bbj7V3gXaiEgDESkA3Ax8qqrx6bblL3TjcHqW2XXEz/L4rKO0+3MzafcrASgElHDLPwPuAVriBOwREfnhNE9PPoBz/+92nLA6ICJvZTPcjAfYU3zmvKSqiSLyO3C5iISp//tQ3d2fv/nMO6KqS9zpBSISiXNf5wHgDT/b2SEinYC5wCwRaa+qG3yq/AbcJiKlVfWAz3LLAESkQbpV3oXzxZ1iTxb7GOs+BXgzznDkj27RNJzhyruAle76PsxsPbnssPuzM/4D8TCAqipO2Hwgzu+ndca5J/UtTmhloKpROPfAnhSRKsANOA++xAOP5+A+mFxiPShzPhuBc4X+cvoCEamG8yU2V1UXZbGOcThP8j2a2ZW5O6zWCeeeyiwRqeFTPMqd/052hqBUdYOqLvF57XHbWy6TRVKeWNvrs45knC/7W3CeLvxVVf095JEdKT2i8H+5/EwgGaicbr9SXtvSL6CqR1X1W2A8zhDraanqP6o6EmeIMVvLmPxnPShz3lLVX0XkWeA5d6joM5yr+KbAE0Akzpd4VutQEXkGp3dyD85Vvb96G0XkUpwb+b+JSDv3S3O9iNyO0wtbJCIf4dy7CgSqAQNxhrsye9IwxYciUhj4HufhgECcIcLHcJ4wnJiu/sc4Dzg0Aq4/zbqzkvK7R4+IyHQgyaeHeVqqukVEXgPGiMgFOA+dxAKVcO5P/Z+qzhaRD3HuSS0ADgC1cf5tZmS2bhFZgPMk5mogCuepzUY4FxXmvyC/n9Kwl73y+4XzSPMvOOEUB2zCGa4rnq7eduCLTNYxH6eXEu6+nwP84adeI5xhq824T7K58y/ECal/3DZE4Qy/jQRqZmMfuuB88W7A+SKPwwmmMUCZTJb5BWeIMMNTgjhP8e3yM38OaZ+UC8R5RPwATk9I3flVcXqGd6ZbvoM7v0O6+bfg/E8YJ919X++2vaJbfqu77QPuvm3DeYy8cBZtew3nf+iIdNe7GhiU3+ebvbL/Evcf0hhzHnHv4+zA+V80huV3e4zxx4b4jDmPiEgp4AKcX5oNwHmizxhPsockjDm/dAPmAS2AW1V172nqG5NvbIjPGGOMJ1kPyhhjjCfZPag80Hj4LOum5oDpg9vmdxPOCcUKhOR3E84Zw37ecPpK5rTeuOoC8TffelDGGGM8yQLKGGOMJ1lAGWOM8SQLKGOMMZ5kAWWMMcaTLKCMMcZ4kgWUMcYYT7KAMsYY40kWUMYYYzzJAsoYY4wnWUAZY4zxJAsoY4wxnmQBZYwxxpMsoIwxxniSBZQxxhhPsoAyxhjjSRZQxhhjPMkCyhhjjCdZQBljjPEkCyhjjDGeZAFljDHGkyygjDHGeJIFlDHGGE+ygDLGGONJQfndAJP7KhcPZ8K9Lfl13QGG/rAuQ3lwoPDYFbXpVKc0QYHCih3HeOnHDRw4EQfA//VvyoUVC5OUrAAcOB7HtWMW5uk+eMGuHf9w203X0b7T5Tz9/KsZyh978G5WrViW+j4xIYFKVary6dcTAfj4/f/xx++/8c/2bdxy20BuG3hvnrXdS/75Zzs3XHs1l3XuwiuvjfBbZ/26tbz+6susX7eO8Ihw7hxwF31vuRWAFcuX8fqrL7Nt6xYqVKzIU08/S9NmzfNyFzwh6uAe5ox4gHINW9Os7yMZypMSE1gz6SP2rl6AJiVRvFpdGt5wL+FFSgAQH32CFd/+j4MblxNSoDB1r+xHxabt83o3snTWASUiFYF3gHpAIDANeERV48523X629QZwNRAPbAFuU9VjfuptB04ASUCiqmY4e0XkAuBbn1nVgWdUdVRm2xGRDsBkYBtO7/MAcJOqHsihXcwVT3a7gLW7T2Ra3vfiSjSsWISe7y0iKi6RYVfX4fEra/PIt6tT67w6bSMTl+3Ji+Z61qg3XqJO3QaZlr/+9vtp3j949200bd4i9X2FipW5+4GHmfLD+Fxr43/Byy8+T/0GF2ZafvToEe65604effxJLu/clYSEePbv2w9A5LFjDLrvHp5+djiXXtaZ6dN+ZND99zDt518pXKRIXu2CJ6z+4X2KVqqVafnWuVM4uv1vOgwZTXBYAVZOeIfVEz+gRf+nnOW/f5+AwCC6DP+MyN3bWPTx8xQuX43CZSvn1S6c1lkN8YmIAD8Ak1S1FlALCAdez4G2+TMTaKCqDYGNwJNZ1O2oqo39hROAqm5wyxsDzYBoYGI2tjPPXa4hsBi476z2KJd1aVCGE7GJ/LXtSKZ1yhcNZ8GWIxw5GU98YjIz1uynRqkCedhK75s1YzoFCxai6UUts1V/757drF6xjM5Xdk+d1/Wqa2jZui3hEefvsZ0+7ScKFypEy4tbZVrn83Fjad3mErpd1Z2QkBAKFChI9Ro1AFixYjklSpakc5crCAwM5Kqrr6FYseL8+uuMvNoFT9i9fC7B4QUoWathpnWij+yn1AVNCCtUjMDgECo0voQT+3YCkBgXy57VC6hzRV+CQsMpUb0eZeu3YNeS2Xm1C9lytvegOgGxqvopgKomAYOBfiIyS0QaAojIchF5xp1+XkQGuNOPishiEVklIs+586qKyHoR+UhE1orIDBEJd9c/Q1UT3W0vBCqeZftTXApsUdV/srsdN5wLAUdzqA05rkBoIPd2rM6IXzZlWW/S8j00rlSEUoVCCAsO4MqGZflz8+E0dR64tAazH2vL2Nub0bxq0VxstfecjIri0w/e4d6HHs32MjOmTeHCxk0pV75CLrbsvyUqKop3x4xmyGNZXVfCqpUrKFKkCP369qZD21Y8cO/d7N3j03tXTbuAKls2ZX2On0sSYqP5++evqN/9jizrVWl5OUe2ryc28jCJ8XHsWvY7Zeo0BeDkwd0EBARQsNSp87NwuWqc2L8jV9t+ps42oOoDS31nqOpxYDtOL6StiBQBEoE2bpW2wFwR6YzT42oBNAaaiUg7t04t4B1VrQ8cA673s+3bgemZtEuBGSKyVEQGZmM/egNfZ1KWfjttRWQFsAO4DPgkG+vPF/d1rMHEZXs4cDzr0dYdh6PZdzyOmY+05Y8n21OtZAE++H1bavmomZu56u35dB75B98v3c3bfRpRsVh4bjffMz75YAxXdu9B6TJls73ML9Om0vWqa3KxVf897/xvFD2uu54yZbM+jvv372fq5Ek89sRT/PLrHCpUrMgTjz4MQKPGjTl48ADTf/qRhIQEpkyayM6dO4iJjc2LXfCEv3/+ksotLye8aMks6xUoWZ7woqWY8fxtTB/aixP7d1K7c28AEuNjCQqLSFM/ODyCxLiYXGv3v5GbT/HNA9rhBNNPQEERiQCqqeoGoLP7Wg4sA+rgBBPANlVd4U4vBar6rlhEhuKE3peZbPsSVW0KXAHc5xN8GYhICNAdmOCnzN92Uob4KgGfkslwpogMFJElIrLk8NIfM9t8rrmgbEFaVi/GFwtPf0X0ZLcLCAkU2r32O61emsOs9Qd4p2/j1PI1u48THZ9EQpIydeU+VuyM5JJaJXKx9d6xaePfLP1rIT1v6pftZVatWMaRw4do36lzLrbsv+Xv9etZuGABt/Trf9q6YaGhdLz0chpc2JDQ0FDuvvc+VqxYzokTJyhatBij/vcun4/7lE7t2vDnH/No2ao1ZcqUyf2d8IDI3Vs5tHEFNdp1P23dVT+8T3JiAl1f+JIrX5lAuYatWPjRcwAEhYSRGBudpn5CbDRBod668DzbhyTWATf4zhCRwkBZYA3QHNiK05sqCQzgVI9LgFdU9YN0y1cFfC/5k3Dua6WU9weuAi5VTd/Xd6jqbvfnARGZCLQQkW3AVLfK+6qackf7CmCZqu5P147TbgeYAnyfSRs+BD4EaDx8VmbL55rmVYtRvmg4Pw92Oq4RIYEEiFD9rgL0+WBxmroXlC3EmFlbOB7jjGp+89cu7utUg6IRwRyLTsiwblVFJPf3wQtWLF3Mvr17uPHqywGIiYkmOTmZAbfcyEef+3/Y4ZefptCuw2VERET4LT8fLVm8iD17dtPlso4AREdHk5ycRK8tPfj2u4lp6ta64II055eQ9mRrflELvhrvfOwSExPp1uUy+t16W+7ugEcc2rKa6KMHmPmiM7yXGBeLJifz+/6HaP/wqDR1j+/ZRp0rbiYkohAA1S+5ig0/f0Vc1HEKlKpAcnIyUQf3ULBUebf+dgqV8c4DEnD2ATULeFVE+qnqZyISCIwExqhqpIjsBHoCzwOlgBHuC+AX4AUR+VJVo0SkApDx29CHiHQFHgPaq2p0JnUKAAGqesKd7gw8r6o7cYYS0+tDuuG97GzHdQnOU36e8/3S3fy85lTm9mtdmfJFw3n5x78z1F27+zhXNSrHku1HiU1I5saLKnDgeCzHohMoFBZEgwqFWfrPMZKSlS71S9OsSjFe/3ljXu5Ovrm6xw10uvyK1PfffjmWfXv38PDjT/utHxcby5xff+GF10dlKEtMTCApKRlNTiYpKZG4uDiCgoIIDAzMreZ7xvU9e9H1im6p78eN/YQ9u3cz9JnhGepec+11PDJ4EDf17UeNmjX58P13adK0GYUKOV+069evo2bNWsTFxfHu/96mbNmytLmkbV7tSr6qcnFXKjQ+NSC0Zc5Eoo8eoOH192SoW7RSLXYtmU3JGhcSGBLKtj+nEVa4OKEFCwNQ7sJWbPj5Sxrd+ACRe7ayb+0iLnkgt55v+3fOKqBUVUWkB/COiAzDCaFvVfUlt8o8nB5IjIjMw3nYYJ677AwRqQsscJ43IAq4GafHlJkxQCgw011moareLSLlgf9T1SuBMsBEtzwI+EpVf/a3MjfALgfuys523LKUe1ACRAJ3nuYw5YvYhGRiE+JT38fEJxGfmMTR6ASaVC7KOzc3ovXLvwPw5oxNPH7FBUwZ1JrgQGHzgZM87D5iHhQg3N+pBlVLRpCsyrZD0Qz+ZhU7DntrrDq3hIWFExZ2atgjPDyCkJAQihYrzqrlS3nsoXv4+fe/Usv/+P03ChYqRBOfx8tTvPHScH75aUrq+y8+/YjHn3mBK666Nlf3wQvCw8MJDz91HCMiIggJDaF48eIsW7qEe+8awMIlywFoeXErBj04mPvvHUhsbCxNmjTj1ddHpi479uP/4495zrnb+pK2vDn6nbzdmXwUFBJKUEho6vvA0DACgoIJLViEw1vXsvCj5+j2itOzr3/1baye+BGzXr2b5MRECpetzEW3PZW6bMPr72bFN6P5ZfgthEQUouH193jqEXMAyXz06l+sTKQ1Tm+kh6ouO13980V+DPGdi6YPPj+uknNbsQIh+d2Ec8awnzfkdxPOCW9cdYHfmwY5+j9JqOp8oEpOrtMYY8z5yf4vPmOMMZ5kAWWMMcaTLKCMMcZ4kgWUMcYYT7KAMsYY40kWUMYYYzzJAsoYY4wnWUAZY4zxJAsoY4wxnmQBZYwxxpMsoIwxxniSBZQxxhhPsoAyxhjjSRZQxhhjPMkCyhhjjCdZQBljjPEkCyhjjDGeZAFljDHGkyygjDHGeJIFlDHGGE+ygDLGGONJFlDGGGM8yQLKGGOMJ1lAGWOM8SRR1fxuwzkvvMn9dpBzgFRvmt9NOCcUK10sv5twzog9GZvfTTgnHP6sj/ibbz0oY4wxnmQBZYwxxpMsoIwxxniSBZQxxhhPsoAyxhjjSRZQxhhjPMkCyhhjjCdZQBljjPEkCyhjjDGeZAFljDHGkyygjDHGeJIFlDHGGE+ygDLGGONJFlDGGGM8yQLKGGOMJ1lAGWOM8SQLKGOMMZ5kAWWMMcaTLKCMMcZ4kgWUMcYYT7KAMsYY40kWUMYYYzzJAsoYY4wnBeV3A0zuq1G5FEvGP8XEX5dz+9OfZSgvUjCcEY/dQOc29QD4cPw8XvpgGgClihVkxGM30LZZLSLCQli3ZQ+Pj/yBxWv+ydN98IIa5Qqz+M1rmbhgO3eMnpuhPCQogBG3X8zVLasQHBjAwg37GfTBfPYciQbgggpFeGtAK5pUL8mh47EM/WwxU/46/45jtVIF+HXYpfy0bDeDxi7NUB4SFMDzPRvStXE5ggIDWLLlME98tYJ9kbEAbHzr6jT1w0ICGff7VoaNX5Un7feK6mUKMu+lK5m6eCd3f7AgQ3lIUAAv39yUbs0qERwoLNp0iCFjF7P3aAwAlUoW4I1bm3NRzZLEJSQxdfFOnvpyGUnJmte7kqnT9qBEJMrPvOEiMiS7GxGR7SIyL928FSKyJt28USKyW0T8tktEwkTkLxFZKSJrReS5TOq1E5FlIpIoIjdk0a633HasEJGNInLMnd9YRBa421glIr18lpkjIhvcZdaLyMDsHof8MuqJG1m6NvMvwteHXE9EWDB1uj1D25vf4KZuF3FL94sBKBARytK1O2h902uU7/AYX0z9ix9G30OB8JC8ar5nvHVnK5ZuPpRp+X3d6tPigtK0fHgiNQZ8w9GoeEbe4RzHwABh/BOXMX3pTir0/5L73/+Tjx9sR81yhfOq+Z7xUu9GrPznaKbld3SsQbPqxbnsxd9o9sR0IqMTeKFXo9Ty2oOnpr4aPzGN2Pgkfly2Oy+a7imv92vO8m2HMy2/q/MFXFSzJO2GTqf+g5OIPBnPq7c0Sy1/49bmHDoeS71BE+kw7Gda1ynNHZfWyoumZ1teDvEVEpFKACJSN32hG0o9gJ1A+0zWEQd0UtVGQGOgq4hc7KfeDqA/8FVWDVLVwaraWFUbA/8DfnCLooF+qlof6AqMEpGiPov2dZdpA7wmIp79tu7ZpRmRJ2KY/dfGTOtc2a4Bb479lZjYBHbsPcLYSQu49RrnsG7ffZjRX/zGvkPHSU5WPvnhT0KCA6ldtUxe7YIn3NCmGpHR8cxZvTfTOlXLFOTXFbs4EBlLXEIS3/+5lbqVigFO76lcsQj+N3UtycnK72v2suDvA9zUvmZe7YIndG9egeMxCfzx98FM61QuGcGcdfs5dCKOuMRkpizdxQXlC/mt261JBQ5FxbFoc+Zf1OeiHi0rExmdwNx1+zOtU6VUAX5bvY+Dx2OJS0hm4qId1KlQJE35pEU7iEtI5kBkLLNW7+UCn3IvyNGAEpFJIrLU7Xmk71mMB1J6In2Ar9OVdwDWAu+55RmoI6VHF+y+MvRHVXW7qq4Cks+g+altUtWNqrrJnd4DHABK+VmmIHASSDqD7eSZQgXCGHZPNx4f+cNp64pImul6Ncv7rdewdgVCgoPYsjPzL5hzTaHwYIb1bsoTny7Kst64WRtpVacM5YqFEx4SSK92NZixfFem9UWgXuViOd1czyoYFsSjV9Xjue9WZ1nv6z//4aIaJShTJIyw4EB6tKjE7LX+v4h7XlyZ7xbuyI3melahsCCeuP5Chn21LMt6X8zdSstaJSlb1Dkfb2hdhV9XnbrAev+XDVx3cRXCQwIpVyycyxqW47csLsDyQ073oG5X1WZAc2CQiJTwKfseuM6dvhqYmm7ZlICYCHQTkWB/GxCRQBFZgRMaM1U162+NbBCRKkA14Dc/ZS2AEGCLz+wvRWQVsAF4QVU9GVDP3tuNcZPms/vAsSzrzZy/jiG3XU7BiFCqVyrJrddcTERYxsNfqEAYH794Ky99OJ3jUbG51GrveaZPU8bN2shu915SZjbvPc6uQyfZ8n992P/FLdSpUJRXJiwHYOOeSA4ej2XwNRcSFChc2qg8beuVJTw0MC92wRMevbouX8/fzt5jWZ872w5EsedoDMtevYINb11FrbKFeOunvzPUq1A8nItrlWTCeRZQT17fkC9/38oe915SZrbsO8HuI9GsHX0t2z+4gdrli/DGpFN3VRZsOMgFFYqw/YMbWPP2tazYdoSflmZ+QZUfcjqgBonISmAhUAnwHdA8DBwVkd7AepxhNADcIbIrgUmqehxYBHTxtwFVTXKH1yoCLUSkQQ60uzfwXfqgEZFywOfAbarq2xvrq6oNgcrAEDfgSLfsQBFZIiJLEg+tzYEmnpmGtSvQsWUdRn8x+7R1H3n9O2LiElg9+VkmvHUX439eyu79x9LUCQsN5vu37+Kv1dsY8cmMXGq19zSsWpyODcvzvx9P/2/41p2tCA0OpMKtX1Dyps+YvGg7k4Y6p3FiktLrtV/p2qwi2z7uw6DuDfh+/jb2HM469M4V9SsWoW2d0nw0a/Np677UuxEhQQHUf+RHaj00lenL9/D5/a0z1LuhZWX+2nyYnefJMQRoULko7euX5b2fN5y27hv9mhMaFECNe76n0oAJ/LhkJ+OHOHdPRGD8kA78tGQnlQZMoOa931O0QAjP9mqcy3twZnLsKT4R6QBcBrRS1WgRmQOEpav2LfAOzv0hX12AosBqd6gpAohxwy6lp/W+qr6fsoCqHhOR2Tj3iNaQDSLyEtDNXb6xT1Fv4L50dQsDPwFDVXWhv/Wp6kERWQa0BP5JV/Yh8CFAeJP78/yxmHbNa1GlfHE2Tn8BgIIRoQQGCHWql6P1Ta+lqXv0eDS3DR2X+v65+69mic9DFSHBQYx/cyC79x/j/he/yZsd8Ii29ctSpVRBNr5/IwAFwoIJDBDqVipK60enpKnbsFoJnvtqKUej4gF4b9p6nunTjBKFQjl8Io41/xylyzPTU+v/9lI3vpxz+i/sc0Gr2iWpVCKCv17qCkCB0CACAoTa5QrT9ZW0F1H1KxXltcnrOBadAMAnc7byaPd6FCsQwtGT8an1bmhZmTG/ZH5v9VzUpm4ZKpUqwMq3ugNQICyIwADhtwpd6PTML2nqNqhSlJe+W8Ux95h9NHMjT13fkOIFnVvmlUoW4KNfNxGfmEx8VDxfzd3KUzc05LlvV+TpPmUlJx8zLwIcdcOpDuDv4YWJQDngF8D3Jkcf4E5V/RpARAoA24ABvkEiIqWABDecwoHLgbTftllQ1aHAUN95bluLAQt85oW4bf1MVb/LbH0iEgE0AV7Pbhvyysc//MmEX049wvtQv8uoUr44g17+NkPdahVLEnkihmMnormsVV1uv64Nne8cBUBQUABfvXEHsXHx3PnM56h65xHUvPDJzA189+e21PcPdm9AldIFefDDjI/1Ltt8kJs61GTu2r1ExyUysGsd9hw+yeETcQA0qFKMTXuOEyAwsGtdyhaL4PPZm/JsX/LTF/O2M3nJqeGjuy+rRaUSETzx9YoMdVduP8oNF1diwcaDxMQncWv7auw9FpMmnJpXL07ZomHn3dN7n83ezMSFpy4e77uiDpVLFmDIuCUZ6i7feoRebarxx/oDxMQncseltdh7JJoj7gXU9gNR3H5pTcZM+5sCYUH0vqQaa3cey6tdyZbsBFSEiPgOTL7p/nxaRB7ymV8DuFtE1uPcm8nQ61DVE7iBknJT3v2S7wrc7VPvpIj8gXOvyvcbtRwwTkQCcYYnx6vqj+56ngeWqOoUEbkIJ2CKAVeLyHPuE3n+9Aa+0bTfvDcC7YASItLfnddfVVe401+KSAwQCoxV1Yy/zJHPYmITiIlNSH0fFR1HbFwCh45G0aZJDSaNuZdSbR4BoGndSrzx6A0UKRjOph0HuG3oONZv3QfAxY2q0639hUTHxLNv7hup67v2/nf5c/kWznUx8UnExJ8a6z8Zm0hsfBKHjsfSum4ZJg3tTOmbPwfgyXGLGXHHxawacwMhQQGs23GM3q/PSl22T/ua9L+0NsGBAcxfv5+rnv+Z+MQzeY7nvys2IYnYhFMj6CfjEolNSOJIVDwtapbgi/taU3uwM1jywg9reP7GhvzxfGeCA4UNe05w5/tpbzX3vLgy01fs4WRcYp7uR35zzse0xzEuIZnDJ+K4uHYpvh3SnioDnWvqZ75Zzis3N2PxG1cREhjA+t2R9Bt96rd9bh09j5f6NmVQt3okJSvz1u3n6S+X5/k+ZUXOtyvi/JAfQ3znIqneNL+bcE4oVvr8eXIwt8WePH8eFspNhz/rI/7m2391ZIwxxpMsoIwxxniSBZQxxhhPsoAyxhjjSRZQxhhjPMkCyhhjjCdZQBljjPEkCyhjjDGeZAFljDHGkyygjDHGeJIFlDHGGE+ygDLGGONJFlDGGGM8yQLKGGOMJ1lAGWOM8SQLKGOMMZ5kAWWMMcaTLKCMMcZ4kgWUMcYYT7KAMsYY40kWUMYYYzzJAsoYY4wnWUAZY4zxJAsoY4wxnmQBZYwxxpOC8rsB54Obn7w7v5twTuhUq1h+N+GcUKlgRH434Zyx5lBkfjfhnGY9KGOMMZ5kAWWMMcaTLKCMMcZ4kgWUMcYYT7KAMsYY40kWUMYYYzzJAsoYY4wnWUAZY4zxJAsoY4wxnmQBZYwxxpMsoIwxxniSBZQxxhhPsoAyxhjjSRZQxhhjPMkCyhhjjCdZQBljjPEkCyhjjDGeZAFljDHGkyygjDHGeJIFlDHGGE+ygDLGGONJFlDGGGM8yQLKGGOMJ1lAGWOM8aSgs1lYRKJUtWC6ecOBKFUdkc11bAd2qmpbn3krgCBVbeAzbxTQE6ikqsl+1hMGzAVCcfbrO1V91k+9dsAooCHQW1W/y6RdlYFxQFEgEHhCVaeJSAdgMrANJ+APADep6oHs7G9+KF0whOFdarJ013E+XrQrQ3lQgNC7STmaVChMoMDmw9F8sXQPx2ISAehYszitqxajQpFQFu+I5NPFu/N6Fzzh8N5dvPvYHdRr2Z7r738qQ/kXrzzBP3+vSn2flJhIyfKVuPeNjzl2aD/vPHJbmvoJcbF0vvluWl91Y6633Uv2797BM/ffTPM2HRkw5LkM5W89+xCb1q5MfZ+YmEDZClV4/p0vAXjs9ms5fuwoAQHO9XWNuhfyyAuj86bxHnJ0324+f/oual3UlivuejxD+cSRQ9m9cU3q+6TERIqVq0i/Fz8A4MA/W5j95Tsc2rmNkLAILuxwJRdf0zfP2p8dZxVQOaiQiFRS1Z0iUjd9oYgEAD2AnUB7YLafdcQBnVQ1SkSCgT9EZLqqLkxXbwfQHxhymjY9DYxX1fdEpB4wDajqls1T1avctr0C3AdkCEOvuKlpebYficm0/NJaJaheIpzhv2wiJiGZfs3L06dJOd6bvxOAYzGJ/LTuAPXLFiQk8PztdP/0ydtUqF4n0/Kbn3w1zftPnxtMtQZNAChasgxDx01LLTt6YC+jH7yFui3a5U5jPeyL90dQrVaGj3mqwc+NSvP+9SfuoU6j5mnmDXrmDeo1bpEbzfvP+O3zMZSpXjvT8h6PvJTm/YRXHqVSvUap76d/8Co1m7am5xNvcPzQfr596RFKVa5OjSatcq3NZyrPvm1EZJKILBWRtSIyMF3xeKCXO90H+DpdeQdgLfCeW56BOqLct8HuS/3U266qq4AMvbD0VYHC7nQRYI+ffRKgEHD0NOvKNxdVKkJMQhLrD5zMtE7JAsGs3RfFibgkEpOVxTsjKV84LLV8+e7jrNhzgpPxSXnRZE9aPf83wgoUTA2c0zl6YB87/l5No7ad/ZavnDuDKnUbUqx02Zxspuct+n0mEQUKUTdd4GTm0P49bFy3ktadrsjllv23bFg4h9CIAlSum73zMfLgPnZvXEPd1pelzjt+aD91WnUiICCQoqXLU6FWfQ7v/ie3mvyv5OXl8O2q2gxoDgwSkRI+Zd8D17nTVwNT0y2bEloTgW5uDykDEQl0hwcPADNVddFZtHc4cLOI7MLpPT3gU9bW3c4O4DLgk7PYTq4JCwrgmgalGb9ib5b1/th2lJolIygSFkRIoNCyclHW7DuRR630vtjok8weP5Yut9yb7WVWzptB5ToX+g0gVWXl3Bk0auc/vM5VMdEnmfzlh/S688FsLzP/t+nUrteIkmXKp5n/0YhnefCmrowcNoidWzfldFM9LS7mJPMnfkb7Pndle5n183+lQu0GFCl16nxs0vla1v35K0mJiRzZu5O9W9ZTuV72Ai+v5GVADRKRlcBCoBJQy6fsMHBURHoD64HolAIRCQGuBCap6nFgEdDF3wZUNUlVGwMVgRYi0sBfvWzqA4xV1Yru9j93hxrBGeJrrKqVgE+B19MvLCIDRWSJiCz5+9cJZ9GMf++aBqX5Y9tRjrr3kjJzICqeI9EJjOheh9E96lGucChT1x3Mo1Z63+zxn9K04xUUKVEq28usnDuDxu39nqbs+Hs1UZFHqXdx+5xq4n/CxM8/4JLOV1O8ZOlsL7Pgt+m0vqxbmnkDhjzHax9P5PVPJlHnwma8+cyDREedPxdU83/4jAbtulCoePbPx3V//kq9Sy5PM696o5ZsWjKP/w28mnFP3kn9dl0oW/2CnG7uWcmTgHIfLLgMaKWqjYDlQFi6at8C75BxeK8LzoMKq90HKi4B+ohIJRFZ4b7u9l1AVY/h3KfqegZtfCllfe6sO3CGHlHVBW57S/pZdAqQ4UaCqn6oqs1VtXmdy3pmtxk5plLRMOqVKcjMjYdPW/empuUJDgjgwUnruf+HdSzbfZwH21bJg1Z6397tm9m6ZikXd7sh28v88/dqoo4dyTSAVsydQb2W7QgNC8+pZnrejq0bWb9yMZ2v8TtC79emtSuIPHqY5m06pZlfq14jQkLDCA0Lo9uNtxJRsBAb167I4RZ704F/trBj7TKadrnu9JVduzeuITryKLUuSn0Ojdio40wc+TQXX9OXQR/9yJ1vfsE/q5eyclb6wav8lVcPSRQBjqpqtIjUAS72U2ciUA74BfDtz/cB7lTVrwFEpADOE3QD3N4S7vxSQIKqHhORcOBy4LXsNlBVhwJDfWbtAC4FxroPboQB/roVlwBbsrudvFK7VAFKFAjhtW7OTdTQoAACRCh3eQ1enJm2uZWKhjFx9X6i3XtMv206zLUNylAwJJCo8/i+E8D2dSs4dnA/b93XG4D42Bg0OZn3d23n7lc/9LvMyrm/ULdFW78BlBAfx7qFv9PrkYxPr53LNqxexqH9e3n0tmsAiIuNITk5mT0P9uPZtz/zu8yfs6bRtFUHwsIjsly3AH5uN5+Tdv29kuOH9vN/D98CQEKccxyP7NlB3+fe8bvMuj9mUrNZG0J8zsdjB/chAQHUa+P0qgoVL8UFLduzbdVfNLr06tzfkWw624CKcO/RpHjT/fm0iDzkM78GcLeIrAc24AzzpaGqJ3ADxXn2AEQkAqcXdLdPvZMi8gfOvapvfVZRDhgnIoE4PcPxqvqju57ngSWqOkVELsIJw2LA1SLynKrW97NvjwAfichgnLO/v6qq27aUe1ACRAJ3ZnmU8sG8rUdYvDMy9X3nC0pSMiKYL5ZleNaD7UdiaFW1KBsPniQ+MZmONUtwNDohNZwCBAJEEPcVFCAkq5J8HnwnNLv0Khq0PnUFP3/qtxw7uJ+r7nzIb/2E+DjWLsg8gNb/9YfzsEV9b43157Z2Xa6lRbtTQ0w///Alh/fv5Zb7HvNbPz4uliV/zOK+oWmvMQ8f2MeRQ/upVqseqsnMmjqBE8cjqVm3kd/1nGsu7HAlF7TskPp+6c/fEXloP5f2e8Bv/cT4ODYunsvVD6R9yLhY2Qqgyt8LfuOClh2IPn6MjX/NpWLdhrnZ/DN2VgGlqpkNEQ73M8/vYziqWtXPvO1Ayv2j4n7KM/Rv3Sfz/H7qVfUZn+nFOPeosqSq64A2fubPwekRelp8khKfdOreU1xiMgnJSlRcErVKRjCobRUemLgegAkr99GnSTlevKI2QQHC7shY3p2/I3XZbvVK073+qfsGraoWZcraA0xd69lf/coxIaFhhISeGo0OCQsnKCSEAoWL8s/6VXzx6hNpHh//e/EfhBUokGkArZz7C43aXp56EXa+CA1zhuRShIWFExwSQqEixdi4ZgWjhg/m3e9O/fbI8oVzCS9QiDoNm6VZT2xMNF+8+zoH9u4mOCSEStVqM/i5tyhY2PMfyRwRHBpGsM/5GBwaTlBwCBGFi7Jrw2omvfk0938wObV887L5hEYUpFK6AA8NL8BVDzzDHxM+ZtZn/yMoOJTqjVvS8uqb8mxfskNUz4PL4Hw2YPwaO8g5oFOtYvndhHNCpYJZD5mZ7FtzKPL0lcxp3d2qqt8rtvP3ty6NMcZ4mgWUMcYYT7KAMsYY40kWUMYYYzzJAsoYY4wnWUAZY4zxJAsoY4wxnmQBZYwxxpMsoIwxxniSBZQxxhhPsoAyxhjjSRZQxhhjPMkCyhhjjCdZQBljjPEkCyhjjDGeZAFljDHGkyygjDHGeJIFlDHGGE+ygDLGGONJFlDGGGM8yQLKGGOMJ1lAGWOM8SQLKGOMMZ5kAWWMMcaTgvK7AeeD9TuO5ncTzgm3NqmQ3004J5QvGp7fTThnjFu+O7+bcG5o5X+29aCMMcZ4kgWUMcYYT7KAMsYY40kWUMYYYzzJAsoYY4wnWUAZY4zxJAsoY4wxnmQBZYwxxpMsoIwxxniSBZQxxhhPsoAyxhjjSRZQxhhjPMkCyhhjjCdZQBljjPEkCyhjjDGeZAFljDHGkyygjDHGeJIFlDHGGE+ygDLGGONJFlDGGGM8yQLKGGOMJ1lAGWOM8SQLKGOMMZ5kAWWMMcaTgnJqRSKiwJeqerP7PgjYCyxS1atEpDtQT1VfzWT5xkB5VZ12htutCvyoqg38lI11y747k3WeayoWDWNc/2bM2XiIF6ZtyFAeHCg82LEG7WqVIChAWL3nOG/M3MyhqPgzWs+5bv/uHTxz/800b9ORAUOey1D+1rMPsWntytT3iYkJlK1Qheff+RKAx26/luPHjhIQ4FwX1qh7IY+8MDpvGu8hu3f+wz233sAlHS7jsWdeyVA+7JF7WbNqWer7xIQEKlauynuffc+xo4d5f9TrrF6xlNjYGKpWr8mA+x+hTv2GebkLnlC6YAjDu9Rk6a7jfLxoV4byoAChd5NyNKlQmECBzYej+WLpHo7FJALQsWZxWlctRoUioSzeEcmni3fn9S6cVo4FFHASaCAi4aoaA1wOpO6xqk4BpmSxfGOgOZAhoEQkSFUTc7CtWRIRAURVk/Nqm7np4ctq8ve+E5mW92xagQblC3HruGWcjEvksc61GNypBkOnrD+j9Zzrvnh/BNVq1c20fPBzo9K8f/2Je6jTqHmaeYOeeYN6jVvkRvP+M95582Vq16mfafkLI99N8/6x+++gUbOLAIiJjqF23foMfGAIRYoV55cfJ/LsYw8wdsJ0wiMicrXdXnNT0/JsPxKTafmltUpQvUQ4w3/ZRExCMv2al6dPk3K8N38nAMdiEvlp3QHqly1ISKA3B9NyulXTgG7udB/g65QCEekvImPc6Z4iskZEVorIXBEJAZ4HeonIChHpJSLDReRzEfkT+FxEqorIPBFZ5r5a/5sGikhBEZnlrmO1iFzjzq8qIhtE5DNgDVBJRIa58/4Qka9FZIhbt4aI/CwiS9021fm3Byy3XXpBKaLiElm641imdcoVCWPR9qMcjU4gPkmZteEg1Uqm/bBnZz3nskW/zySiQCHqpguczBzav4eN61bSutMVudyy/5Y5v06nYMHCNG7WMlv19+/dzdpVy7is69UAlKtQket696N4yVIEBgZy5TU3kJCQwK4d23Ox1d5zUaUixCQksf7AyUzrlCwQzNp9UZyISyIxWVm8M5LyhcNSy5fvPs6KPSc4GZ+UF03+V3I6oL4BeotIGNAQWJRJvWeALqraCOiuqvHuvG9VtbGqfuvWqwdcpqp9gAPA5araFOgF/NuxkVigh7uejsBIt8cEUAt4V1XrA6WB64FGwBU4vbsUHwIPqGozYAiQ9pLPIyJCArmzTWX+N3trlvV+XL2PCysUpkSBEEKDAuhctzQLtx094/Wcq2KiTzL5yw/pdeeD2V5m/m/TqV2vESXLlE8z/6MRz/LgTV0ZOWwQO7duyummetrJk1F88X/vMuCBIdle5tefp1K/YVPKlKvgt3zLpr9JTEygfMVKOdVMzwsLCuCaBqUZv2JvlvX+2HaUmiUjKBIWREig0LJyUdb8x0ZAcnKID1Vd5d4T6oOfoToffwJjRWQ88EMW9aa4w4UAwcAY915VElD7XzZTgJdFpB2QDFQAyrhl/6jqQne6DTBZVWOBWBGZCk4PDGgNTDiVa4T+y7bkqgFtqvDjmv0cTHcvKb1dR2M4cCKeyfe0JDFZ2XrwJG/OWn3G6zlXTfz8Ay7pfDXFS5bO9jILfptOt17908wbMOQ5qtS4AFX4dcq3vPnMg7z0/rdEFCyUwy32ps8/eofOV/WgVOkyp6/smvXzj/S5dYDfspMnoxjxwlD63nY3Bc6TYwhwTYPS/LHtKEdjsr7rcSAqniPRCYzoXoekZGV3ZCxf/Z51qHlNbgw8TgFG4DO8l56q3g08DVQClopIiUyq+vZfBwP7cXo0zYGQ9JVF5FN3iDCrcOwLlAKaqWpjd50p/d7M+8unBADH3J5eyivDjQkRGSgiS0Rkyb6FWd16yx01SxWgeZWifLvk9Dc+H76sJiGBwhVjFnD523/y+6ZDjLy+/hmv51y0Y+tG1q9cTOdr+mR7mU1rVxB59DDN23RKM79WvUaEhIYRGhZGtxtvJaJgITauXZHDLfamLZv+ZvmShfTodUu2l1mzchlHjxzikg6XZyiLi4tl+OODqFO/Ib1uuSMnm+pplYqGUa9MQWZuPHzaujc1LU9wQAAPTlrP/T+sY9nu4zzYtkoetDLn5GgPyvUJzhf4ahHp4K+CiNRQ1UXAIhG5AieoTgBZXQYVAXaparKI3AoEpq+gqrdlo31FgAOqmiAiHYHM/sX+BD4QkVdwjtNVwIeqelxEtolIT1Wd4A4PNlTVlb4Lq+qHOEOBXDJinmajXTmqSaUilC0Sxvd3OTfkw4MDCRSoeksT7vh8eZq6tUoX4MN52zkR61yRfb98DwMuqUqR8KAzWs+5aMPqZRzav5dHb7sGgLjYGJKTk9nzYD+effszv8v8OWsaTVt1ICw865v2Tv87z0+NfLFq+RL279vDrdd3ASAmJprkpGTu396LMZ9863eZWT9PpU27SzM8/BAfH8/zTz5EyVJleODRYbnedi+pXaoAJQqE8Fo3ZwApNCiAABHKXV6DF2duSVO3UtEwJq7eT7R7j+m3TYe5tkEZCoYEEuXh+06+cjygVHUXp78/9IaI1ML5jM4CVgI7gCdEZAWQ8dlT5z7P9yLSD/iZ7PV2wAmZUe70TuBqYKqIrAaWAH9nsh+LRWQKsAqnl7UaiHSL+wLvicjTOEOP37j74BlTVu1j1t8HU9/3uagiZYuEMXLm5gx11+87Qdf6ZVi+M5LYxGR6NC7PwRNxRMYkntF6zkXtulxLi3anruB//uFLDu/fyy33Pea3fnxcLEv+mMV9Q19LM//wgX0cObSfarXqoZrMrKkTOHE8kpp1G+Vq+73iiu7X0/7Srqnvv/96HPv37eH+R4b6rR8XF8vc32Yw7OU308xPTEzgpacfITQ0jCFDX0h9ZP98MW/rERbvjEx93/mCkpSMCOaLZXsy1N1+JIZWVYuy8eBJ4hOT6VizBEejE1LDKUAgQARxX0EBQrIqyR66ZsqxgFLVgn7mzQHmuNNjgbHu9HV+VnEEuCiL9W/CefAixePu/O1Aht+Bcsv6Z7K6VpnMT7+eEao6XEQigLnAUne924Cu6Rf2krjEZOISTz0lH5OQRHxiMsdiEmhYoTAjrm9A59HzAXhnzjYe6lSDb+5sTlBAANsOneSpyetOu57zQWiYMySXIiwsnOCQEAoVKcbGNSsYNXww7343O7V8+cK5hBcoRJ2GzdKsJzYmmi/efZ0De3cTHBJCpWq1GfzcWxQsXCTP9iU/hYWFExYWnvo+PDyCkJAQihYrzpqVyxg25F4mzlyYWr5g7mwKFixEo6ZpH8lft3olf82fS2hoGDdccUnq/BdGvEuDRk1zf0fyWXySEp906t5TXGIyCclKVFwStUpGMKhtFR6Y6Px6yISV++jTpBwvXlGboABhd2Qs787fkbpst3ql6V7/1H3VVlWLMmXtAaauPZB3O3QaouqhuPQYEfkK50nCMGCcqvrr2Z1WfgzxnYtevcbvdYg5Q+WLhp++ksmWV2afHyMJue2jGxuIv/m5cQ/qnKGqN+V3G4wx5nx1fg3gGmOM+c+wgDLGGONJFlDGGGM8yQLKGGOMJ1lAGWOM8SQLKGOMMZ5kAWWMMcaTLKCMMcZ4kgWUMcYYT7KAMsYY40kWUMYYYzzJAsoYY4wnWUAZY4zxJAsoY4wxnmQBZYwxxpMsoIwxxniSBZQxxhhPsoAyxhjjSRZQxhhjPMkCyhhjjCdZQBljjPEkCyhjjDGeZAFljDHGk0RV87sNxgNEZKCqfpjf7fivs+OYM+w45pz/8rG0HpRJMTC/G3COsOOYM+w45pz/7LG0gDLGGONJFlDGGGM8yQLKpPhPjlF7kB3HnGHHMef8Z4+lPSRhjDHGk6wHZYwxxpMsoIwxxniSBZRHiEhFEZksIptEZKuIjBGR0Fza1hsi8reIrBKRiSJSNJN620VktYisEJElmdS5wC1PeR0XkYey2o6IdBCRSLf+KhH5VURK/8t9ifIzb7iIDDmDdWwXkXnp5q0QkTXp5o0Skd0i4vdzIyJhIvKXiKwUkbUi8lwm9dqJyDIRSRSRG7Jo11s+x3WjiBxz5zcWkQXuNlaJSC+fZeaIyAZ3mfUicsaPGJ/jx7SyiMwWkeXusbvSnZ9j56SfbaqIfOHzPkhEDorIj+777iLyRBbLN05p5xlut2r64+1TNjar4+QVFlAeICIC/ABMUtVaQC0gHHg9lzY5E2igqg2BjcCTWdTtqKqNVbW5v0JV3eCWNwaaAdHAxGxsZ567XENgMXDfWe3R2SskIpUARKRu+kL3C7QHsBNon8k64oBOqtoIaAx0FZGL/dTbAfQHvsqqQao62OfY/g/nHAHnGPdT1fpAV2BUuouMvu4ybYDXRCQkq+3kIs8dU+BpYLyqNgF6A+/6lOXWOXkSaCAi4e77y4HdKYWqOkVVX81i+caA34ASkaAcamO2iCPPcsMCyhs6AbGq+imAqiYBg4F+IjJLRBoCuFd9z7jTz4vIAHf6URFZ7F75PefOq+peQX/kXnnOSPmAqOoMVU10t70QqJhD+3EpsEVV/8nudtxwLgQczaE2ZEpEJonIUvd4pO9ZjAdSeiJ9gK/TlXcA1gLvueUZqCOl9xHsvjI8haSq21V1FZB8Bs1PbZOqblTVTe70HuAAUMrPMgVxvhyTzmA7Z+Q/eEwVKOxOFwH2+Nmn3DgnpwHd3Ok0x0JE+ovIGHe6p4iscXuMc92Li+eBXm7vrpfbm/1cRP4EPnc/6/PcHuQyEWn9bxooIgXd75tl4oycXOPOr+r2yj8D1gCVRGSYO+8PEfk6pXctIjVE5Gf3nJgnInX+7QEDQFXtlc8vYBDwlp/5y4EncK7kiuBc1f3ils0GLgA64zxGKjgXHD8C7YCqQCLQ2K0/HrjZzzam+pvvlm0DlgFLgYHZ2I9PgPszKUvdDs4XUySwAufq+W+g8L88dlF+5g0HhviZX9z9Ge5+0Eq477e7x3K+z3GvB6zxWfYj4BacL7fdQHAm7Ql09ysKeO00bR8L3JCNfawC7AUC/ZS1ANYDAe77OcAGYBUQA9xlxzRNeTlgNbALJ4Ca5fQ56e94Ag2B74AwdxsdgB/d8v7AGHd6NVDBnS6avtzn32IpEO6+jwDC3OlawBJ3uqrv8T7dcQKCUvYZKAlsxvleqYoT/Be7ZRe5+xCGE+SbUs4NYBZQy51uCfx2NsfOelDeNw8ncNoAPwEFRSQCqKaqG3ACqjPOF8AyoA7OSQqwTVVXuNNLcU60VCIyFCfEvsxk25eoalPgCuA+EWmXWSPdK73uwAQ/Zf62kzKcUgn4lNwbzvQ1SERW4vTmKnHqOAEcBo6KSG+cL/zolAJ3367EGYI9DiwCuvjbgKomqTO8VhFoISINcqDdvYHv1OlZpxKRcsDnwG2q6ttz6KvOMFVlYIiIVMmBNmTmv3ZM+wBjVbWiu/3PfYascu2cVKd3V9Xd/rQsqv4JjHVHRwKzqDdFVWPc6WDgIxFZjfP5q/cvmynAyyKyCvgVqACUccv+UdWF7nQbYLKqxqrqCZyLT0SkINAamCAiK4APcC4I/rU8Hb80mVoHpLlhKSKFgbI4V6XNga0493RKAgNwAgeck+oVVf0g3fJVccbvUyThXOWmlPcHrgIuVfdyJz1V3e3+PCAiE3G+HLbhnpDA+6r6vjt9BbBMVfena8dptwNMAb7PpCxHiEgH4DKglapGi8gcnCtAX98C7+BcsfrqAhQFVjujP0QAMe4Xs79jgaoeE5HZOPeI/N6o9tPGl3CHgdwv5BS9SXc/xD0/fgKG+nxxpKGqB0VkGc6V7D/ZacOZ+I8e0zvc5VHVBSIShvOZSi83zskpwAic3lMJfxVU9W4Raem2eamINMtkXSd9pgcD+4FGOKMosekri8inQBNgj6pm9sBFX5yh4maqmiAi2zn173kyk2V8BQDH0p27Z8V6UN4wC4gQkX4AIhIIjMTp1kfiDDn0BBbg9KiGAHPdZX8BbnevXhCRCnKap49EpCvwGNBdVaMzqVNARAqlTOP00tao6k73KrOx75cHfu4xZGc7rkuALVm1OQcUAY66X6R1AH832ifiXDX/km5+H+BOVa2qqlWBajg3ug/7HgsRKSWnnlQMd+v8nd0GqupQPfVQBO566gDFcP7tU+aFuG39TFW/y2x9bk+7Cbl3bP+Lx3QHzr3SlAc3woCDfhbNjXPyE+A5VV2dWQURqaGqi1T1GbddlYATOENpmSkC7HV70bfgp+elqre5xyGrpwGLAAfccOqIM7Tsz5/A1eI8YVkQ5wIUtye8TUR6uvsiItIoi+2dlgWUB7g9ix7ADSKyCWdoJFlVX3KrzMM5cWLc6YruT1R1Bs6TSwvcLv53ZH0yA4xx68x0b7y+DyAi5UUkZfihDPCHe0X7F/CTqv7sb2VugF3OqafMstyOq607byXOh+qR07Q5MxEissvn9bA7/2nf+cDPQJCIrAdexRmSSkNVT6jqa6oa77NvEThX3D/51DsJ/AFcnW4V5YDZ7hDJYmCmqqY8Svy8iHR3py9y29QT+EBE1maxf72Bb9L1Pm/EGfbtL6ceQ2/sU/6lO8SyFGc4ayln5lw+po8AA9zz7mugv8+xzalz0i9V3aWqo09T7Q1xHlBYA8wHVuLcb67ntq2Xn2XeBW51212H7PV2wDlOKf+eC3CG4Ju73yP9yORCQFUX4/QGVwHTce6bRbrFfYE73LasBa7JZlv8sv/qyIPEeQrna6CHqi7L7/YYY4wvESmoqlHuxcZcnIeocvy7ygLKGGPMGRGRr3AexggDxqnqK7myHQsoY4wxXmT3oIwxxniSBZQxxhhPsoAyxhjjSRZQxhhjPMkCyhhjjCdZQBljjPEkCyhjjDGeZAFljDHGkyygjDHGeJIFlDHGGE+ygDLGA8T5s9/q80oSkd0iMl5ELvCpN1xEzur/JxORvu42lmdRp7GIfC8iO0QkTkT2ishsERnkp255EXlHRLa5dQ+IyA8ictHZtNMYCyhjvKUn0Arnz2k8ifP3nGaJSBG3/P/c8rNxq/uzsYhcmL7QDZaFOH/I7zGcPy74KM6fku+Rrm4jnD//fQXwGs7fDXsA548RzheRm86yreY8Zv9ZrDEeIM5fHv4UqKWqm33mX4bzl5SvVNXpObCdCjh/tO8XnFAZqapD0tX5DCdoqqhqXLqygJQ/Ly8iwTh/DRrgYlU97FsP58+PXwFcqKq5/QcpzTnIelDGeNtx92cw+B/iE5HCIjJGRPa4Q2wbRGSwiPO31NO5Bedz/yzOX0btK85fcPZVHOcv5calXzglnFzXATWBp3zDyafeA267H8zuzhrjywLKGG8JFJEgEQl1/yT5y8ABYI6/ym5P5SfgNmAkzl+k/Rl4E3jJzyK3Auvdv4r6GVAWp7fk6y+gjoi8LyItRCQok7ZeCiTh85dxfanqHpy/6ntZJssbkyULKGO85W8gAYjFGT6rC1ylqsczqX8lcAlwn6qOVNUZqvog8DHwiIiUTKkoIi1w/iT45+6s8e52bk23zjeAScBdwCLguIjMEJEBbiCmqAQcVNXoLPZnO1Al6102xj8LKGO8pQdwEdACuBYnpKa5vSl/2gHJwFfp5n8BhJD2gYpb3bpfAKjqMWAycI3PQxioaoyq9gDq4zwcMR1oDnwITM9k6DAryaevYkxGFlDGeMsaVV2iqotVdTLQHRBgeCb1iwNHVDU+3fx9PuWISAjQG1gAnBCRoiJSFJiI82e7b0y/YlVdp6ojVPV6oDxOsHUGurlVdgGlRCQii/2pCuzOotyYTFlAGeNhqhoDbAUaZlLlCFDcDSBfZX3Kwbk3VRxoAxz1eX3jlqcf5kvfjlicoT+Aeu7PWUAgpwIrDREpDzQDfs9q3cZkxgLKGA9zeyc1gIOZVPkd53PcM938vkA8To8JnAA6ifPAQsd0r7FAGxGp4W6zXCbbquP+3Ov+/B7YArwsIsXTtTsAGO227cOs9tGYzGT2dI4xJn80dh9sEKAccD9Oz+d/mdSfDvwBvC8ipYC1OA9O3Am8oqqHRKQ0zu8jfaGqs9KvQET2Af2BfjiPn38oIoVxAmgNTi/pIpxf2t2CMyyIqiaISE+c39NaLCJv4NwzKwPcgxN+T6jq0rM6Iua8ZQFljLdM8Jk+iBMQXVX1F3+VVTVZRLrhPI7+OFAC58m5h4FRbrWbcD7rn2Syjr9FZD7QT0SGA2PcZe7DufcUgnO/6QvgBVWN8ll2uYg0Bp4CngAquNtKALqr6tQz2ntjfNj/JGGMyVEicgUwFXhbVR/J7/aY/y67B2WMyVHuf8l0H/CwiDye3+0x/13WgzLGGONJ1oMyxhjjSRZQxhhjPMme4ssD4S2G2DhqDjg6f0R+N+GcUKz1kNNXMiYPxfw1wu9/n2U9KGOMMZ5kAWWMMcaTLKCMMcZ4kgWUMcYYT7KAMsYY40kWUMYYYzzJAsoYY4wnWUAZY4zxJAsoY4wxnmQBZYwxxpMsoIwxxniSBZQxxhhPsoAyxhjjSRZQxhhjPMkCyhhjjCdZQBljjPEkCyhjjDGeZAFljDHGkyygjDHGeJIFlDHGGE+ygDLGGONJFlDGGGM8yQLKGGOMJ1lAGWOM8aSzDigRqSgik0Vkk4hsFZExIhKaE43zs603RORvEVklIhNFpGgm9baLyGoRWSEiSzKpc4FbnvI6LiIPZbUdEekgIpFu/VUi8quIlM6Nfc1JNSqV5Oi8V/jkuT5+y0OCAxn9xPVsn/4su2c+z3cjb6d8qcKpZe893ZMNk4dyYPaLLPxiMJ1b1cnL5ue7Jx8fwqXtL6F1i6ZcfWUXfvhugt9606f9RPduXWjTshkd2rbi6ScfJyoqKrV865Yt3HlbP9q0bMZVXS9n1q8z82oXPMXOx5xxPhzHswooERHgB2CSqtYCagHhwOs50DZ/ZgINVLUhsBF4Mou6HVW1sao291eoqhvc8sZAMyAamJiN7cxzl2sILAbuO6s9ygOjHu3B0vU7My2/v3dbWl5YhRZ9R1K92/McOxHNm0N6ABAUGMiu/ZFcfve7lOk0jOfe/5kvXr6ZyuWK5VXz890dA+5i+szfmP/XMkaPeZcxo0exbu2aDPWaNGnKuC++5s9FS5n2868kJSUyZvQoABITE3nwgXtp174jc+f/xbDhz/PUE4+yffu2PN6b/GfnY844H47j2fagOgGxqvopgKomAYOBfiIyS0QaAojIchF5xp1+XkQGuNOPishitzfynDuvqoisF5GPRGStiMwQkXB3/TNUNdHd9kKg4lm2P8WlwBZV/Se723HDuRBwNIfakCt6Xt6YyKhYZi/enGmdKuWL8+vCDRw4EkVcfCLfzVxJ3eplAIiOjeelj2awY+9RVJXpf6xn+54jNK2TU4fe+2rWrEVISAgAIoKIsHPnjgz1ypYrR7FixVPfBwQGsnPHPwBs27aVgwcOcMut/QkMDKTlxa1o3KQpP06ZnDc74RF2PuaM8+U4nm1A1QeW+s5Q1ePAdpxeSFsRKQIkAm3cKm2BuSLSGafH1QJoDDQTkXZunVrAO6paHzgGXO9n27cD0zNplwIzRGSpiAzMxn70Br7OpCz9dtqKyApgB3AZ8Ek21p8vChUIZdhdXXh81JQs642b8hetGlalXMnChIcG07trE2bM/9tv3dLFC1KrcinWbd2XG032rJeeH07LZo245qorKFmqFG3btvdbb9nSJbRp2YxWLZry68wZ9L3l1sxXqsrmzZtyp8EeZOdjzjifjmNQLq57HjAI2Ab8BFwuIhFANVXd4PaiOgPL3foFcYJpB7BNVVe485cCVX1XLCJDcULvy0y2fYmq7nbvD80Ukb9Vda6/iiISAnTHz3BhJtuZp6pXueWP4wxn3p3ZQchPz97VlXFT/mL3gcgs623ecYhd+4+xddozJCYmsWbLPga/MTFDvaDAAD59/ia++GkJG/85mFvN9qShzwzniaHDWLliOUsW/0Ww26NKr2mz5vy5aCn79+/nh+/GU75CBQCqVq1G8RLFGfvJ/3Fzv/4s/msRSxYv5qIWLfNyN/KVnY8543w6jmfbg1qHc/8mlYgUBsoCa4DmuD0mnCAawKkelwCvpNwHUtWaqvqxWxbns8okfIJURPoDVwF9VVX9NUpVd7s/D+DcV2ohIpV8HojwDZQrgGWquj/dfpx2O8AUoJ2/AhEZKCJLRGRJ4oFVmSyeexrWKk/HFrUY/ZXfXE5j1GM9CA0JovxlwyjR/ikmz17N5FED0tQRET55rg/xCUl+T/LzQWBgIE2bNWf//n2M/zazDrejTJkytLmkLY8PeRiA4OBgRo1+h3lzf+fS9pfw2dhP6dy1K2XKlsmLpuc7Ox9zxvl2HM+2BzULeFVE+qnqZyISCIwExqhqpIjsBHoCzwOlgBHuC+AX4AUR+VJVo0SkApCQ1cZEpCvwGNBeVaMzqVMACFDVE+50Z+B5Vd2JM5SYXh/SDe9lZzuuS4At/gpU9UPgQ4DwFkMyC7hc065ZDaqUK87GqUMBKBgeSmBAAHWqlaF1v1Fp6jasXYHh703n6PEYAN4b/wfP3t2VEkUiOBzp7P77T99I6eKFuHbw/5GYlJyn++I1SUlJ7PJzDyq9xMTENPVqX1CHT8Z9kfq+X9/eXH3NtbnRRM+x8zFnnG/H8awCSlVVRHoA74jIMJwQ+lZVX3KrzAMuVdUYEZmH87DBPHfZGSJSF1jgPG9AFHAzTo8pM2OAUJxhO4CFqnq3iJQH/k9VrwTKABPd8iDgK1X92d/K3AC7HLgrO9txy1LuQQkQCdx5msOULz6euJAJM1ekvn+ob3uqlCvOoNe+z1B36bqd9L2yGXOXbiE6Np6BN7Rmz4HI1JN49BPXU6dqaa68/wNi4xIzLH8uO3z4MH8tWkj79h0IDQtj4YL5TJ/2E6+9PjJD3Z9+nELTps0pV748e/bsZszoUbS4uFVq+cYNf1OlajWSk5MZ/81XHDx4gGuuvS4vdyff2PmYM86343jW96Dcnkl3ABFpDXwtIk1VdZmqDgOGufX24Hyp+y77NvC2n9U28Kkzwme6ZiZt2ANc6U5vBRpls+0ngRJ+5me2nTlAkeysO7/FxCUQE3eqQxoVE09sfAKHjp2kTeNqTBp1J6U6OFdhT46eyshHrmX1908QEhzIui376PXYWAAqly3GgOtaERuXwPbpz6au74FXvuObX5ZzrhMRJnz7NS89/yzJycmUK1+Bxx5/ig6dLmXvnj306N6NiVN+olz58mzdsoVRb47g+PHjFC5cmLZt2zNo8MOp6/px6mR++P47EhMSadqsGR989Gnq04HnOjsfc8b5dhwl89srJqfkxxDfuejo/BGnr2ROq1jrIfndBGPSiPlrhPibb//VkTHGGE+ygDLGGONJFlDGGGM8yQLKGGOMJ1lAGWOM8SQLKGOMMZ5kAWWMMcaTLKCMMcZ4kgWUMcYYT7KAMsYY40kWUMYYYzzJAsoYY4wnWUAZY4zxJAsoY4wxnmQBZYwxxpMsoIwxxniSBZQxxhhPsoAyxhjjSRZQxhhjPMkCyhhjjCdZQBljjPEkCyhjjDGeZAFljDHGkyygjDHGeFJQfjfgvJAQm98tOCfUe2xafjfh3BBoH/scExed3y04p1kPyhhjjCdZQBljjPEkCyhjjDGeZAFljDHGkyygjDHGeJIFlDHGGE+ygDLGGONJFlDGGGM8yQLKGGOMJ1lAGWOM8SQLKGOMMZ5kAWWMMcaTLKCMMcZ4kgWUMcYYT7KAMsYY40kWUMYYYzzJAsoYY4wnWUAZY4zxJAsoY4wxnmQBZYwxxpMsoIwxxniSBZQxxhhPsoAyxhjjSRZQxhhjPMkC6jxQo3Ipji58i09e7Oe3PCQ4iNFDe7P915fZPec1vht1F+VLFUkt/+WjBzm68C0O/jmSg3+OZOXEYXnVdE+pWjKC9a914c2+jbKsFxwozHi8HX8+0zHN/FY1SzDl4TasfPly5gztQO+LK+Vmcz2rRsUSHJ3zAp8828tveUhwIKMfu5btPw1l9y/P8N0bt1K+VOHU8mKFw/n21Vs49NvzbPjhcXp1zvrf41xVo1Ipji4YyScv3uK3PCQ4iNFP3cj2mS+ye/YrfDdqYJrPdXbXk59OG1AiEuVn3nARGZLdjYjIdhGZl27eChFZk27eKBHZLSJ+2yUiYSLyl4isFJG1IvJcJvXaicgyEUkUkRuyaNdbbjtWiMhGETnmzm8sIgvcbawSkV4+y8wRkQ3uMutFZGB2j0N+GfXEjSxd+0+m5fff1IGWDavS4sZXqN55KMdORPPm4z3T1Bn82nhKtXmEUm0eoVGPF3K7yZ703PX1WbUz8rT1BnSszpGo+DTzggKE929rytcLdtDoqZkM+mw5Q6+pS53yhXKruZ41asg1LF2/K9Py+29sQ8sGVWhx89tUv/pljp2I4c2Hu59a/pFriE9IpEq3F7lt+De8/WgP6lYrnRdN95RRT/Rk6bodmZbff1N7WjasRoter1G9yzCOHY/mzcczfh2ebj35KS97UIVEpBKAiNRNX+iGUg9gJ9A+k3XEAZ1UtRHQGOgqIhf7qbcD6A98lVWDVHWwqjZW1cbA/4Af3KJooJ+q1ge6AqNEpKjPon3dZdoAr4lISFbbyU89uzQj8kQMs//amGmdKhVK8Ov89Rw4coK4+ES++2UZdWuUy8NWet9VjctxPCaR+ZsOZ1mvYvFwrm1WgfdmbUkzv2hEMIXCg5m4ZDcAq3ZGsmV/FLXKFMy1NntRz8saEhkVy+wlWzKtU6V8cX5dtJEDR6Oc8/HXldStVgaAiLBgru3YgOc+nMnJmHjmr/qHn+at46auTfNqFzyhZ+emp/9cly/Brwt8PtczllG3etkzXk9+ytGAEpFJIrLU7Xmk71mMB1J6In2Ar9OVdwDWAu+55RmoI6VHF+y+1E+97aq6Ckg+g+antklVN6rqJnd6D3AAKOVnmYLASSDpDLaTZwoVCGPYPd14fOQPWdYbN2kBrRpXp1ypIoSHBdP7youY8ee6NHWef6A7O397ld8+HUzbZrVys9meUzA0iMFda/PS5PWnrTu8R31GTNtAbELaU+JQVDxTlu2hZ4tKBAg0qVKU8sXCWbLtaG4123MKRYQybMDlPP72j1nWGzd1Ma0aVqFcyUKEhwbTu0sTZizcAECtyqVITEpm885DqfVXb95L3eplcrXtXuJ8rq/k8TcnZllv3KQFtGpUnXIlCzuf6yuaM2P+qXM4u+vJT0E5vL7bVfWIiIQDi0Xke1VNueT8HvgUGAFcDfQFfAc9UwJiMvCyiASrakL6DYhIILAUqAm8o6qLzrbRIlIFqAb85qesBRAC+F7yfSkicUAt4CFV9WRAPXtvN8ZNms/uA8eyrLd5xwF27T/G1hkvkZiYxJrNexj86vjU8qffnsT6rfuIT0iiZ9dmfP/2XbTs/Srbdh3KYq3njsFX1GL8XzvZFxmbZb3OF5YhIABmrN5PyxrFM5RPWbaHV3tdyLBrnQGEYd+vZe+xrNd5Lnl2YGfGTV3C7oPHs6y3eechdu2PZOvUoc75uHU/g0dOBqBgeAjHT8alqR8ZFUuhiNBca7fXPHvPlYybtPD0n+udB9m1/yhbZ7zofq73Mvi1MWe8nvyU00N8g0RkJbAQqITzBZ7iMHBURHoD63GG0QBwh8iuBCap6nFgEdDF3wZUNckdXqsItBCRBjnQ7t7Ad+mDRkTKAZ8Dt6mqb2+sr6o2BCoDQ9yAI92yA0VkiYgsSTy0NgeaeGYa1q5Ax5Z1GP3F7NPWHfXEjYQGB1G+/WOUaP0Ik39byeQx96aWL17zD1HRccQnJPLl1EUsWLGVrpfUz83me0bd8oVoU7skn/y+Lct64SGBPHFVHZ6fuM5vefXSBRh9S2Me+WolFzz2M11en8ddHavTsa6/jvm5p2GtcnS8qCajv/njtHVHDbmW0JAgynd5jhKdnmHynDVMfvM2AKJi4ilcIG0YFS4QxonoOH+rOuc4n+sLGP1ldj7XPZ3PdYcnKNHmUedz/b+7z3g9+SnHelAi0gG4DGilqtEiMgcIS1ftW+AdnPtDvroARYHVIgIQAcS4YTfVrfO+qr6fsoCqHhOR2Tj3iNaQDSLyEtDNXb6xT1Fv4L50dQsDPwFDVXWhv/Wp6kERWQa0BP5JV/Yh8CFAeJP7MwxD5rZ2zWtRpXxxNk53HmgoGBFKYIBQp3o5Wt/0Wpq6DS+oyPB3pnL0uHPN8N7Xv/PsvVdRomgBDh87mWHdiuL8M537Lq5ZgorFwvljWCcAIkIDCQwQapYpSPc3/0ytV7VkBBWKh/Pt/a0ACA4SCoUFs2j4pVz39nwuKFuIbQdPMm+D0+vcdvAks9cfoH3dUsxefzDvdyyPtWtanSrlirFx0hOA0xMKDAygTrXStO7/vzR1G9Yqx/APZnD0eAwA702Yz7MDO1OiSASbdhwkKDCAGhVLsGWXMzhzYa1yrN+6P293KJ+kfq6nOc+HpX6uvyxL675vpKnbsHYFhr/z06nP9TdzefbebpQoWuCM1pOfcnKIrwhw1A2nOoC/hxcmAuWAX4DyPvP7AHeq6tcAIlIA2AYM8A0SESkFJLjhFA5cDqT9ts2Cqg4FhvrOc9taDFjgMy/EbetnqvpdZusTkQigCfB6dtuQVz7+4U8m/LI09f1D/S6jSvniDHr52wx1l67dQd+rWjJ3ySaiY+MZeGNb9hw4xuFjJylSMJyLLqzKvKWbSExKpmfnplzStCZDXv8+L3cn33y9YAdTl+9JfT+gQ3UqFg9n2Hdpe8Ub90XR5vlTI8TNqhZj+HX1ufrNPzgSFU9ggFC1VAFa1SzBgs2HqVwigo71SvPhb1vzbF/y08eT/mLCzJWp7x/q244qZYsx6I1JGeouXb+Lvlc0Ze6yLUTHJjDw+ovZczCSw5HOF+3kOWt5ZsDl3PPK9zSqXZ6r2taj48B382pX8lWGz/UtnahSvgSDXh6foe7SdTvoe9VFzF2a8rm+JPVzfSbryU/ZCagIEfF9JvRN9+fTIvKQz/wawN0ish7YgDPMl4aqnsANFLenlPIl3xW426feSRH5A+dele83ajlgnHsfKgAYr6o/uut5HliiqlNE5CKcgCkGXC0iz7lP5PnTG/hGVX17OTcC7YASItLfnddfVVe401+KSAwQCoxV1aV4TExsAjGxp27hRUXHERuXwKGjUbRpUoNJY+6lVJtHAHjyrYmMfOwGVk9+lpDgQNZt3kuvhz8CIDg4kOH3XUXtqmVISk5m47b93Dj4IzbvOJAv+5XXYhOSiU049ch4dHwScYnJHDkZz0XVivHJwIu48MkZJCUrh06cqncsOoFkPTVvx+FoHv9mFc/0qEeFYuGciE1gyrI9fLtoZ57vU36IiUsgJs73fIwnNj6RQ8dO0qZRVSa9eRulLn0WgCf/N42RD1/N6vGPOufj1v30euLz1GUfHDGJD566gR3ThnEkMpoH35jI+m3nx/mY4XMdE09sfAKHjkXRpkl1Jv3vHkpd8igAT741iZGP3sDqScNOfa4f+b/TrsdLJO33sskN+THEdy4q1/HK/G7COWHvgrn53YRzR1z06euY04pZNtrvTQP7nySMMcZ4kgWUMcYYT7KAMsYY40kWUMYYYzzJAsoYY4wnWUAZY4zxJAsoY4wxnmQBZYwxxpMsoIwxxniSBZQxxhhPsoAyxhjjSRZQxhhjPMkCyhhjjCdZQBljjPEkCyhjjDGeZAFljDHGkyygjDHGeJIFlDHGGE+ygDLGGONJFlDGGGM8yQLKGGOMJ1lAGWOM8SQLKGOMMZ5kAWWMMcaTgvK7AeeFwOD8bsE5Ye+6v/O7CcakVaBofrfgnGY9KGOMMZ5kAWWMMcaTLKCMMcZ4kgWUMcYYT7KAMsYY40kWUMYYYzzJAsoYY4wnWUAZY4zxJAsoY4wxnmQBZYwxxpMsoIwxxniSBZQxxhhPsoAyxhjjSRZQxhhjPMkCyhhjjCdZQBljjPEkCyhjjDGeZAFljDHGkyygjDHGeJIFlDHGGE+ygDLGGONJFlDGGGM8yQLKGGOMJ1lAGWOM8aSg/G6AyX01KpVkyTePMXHWSm5/5ssM5SHBgYwYch3dO1xIcFAAC1ZuZ9ArE9hzMBKAT57vS4cWtSkQFsL+w8d587PfGDt5UV7vRr6rUb4oS97vx8Q/NnH769MzlE96oQdtGlRIfR8SFMjGXUe56J7PKFUknBH3dKTthRWJCAtm3fZDPP7h7yzesC8vd8ETalQswZIvHmLi7DXc/ty3GcpDggMZMfhqurevT3BQIAtW/cOg1yey5+BxAIoVDuf9p27g0ha1OHzsJM+8/zPfzliZ17uR72pULM6Ssfcx8fd13P7C9xnKJ71xC20aVk59HxIcyMYdh7mo/zsANKxZljcf6kaDGmWIio7j/6Ys4dVxv+dZ+7PjrAJKRKJUtWC6ecOBKFUdkc11bAd2qmpbn3krgCBVbeAzbxTQE6ikqsl+1hMGzAVCcfbrO1V91k+9dsAooCHQW1W/y6RdlYFxQFEgEHhCVaeJSAdgMrANpwd6ALhJVQ9kZ3/zw6jHb2Dpup2Zlt/fpz0tL6xCiz6vExkVyztDb+TNR6+j92OfAvDG2Fnc/cI3xCckUbtKaX754D5WbtjN8r935dUueMKo+zqxdGPmgXLtsIlp3v/yek/mrHCOe4HwEJZu3MfjH/7OgWPR9O/SgB+e70GdW/+Pk7EJudpurxk15BqWrs/83Ln/xja0bFCFFje/TeTJWN554jrefLg7vZ/8wln+kWuIT0ikSrcXaVSrHD+MvI1Vm/ayfptnP4K5YtTgq1j6955My6999PM0738ZfRtzlm1LfT/22RuYMnc9nQd9QpWyRZn17p2s3ryPn/7ckGttPlNeGeIrJCKVAESkbvpCEQkAegA7gfaZrCMO6KSqjYDGQFcRudhPvR1Af+Cr07TpaWC8qjYBegPv+pTNU9XGqtoQWAzcd5p15ZuenZsQeSKG2Ys3ZlqnSvni/LpwAweORBEXn8h3M1ZQt0bZ1PL1W/cRn5AEgKIoUL1iydxuuqf0bH8BkSfjmL0i86D3VblMYdrUr8CXs9YBsH1fJKN/WMa+IydJTlY+mb6akKAAalcslpvN9pyelzUkMiqW2Uu2ZFqnSvni/LpoIweOuufjryupW60MABFhwVzbsQHPfTiTkzHxzF/1Dz/NW8dNXZvm1S54Qs9LGzjHcenWbNWvXLYobRpW4cufV6TOq1K2KN/MXEVysrJtz1EWrPqHutVK51KL/508CygRmSQiS0VkrYgMTFc8HujlTvcBvk5X3gFYC7znlmegjij3bbD7Uj/1tqvqKiBDLyx9VaCwO10EyHCpIiICFAKOnmZd+aJQgVCG3dWVx9+alGW9cZMX0apRNcqVLEx4aDC9r2jKjD/Xp6kz6vHrOfzHa6z6/in2HTrOz3+uy8WWe0uhiBCG3dKaxz/M/vBH30vr8efa3ezYf9xvecPqpQgJDmTLnmM51ErvKxQRyrABl/P42z9mWW/c1MW0aliFciULOedjlybMWOhc1deqXIrEpGQ27zyUWn/15r3UrV4mV9vuJYUiQhl2RyceH/Nztpfp27Uxf676hx37jqXOGzNhIX27NCYoMIBalUrQsn6lLC8c8kNe3oO6XVWPiEg4sFhEvlfVw27Z98CnwAjgaqAvcIvPsimhNRl4WUSCVTXDuIiIBAJLgZrAO6p6NjdKhgMzROQBoABwmU9ZW3cYsgRwEnjqLLaTa569+0rGTVnE7gORWdbbvOMgu/YfZevPz5GYmMSaLXsZ/PoPaeo89Nr3PPzGD1x8YVXaNq9JXHxibjbdU57t15pxv6xh96Go01d29b2sHq9+vdBvWaGIED5+9Ape+nIBx6Pjc6qZnvfswM6Mm7qE3Qf9h3aKzTsPsWt/JFunDnXOx637GTxyMgAFw0M4fjIuTf3IqFgKRYTmWru95tk7OzHux2WnPY6++nZpxKufpb3Amj5/A/839Doe6t2aoKBAXvp0dpZDhvkhL4f4BonISmAhUAmo5VN2GDgqIr2B9UB0SoGIhABXApNU9TiwCOjibwOqmqSqjYGKQAsRaeCvXjb1AcaqakV3+5+7Q41waoivEk6wvp5+YREZKCJLRGRJ4sHVZ9GMf6dh7fJ0bFGb0V+e/qp/1OPXExocRPlOQynR9nEm/7aKyaPTd3IhOVmZv3IbFUoXZeANbXKj2Z7TsHopOjapzOiJS7O9TOv65SlTLIKJ8zZlKAsLCeL74dfy1997GfHt4pxsqqc1rFWOjhfVZPQ3f5y27qgh1xIaEkT5Ls9RotMzTJ6zhslv3gZAVEw8hQukDaPCBcI4ER3nb1XnnIY1y9KxeQ1Gj1+Q7WVaX1iZMsULMnHOqVGPYoXCmTziFl4eO4eil71AzetGcHmLmgy89qLcaPa/lic9KPfBgsuAVqoaLSJzgLB01b4F3sG5P+SrC86DCqudETUigBg37Ka6dd5X1fdTFlDVYyIyG+gKrMlmG18CurnLNwbucJdHVRe4D2H4u/EyBacHmIaqfgh8CBDefHCGocbc1q5ZTaqUL8bGH58BoGBEKIEBQp3qZWl988g0dRteUIHh707j6HHnuuC9b+fx7D1XUqJIAQ5Hnsyw7qDAgPPmHlS7hhWpUqYIGz8bAEDB8GACAwKoM6Y4re/P+EQkQN/L6jP5z80ZHn4ICQ5k/LPd2X3oBPePnpnrbfeSdk2rU6VcMTZOegJwekKBgQHUqVaa1v3/l6Zuw1rlGP7BDI4ejwHgvQnzeXZgZ0oUiWDTjoMEBQZQo2IJtuxyBmAurFWO9Vv35+0O5ZN2TapRpWxRNn73MOBzHKuWovUd7/tdpu8VjZk8dz0nY0711quVL0ZSsvLVL87Tj7sPHmfCrDV0aVWbDyd558Ipr4b4igBH3XCqA/h7eGEiUA74BSjvM78PcKeqfg0gIgVwnqAb4AYJ7vxSQIIbTuHA5cBr2W2gqg4FhvrM2gFcCox1H9wIAw76WfQSwFsDt8DHPyxgwozlqe8furkjVcoXZ9ArEzLUXbp2B327NWfuks1Ex8YzsOcl7DlwjMORJylVrCAdLqrFtHlriYlLoFOL2tzYpQm3Dv08w3rORR9PX82E30891fTQ9c2pUqYwg8bM8ls/LCSI69vVptfzU9LMDwoM4KuhVxEbl8idI35G8/ySJX99POkvJsw89Sj4Q33bUaVsMQa9MSlD3aXrd9H3iqbMXbaF6NgEBl5/MXsORnI40rmAmjxnLc8MuJx7XvmeRrXLc1XbenQc+G6G9ZyLPp6yhAmzTo3IPNS7DVXKFWXQyKl+64eFBHF9xwb0Gpr2tv6mnYcRoNdlFzJ+1hpKFyvADZ0a8PvybX7Xk1/ONqAiRMT3edE33Z9Pi8hDPvNrAHeLyHpgA84wXxqqegI3UNyeEiISgdOLudun3kkR+QPnXpXvL1GUA8a596ECcJ7A+9Fdz/PAElWdIiIX4YRhMeBqEXlOVev72bdHgI9EZDDOAxP9VVXdtqXcgxIgErgzy6OUD2LiEoiJO3UFHxUTR2xcAoeOnaRN4+pMGj2QUu2cq9kn357CyCHXsXriU4QEB7Fuy156Peo8Yq6qDLi+NaOf7EmACDv2HeHRkZP4ae7afNmvvBYTl0hM3Kn7bVGxCcQmJHEoMoY29Ssw6cUelOoxJrW8e+saREbF8fvKtE/7XVyvPN0urkF0bAL7vj/10Oe1T0/kz7W7c39H8lmG8zE6ntj4ROd8bFSVSW/eRqlLnd8KefJ/0xj58NWsHv8oIcGBrNu6n15PnLogenDEJD546gZ2TBvGkchoHnxj4nnziHnGz3XKcYymTcMqTHrjZkp1eSm1vHvbukRGxfL7srTBcyI6jt5Pf8NLd3fm7UeuJiYugWnzN3ju96BEz7dLuXyQH0N856SSlfK7BeeGyPPjyzxPBIXkdwvOCTHznhd/873ye1DGGGNMGhZQxhhjPMkCyhhjjCdZQBljjPEkCyhjjDGeZAFljDHGkyygjDHGeJIFlDHGGE+ygDLGGONJFlDGGGM8yQLKGGOMJ1lAGWOM8SQLKGOMMZ5kAWWMMcaTLKCMMcZ4kgWUMcYYT7KAMsYY40kWUMYYYzzJAsoYY4wnWUAZY4zxJAsoY4wxnmQBZYwxxpMsoIwxxniSBZQxxhhPsoAyxhjjSUH53YDzQkBgfrfgnLDp6/vyuwnnhAsGfpXfTThnJO/blt9NOKdZD8oYY4wnWUAZY4zxJAsoY4wxnmQBZYwxxpMsoIwxxniSBZQxxhhPsoAyxhjjSRZQxhhjPMkCyhhjjCdZQBljjPEkCyhjjDGeZAFljDHGkyygjDHGeJIFlDHGGE+ygDLGGONJFlDGGGM8yQLKGGOMJ1lAGWOM8SQLKGOMMZ5kAWWMMcaTLKCMMcZ4kgWUMcYYT7KAMsYY40lB+d0Ak/tqVCrJkq8eYeJvq7j92a8zlIcEBzLikWvp3r4BwUGBLFi1nUGvfseeg8cJCQ7k7cevo9NFtSlWOJytuw/zzDvTmbHg73zYk/zx8rNPsnzJImJjYihWoiS9bu5Pt2uuz1Dv5x8nM/LlZwkJDU2d99KIMTRudlGaeiuXLeHhe2+nb/8B3H73A7nefq+pUbYwf428hkkL/+GO/831W6dxtRK81r8FjauXIDo2kTcmruLdaesAWPfODZQuGk5SsgKwaMMBur84I8/a7xU1KhZnydj7mPj7Om5/4fsM5ZPeuIU2DSunvg8JDmTjjsNc1P8dABrWLMubD3WjQY0yREXH8X9TlvDquN/zrP3ZkWMBJSIKfKmqN7vvg4C9wCJVvUpEugP1VPXVTJZvDJRX1WlnuN2qwI+q2sBP2Vi37LszWee5ZtSjPVi6fmem5ff3bkvLC6vQou9IIqNieeepG3hzSA96Pz6OoMBAdu2P5PK732XnvmN0bVOHL16+meY3jWTH3qN5uBf556Zb72DI0OcICQlhx/ZtPHzv7dS6oC6169TLULdeg0a8/eG4TNeVmJjAO2+9Rt36F+Zmkz3trTsvZumWQ5mWlygUyqShl/P42L+YuHA7IUEBVChRIE2dnq/+yuzVe3O7qZ42avBVLP17T6bl1z76eZr3v4y+jTnLtqW+H/vsDUyZu57Ogz6hStmizHr3TlZv3sdPf27ItTafqZwc4jsJNBCRcPf95cDulEJVnZJZOLkaA1f6K3DDLs+I45wY/ux5eWMio2KZvXhzpnWqlC/Orws3cOBIFHHxiXw3cyV1q5cBIDo2npc+msGOvUdRVab/sZ7te47QtE7FvNqFfFe1ek1CQkIAEAERYc+uzAM/KxO++oxmLVpRqUq1nGzif8YNratx7GQ8c7IIlweuqs+vK3fz7R9biU9MJio2kQ27I/Owld7X89IGzud66dZs1a9ctihtGlbhy59XpM6rUrYo38xcRXKysm3PURas+oe61UrnUov/nZz+Ep4GdHOn+wCp40ki0l9ExrjTPUVkjYisFJG5IhICPA/0EpEVItJLRIaLyOci8ifwuYhUFZF5IrLMfbX+Nw0UkYIiMstdx2oRucadX1VENojIZ8AaoJKIDHPn/SEiX4vIELduDRH5WUSWum2q828PWG4qVCCUYXd14fFRU7KsN27KX7RqWJVyJQsTHhpM765NmDHf/xBe6eIFqVW5FOu27suNJnvW26+/yJXtW9C/1zUUL1GSlq3b+q23eeN6enRpR7+eV/P5Jx+QlJiYWrZ/7x6mT51Evzvuzqtme0qh8GCe7tWEJ8b9lWW9FrVLczQqnlkvdmP7//VmwuOXUrFk2h7UJ4Pas/3jPkx5ujMXVimWm832nEIRoQy7oxOPj/k528v07dqYP1f9w459x1LnjZmwkL5dGhMUGECtSiVoWb8Ss5dsyYUW/3s53TP5BnhGRH4EGgKfAP4+yc8AXVR1t4gUVdV4EXkGaK6q9wOIyHCgHnCJqsaISARwuarGikgtnPBr/i/aGAv0UNXjIlISWCgiKd/gtYBbVXWhiFwEXA80AoKBZcBSt96HwN2quklEWgLvAp3+RVty1bN3dWXclL/YfSDrq8/NOw6xa/8xtk57hsTEJNZs2cfgNyZmqBcUGMCnz9/EFz8tYeM/B3Or2Z704GNPc/8jT7Ju9UpWLltCcEhwhjoNmzTj/776gTJly7N962ZeePoxAgMDuenWOwEY8+ar3DbwPsIjIvK6+Z7wTO+mfPbbJvYcic6yXvniETSqVpyrX5jB2h1HefHm5ox9sD2XDXNG/28fPZcV2w4jwH1X1mPy051p8uBEIqPj82Av8t+zd3Zi3I/L2H3weLaX6dulEa9+lvb+0vT5G/i/odfxUO/WBAUF8tKns7McMswPOdqDUtVVQFWc3lNW95L+BMaKyAAgMIt6U1Q1xp0OBj4SkdXABJzw+jcEeFlEVgG/AhWAMm7ZP6q60J1uA0xW1VhVPQFMBacHBrQGJojICuADoFyGjYgMFJElIrIk8cCqf9nUf69hrfJ0bFGL0V/5vwnta9RjPQgNCaL8ZcMo0f4pJs9ezeRRA9LUERE+ea4P8QlJfsPrfBAYGMiFjZty8OB+pnw/PkN5+QoVKVe+IgEBAVSvWZtb7riLub/NBGD+vDlER5+k4+Vd87jV3tCwanE6XFiO//209rR1Y+OTmPrXDpZtOURcQhKvTFhBqzplKBzhXBQs3HCA2PgkYuKTGDFpNcdOxtO6bpnTrPXc0LBmWTo2r8Ho8QuyvUzrCytTpnhBJs5ZlzqvWKFwJo+4hZfHzqHoZS9Q87oRXN6iJgOvvSiLNeW93Li3MwUYAXQASviroKp3uz2PbsBSEWmWybpO+kwPBvbj9GgCcHpCaYjIp0ATYI+q+r2fBfQFSgHNVDVBRLYDYX62l5kA4JiqNs6qkqp+iNPTIrzFEM3GenNUu2Y1qFKuOBunDgWgYHgogQEB1KlWhtb9RqWp27B2BYa/N52jx51rgffG/8Gzd3elRJEIDkc6V7vvP30jpYsX4trB/0diUnKe7ovXJCUmsmf36e9BCYKq80+/fMkiNq5fxw1XdgTg5MkoAgIC2LZlEy+8MTpX2+sFbeuVpUqpgmx4rycABcKCCQwQ6lTsTpvH0w5Br9lxJPW4AShZf3xUnXuD54N2TapRpWxRNn73MAAFw0MIDAygTtVStL7jfb/L9L2iMZPnrudkzKkeZrXyxUhKVr76ZSUAuw8eZ8KsNXRpVZsPJy3O/R3JptwIqE9wvsBXi0gHfxVEpIaqLgIWicgVQCXgBFAoi/UWAXaparKI3Iqfnpeq3paN9hUBDrjh1BGokkm9P4EPROQVnON0FfChOzS4TUR6quoEERGgoaquzMa288zHExcyYeaK1PcP9W1PlXLFGfRaxsdRl67bSd8rmzF36RaiY+MZeENr9hyITA2n0U9cT52qpbny/g+IjUvMsPy57OiRwyxf+het2rQnJDSUZYsXMnvmdIY+/1qGuovmz6PWBfUoXqIEO7Zv44tPP6B9p84A3Dbwfvr0uyO17jtvvkaJUqW4+ba78mxf8tMnv27gu/mnniB78OoGVC5dkIc+mp+h7uezN/PlIx15b/p61u08yhPXN+bP9fs4Hp1AxZIFqFiiAEu3HCJAhHuuqEuJwmEs/PtAXu5Ovvl4yhImzFqd+v6h3m2oUq4og0ZO9Vs/LCSI6zs2oNfQtL9esmmnM0Ta67ILGT9rDaWLFeCGTg34ffk2v+vJLzkeUKq6CzjdJeEb7n0kAWYBK4EdwBPusNkrfpZ5F/heRPoBP5O93g44ITPKnd4JXA1MdYcKlwB+nwZQ1cXuvalVOD231UDKzZy+wHsi8jTO0OM37j54RkxcAjFxCanvo2LiiY1P4NCxk7RpXI1Jo+6kVAend/Xk6KmMfORaVn//BCHBgazbso9ej40FoHLZYgy4rhWxcQlsn/5s6voeeOU7vvlleZ7uU34QEab+MJ5Rr72IJidTplw57n3oMVq368j+fXu5vc+1fPL1JMqULcfyJYt4/YVhxMZEU6x4CS7tehU39XfuP0UUKEBEgVM3+kNCQwkLC6dwkSL5tWt5KiY+iZj4mNT3UbEJxMUnceh4HK3rlGHi0Mspc8sXAPy+Zi/Dv17K909eRnhIEAv+3s9tbztD1YXCgnl7QCuqlSlEbEISq7cfocdLMzgSFZcv+5XX/H+uEzl0LJo2Dasw6Y2bKdXlpdTy7m3rEhkVy+/L0gbPieg4ej/9DS/d3Zm3H7mamLgEps3f4LnfgxLfrrRJS0QKqmqU+4DGXGCgqi470/XkxxDfuWjTLy+dvpI5rQsGfpXfTThnJO/zVo/jvypm3vN+B2ntf5LI2ociUg/nHtW4fxNOxhhj/h0LqCyo6k353QZjjDlfnRP/W4IxxphzjwWUMcYYT7KAMsYY40kWUMYYYzzJAsoYY4wnWUAZY4zxJAsoY4wxnmQBZYwxxpMsoIwxxniSBZQxxhhPsoAyxhjjSRZQxhhjPMkCyhhjjCdZQBljjPEkCyhjjDGeZAFljDHGkyygjDHGeJIFlDHGGE+ygDLGGONJFlDGGGM8yQLKGGOMJ1lAGWOM8SQLKGOMMZ4kqprfbTAeICIDVfXD/G7Hf50dx5xhxzHn/JePpfWgTIqB+d2Ac4Qdx5xhxzHn/GePpQWUMcYYT7KAMsYY40kWUCbFf3KM2oPsOOYMO4455z97LO0hCWOMMZ5kPShjjDGeZAFljDHGkyygPEJEKorIZBHZJCJbRWSMiITm0rbeEJG/RWSViEwUkaKZ1NsuIqtFZIWILMmkzgVuecrruIg8lNV2RKSDiES69VeJyK8iUvpf7kuUn3nDRWTIGaxju4jMSzdvhYisSTdvlIjsFhG/nxsRCRORv0RkpYisFZHnMqnXTkSWiUiiiNyQRbve8jmuG0XkmDu/sYgscLexSkR6+SwzR0Q2uMusF5EzfsT4HD+mlUVktogsd4/dle78HDsn/WxTReQLn/dBInJQRH5033cXkSeyWL5xSjvPcLtV0x9vn7KxWR0nr7CA8gAREeAHYJKq1gJqAeHA67m0yZlAA1VtCGwEnsyibkdVbayqzf0VquoGt7wx0AyIBiZmYzvz3OUaAouB+85qj85eIRGpBCAiddMXul+gPYCdQPtM1hEHdFLVRkBjoKuIXOyn3g6gP/BVVg1S1cE+x/Z/OOcIOMe4n6rWB7oCo9JdZPR1l2kDvCYiIVltJxd57pgCTwPjVbUJ0Bt416cst87Jk0ADEQl3318O7E4pVNUpqvpqFss3BvwGlIgE5VAbs0UceZYbFlDe0AmIVdVPAVQ1CRgM9BORWSLSEMC96nvGnX5eRAa404+KyGL3yu85d15V9wr6I/fKc0bKB0RVZ6hqorvthUDFHNqPS4EtqvpPdrfjhnMh4GgOtSFTIjJJRJa6xyN9z2I8kNIT6QN8na68A7AWeM8tz0AdKb2PYPeV4SkkVd2uqquA5DNofmqbVHWjqm5yp/cAB4BSfpYpiPPlmHQG2zkj/8FjqkBhd7oIsMfPPuXGOTkN6OZOpzkWItJfRMa40z1FZI3bY5zrXlw8D/Rye3e93N7s5yLyJ/C5+1mf5/Ygl4lI63/TQBEp6H7fLBNn5OQad35Vt1f+GbAGqCQiw9x5f4jI1ym9axGpISI/u+fEPBGp828PGACqaq98fgGDgLf8zF8OPIFzJVcE56ruF7dsNnAB0BnnMVLBueD4EWgHVAUSgcZu/fHAzX62MdXffLdsG7AMWAoMzMZ+fALcn0lZ6nZwvpgigRU4V89/A4X/5bGL8jNvODDEz/zi7s9w94NWwn2/3T2W832Oez1gjc+yHwG34Hy57QaCM2lPoLtfUcBrp2n7WOCGbOxjFWAvEOinrAWwHghw388BNgCrgBjgLjumacrLAauBXTgB1Cynz0l/xxNoCHwHhLnb6AD86Jb3B8a406uBCu500fTlPv8WS4Fw930EEOZO1wKWuNNVfY/36Y4TEJSyz0BJYDPO90pVnOC/2C27yN2HMJwg35RybgCzgFrudEvgt7M5dtaD8r55OIHTBvgJKCgiEUA1Vd2AE1Cdcb4AlgF1cE5SgG2qusKdXopzoqUSkaE4IfZlJtu+RFWbAlcA94lIu8wa6V7pdQcm+Cnzt52U4ZRKwKfk3nCmr0EishKnN1eJU8cJ4DBwVER643zhR6cUuPt2Jc4Q7HFgEdDF3wZUNUmd4bWKQAsRaZAD7e4NfKdOzzqViJQDPgduU1XfnkNfdYapKgNDRKRKDrQhM/+1Y9oHGKuqFd3tf+4zZJVr56Q6vbuq7vanZVH1T2CsOzoSmEW9Kaoa404HAx+JyGqcz1+9f9lMAV4WkVXAr0AFoIxb9o+qLnSn2wCTVTVWVU/gXHwiIgWB1sAEEVkB/H875xZiVRXG8d+/IqbJmqKiO0z0MvSiohFBQVFRQRpCU4ZkUyb0WkYvRlAgFtVLVMy8FAVlgSEIQ5qEYdZQMgPeKoiyixUqkWKjUdS/h/UdZs9hn7nUTB3j+8HhLPZel2+vvc5a340zQFEI/jb/qv8yacmnwLiApaQzgQsoWulC4CtKTOdcYCXlwIGyqNbaHmhq303x3zf4g6LlNu73AbcBNzjUnWZsfx/fByVtoGwO+4gFCfTb7o/yrcCI7QNNckw6DrAReLvFvRlB0nXAjcDVto9Jep+iAVZ5C3iRorFWuRk4C9hdvD90AsdjY66bC2wflrSVEiOqDVTXyLiGcAPFhtxgKU3xkFgfg8DqysYxDtuHJI1QNNlvpiLDdDhB53RFtMf2kKQOym+qmdlYkxuBZynW0zl1FWw/KOmqkHlY0oIWfY1Wyg8BB4C5FC/Kr82VJb0CzAd+sN0q4WIZxVW8wPbvkr5m7H2OtmhT5STgcNPa/UekBdUevAd0SloOIOlk4DmKWX+E4nLoBYYoFtUjwLZouxm4P7QXJF2sSbKPJN0CPAostn2sRZ3TJZ3RKFOstD22vwstc15186AmxjCVcYJrgC8nknkG6AJ+jo20B6gLtG+gaM2bm67fDTxgu9t2N3AZJdD9U3UuJJ2nsUzF06LO51MV0PZqjyVFEP30AGdT3n3j2qkh62u217fqLyzt+cze3J6Ic/otJVbaSNzoAA7VNJ2NNfky8ITt3a0qSLrc9se2Hw+5LgWOUlxpregCfgwr+h5qLC/b98U8TJQN2AUcjMPpeopruY4PgUUqGZZzKAooYQnvk9QbzyJJcycYb1LygGoDwrJYAtwh6QuKa+RP22uiygeUhXM8ypfEN7bfpWQuDYWJv56JFzPAC1FnSwRe+wEkXSSp4X44H9geGu0nwKDtTXWdxQF2E2NZZhOOE1wb13ZSflSrJpG5FZ2S9lc+D8f1x6rXgU3AKZI+A56iuKTGYfuo7adt/1Z5tk6Kxj1YqTcKbAcWNXVxIbA1XCQ7gC22G6nET0paHOUrQ6ZeYEDS3gmebynwZpP1eSfF7dunsTT0eZX7r4eLZZjizhpmevyf53QVsDLW3TqgrzK3M7Uma7G93/bzk1R7RiVBYQ/wEbCTEm++ImS7q6bNS8C9IXcPU7N2oMxT430OUVzwC2MfWU4LRcD2Doo1uAt4hxI3OxK3lwErQpa9wO1TlKWW/KujNkQlC2cdsMT2yH8tT5IkSRVJc2z/EsrGNkoS1YzvVXlAJUmSJNNC0huUZIwO4FXba2dlnDygkiRJknYkY1BJkiRJW5IHVJIkSdKW5AGVJEmStCV5QCVJkiRtSR5QSZIkSVvyF7YSwtIxW7eVAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "import seaborn as sns\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Data from the tables\n", + "orkgsyn_data = np.array([\n", + " [4.85, 4.71, 4.69, 4.80],\n", + " [4.92, 4.89, 4.87, 4.88],\n", + " [4.81, 4.77, 4.75, 4.78],\n", + " [4.84, 4.75, 4.72, 4.81]\n", + "])\n", + "\n", + "bioasq_data = np.array([\n", + " [4.82, 3.39, 4.82, 4.82],\n", + " [4.85, 4.48, 4.80, 4.84],\n", + " [4.83, 4.72, 4.80, 4.78],\n", + " [4.82, 3.54, 4.65, 4.78]\n", + "])\n", + "\n", + "# Labels for the heatmaps\n", + "models = [\"Qwen2.5-72B\", \"LLaMA-3.1-72B\", \"LLaMA-3.1-8B\", \"Mistral-Large\"]\n", + "# models = [\"Q\", \"L72B\", \"L8B\", \"M\"]\n", + "# Create subplots\n", + "fig, axes = plt.subplots(2, 1, figsize=(6, 8))\n", + "\n", + "# ORKGSyn Confusion Matrix\n", + "sns.heatmap(orkgsyn_data, annot=True, fmt=\".2f\", cmap=\"Blues\", xticklabels=models, yticklabels=models, ax=axes[0], annot_kws={\"size\": 12}, cbar=False)\n", + "axes[0].set_title(\"ORKG-Synthesis\", fontsize=16)\n", + "# axes[0].set_xlabel(\"Synthesizer\", fontsize=8)\n", + "# axes[0].set_ylabel(\"Evaluator\", fontsize=8)\n", + "axes[0].tick_params(axis='both', which='major', labelsize=10)\n", + "axes[0].tick_params(axis='x', rotation=0)\n", + "\n", + "# BioASQ Confusion Matrix\n", + "sns.heatmap(bioasq_data, annot=True, fmt=\".2f\", cmap=\"Blues\", xticklabels=models, yticklabels=models, ax=axes[1], annot_kws={\"size\": 12}, cbar=False)\n", + "axes[1].set_title(\"BioASQ\", fontsize=16)\n", + "# axes[1].set_xlabel(\"Synthesizer\", fontsize=8)\n", + "# axes[1].set_ylabel(\"Evaluator\", fontsize=8)\n", + "axes[1].tick_params(axis='both', which='major', labelsize=10)\n", + "axes[1].tick_params(axis='x', rotation=0)\n", + "\n", + "# Adjust layout and show the plots\n", + "plt.tight_layout()\n", + "plt.savefig(\"images/confusion_matrix_vanilla_v2.pdf\", format=\"pdf\", bbox_inches=\"tight\")\n", + "plt.savefig(\"images/confusion_matrix_vanilla_v2.png\", format=\"png\", dpi=300, bbox_inches=\"tight\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "1cc0b872-8de2-45d6-86a9-28e2bc784d8d", + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import json\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "from sciqaeval import config\n", + "import math\n", + "\n", + "def load_data(file_path):\n", + " with open(file_path, 'r') as f:\n", + " return json.load(f)\n", + "\n", + "def compute_averages(data, criteria):\n", + " averages = {eval_type: {criterion: [] for criterion in criteria} for eval_type in [\"original\", \"extreme\", \"subtle\"]}\n", + " for entry in data:\n", + " eval_type = entry[\"eval_type\"]\n", + " quality = entry[\"quality\"]\n", + " rating = entry[\"synthesis_evaluation_rating\"]\n", + " if quality in averages[eval_type]:\n", + " if not math.isnan(rating):\n", + " averages[eval_type][quality].append(float(rating))\n", + " for eval_type in averages:\n", + " for quality in averages[eval_type]:\n", + " if averages[eval_type][quality]:\n", + " averages[eval_type][quality] = sum(averages[eval_type][quality])/len(averages[eval_type][quality])\n", + " else:\n", + " averages[eval_type][quality] = 0\n", + " return averages" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "83aefc6d-2e78-4b34-9f05-5e4a5a9537a1", + "metadata": {}, + "outputs": [], + "source": [ + "criteria = config.criteria\n", + "\n", + "dataset1 = load_data(\"dataset/BioASQ/BioASQ_test_meta-llama-3.1-70b-instruct_refactored_dataset.json\")\n", + "dataset2 = load_data(\"dataset/ORKG-Synthesis/llm4syn_test_meta-llama-3.1-70b-instruct_refactored_dataset.json\")\n", + "averages1 = compute_averages(dataset1, criteria)\n", + "averages2 = compute_averages(dataset2, criteria)\n", + "averages = [[averages1, averages2, 'Vanilla LLaMA-3.1-70B', 'gainsboro']]\n", + "\n", + "dataset1 = load_data(\"dataset/BioASQ/BioASQ_test_mistral-large-instruct_refactored_dataset.json\")\n", + "dataset2 = load_data(\"dataset/ORKG-Synthesis/llm4syn_test_mistral-large-instruct_refactored_dataset.json\")\n", + "averages1 = compute_averages(dataset1, criteria)\n", + "averages2 = compute_averages(dataset2, criteria)\n", + "averages += [[averages1, averages2, 'Vanilla Mistral-Large', 'gainsboro']]\n", + "\n", + "dataset1 = load_data(\"dataset/BioASQ/BioASQ_test_qwen2.5-72b-instruct_refactored_dataset.json\")\n", + "dataset2 = load_data(\"dataset/ORKG-Synthesis/llm4syn_test_qwen2.5-72b-instruct_refactored_dataset.json\")\n", + "averages1 = compute_averages(dataset1, criteria)\n", + "averages2 = compute_averages(dataset2, criteria)\n", + "averages += [[averages1, averages2, 'Vanilla Qwen2.5-72B', 'gainsboro']]\n", + "\n", + "dataset1 = load_data(\"dataset/BioASQ/BioASQ-test-refactored-dataset.json\")\n", + "dataset2 = load_data(\"dataset/ORKG-Synthesis/llm4syn-test-refactored-dataset.json\")\n", + "averages1 = compute_averages(dataset1, criteria)\n", + "averages2 = compute_averages(dataset2, criteria)\n", + "averages += [[averages1, averages2, 'Vanilla LLaMA-3.1-8B', 'teal']]\n", + "\n", + "dataset1 = load_data(\"assets/sft-bioasq-org-test.json\")\n", + "dataset2 = load_data(\"assets/sft-orkg-synthesis-org-test.json\")\n", + "averages1 = compute_averages(dataset1, criteria)\n", + "averages2 = compute_averages(dataset2, criteria)\n", + "averages += [[averages1, averages2, 'SFT (benign)', 'orange']]\n", + "\n", + "dataset1 = load_data(\"assets/rlhf-bioasq-adv-test.json\")\n", + "dataset2 = load_data(\"assets/rlhf-orkg-synthesis-adv-test.json\")\n", + "averages1 = compute_averages(dataset1, criteria)\n", + "averages2 = compute_averages(dataset2, criteria)\n", + "averages += [[averages1, averages2, 'SFT (benign) + RL (adversarial)', 'tomato']]\n", + "\n", + "dataset1 = load_data(\"assets/rlhf-bioasq-adv-org-test.json\")\n", + "dataset2 = load_data(\"assets/rlhf-orkg-synthesis-adv-org-test.json\")\n", + "averages1 = compute_averages(dataset1, criteria)\n", + "averages2 = compute_averages(dataset2, criteria)\n", + "averages += [[averages1, averages2, 'SFT (benign) + RL (benign + adversarial)', 'yellowgreen']]" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "4240a124-7f9c-47a3-a832-10252ba0e02b", + "metadata": {}, + "outputs": [], + "source": [ + "def plot_results(averages, criteria, dataset_name1, dataset_name2, font_size=12):\n", + " criteria_abbreviations = {\n", + " \"Coherence\": \"Cohr\",\n", + " \"Cohesion\": \"Cohs\",\n", + " \"Completeness\": \"Comp\",\n", + " \"Conciseness\": \"Conc\",\n", + " \"Correctness\": \"Corr\",\n", + " \"Informativeness\": \"Info\",\n", + " \"Integration\": \"Integ\",\n", + " \"Readability\": \"Read\",\n", + " \"Relevancy\": \"Relv\"\n", + " }\n", + " fig, axes = plt.subplots(2, 3, figsize=(10, 5), sharey=True) \n", + " eval_types = [\"original\", \"extreme\", \"subtle\"]\n", + " dataset_names = [dataset_name1, dataset_name2]\n", + " legend_handles = [] \n", + " legend_labels = [] \n", + " for average in averages:\n", + " avg = [average[0], average[1]] \n", + " title = average[2]\n", + " color = average[3]\n", + " \n", + " markers = {'Vanilla LLaMA-3.1-70B':'*', 'Vanilla Mistral-Large':'+', 'Vanilla Qwen2.5-72B':'^'}\n", + "\n", + " marker= markers.get(title, 'o')\n", + " for i, dataset in enumerate(avg):\n", + " for j, eval_type in enumerate(eval_types):\n", + " ax = axes[i, j] \n", + " line, = ax.plot(criteria, \n", + " [dataset[eval_type][c] for c in criteria], \n", + " marker=marker, \n", + " linestyle='-', \n", + " linewidth=0.9,\n", + " color=color,\n", + " markersize=font_size-5)\n", + " ax.set_title(f\"{dataset_names[i]} - {eval_type.capitalize() if eval_type!='original' else 'Benign'}\", \n", + " fontsize=font_size)\n", + " ax.tick_params(axis='both', labelsize=font_size - 3)\n", + " ax.grid(True, linestyle=\"--\", alpha=0.15)\n", + " # ax.set_yticks([1, 2, 3, 4, 5])\n", + " ax.set_xticklabels([criteria_abbreviations[crit] for crit in criteria], rotation=0)\n", + " legend_handles.append(line)\n", + " legend_labels.append(title)\n", + " \n", + " fig.legend(legend_handles, legend_labels, loc=\"upper center\", ncol=7, fontsize=font_size-3, bbox_to_anchor=(0.5, 0.97))\n", + " plt.tight_layout(rect=[0, 0, 1, 0.95])\n", + " plt.savefig(\"images/results_plot.pdf\", format=\"pdf\", bbox_inches=\"tight\")\n", + " plt.savefig(\"images/results_plot.png\", format=\"png\", dpi=300, bbox_inches=\"tight\")\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8ac306d9-1c34-4cd6-94ab-b26499b1e45e", + "metadata": {}, + "outputs": [], + "source": [ + "plot_results(averages, criteria, \"BioASQ\", \"ORKGSynthesis\", font_size=8)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a052a3da-e40b-49be-bcc7-980ef375eb92", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.16" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From 8e2618e191dae390d10a2a7bbccb07af35480f76 Mon Sep 17 00:00:00 2001 From: Hamed Babaei Giglou Date: Fri, 30 May 2025 15:34:42 +0200 Subject: [PATCH 02/21] :boom: modularized --- CHANGELOG.md | 4 +++ pyproject.toml | 35 +++++++++++++++++++++ readthedocs.yml | 23 ++++++++++++++ requirements.txt | 8 ++--- test.py | 11 ------- test/test_rubrics.py | 21 +++++++++++++ yescieval/__init__.py | 36 +++++++++++---------- yescieval/base/__init__.py | 3 +- yescieval/base/judge.py | 11 +++++-- yescieval/base/rubric.py | 6 ++-- yescieval/judge/__init__.py | 7 +++++ yescieval/judge/judges.py | 51 +++++++++++++++++++++++++++--- yescieval/parser/__init__.py | 3 ++ yescieval/parser/parsers.py | 61 ++++++++++++++++++++++++++++++++++++ 14 files changed, 235 insertions(+), 45 deletions(-) create mode 100644 CHANGELOG.md create mode 100644 pyproject.toml create mode 100644 readthedocs.yml delete mode 100644 test.py create mode 100644 test/test_rubrics.py create mode 100644 yescieval/parser/parsers.py diff --git a/CHANGELOG.md b/CHANGELOG.md new file mode 100644 index 0000000..80e0ccf --- /dev/null +++ b/CHANGELOG.md @@ -0,0 +1,4 @@ +## Changelog + +### v0.1.0 (May 30, 2025) +- First version of YESciEval \ No newline at end of file diff --git a/pyproject.toml b/pyproject.toml new file mode 100644 index 0000000..153826b --- /dev/null +++ b/pyproject.toml @@ -0,0 +1,35 @@ +[tool.poetry] +name = "YESciEval" + +version = "0.1.0" + +description = "YESciEval: Robust LLM-as-a-Judge for Scientific Question Answering." +authors = ["Hamed Babaei Giglou "] +license = "MIT License" +readme = "README.md" +homepage = "https://yescieval.readthedocs.io/" +repository = "https://github.com/sciknoworg/YESciEval/" +include = ["images/logo.png"] + +[tool.poetry.dependencies] +python = ">=3.10,<4.0.0" +pre-commit="*" +transformers="*" +torch="*" +peft="*" +openai="*" +pandas="*" +numpy="*" +pydantic="*" + + +[tool.poetry.dev-dependencies] +ruff = "*" +pre-commit = "*" +setuptools = "*" +wheel = "*" +twine = "*" + +[build-system] +requires = ["poetry-core>=1.0.0"] +build-backend = "poetry.core.masonry.api" diff --git a/readthedocs.yml b/readthedocs.yml new file mode 100644 index 0000000..ea88004 --- /dev/null +++ b/readthedocs.yml @@ -0,0 +1,23 @@ +version: "2" + + +build: + + os: "ubuntu-22.04" + tools: + python: "3.10" + +python: + install: + - method: pip + path: . + - requirements: docs/requirements.txt + - requirements: requirements.txt + +sphinx: + builder: html + configuration: docs/source/conf.py + +submodules: + include: all + recursive: true diff --git a/requirements.txt b/requirements.txt index 778f31c..f8f48ca 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,12 +1,8 @@ pre-commit -scikit-learn -python-dotenv transformers torch peft -tqdm openai pandas -pydantic -trl -datasets \ No newline at end of file +numpy +pydantic \ No newline at end of file diff --git a/test.py b/test.py deleted file mode 100644 index 3f0f509..0000000 --- a/test.py +++ /dev/null @@ -1,11 +0,0 @@ -from yescieval.rubric import Informativeness - - -papers = { - "A Study on AI": "This paper discusses recent advances in AI.", - "Machine Learning Basics": "An overview of supervised learning methods." -} -question = "this is a dume question" -synthesis="synthesis answer" -rubric = Informativeness(papers=papers, question=question, synthesis=synthesis) -print(rubric.instruct()) diff --git a/test/test_rubrics.py b/test/test_rubrics.py new file mode 100644 index 0000000..c903fba --- /dev/null +++ b/test/test_rubrics.py @@ -0,0 +1,21 @@ +import unittest +from yescieval import Informativeness + +class TestRubric(unittest.TestCase): + + def setUp(self): + self.papers = { + "A Study on AI": "This paper discusses recent advances in AI.", + "Machine Learning Basics": "An overview of supervised learning methods." + } + self.question = "this is a dume question" + self.answer = "synthesis answer" + + def test_informativeness(self): + rubric = Informativeness(papers=self.papers, question=self.question, answer=self.answer) + output = rubric.instruct() + self.assertIsInstance(output, list) + self.assertTrue(len(output) > 0) + +if __name__ == '__main__': + unittest.main() diff --git a/yescieval/__init__.py b/yescieval/__init__.py index 2e60550..d1735bc 100644 --- a/yescieval/__init__.py +++ b/yescieval/__init__.py @@ -4,20 +4,24 @@ from .base import Rubric, Parser from .rubric import (Informativeness, Correctness, Completeness, Coherence, Relevancy, Integration, Cohesion, Readability, Conciseness) +from .judge import AutoJudge, AskAutoJudge, BioASAutoJudge +from .parser import GPTParser +# +# __all__ = [ +# "Rubric", +# "Informativeness", +# "Correctness", +# "Completeness", +# "Coherence", +# "Relevancy", +# "Integration", +# "Cohesion", +# "Readability", +# "Conciseness", +# "Parser", +# "AutoJudge", +# "AskAutoJudge", +# "BioASAutoJudge" +# ] - -__all__ = [ - "Rubric", - "Informativeness", - "Correctness", - "Completeness", - "Coherence", - "Relevancy", - "Integration", - "Cohesion", - "Readability", - "Conciseness", - "Parser" -] - - +# diff --git a/yescieval/base/__init__.py b/yescieval/base/__init__.py index 7313318..7c07516 100644 --- a/yescieval/base/__init__.py +++ b/yescieval/base/__init__.py @@ -1,9 +1,10 @@ from .rubric import Rubric -from .parser import Parser +from .parser import Parser, RubricLikertScale from .judge import Judge __all__ = [ "Rubric", "Parser", + "RubricLikertScale", "Judge" ] \ No newline at end of file diff --git a/yescieval/base/judge.py b/yescieval/base/judge.py index ed6a6aa..5ef75ed 100644 --- a/yescieval/base/judge.py +++ b/yescieval/base/judge.py @@ -1,11 +1,16 @@ from abc import ABC -from typing import Dict +from typing import Dict, Any from . import Parser, Rubric class Judge(ABC): - def from_pretrained(self, model_id:str, device: str="auto"): + + def from_pretrained(self, model_id:str, device: str="auto", token:str =""): + self.model, self.tokenizer = self._from_pretrained(model_id=model_id, device=device, token=token) + + def judge(self, rubric: Rubric, max_new_tokens: int=150) -> Dict[str, Dict[str, str]]: pass - def judge(self, rubric: Rubric, parser: Parser = Parser) -> Dict[str, Dict[str, str]]: + def _from_pretrained(self, model_id: str, device: str = "auto", token: str = "") -> [Any, Any]: pass + diff --git a/yescieval/base/rubric.py b/yescieval/base/rubric.py index ec20d16..64c37e7 100644 --- a/yescieval/base/rubric.py +++ b/yescieval/base/rubric.py @@ -12,10 +12,10 @@ class Rubric(BaseModel, ABC): system_prompt_template: str papers: Dict[str, str] question: str - synthesis: str + answer: str user_prompt_template: str = ("Evaluate and rate the quality of the following scientific synthesis " "according to the characteristics given in the system prompt.\n" - "\n{synthesis}\n" + "\n{answer}\n" "\n{question}\n" "\n\n{content}\n\n###") @@ -26,7 +26,7 @@ def render_papers(self) -> str: return paper_content def verbalize(self): - return self.user_prompt_template.format(synthesis=self.synthesis, + return self.user_prompt_template.format(answer=self.answer, question=self.question, content=self.render_papers()) diff --git a/yescieval/judge/__init__.py b/yescieval/judge/__init__.py index e69de29..5731352 100644 --- a/yescieval/judge/__init__.py +++ b/yescieval/judge/__init__.py @@ -0,0 +1,7 @@ +from .judges import AutoJudge, AskAutoJudge, BioASAutoJudge + +__all__ = [ + "AutoJudge", + "AskAutoJudge", + "BioASAutoJudge" +] \ No newline at end of file diff --git a/yescieval/judge/judges.py b/yescieval/judge/judges.py index 4a061cf..579f1b0 100644 --- a/yescieval/judge/judges.py +++ b/yescieval/judge/judges.py @@ -1,10 +1,51 @@ -from ..base import Judge, Parser, Rubric +from ..base import Judge, Rubric from typing import Dict +from transformers import AutoTokenizer, AutoModelForCausalLM +from peft import PeftModel, PeftConfig +import torch + + + class AutoJudge(Judge): - def from_pretrained(self, model_id:str, device:str="auto"): - pass + def _from_pretrained(self, model_id:str, device:str="auto", token:str =""): + config = PeftConfig.from_pretrained(model_id) + base_model_name = config.base_model_name_or_path + tokenizer = AutoTokenizer.from_pretrained(base_model_name, + padding_side="left", + token=token) + tokenizer.pad_token = tokenizer.eos_token + base_model = AutoModelForCausalLM.from_pretrained( + base_model_name, + torch_dtype=torch.float32, + device_map=device, + token=token + ) + model = PeftModel.from_pretrained(base_model, model_id) + return model, tokenizer + + def evaluate(self, rubric: Rubric, max_new_tokens: int=150) -> Dict[str, Dict[str, str]]: + inputs = self.tokenizer.apply_chat_template(rubric.instruct(), + add_generation_prompt=True, + return_dict=True, + return_tensors="pt") + inputs.to(self.model.device) + outputs = self.model.generate(**inputs, + max_new_tokens=max_new_tokens, + pad_token_id=self.tokenizer.eos_token_id) + evaluation = self.tokenizer.decode(outputs[0][len(inputs["input_ids"][0]):], skip_special_tokens=True) + return evaluation + + +class AskAutoJudge(AutoJudge): + def from_pretrained(self, model_id:str="SciKnowOrg/YESciEval-ASK-Llama-3.1-8B", + device:str="auto", + token:str =""): + return super()._from_pretrained(model_id=model_id, device=device, token=token) - def judge(self, rubric: Rubric, parser: Parser=Parser) -> Dict[str, Dict[str, str]]: - pass +class BioASAutoJudge(AutoJudge): + def from_pretrained(self, model_id: str = "SciKnowOrg/YESciEval-BioASQ-Llama-3.1-8B", + device: str = "auto", + token: str = ""): + return super()._from_pretrained(model_id=model_id, device=device, token=token) diff --git a/yescieval/parser/__init__.py b/yescieval/parser/__init__.py index e69de29..40ec79e 100644 --- a/yescieval/parser/__init__.py +++ b/yescieval/parser/__init__.py @@ -0,0 +1,3 @@ +from .parsers import GPTParser + +__all__ = ["GPTParser"] \ No newline at end of file diff --git a/yescieval/parser/parsers.py b/yescieval/parser/parsers.py new file mode 100644 index 0000000..7873375 --- /dev/null +++ b/yescieval/parser/parsers.py @@ -0,0 +1,61 @@ + +from ..base import Parser, RubricLikertScale +import time +from openai import OpenAI + +class GPTParser(Parser): + """ + Abstract base class for parsing model outputs into structured characteristic evaluations. + + Each characteristic maps to a CharacteristicScore with a rating and rationale. + """ + def __init__(self, openai_key:str, parser_model:str="gpt-4o-mini"): + self.client = OpenAI(api_key=openai_key) + self.parser_model = parser_model + + def parse(self, raw_output: str) -> RubricLikertScale: + """ + Parse the raw model output into structured characteristic evaluations. + + Args: + raw_output (str): The text generated by the model. + + Returns: + Dict[str, CharacteristicScore]: Mapping from characteristic name to its score and rationale. + """ + functions = [ + { + "name": "evaluate_characteristic", + "description": "Extracting the exact `rating` and `rationale` from the given text.", + "parameters": { + "type": "object", + "properties": { + "rating": { + "type": "number", + "description": "A numerical rating assigned to the characteristic in the text.", + "minimum": 1, + "maximum": 5 + }, + "rationale": { + "type": "string", + "description": "The explanation for the assigned rating." + } + }, + "required": ["rating", "rationale"] + } + } + ] + while True: + try: + completion = self.client.chat.completions.create( + model=self.parser_model, + messages=[{"role": "user", "content": raw_output}], + functions=functions + ) + parsed_output = eval(completion.choices[0].message.function_call.arguments) + break + except Exception as e: + print(f"Error {e}") + time.sleep(3) + + return RubricLikertScale(rating=parsed_output['rating'], rationale=parsed_output['rationale']) From e23a01033fdb87ab25bfe8478ef999e89c7bcb8e Mon Sep 17 00:00:00 2001 From: Hamed Babaei Giglou Date: Fri, 30 May 2025 15:44:12 +0200 Subject: [PATCH 03/21] :sparkles: add publish workflow --- .github/workflows/python-publish.yml | 39 ++++++++++++++++++++++++++++ 1 file changed, 39 insertions(+) create mode 100644 .github/workflows/python-publish.yml diff --git a/.github/workflows/python-publish.yml b/.github/workflows/python-publish.yml new file mode 100644 index 0000000..b3a4733 --- /dev/null +++ b/.github/workflows/python-publish.yml @@ -0,0 +1,39 @@ +name: Publish Python Package + +on: + push: + tags: + - "v*" + +jobs: + build-and-publish: + name: Build and Publish + runs-on: ubuntu-latest + + steps: + - name: Checkout code + uses: actions/checkout@v4 + + - name: Set up Python + uses: actions/setup-python@v4 + with: + python-version: "3.10" + + - name: Install Poetry + run: | + curl -sSL https://install.python-poetry.org | python3 - + echo "export PATH=\"$HOME/.local/bin:$PATH\"" >> $GITHUB_ENV + + - name: Install dependencies + run: poetry install --no-interaction --no-ansi + + - name: Build the package + run: poetry build + + - name: Configure Poetry for PyPI + run: | + poetry config pypi-token.pypi ${{ secrets.TWINE_API_TOKEN }} + + - name: Publish to PyPI + run: | + poetry publish --no-interaction --no-ansi \ No newline at end of file From 9653285934059cc262182e7a31d0d7963f4ae978 Mon Sep 17 00:00:00 2001 From: Hamed Babaei Giglou Date: Fri, 30 May 2025 16:28:55 +0200 Subject: [PATCH 04/21] :sparkles: add docs --- README.md | 20 ++-- docs/Makefile | 20 ++++ docs/make.bat | 35 +++++++ docs/requirements.txt | 13 +++ docs/source/_static/custom.css | 0 docs/source/_static/custom.js | 0 docs/source/_templates/layout.html | 9 ++ docs/source/conf.py | 153 +++++++++++++++++++++++++++++ docs/source/images/logo.ico | Bin 0 -> 1910 bytes docs/source/images/logo.png | Bin 0 -> 70420 bytes docs/source/index.rst | 71 +++++++++++++ docs/source/installation.rst | 63 ++++++++++++ docs/source/judges.rst | 0 docs/source/quickstart.rst | 87 ++++++++++++++++ docs/source/rubrics.rst | 81 +++++++++++++++ 15 files changed, 538 insertions(+), 14 deletions(-) create mode 100644 docs/Makefile create mode 100644 docs/make.bat create mode 100644 docs/requirements.txt create mode 100644 docs/source/_static/custom.css create mode 100644 docs/source/_static/custom.js create mode 100644 docs/source/_templates/layout.html create mode 100644 docs/source/conf.py create mode 100644 docs/source/images/logo.ico create mode 100644 docs/source/images/logo.png create mode 100644 docs/source/index.rst create mode 100644 docs/source/installation.rst create mode 100644 docs/source/judges.rst create mode 100644 docs/source/quickstart.rst create mode 100644 docs/source/rubrics.rst diff --git a/README.md b/README.md index 3736310..38bea81 100644 --- a/README.md +++ b/README.md @@ -1,26 +1,18 @@
- + OntoLearner Logo
+Large Language Models (LLMs) have become pivotal in powering scientific question-answering across modern search engines, yet their evaluation robustness remains largely underexplored. To address this gap, we introduce **YESciEval** โ€” an open-source framework that leverages fine-grained rubric-based assessments combined with reinforcement learning to reduce optimism bias in LLM evaluators. -## ๐Ÿ“‹ What is the YESciEval? - - -Large Language Models (LLMs) drive scientific question-answering on modern search engines, yet their evaluation robustness remains underexplored. We introduce **YESciEval**, an open-source framework that combines fine-grained rubric-based assessment with reinforcement learning to mitigate optimism bias in LLM evaluators. The framework is presented as f ollows: - - -We release multidisciplinary scienceQ&A datasets, including adversarial variants, with evaluation scores from multiple LLMs. Independent of proprietary models and human feedback, our approach enables scalable, cost-free evaluation. By advancing reliable LLM-as-a-judge models, this work supports AI alignment and fosters robust, transparent evaluation essential for scientific inquiry and artificial general intelligence. +YESciEval provides a comprehensive library for evaluating the quality of synthesized scientific answers using predefined rubrics and sophisticated LLM-based judgment models. This framework enables you to assess answers on key criteria by utilizing pretrained judges and parsing LLM outputs into structured JSON formats for detailed analysis. ## ๐Ÿ“ƒ License diff --git a/docs/Makefile b/docs/Makefile new file mode 100644 index 0000000..d0c3cbf --- /dev/null +++ b/docs/Makefile @@ -0,0 +1,20 @@ +# Minimal makefile for Sphinx documentation +# + +# You can set these variables from the command line, and also +# from the environment for the first two. +SPHINXOPTS ?= +SPHINXBUILD ?= sphinx-build +SOURCEDIR = source +BUILDDIR = build + +# Put it first so that "make" without argument is like "make help". +help: + @$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) + +.PHONY: help Makefile + +# Catch-all target: route all unknown targets to Sphinx using the new +# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS). +%: Makefile + @$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) diff --git a/docs/make.bat b/docs/make.bat new file mode 100644 index 0000000..9534b01 --- /dev/null +++ b/docs/make.bat @@ -0,0 +1,35 @@ +@ECHO OFF + +pushd %~dp0 + +REM Command file for Sphinx documentation + +if "%SPHINXBUILD%" == "" ( + set SPHINXBUILD=sphinx-build +) +set SOURCEDIR=source +set BUILDDIR=build + +if "%1" == "" goto help + +%SPHINXBUILD% >NUL 2>NUL +if errorlevel 9009 ( + echo. + echo.The 'sphinx-build' command was not found. Make sure you have Sphinx + echo.installed, then set the SPHINXBUILD environment variable to point + echo.to the full path of the 'sphinx-build' executable. Alternatively you + echo.may add the Sphinx directory to PATH. + echo. + echo.If you don't have Sphinx installed, grab it from + echo.http://sphinx-doc.org/ + exit /b 1 +) + +%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O% +goto end + +:help +%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O% + +:end +popd diff --git a/docs/requirements.txt b/docs/requirements.txt new file mode 100644 index 0000000..d02db8b --- /dev/null +++ b/docs/requirements.txt @@ -0,0 +1,13 @@ +sphinx +sphinx-rtd-theme +sphinx_autodoc_typehints +myst-parser +sphinx_markdown_tables +sphinx-copybutton +sphinxcontrib-mermaid +sphinx-panels +sphinx-design +sphinx-tabs +sphinx-inline-tabs +snowballstemmer +sphinx_toolbox diff --git a/docs/source/_static/custom.css b/docs/source/_static/custom.css new file mode 100644 index 0000000..e69de29 diff --git a/docs/source/_static/custom.js b/docs/source/_static/custom.js new file mode 100644 index 0000000..e69de29 diff --git a/docs/source/_templates/layout.html b/docs/source/_templates/layout.html new file mode 100644 index 0000000..72abf2e --- /dev/null +++ b/docs/source/_templates/layout.html @@ -0,0 +1,9 @@ +{% extends "!layout.html" %} +{% block extrahead %} + +{% endblock %} + +{# Override breadcrumbs with our custom template #} +{% block breadcrumbs %} + {% include "breadcrumbs.html" %} +{% endblock %} diff --git a/docs/source/conf.py b/docs/source/conf.py new file mode 100644 index 0000000..259b318 --- /dev/null +++ b/docs/source/conf.py @@ -0,0 +1,153 @@ +# Configuration file for the Sphinx documentation builder. +# import pathlib +# import sys +import datetime +import importlib +import inspect +import os + + +from sphinx.application import Sphinx +from sphinx.writers.html5 import HTML5Translator +import posixpath + +year = str(datetime.datetime.now().year) +project = 'YESciEval' +copyright = year + ' SciKnowOrg' +release = '0.1.0' + + +# -- General configuration --------------------------------------------------- + +# Add any Sphinx extension module names here, as strings. They can be +# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom +# ones. +extensions = [ + "sphinx.ext.napoleon", + "sphinx.ext.autodoc", + "myst_parser", + "sphinx_markdown_tables", + "sphinx_copybutton", + "sphinx.ext.intersphinx", + "sphinx.ext.linkcode", + "sphinx_inline_tabs", + "sphinxcontrib.mermaid", + "sphinx_toolbox.collapse", +] + +# autosummary_generate = True # Turn on sphinx.ext.autosummary + +# Add any paths that contain templates here, relative to this directory. +templates_path = ["_templates"] + +# List of patterns, relative to source directory, that match files and +# directories to include when looking for source files. +# This pattern also affects html_static_path and html_extra_path. +include_patterns = [ + "**", + "../../yescieval/", + "index.rst", +] +# Ensure exclude_patterns doesn't exclude your master document accidentally +exclude_patterns = [] + +# -- Options for HTML output ------------------------------------------------- + +source_suffix = '.rst' + +# specify the master doc, otherwise the build at read the docs fails +master_doc = "index" + +# The theme to use for HTML and HTML Help pages. See the documentation for +# a list of builtin themes. +html_theme = "sphinx_rtd_theme" + +html_theme_options = { + "external_links": [ + ("Github", "https://github.com/sciknoworg/YESciEval"), + ], + "navigation_depth": 4, + "collapse_navigation": True +} + +html_static_path = ["_static"] + +html_js_files = [ + 'https://cdnjs.cloudflare.com/ajax/libs/jquery/3.5.1/jquery.min.js', + 'custom.js' +] + +html_css_files = [ + # 'https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0-beta3/css/all.min.css', + 'custom.css', +] + +html_show_sourcelink = True +html_context = { + "display_github": True, + "github_user": "sciknoworg", + "github_repo": "YESciEval", + "github_version": "main/", +} + +html_logo = 'images/logo.png' +html_favicon = "images/logo.ico" +autoclass_content = "both" + +# Required to get rid of some myst.xref_missing warnings +myst_heading_anchors = 3 + +html_copy_source = True +def linkcode_resolve(domain, info): + """ + Resolve a GitHub link for the given domain and info dictionary. + """ + if domain != "py" or not info["module"]: + return None + + # Define the GitHub repository URL + repo_url = "https://github.com/sciknoworg/YESciEval/blob/main" + branch = "main" # Update if using a different branch + + # Retrieve the module and object + try: + module = importlib.import_module(info["module"]) + except ImportError: + return None + + # Try to get the source file and line numbers + try: + file_path = inspect.getsourcefile(module) + source_lines, start_line = inspect.getsourcelines(getattr(module, info["fullname"])) + except (TypeError, AttributeError, OSError): + return None + + # Generate the relative file path and GitHub link + relative_path = os.path.relpath(file_path, start=os.path.dirname(__file__)) + end_line = start_line + len(source_lines) - 1 + return f"{repo_url}/blob/{branch}/{relative_path}#L{start_line}-L{end_line}" + +def visit_download_reference(self, node): + root = "https://github.com/sciknoworg/YESciEval/tree/main" + atts = {"class": "reference download", "download": ""} + + if not self.builder.download_support: + self.context.append("") + elif "refuri" in node: + atts["class"] += " external" + atts["href"] = node["refuri"] + self.body.append(self.starttag(node, "a", "", **atts)) + self.context.append("") + elif "reftarget" in node and "refdoc" in node: + atts["class"] += " external" + atts["href"] = posixpath.join(root, os.path.dirname(node["refdoc"]), node["reftarget"]) + self.body.append(self.starttag(node, "a", "", **atts)) + self.context.append("") + else: + self.context.append("") + + +HTML5Translator.visit_download_reference = visit_download_reference + +def setup(app: Sphinx): + pass diff --git a/docs/source/images/logo.ico b/docs/source/images/logo.ico new file mode 100644 index 0000000000000000000000000000000000000000..314efa1532cdae07491095c2a4b34aa656a5ec3c GIT binary patch literal 1910 zcmb`ITTEP46owBE>YFbn+87?Fv58TijQXH4q$TZxXh~`V`)Q&nc+4wP_!-7mdh~1=ROBZ4E2FT*2&s?uf6{B z|9kJV&N-6gC$50!CApO%o|B{(B}sZscz|$!;qtsw`9n0@GX*YME zR$oKkY@pTDhOxC3y`hC>gMnJLnz}j--8U>~bvks7jWlR=3SW!hXcoBI8VwiouTXfd z6qBJ-(Vm~5=W>1qmkYC)n3y2t@Ges04^dh2BlR_9WPck+ZtB-`nVM<3R>hg*c#PUw zt`wa`Q(a1)>NqNazg&>X{d<3sv_Fg?hd9eSx5!95KwA86DvGkH`8k`|hy-5s`-GRJ z^&AQNVPW&4P1+lZDlSTiH@&@z>I=EtA0MU9(m}UT$Fa}12oK@#jvyxQkK>t{Ms+lb zvh!)gga%TeO6HHz5pH(2u=V`_erwlr>PQ3zO(nIZ=Q*)|2iYg0i3;Au8_#aX-){q7 zMPw*?e@#AM|CT_3k7Ro4F%cWyBqt@2yRKn=xtPPwpm)hkJcQ#;FELx!(qYgtWbYGm z`^3I7iH!{AbZiV`&OwexZ$@|Z5?4!eN!KuT$AI+~)x~Fp zRv8Dk2Z_DK(blM@xvmngca9-jpIFZjP3kgwyIZ(7?h@y-3M%n*}!^*5U zPua%ZBZ~KScZ&VqROWiSOoGG2oX4ZYPnwQq4VDgr;2stEPOQB>Pg0Bh!v`L&S9DO8 z+dxTHIyomxSS@|TD^f7g8&6VMq+P@=XCT+A&+A3*|I2*7h1|T)$HR$7d>>zeD)s_t z!t+kokP=fM>hELLNE=0+#1g(PL2&sN`D9)>_KExDUN(6w`%+Ud3Qnx)Uw9cO^UQg? zwCOBpuC#LXC%vfS+vJ=mXSLslihlUIW9-{}YANlC#6I7``B=<%L=88IcUjBr9y_&{ z46KrZ6#bC5VhCTGup)X-k^J*`W~MzH+^SM^VnWjhS`)>#4~`NSnZ*lIp!gnSK6UF# zPR!1DxK?hYs<=_9wHomp^uM;FDR079e}kE+*_D)A7T3Y`I|+H|9Uf14mxceoAg}nw fc;~#L9_N%kH>r?>uw))Tnh|w7&(i$tkZ6sq>P{%S(a z%IsQOYRYeW+6Wq`aebaR$GFMLvYXlm9&+K7aYIER2F5;HuFgfqGxmq9CHFn1V8lD* zPem}~nB8YH&99)L-NrBl^HP(0!LM&^$)aaq{nn5LVrc^=jD{vC0q{klS95(n11b^W+ky~&Fo30@gB}IM z(!$D~A0k9`IW9l=_rc{A#QDFNWsa%$?}9*0%GdKP9=PsLeS2@ zh+pBEBx(roKOrg;2L~H|R#s~mo*S9mZaWJ*EqPQ4S@2$0?gAf%JxK4o@{9+IO8QsbrB?KT2){85wY%EV$ z|NV9cQ=|XI?H5=6b^FD`{I5(Qh8AkiOf3zq?7CG&kaqDO~6|Ir)T8tObvk)F4hYkqGG*}B`ZppU~gFe*_;ar z{lEYD?@Rt88UI&Y{}tDNB!U0v=KpHff5r75N#H-a`M=ur|ChLK{|nw3S^-Sw48YsL z5B@O#{I1!HNh@JsV2sVkPotqxph-UyRf3GJO}M!$?w=iQhjUVOsDN!W+xIVgEz;4cgAI~O<<4XxmP7(Vh} z!=G*=f9GA3QGohY;Q#5btkOy|C8m01$P6STE+0~}L2*TjRO32DuQ+Nay zjHQgbw1lgibBIUdD*kO>ul%P|Xo!S&=dZWebn_g@$J0-E=# zX*(zSaZC9SyDC5cBw8JV!^@)8fws8qPu?AR{OZ?in7uaR!hPq8?m6faFJNM zO|cawEGggX7bBvjvq!%;5gD7AAC)m?OP-5FY^&-krrWWSd_>8(OVNH~RzSq-9C9EU z1vju*>Gz*3lUCJ z^^BpmL3%xsj`9&nTp2INs&} zvN~0Blr?#sg`Eix%lG;}EKFtQI;26ZpvA?fcvNxk6I{-h zX(O&$u z&t`JV{Zd`codu^Hwy?xUjDaMcrm~4gN7}5p^8|tVtdy5?T2n6I>Z80A;c;zYX-_$q zpJeID4Kn$vp&bvg!IMY3L+u3`tj%rPr$UjnM!()(St$4_`ce0whceZG=L&zFPVy^JGSoL&41M-;y zBPQ}VfqDN%P@+cuoos%h*Dg=APD;;)hIwd@t^LbQPu=XQy*_paverIFO0ZyLWeTdL zqhz)_BUzeu7)*$!`% z9QpUdiS6_bOWI#=Q*tfDs8rv6%Df+BrrY_kRljmVgzQ3Z_;MaEv$haC9LxXG#Q^gH6| zBvo^^qByPtDlc^rDbF8Oc?(yQyXxYgFF4M9*C%?kGn9epnyjHn9B*T>Bd_6ea?9tt zX=Y;CjA`9s`+?TlS2u#Z)1mC~z1X*yNG<2){~Bp2?~*#fQ?OGez?6vBr?aZ1a}Qmw ze))`{<|WRD#c9vkbv2bY_s}Vi_s(CRsA>{4DiiI6Mo4fB3QwNQ-V(*xJEx?hV=3Qt zwI5s;bel(qpQWL!;7xLFzQ>#HnW!7VY-XqEqDx-1QwjSfK%nh6DGdMBzChRS;d>F z=LBG4$*Y7Lch#0Jwal9(n?aMpxaeFfhAD3QbE9|#GMQZ)M*DeJ^3-)1LSmtevzp#f?m~O<458?MB zW^<)o5jdhapC8tNwZZ)5iK7uC%+2gyjTEEuwDZl|$KpJjlbyjkem_9kO4V9a!$wAC zzl`5|>t(Vw=ePx{gLZGKzd?lhz&1Sa;q-dH~AoUtXcc65Bw z{-^PSs@>qu0|!Y|oXE?3EPUXwbGx+wxZ3e1R*f_D_oqnIBe;!=+|E9U>V%Of~rYI(PYTKCprm z)^q3n^8vfZ`4~RaL+(chLWt+%N5&C4bQof?Hg(rz5mJPInvV%OjO>5Hhy-uNqdeeu z^V{X?p`YpFk3XhDe*j}BS@*SBAL35zO33wk_DqGK^K{J?*sBjk2|An+CF%Acv6f?&T}( zurWK~BI7+7`{(neTMxoRWCSe2o~!Ab^pAY#H=ki!C}-VRp+Ajbl^;EpT5wFJz<|ve z^-E3}ExeO_p9IbL3QM|%iXm0g&t4Wno=W_>+Md=@!G>Gr!Y_L%u19Bn*iSa;SB5?(qlle-d`AUn~Zj0vsiN zny}^0>svlJZU+9kyN281R%gy0^Q)~QxdG8{8l;oku+6y5#OsSJ6>rQ zyidRYC}Z&B9g)=?pse=d_Co4Aef0K>@Lj2@QAoA*o1umn2B}4HfGBy70;6)*o>r9gE9g~{aP_uvxtiA=aa-;1l41VU zw?Vu_ntl>oy`%3v17m+G5T&w_*lnx7g-3feL)MmhUv@LR_nZw@1yZ*cT-Lcj7lzu6 zHsNBKoUu8klzY9V?fyU!RTB1kNA3vT=h=}*g7gA~iSnpt=c9{+Z;xT56rCja<8sqZAnCemwMpcne$N+f%~H# z*RVT}au@9Tqum)pdbzlFmBuU7|1MR#j)kpAAH>}ty=zQvWV&}k3OyCcR_XJJBYqQy zN4S4>jo6l4kjO>IM@tS&uIz5Eynyw-kdl)cm|W~zcB}E)Dt}L>;Y6XZ?AQ>cFu;DJOV_ORp{$E*l;K_Lk$bt zdMTNuoXT%F<{m7wB9#BHMYvx(eQ35y-N2-I1VjaV2`h%r>veM?GAazQ>P1QEAEyUR zl0k_(Rcr?>SQnt+rw@gR|4X)`jITpM_abfrd(Pql&M=tF@Q6KQ!)HP5{qOu__v95$ zhtxSH?t(Z@VVFLEDTCw-ge3KfwsVqSQ06^PPGaI=^JgHCs+u)ws#XmLJ+;uo;5;Un zwT@JuEYkvenRaoq^GU{=ob?a(UnDC_kE$I=Htqcp#TW=0kD# zU_VS(pF$EXx;<^{Np9>6$WP(469SIW%eJqFF*Cr z|Kaj)>U%DJ!%=r`LWAnH^Qc|Ry9W)u|5*15EQ5_nWk`;{41Gn5s&J-#8Rat5~0xowOXY0Iq$-l<2uUVqN$7K3BK4|IcF-h#6_kz8> zOHxqyCMltA*1?~FX%?OB|UQ(jo5_CW%+D{2FWglAZ7Sj3_y_qQn zdqsf(460AT`sjR2GaPuMzI#UWp+M^lb0O;jrQdvfy_R~tqkx)TYp=yc|2dz`&%5ay z%v>}q64xA#lH>O~Z<~Yr4@Y?S(&qx9}N{|pQtn?Ba-q7Q1|@#n@nzFvgtX35s} z&&gb+r1pq#TK_FrejnWXm>6j?Rw!3vwFd3m9G?Mm^r3hbK@MWuZJ$3R>sa^1(;nz~cu3ZheN%sYbzH*kS-r!2!EmHW zR8boqX^mm+4NQC^P$J|T&lm)AH2uR1Far*{oTfgkWieQzGY?3{vkQnvVL`8t!0rP zAfEuKwa1iNdrDI9fF=m;M0=!(0$7`;hOm|tQbcU=UIYjwwB*X2%;k4{w$^i{0ls

7MFl)*k<5;-UIOQtd{;UM+;G z%)nUcTibW+%*-WaP5MhvCw8n4_pn$;Q4fiD(Md^ZU9n(yC! zFL`&4=+J5u<^Q!)Up?M{I5gd4)Ge#Lo;s2O9r2+TOUIQ4juo%=G!SS*X<9Nt--Cya z!d8A17yuW1%XfB8Lf_gna=cQ*Os;X(V6k-MGbLDm%_f{!1{L~$?%gD~>F>`6(~9@6 zihBWV-=PHlznxp0K+>_B_~$y0u21=zi?{Q&o0J&q$P{sXdR#66H<@!ZYcBt8Lpa+wrUN|iY;<5P0o z|HlKwe$f!N`t*7ZwdCrN6~A`$T4pSTMq{d6fAqLb5h*|iidym{5FAJJV>(JPa)Tsf zq=W+N@0!Npv2RI{S(HUT#~(yqluF)l)13p(-VI{4Z^tFub@12RM;XB#t~o;s#bBqM z+|@zmpL#pFca?v0!$ME#L__%Sw0?)hhvIQ(TIi9vAIXR(4LeA>fo8?Sh@_8OR}u25 zJ2SOYg5@Zb5Zei{k#^9^5n|RN342SQ4>bSnxf`6--S}dLmnkr87GaLJpg8Acar9(< zi+cb&>NWMgiFrT{6Zo^D;6kJ4WcO>$VB-)Q#m#w>ZVt#Sh$G;ig_t>g_sZQX77i1D z;{sq1NFvfY#%+HUBRi;eU8WyH6bBf>6nQ;RG>X7XCnFbA`7g=CGn`gWzv0TGuo zgl%Z{S%pV#3(D&kNX{EeE|U;DIk|CQVvdV0YS_Pe9fVjjjF4NInNR4y-mS4N%7o~Z;DrotJU_O0-)DFB9<$YaEhWASBDNBTF2GvIf@z%COR&`GN! zbHvW+j;$=ZC~v`GYAvA*pshfH1y-Lr$9$RIqPi zfVP~Pa%_?5u`QI(I}wT0EhKZhbqQ&v-zYD@bYf0g?pv0g$qh(OMIw@6%=W(gfQHD7 zP1q2e26WlhaLUaR@pLsRw*i&ljx%aNNm|kc1qYtZMUj7y^s{Ho{Y&LHUoh;xBOJ7Z&65EAdf;(|#Ibtd`4`aS<4X;F9=-iEwzvZBpZ#f@0)gCST z5h7Upe=-5pH|##&k&+kAP%8TH@!DUIo7qLqh*)Y>4KXHnP-lLcRN*oC6%;Vay1k!U z`8O2FpvoXHfoNxg23ap>&v@XrcC=Yf`JJ=`%j*kK;bNNIzqhEo_TcC8uP`ewgz96- zP8p5kj^u{$<}U|Utxr%mUMoB6bR3XroyU8Dexv;UJd*;Bo=Zz}8fV2u`>VXk%#!tvzjsMJc$+p_y85LI^cksYM5-S~4 z#y>;`q3hE1V-s#o+I)<G?P<*(J7q@ z=3H>fib8{EJZF}itkFX&S+ z5tqf*@Zn+RoHY??y24S#>j0#3c~fABDNdAXTYFWx4ID2XOBTJ$lkqa1(9cH9|0MiY zY-KFvk#f?nWMQbz`HybhNW3{)cu<*xDif!RF>+#vUb_89{as`zy;t%Yx~C5o!ej5IqI!C zFKib&I*>IAOPhrEgnOkyuevQcTDplGk1OVHKvY7r+ZaLY?_BKjrOEc({?%|T4SF`s z0ZLHw(KJXkf)0&5qDzQ&D7VlZp4K^VuNX04cbQK$gqDk9P5fCMJ;g@2{{If!CSZAAGpu zZ538yR9%}opwB{g7QesIt6Y<33H*!~?ZSqAYPweM71Z+Et3+yPx+Q3)iDFiX?YUE2 zewW5E3N1JZSSph-pLp~JSb81(IbxhvxTH9zCA!G?Y#%en3Vzo#tgY+eV4+^$wBj3W zH+kZIu!g8{g5}4qUz_5%3qIgfjeE#{x^SLzHc4o2BXXr7(!o!lui;)gk) z-VxYaa|CpL{>sZ&B_5jtSsL*5x>keH^?Ua5fcC7L+;0p7*gexp^h@#-7HyTF0U!sp#4Nk@uZ zcTYmj)#gtNDM~y(8hww< z4&UscMe&|4oVOEZ&5w&GZy!&FltEwJswPiBV#484H7f)DZG|f^Sua(B z)rpNWo4}qo(@yTX=K95V!z)q3SLoZ&-OI+-F`~W`m+v6&*;yHwxBgyqs_S7nRquIa zS@u77>RjA8-lYth5mK&p8F0q}ThkaiNV3s161OCU&-xEPiAHty0yt*htzf49VO3y1$K-+EW~KN>A6>Ro_^hE)9m98C_POC2HiPhhU6AvrrCr(iWE}U^?+E1!hyIFpgHyao^H$yNd}Hm%TXN)GKr}56#9( zRd;-k+;_BT8DNUeU7u>fCUWDK{cIh7H248k3$2d`HYOMJ%7IpQ_fC#R)))zll>HoO zpxa~44bwyJ0h&!=2R64Ooc{i8USXxCd}u3e zrxUO3bb$fpU!45{)R@)Fi%&*HF5MxKOW8=~)#X&RzmszX#=TT)Xwo;O7j9G?$HElx z`7a4^(QFlLeBV*39l*oDvQ3(X0~2s;A)|(Y45|HSXzDExYjJ1J*rT7c$v>aEt}8h% z5^tm3=eta*VIa+FbC@vja92~(jnI&r6x5tKsEJ}#+9$$UuICQ=z3L`1DrU9ryu9W+ z)2jdMDsoQVcc4#B(zzluR_AnC$2lP#7(0t2zz0lXmyhrF%G@kdht6dK@MC9QCu_|5 z@#Yg*jEk)v_pVi!!iD|>uHwPoI+leE2sQ=-lv#{_S4shV(|z?%ZkHO~2iNn6gQ&bxkv&@8Yipif$wL0d&}KA(X1uBAni4)2YeoAK8zYn3 z*~~pKK)BgP>yPC;@doFJ5j7>j0G%O8+_(@_u?%D@sMeA%zDpIu^l+vUc3!Xc4G_O} zmO+K}azKhZpjVICbA^)eJ(xyORsl+?X!SaukwB`DMK{9?s=(S^tIhME8XvJ9y&Hoj zLZtH?TUV|z_nNX9S2r<~1UVepQoWz{s_v=3(8)wwXO=FMVyxEm)ZJLzM-+iT2A;3C<+!`$wy%zDL$_p_c_GrdqLhQ zkXYVj4RwLAA|)&+vv@PM!-&Jh=F`MxUY&-rEZKBCa?iI&BJ(L8ftmmSrMX|CNyAm0NKsd8RO$oi~ z_u?a>n=S8O%v-&9bZd(nN$S^M!?&CQguXgCqNB{q@7bQMp1-c{K`hYo)j4txcmX@b`| zPEWHv(i+gz*5BpPb=I5h22L{b^dceOGWg|&+-L7G^NbpeD!MvZ|9Q(vxyhWN0ZK6+ ziuocYEGWvASg|_m#{ihwO9_$~vo39F$3Y{AVpKZ~NKS%oT+4h9N7_sM`Up1#jqwDF zf^iT?t(%LnoX#@%iG#0>6Cy>kkqg}9&JP7*td6m`mj^ko3%DA}dLHwwX6pS6M1hM* zyTSF96@1D&z*IrHL;WWPbIfV_XZ#6pjMO+fKF9^bjk;fbjoTNH{$2rKlm#&rHHMhE z{%+{!YxDoy!{Y?vSy|4n#Rhwxv@!1UCb!|}AA(N!K0~PK=1w8{*7!~X%0?HjJk)s$ z?D&902g+ETS{uswix@SZJkZ3lA^C}3jGw#lZ`A=zh~LN zW#Cl#41PV{esV*7TnUguD*?N+Z1n9g&_IfXaSQhoTWsg`MB^{=5J9Bfj4Me0eg~+R zP;bzNs=xRG7oE~&gmhN!zSY#&?xab$Gpx>s;u%=yUZ1hT4bbK=?CzBnqR^tp*I^Wm1B)rprOS1M~MYXG2j+lf7ku zS~aMKM$vBJO!7A=ZL(Aj@@6wtWpXeluU4^z97 z{F9=Rdwsqd7I?aQQet=?77`Jz33-AN-wRm}eQBcv$cr{FYsxkFrn0p}LGmmAuns67 zCPL97G=ywhy>hJtARQlp`yBkim<{GA|M=35C*@N& z=ckXPye9nxvFFluQb{{MdV&2xg&GvHF+!p_S~qV>UXu%p3ApG{HGy{NV}_toP657x z*KdVJK?pic5($b+ctAo%YnL-(5t+jZ;Wk&fN1)zAYbcQ=mW0DsmQ=QJSSv=R51~d0 zToM502&s1JNkmlVQIbfek}zIW2Z4w?u-M5sy;kK9Za1!fmWw|Y_qrQ|NzP^%cSt{6 zd@CUUsVn7_l>t&6OBF4Y@1I>&NJ%RM77X@OC-&k=Ji<;TbJveXyvk7DU+ZpTnq!b} zGcG72BX)_UN!xl+mPG;trT`f*t(ows#6mv9ej|^QTDtCo_VO zq2}BGD4s^CC_uq~a_+ik{VeHK3R5B@nf;r&sM)|}R|fFz_YDnx@{!-r=gD!uJ`qqC zq_uv8=R5rl^>XYm#SfA%hzK7Nv5a)hS5r&s0eY*OjDN$IC{jxT(i@-@(I!OYoX5lbFXmtb614yIYm| zX}&q*Xl+#bLoyV{&11s=-vVU&b8ng4ms*^CZG&M^(sKBtUyRtJp$rXS;vYb%9W(k# zTTB|~xlnW3OS}+0DawDAJ#*&uzLAXQR&hA!TUQ?$1vbQpe>>D0@Cdcxp^O4dPNSi0H`X zXx=k{pg>(4P#~66U`LqLCHaDMN`POCx;~~2YZ}$*@ul>=Kwa(=Al+0r0pZEhcd!0GJ zT@nY@9h8{=+*@bJ>9F0R`(=I)q~?uz8szi*@24ULVg18D0R9VOT)Vn~3Z_S9S=B0G z(RADAbyNdozt4QG&Zg4@G(%1~Bf~yl1N1D_6_A_HhVhkgkqNK}Q#pNC@~fNY^EXDu z(WkXL-08%3Z-jaS^0`65s=V?n6Mptw@H;g}e$qkKO=DhNvw%Mt>e3(!aTzR3j;%mLxxWWx4~xz~*7-vyZ+Sefp<9%d>1@%4BfI$IR8r4)nS~ ziJKoJIM(?j=D&ynMxs$4>&a^jGE~1#G{bNhrLb3u^@}|KnbrgY=Y<==aJsdx7D9=- zbas6q_22lyPoFg(szvE#ei9?@eL;(dEjW(K1=wl$O7uoO0@p-jf5m}y>QP+*wELUD zn=kPJH$vXdfFB~QBiwzCm&%j~SmkF|K|=DE~5Jq^xk>jo?)UWl}oVBa|& z%Eg6jx0o`4khJ1xNp%IV@K%WeBjW0f91;Ol~YlYY^lg|p>LcXxM^VU3O7oFKO1;*gMW+qwQoeo6RX z(EK9!v+=DuZO=F4B0~*@K-g-+=WpzJpaOL>fz8k*3%TQ=cx2&vt(0QG`>SMjh0MG3Qtr3b<47S@$L5agz zEUwyPGpxlf=QFh^5k>(Ym2Z+QaaGA|zmdkC#B*}q5EsuEbS<+*zaaZEv&JO=&bB;% z3gAfVgjZFT@pr^UEKx%ISS`HSfF6trQ_YHqdY=JhlD z0;ulVoWDbJrn1?7#q~ZKb|_c4?v;PuPgNPS1{UQhdS$}l;39SG!!!(_57s%IzbC=LJPegIOC|}Hg>NoEJJjLXmN3Ha5>G46v_`MFSj0GMU7aE zan6h21FBPdr1%3t`QK#>fybC-yE$IzcikFEh(ljaXxM{0Jga$M2 z_n}g0tddYVK>by=N$(U1R8H>?@~DfN-`F_~h8C2Ji<1&ZZ0NP3gq$Snk%z@xNa zXEAwd=l3kF9p+ipi%vw5BvhPcDhehB6?m>xdOKhlS7ry*qq!rZu;sz4|lEcS-JYLppz`ot*O^m8E z?Ss-4CD{|xBSBxWnUZtREpU;6+yX2i$Ut~GByN+B=}v*o3^pLa35j-{3W;;!0~j`7 z>JQ`Siejbzk!gJpD)D+dT6DX0!bLHTOQJ!;u9ahCXq(jnTQZ>68$kpz|JARRdTmb+Q_}EG*zf`At0R2?` zu1hcGaEH5JU<8`7sH+C3!+L}Q6v}#`TE)o%n6i~M&JG_SFD4f;kJ8ICH%7N}-p{gy zZ^mq%2Fq!&OQos=qJzpoq`~6$wRhF1tTF=dsQ{@-fa8!7Z9A1L5Osx%`~x>6R7+SA z3xvwR5cFGE*u;F6&|Lun5;6uC9gvg$6=1|p`E$%`MC^J>;8Y{aa_l^3BuM9AGV-m0 z4Pg=ipJa^!Lui(T=|v*dbYQPERLm9ch~QORM=klc0XyjzjZUSajvf!t)^hKjz$-yo z=j0q!{Tfgsgk~rS{%+02aOT$QdGQw_JZ28my*+*vsQ@gy`;$Hwnc;;Kw{0aMJa}by z>q7l$!==lJScbzuIYQ#<1ptiyHl4L`q+aO%dgHf)C%w%bqz+eno+sl0$1Sh>`&SkC zhdna6aC?MbTeus-vN6&@@KdVVX?mh=hAt;dM;J)KBMN0$_5dlTy+S4U|)K>gG*6Nb^OPS;S~ zzS9p~6vRb-cSO(A@mKxiQvjBTLauY_Hy6ImbXGTAqgIW!Rq#udWQZTubuZ0|OvE$@ zM#fLVKOoSz@=}n6L){ZdsvbTh5`NppyZtS0zj{7$rdaAFC}BjkY!&g@Ev;B`(B1I& z|AY>T#N&4{_1}%7GOVlrbEsFRt%=aenV;_RIF3|NH{>;rf7U~15k$E=rJYhph{a-JpD5sJy@b ziw6Tdv>H?mu^fl%Pf_P{Y|1W@(%4OOe}9nTJe<8eM`~aoW#edfhau!l`aM zprlX*O$=lFb>Z7ES7{nB=~%84^XU4DFS1lPxzaw*aPc#9Q04D4!r^F8ba!R< zo3)-fQ%8MUwz}!;nL1SZ3Ekw>y_xkJWj7|A2#21}onG~&8}}8|VXJ9DzEuDRpEWmO zeI}DC=%lT)`gKr?K7se1Y;C<9Fu<;JA}%9%f@ zo0lQU<9fSt2yp!+LaWSj1E+=n#K0wr9K|0gRftT_>NgAZHe$@XXLAc_$8qyY=RJVC z`~*iB+8dnRNL8X`NuVKnRQcxxymcyuUbyxV1@&V+r=mCx5)v|gyHUue_VKWv`M2y& z5$`U~v)f>`-sc2y{uve#^=|ezYOWj4G*xWR)hYwonF^z~8wFq=LvTXh1Iovs!bUT# zHZ_7Ae_j&VB*Xg-mF#o?u2{hB^OkpD=Ty~0M%0LSTD5L zV-xQi_#)e7;${wOe*p)`S~Ap6POcqqcyovc*3twfBJPL;Ns`54G%peteV(BxNu*XYV$ zuK3dPhWBe^C+nReWIp<|Jo~Zm;OOw0a+Et&`fzl*KnY{JTN;KsNjt-A)OB^_E`1;4 z(#nLF$>!zfIW8_gtYK|%oYMLC%lnvH;4&8G9oxm_)A!eEm>X)(Jx_}$7?Hl(p<47- z18@(j+B<;U=n|aB#glXy6X$x{tLCZx<^JCZ+d!5;-c+*^mOfrnADvDd$;r>pGU(Qu zy}c`^9@_TLq`f)D;VXE6BZ1Dph2=v!;09b>+s8nn4)Zp@UJ;C2wn+zZQZnPXrLAn9Fr`WKW~FIe?*F^t+GBCx59Yy<+lM zgoWguhYRYS3w{3#+RVugcQ=9XOuKbz2@_D+ZWJJdJm#h&0hrquJ_5|4d>*2%T1R6! zC5ne!Q)lXJa}#2{#fhiW=IQf4_5xFyhmG$~6{ZPLjwuy1fOW6CZ%&E`&FH+x2VwfG z^l%qIllHo7kmGl6sFlw8>Q-y}fg;{oS}7%j4i(~Gfcbf@Bu!bLNdaG|=>TaHx}!S@ zH=PoFZM8d_uEgSY@EYE>l~^=X@!Ido-_#s*yX^8&k8FqLl>57_HayZg+;D5DvT8@anNHO0 z_W;BJUm4g;=mJXOd6Ywpdrx5NNP82p*mv>Gh0vLe_ANZ~DGV&^1ywX2R5fZ1-EZG@ zD=1x;ahTU`1u}Gy0zO0W$XWz`u&qs2Hg6{7r|qc?pnnMTY&=$X)8Mscg~0vG&mvIB zzi<8wq2JX7ba)wPl1wVGfYlwb9(G>K44IhwdB+EnjAItOzM8vX*VCn3fW_>ZI||nn zadWcGL|Y0c`-K-1`=-yifrcI03p&Vh@m}4d}0& zPqp_;9nVu@Xf4p^0Q~(AKWs8K7ZM`B=D)N%IHY4rkN)7UU$MV@T$hN3?cp=WrlV17 z7VaUQfSRkB1A0AY0HZy-ODxD_>Y&x8#+@J9u@(Kk`Q-w+kg8qLF{0Rc)0Qm_fv7i5 zOO_7(_&C6f-oJP8>vNfV3Nrk!sGINR{^2(&v>PQERL9`6kfxR~Wi0BEd})aH{Eqx0z|(}19!q~|yd^!fW4&7>m-Sk3BDMqvd59PM|6qomjWO*V2J(LJ zQJ9d2b@w~DvdRY!JG>-5AlpOH(1xYdBQ|md%yRohc6IOl>uJ;63BRtDugXdqrKV?< zBK7phb7bC;t~;j-;k`SH2oL9LH5=Lj$y459@vcjK>e^#3*Il69or0M{eLzG-j}ua z9h&cUBd)MdAP;V#k!FctL|XDc^{P>$p>B4?DoiQNJ5NMhdxren0h%{$kFi4D;$&*2 zLJn@2zHaq!k7DS%Xj^~QR5QuHt2dz{2!!QN_Vki)D*PfL;2RwBe8reM$f?Bn$8nwz zaRaqzwD0nsqT982pBx51@-f-HD2+I_Nwh7>^KDHFC!vDogLzK2P)# zl1yx8gN=k6dIaSD#zf5GQequke4fG^KEM^tvpG=(KiQO*k=3oq%so4-O;f23N=v&j z)$(02#7aBoWWS_zqro~gxE4GiqoktDI%Q|Gd2GF$iDj=gANwx4Fn8!%j-oU>Lt^{F zOAWqqKCe#~g7x;v%DmsG+s1Fhzx+Gbhc;=;8nJI`%IDwE3f-*B%mqp8Mrl!JJ=y|xereZ$&8cd!s?3Pn#DrL+Kxf!G)hV; zzLw*Nfsgb(wylsizz$3eV3UE;&y$m=I`m$n>k}SpelALKpYND}dk{}Jb)LFiZaaR{ zYPquh)yNwkB%dd06+nNmQ*i$3VJ(6Fz$FF3!PP9Wg1dd9I!E(rnA@%uDwF80Aoevp z&bxCo+LU+QvfdP|@D+NcGueS-OhTMX_%HT+1K8aMA}0s$-#V~@1*QEcGCRwApg!ay z9d%nwT+`g+x9v3!eHocp9R3MQ+c$y2K9{?2D%;*gJX2HfqbOh}tX-$35RO%u07r`l z%~oNb1RtDy&v=%m{3hbdtV!~iRp&y3?%kp?|oP|>Gd3zIIq zlqN2@7DcP}ym8J0T*+sI`WIhedY&fzSgXK@?)XYZuVncITs0Wt&LgWXA>k9UO5}W} z&b`H@tQ2`8fEof1P`sE9M+?j4{`Ceww^`?f!ge(oap@a`<|1xysnaE@|PP z06MF3kcE<1J~RZb)P3Vh}(E+6+M^lYq04v_pej9%L%lh zX#II!zSjPCb@RWQIVECc!tfTqm^x5VB%T+{N$hg&z9vN&W`3Vs#&%E6W zPm^eW!54jg#g7G<74IJ*mVW>3pXT>LA`~OJ?=Am~RmIzZ$Sc4UkrpRP5Gu+K!6kZe zwtTcXLgRD0`p4S-8VxO$hnlK0=;cAhOK#QG&95FI#XqF$Ab)U@9$J27}eC!8JnFY-PhpSsh*l#l{#t9BVRj@FSA2` zuV05-=DgY7x?CvKA<6G=d}h7b^H&X*#L%Piy2_gAEvOIv`I}DK_)GV% zySsoKUHgC0W#lHyznJ{r3Z`e#@r$Ng73J>g^Y>1Tb$5BaJFA62v$Db`zH5Dum(uk! zGW**q7b%~i?h|;vMyIy}2l<9!ndl_@trlqkAJ)rl5|r#i`ub>05j2 zTKwQ_qGoiQ4Wo?w5E>{$K~mIQqiq?4u+f^NPj**@34Tgf0jf`X+D)lW4G*0jK;y+D5SJbew#R1eM4gBiC#o3z_ijjc|l z-r(Ogvhnoy4c|0AMSUghPuN1O%FXShx_@mAK zNhweJYf}VS?_+(to)4bg<3mf96Eu3KyWtZV-(PWW;(exEJnJ)S)xzd2hQc#lC4QK#1@EymiYBJaY&CmKE? zDJ?{e#Q*f!Z%83UJ5eA{a)9Omqx9MQZ_GEw?Zh_TcSryqGz_a5bDMdI$?~~F|14)= zCSQJC#FxkM9?Vm0f8pMVRp1!PAKM}Kc7o$ihBpETVl^K3nH+A~K@=Dv?1%hh`x+^M zD7HApVF-|%$w|`C(BQ*Etas7Bf@k|z04Bg?bj$p4oVCb}GKMR_+|(ZTcj42;KHq=O z&ur-#G2mqTq~(zR$@0M(BYwb0wkf^E^&35_CcT`*zgS&_U`ay_|H`QGxJ?JfJ3&dX zAM!{ZTD6;`bUw@}{F8KE{sZsO{G;tNfmX)EJDT%ajU*V{jH2u?P7v({O2{)mad>iL z=tD=dvUf0zX2tg;tc9B2T?w0PoW)qqyC_U6!^k=_ny6Xhe~oW!Y&>Se$2x4=0C3EG zJ>;+cDTpKByajwFur{?634|aiDJzkO6Nr^VwSK@We}@i%P{yZvFpv`=JwigKzUQa^ z%w?WZQcjq-0Lk)Xm-v+Hf1PG})gd?#8WBK}c4_48sx+Y=bZry~T%}bMvonjq?;2^UZBMpDA zeB_nklfU(F@ISl$o%D9{ozGBj$qr6lZL}twKc+yJZ7qx1_(=N)!i?%t#Sdt=e1xQ; zKp>S>>nDkU5$V~4KE4_ldS=h*qq)dG676ltiBYO(8afUrFCtPg#5%bI<)vjii|fje^D?szi+-Gn0*nR;mRA2h za^l)tLbDZ~(EN+2=U1x7v6$DIK#0x(FA{h5heG~dTZ8vTWVwVGaC-H^QvRhYoew9$ zNrjU6$cJ3DHZ!FqdBzs4Di%m3)1IuX%E*BeDvCck*F1}hFej%}z2C*CDq&#od)zfQ zOZ3*~`h$s^?S8!W@^&{pM^#2g59Q5JvGuth2=4#6#8_FRf0*@W72@K^3dTmsWYouJ z%--AKcH^@#n2g97n)>-4oVDigxP!dz3RtS|(nSe}?8}Rj?>g}{3`b5KBEM9Gnn!`L zwdr(!b9ZKEJOGK@#&ER3!el9qUc%HI_30^xWq&Ib0D$qbmD1maqh5xL@C8PjHp2&x z1pBl;_PB8{yL;8z)z<8rin;Y#N7LvI!mld6y!5gc?QM0bEM2I7c^WkZe zw`VF^*t)q`R_^zbs1RnN!_v)bw%}YjC9*q@kRks8MX{%tKLw z3nPxNJ(%zN%{vUTu8G7s&nRS%)U)wmhv=*7lD`0G@=X z(Nw`-$LUm`pS%=?nqITTa#Z|KNxMq=Tm@2nf5rK|R^~nW0v~u&rl$HtY=&fzP^`7I zY{}fuI6NxP)d3eFcF!OoIntg0qi*X^*%I$b>9wM|fpFzw!B^+B`db%>$rlaE(Rb9cD>Zzz1W85e=J zv|!tuy-N5Lc)n>mowmTI&au^^GQ>0-rp{=hg`EVfz4XO~y#?%Oq3Of^;g-*Z*frl9 z;ROfe4%Bvc^#jXjGVmgL92_d094hI`emAGYCcD!eJGW=|kTLAx;ygRMC1LHMRI^m! z8m@6%SmfwgBWvRyw(xrvz4>hZyDV@52@ILSjD$7`=K;N4aVwCSm}INuUUcT10I`C} zMC$nSLEIrs939QpC!zwF)Bvxg9)JVsErUvy+=>sTaFb|Q8OQmXZ1AD$nktWG&i6*R zLFuDj?d4*m%o@oCwj>DqZ$+~JLS^I=6uWSA0u#;uC_;o9q|;V%r>6ScDmE$>UDj^n zFRg<*3U1!xoXa8v^N5BdcSpQ+(~!itHD$VxsaEUwcnH_EJ7d#V>M4iGt-0Td^>5Tu zF0Cz;=Z1MGHoUr`pSLcsqAAFsLCYIu+k+~whkO2)xp1^Rhtb;Ix!DY(h;Mk$D*`z= z)qIbcVUW+3nw-U4Ux>I2*a(Gj%*^8A>Z^raM9#FTK2@m!8nv;@c-Rz`_I?t5I=gQ(;3js6pwykpZyLOjOi)lT($+;{dHQB@?X`dJ`BnZn}2YF`N+ z4S{^Zj)+oNObwhN~_&2*Sqhw&4iFC7P zd3_s}a35>=IQc5o9QCb{lB*`&(B_JC`)U9NASR@?VK9(d@A^`UZb~NSrli0GxM5y# zqYw(@T-^nT&0r5$^HX-)zRU;Y>&Jd#T4*|VM$&?XroE&DKNfPAJHWs6jOfH^-xgs= zcj=&v68|shjH$1089BIL?eurIj!&*qh*`b4uqRURxP_IehCL)GX<%A}|*u8&un`~8?@%gwHrSKnj~36BelmS-ltii>Pa zANDTc<>{5M9TRoRz^3)v(2^tZ#r@x!`BSfRe%E?E?lBP`WfZ6j9mJyQ$m`nQrE^W=Pe4HqF9oEF39dG=t} zhajoIw7+MHyXV5hIDR~rU6k7(@w`k9%D{SDz=L;m_KbKp-QO<-Mj#NxE)v-37p}sz0q8^e(`Yj?<_xX%c}^n;a;2u@a_D{s)tMm($ zF7i};RJ>51Q?78GHoQeH1GU|mmbtTn`*6)-lcP1>(+i9QywkQ~m8x~v`2T^6O@02K zW)4KjWqB&LByGQx4#71tB$~g7r6fm)Vt*|ZMo@V$EHE@i>fWU6t?U6dsD~R-Z|gKz zB4t0dMyZ@J_4P0N&X4p*%&8v-QYFcn%so@|5 zNR;0FhlSqQ6&^Y|ImwYo(X|j0ndOTm%Z7ux@w4Ea`WWVTrXX*lhr|7K#cCt3n{cQ{ zcNqekV@6|+{i6z$kaX@ldSd1K$AQm-GDvn2%4&9)%;A5@J``~M>AVH_!R>ICifEsZ zmoB?j8l;EUVrn3q@nNLfQ!}aVauF?|PeBlY`JOEVKCq6NONSJdF{h0Ekeezy%E_s^(^#(C z^fi2r&Omk*mm&$Y+o6P!QEr0OfK2EG6$2;fsNz!x&G!f=z;Qe4AT%MJYBaD0e_4xd zYjDdyS*U4hL^{RU!^XppUmTtNdH?zk=4~TqR3X=zeQmQ&ejOp2B7x4DEeG?rZpLja zTpV0EvOJVa#G_*-5+>?6CD%=*>S!pw>rn&Eak(hHyMs~z!qWZ`}d@jb9sveh1gb@Os0_!J+g_v})ln0%=iC*sk z@eFwUD)lIf|5NF)w2}PMJWcCruVFxyieaKxV8pAO>_d2IX2nb4#%uWv)Z6h(%vFDN zp#X3CgM1L1oA;paJpO|H zObyZKmw=g@sHhQoDl0&;11|9ZLlZ34`xTDAYS9AuH$EAu!~U2jg~MY?l_XE(AUtv@ z@3K7>T?2ayY`CW&c1q zALbzoUXta!i4Jg%pKj4ebGH*XZ@lZkMU&s4Q{^lyTnM_fVSQLvd@5FZr8RDwfwH5d@1Fi;0?=OXZh1fW+&)lnMHgz&W4`63rpo3? zO|Ohn$e6+U4o8L>q#w;Rh?fu8CAo7sK2(rXLTB+O2HKy^kF?#*wW_UMN;1NsA+$sb z8JE`~d5YY6Ih8sh3Pj!qyUCx}0MMCs8X<{)VSr2ED#O(kU_$V@tHxIeH+#k}3e_E2hqM=Jng z{gE6ejze5?3zHS<7accY7Vv-|4x!8OhlX@*Qm%DCdYMIhRjOv0a zFCZyN>xCHSHW5E`J~c(u%xO`Qab)WGwqTy*ziQsFu<%)gV&99`4)*)s9bJLzsEa&E zwOx5dl%>n-75H#Vlrlhq?9>}hyjQ&LO0hwGi@p)6s-yx=Q)mL7g4zS(HHMFzrxt!p zY%i^0T$R5NKu#brCCoEjaywyJvHLt3NDK_`^P1lQ^5pD&)bMbN39IwgWiuR;dyv3) zO~`cQt#EVRYj4pLw0}JfkMektR>>=>Ga{+7QKEe~o|ng%GCglzn~k;+_WxLsLd*AH zr$;j1U6x3rcLr5h1y{3zhR)g!CeAyY_Biy*$^Pa@8&2cyVUpAO7KklJ3dqNw5qITs z%sDkF9qCz<&s;?^Fqb&3_xEwXtJ;9;X!}nbYw47AzL*`i{5q@Q5w}J7qu{uxwha(G z)^0TKunB{XuJ}l1+j8m{JP@iXDLGks2L$9WNw7$#M`v$(xEq;2Hy4$DNvY1Ts%BAT zcw_ps;?X#pI@=mG6;xyp&2+~FtJ62ExbYtf_PRly$=EztVu1Gn_YZxJEYwKDc$>SbMF~ykZ;Ei^Mi(z!9LuHEaa7ybMmvQA7EJ_@C;WF!O zWNgkcW3wV85kjb2re<*oA7lK-5 z{$Chy1XT3Aqh!)$|E!?=?74=?xg*f;oj5u+jl*sKi5I04#24=-=lFkyyxX=MA=8I^ zUTn%qsLozd^X53FV-_i$@5XIjshVnHd2cDih3as6X)#7j zCF1xH!4L+~9U-katJ&RwXhQ$?ZiMw4Jy3sL0*eZNm!FRQ)wgrq&`ZCyFsjzZAp=AP zfXia9-O0u708s%x+@*3=PmSkP#ZOyCq@kYu;IXoJHA;N-gAN?fj|xuu8f*)gZ(F=H zV;>iI%?DEW%n*@QxMgI7R$%wNg87O}p>=36UWiz8?9?8i#*n2K}%QffT zR@;-{xZPPP?+&m7;gQc(DN6U`X8Li(2=jY{gm_5-dO3U2>yJnT5!;7c_UEmN7pjkD znWL`bZ6^{We4HU?6ec)%LhLMT?r>$wvs2jsifq`lwz+vl1nGrb->E%x>R=y6K|wAu zSUdFffAcTc@XUR^k{dI@gmvq4M;6y`UIz5SWI7#LF5SSk{^Tn%7^h1Zi}X7Cg^yCq zfWv`xYkC8JkwVzIUiQo}-o5wWTLbJ2mONQNv5aU~8o#$amV}<39;eBoQssf6wiKLv*CPWk71d2*C=G7E<8_wvKO9Nbt7eIDQhqYuz6`5@d4bg zAw^W6=LT?mpGR`uAr8g0xI3_I7UqYfN?XiTtCB~&2UO42&_X=S>HtHZ2!(9Cs*?LK zf*k*8_V;EhStl2*ht4#9)d`St?VeWMot&K52&806zAj!EC93Qkr(zVdYPh&vOh%TSk)xT?sT=3osvCz30ze#QT^3q-W+0T!Yll-dUpMN%M zLo7eL_~jaS9ClSTgHnXpb#NgfCDP1q^XkXHYKzJ3(iuQwX|v!9WBeW$;BpZIa>lhf z&H8nTvfoE3Tsj$ciUm1t24pZ3r{XYe=rn}afW1g~r?Y0?@bn=SoPb?WI@0z7uMj-4 zEef*jNN-<6Xt0cQlk619@$IB#I;@46~hw_+ z6f5m>n{Ru_jqqH=FD-N`O-Souf1$uIQ3t+ui;{G`+V;>sN)4=}@t#=zQ2B;GaOhO| z7a4j6N7T4Ox2*1!4x_W}g#&Kank@+2qy%@q;5-I&cLV4X6sY?8V&94GD8Ey)!w^m9 zmIkQH+sMUjk>w^iVd%<6-Q-5abIvgF{FFF^s&GbROjUKWP1*7XU5JHkL3oCDuxQxm z1AddWV5Rww-!k;^)#yo#0-m03Nl*;D*T~SR!bP6Rj9lQ*<M&e0jFaZWuK zfby!wwqpOY7UWtS6;$`5ToL%wJCTjr?S9@(I}C_kEErZe6Ll<`ud zV@}SWV;8(wdj>hk^zN+Ag5GcR$U=TPG=1%esmZtFrJG+gw=N`@w1{J3(yBlvHsqFR zQw${0>^P%8xOS|F_6jKWO*;x86O3TeZ#{L1=HR<2Z8SEXjbnJ4tCWFzc^ST6bLc#y z7NOWRMqV?_G^=M~juEU_;Ht$vry{s}`@JB)}9NUekBmhy&5#p0w<+f8&4 zF2={#v`A$D&Wv7q^d7xs%+M`s>I?kd+!JN)6Y`kh5sxx*hR^W$im*bB$6z-P_twAu zy|2(|>Z*9oGN^K;5*v#5OC92?_NlZ-xHEJa!0A-~78@UPJNTTo8jy*HO!23)VO6ra zEzm)VqQo;Tt#o*p6`{1}IO=ATjPrbJE~Y5`_6Ojxvqy4PF`zzDj6CElv#|LOk-N?U z)5*R5u%gbv|A@A{W;F!nb*iK6Pinpzp}})g>?~d&4^GV{f>Zf#^3y1QW*{{i>JFB6 zAMPyIFwc37POctnKU;P9UTT!wjz_pf%oQ2d@v}gn8@LxFy${6$&hXt#Pi|f8;d|+O zthBY4avIiP^1qtaZ1o&#dbmm@9C&qu)jW3|_qBOgBE7%Ka%ut;GOrFfYS32MvM)>> z#Qw+ULVe78K{R@c_&;gu+t2&56mE$7f^p2#)rt`KAc75GPGV5|Eya%+$u zxK{T~tgpB4+4+$EJCa(8Mt2dQ7}4Y3#1>iPKoTdh-YaUl@P z+4CDvovV=-KdGQ6+b8#jH9wi6h^UMIV$r7F5-pCiF4yR^>&oj@mmFPEOrxOuWv;=v z{Rt@(wHV7?LxaHWWX1dUtP_jx*JCKirg&?ejSgGjs_|R&SY>|Q-i)iJll<&Siff!> z({%wBG}yC34^>`cHd-oPlTklTVcs7R=`y)Ih;Luu>@Kr6U3<_9p!5O)r48nXxyb|W zI89unp1Ip!ydvDvP?T?U*_jahfq&pYgA#0O;ll`LFY9bWmbP`v{;A&+5;plF^-tq7BsC?%4nQ4GMy+i9kz2IVak)KF%FYUJ*S|9}NqUijNuOP; zJmgNG&E)_p0b}Rzyw}e{lkQ;26ynZ@3awx~uzZXGXpyj@>?_6hryTJ>=P(PUomW>^ z=JlA1$Z>yBL=JDJ0p2$&o$2x#O>D8y#4&VJ)vjVEKec(r!l*b-)j#NX7dZ7|XW9+4h|YhF)}yE0E-J9Xt~j`S2emKiqB-$^k&Vt~-`(ANSFi+L zpp_7#=0cI5AoOwHU=R!vfd7wyD~^Um?4uK@+(xh3Umx(;2SnL}@DE5<8LNeAjdN8P zxh^c&IYzcg6DdU+>Y}Tz6hdy^V(m7&?8o>69#maWu$iqHQeO{uUh?BpC^rF=mfV^= z^q>RwB4?Ag)$?-RI2vktN^D$eAQ9Z#4(}}HNOucZCroDR%B+wmW`}|y9PSB|6x#X3 zn6wYcF@iZEz?~&~tRchp*Z`u3c!r4-p>dY1?!!f!DDjt*y+hY1s9*dW=lS&M+eO(W zqJ>ug4S*s?0R#A4fty0qZ6R*xJllJjgffQcaY$`u>n@-h=%(kLE`YhHJ6!*_+C<57 zW~<>$(4>G>nUTJa>xo%P66@9VSNwTsDr1f*(QL%|1WD|J4Tn?G@^2FF3q zR>qCTBL4u;t0#i=5}v(}1479_8&U0GE2yu(9i+tgYdvg=34VdEL7F(8B;xpk4~=GM zzT?wcZ0&ss*B*P&%({?`{|(bDsR_|B_55&N`?OEJ*PN*3JqzZ8}@UD z^;8IeTBdL=jv=oY17FzlkHKKo_j>}@Sde&2kZLKjcY&E=^rzE)r?&_fcm^{d>7O}U z&*Gm~SEq<$0#!zx$AXDuIoq{aI61!B6y@xDRuqW)fb9p?=`|I|$9Sv?xRd6B521)Z ztt{+;tPrDHhkNx`ez_3n_a~YK20q`Vk#=o{Hw^3OJV?>s+ALE6D@!Vehw?Vm2PCUz zKzae-(h{lrleU5G5@4yb)sY>E7`A*sAgCyhz;DLZw^l zIH@6($K{qSo&v#lp`HIr^@(lrKj$$(#gFpXh_V@`h3}RyKa`Wq0BU_dJ@pM^X=m)w zGFX1Z6v<}$o$Zi%6i6>k9*j>*cX)Zlk#OOaRp2_QEX!pl{T{QRwK`+qz^1YT?;=Ya*c*emE~GcBK*T6`B;K&)I2!J>EVi2^3!So&$mkHFD`J0b%<; zp8CfZ)soOOz=qZqA8F@+5nVm9T*x{=R|57PGR7O~fkwCZj-d$P3?T^H>lu8B|Nq218-g8r7zfyTD%zo;zPK}ODxj5yr;|m;X|^fCfe;#{O* z*@@@~S^Y%a(XnRB7BED7>ENzEe+l4P?FIK1VDu*041gs`T2t$-J;UgLXuC%Sm^C&k zl8-D|Et@dhW&XI=DfN#TYETrlKu)n*b_rHGY=`=gyLgg7e018ox=|U zyS6W8oH^R1YoE{{FHVY@+90yYH{=^#@az=x2Xu z3@*Po7*od3eLVzd?d$Foo3YQ%1VQ;%+T9KmLQ^lt8H;ICH$j#BaZ@8I(@d*-y^%Qpir8?Bps*f z^7_I6@Cfx-g70ThYA25;eV^R1o8&3Cor(O}^+=$3@7v=hYs>Rg-Z>>nzXk%WyH7rI zXW#{18+?5!l#d-eERd2&D(T}p*YG$Jl@w`Aw+I2a5uVJK8@o++|nM1v5~{4cn0|e?It(BoNtf``gz{o)jE7*gKho zPgD82+|WWKTwaHK^WJ>`Is*AWs;!d;$2)Nn1_M}(eqpECPp1PFDP8xXFt706uKu;z zxFj&ycI;;)JWxa>#{L=f7lMy3`{JsLbb%vmbq;)X%OAFbkkC;~wjxZ7jL1}~KR^tF zgOc^>6AxvmA&Y~lOh7#W1y4rp9v~Y&x!FmhC0(|WiT_)P5CGyt*CGmCOJ^K58req%P?Kho5}XahEz0upNXW-6lTWi221`9deHfkZ-`KklZ1H$P?lL)({5k;n2bK9=`?dS9 z&eQtTVw0s@NOD|iyso@-;T5p7ZP=&W$T{BaKR-H*_dmvTCRD#V$uD@mmdr$&zVY z@Ie>2pYqD*-nc^Bf#gC~lZYwRQdByJ>EM;H{je-M0X%qu=CNTHS9si?5A-I*y@6BN zo|C6L9Pfc@r6jRnE&SxR%sT|M`T2OC**SeYn{qgfPuVhA$%gX3XW4hz`!pZ^FI^hI zxb@zy9C80O()Im4pM4yGNGj$kbshqn&Zxvv=D5h4?v_)asHE{WK3%JRodzaFwCNpI z=fCf09707Ufmy1|eWcPcrxWhdpcfV1L9ufR0b0d6tV6)O00isuuzS_d1O&&XRg}FJ z8KMjrtgRp!Qa!5bj|?5jp5fTZgVLeaTt{x*`Tz$-AV@<{`<%In@o&DF%Ein=MN4g` zd=UUq7wOr6N&*&^#L?Rqb?(Lzdq?zJ_`=4ZmI7|y3z2d>pC}q1HSx(}5gH0Dk;y=l zZCS5Z9JdIp9?J|cF1z6KHaQG^f4=)ccQ2=SFHq%miijvu_-+wVRG-47RKNEFL13pk z+X(xihR#-)XDAswF!KXW;4it+#jzC^|DPq7@7a}12wO1tVRD(y>$e!EIP5~^;1`jQBrquh<>EyiDYTw(6^^@nh+FKyW0(G5=)_dTr zp}6-u{9B9t;0DmDkxfXcr1OQ7-!rfvRo7ALjNhbhtPGr|>my->ngyiVzr61tPuD#C z>uycqIc+-s5d6Wa0KuD)Ow_JHOP%&Tb=mKnLVwhqm2H|hWHTv;4_Y&jw|8OP59C0F z)_NL3yW4MxN_Dw!f0mPbhmF2Kil(4^1K8Ph{D7|yP|53JUJ197aPYv&|yWjf|d| z_2Bra*@}CS!H~6Mm792K_HH9H; zrrDgt&Nahl=Ln_k9aD=htqiDEcLvzBK3V#o{X~^TH}7roCv=ZbtK#`LWmnubq=95x zsQ*a8rGC91)DBntXVaej8@tDIfc%DKwpO(KjpD`Ja(14{#>NLTfxAo1oN#T`&rK!~ zrC89A6IDeDt}$J+Z^G*h19Kwbb=A$^3v-jKYFK#11`J(l_uWv$!vddL+VqdV9-YU& zCrE*yeTbk#x=dXa@cvW}{QoDDuEUU)h0?$;21H|n4X7q?c3K=A6*VotkwF7V zoa2uE&U(T(kDMs=veirT64X+YU#^*%y9?la+D>1>y#kI0iLA=2tZYkcbu8kfbIW;_RV=a@i~a+3@g3;Y1o-qDySx9DD> zOy>B?-_+*8P11SKi{EbiI%xgqrs^n~>edp7Clr9OtzLY%^cD-ue~T-%OA_b$RH26 zps=`5l{Cy81w4*YE=NVh5lMDvIcQ=sOy^SLO+dQjUJHILFTmr>>T+Jmc_BwwVq=<9 z_}eMdHwniRksAm=M!6@y%;F<#7#YVu+sKzTXW9E*cL3E6XYVe|)Gs&Rjy=U1azo)_ zqFFKxlNPh1ONo}AB06>P>mvguHfv@14R(9`*U<*(A~pjr;aVrB`Ev5pa76&15LI*Pc$(n*pP{P%s)4q|9E}2;>F*Wz zs$0lv+f8GnI%SM2SzzrR=qO{Rnim}&v5Gl3`rSolloKF0LyzyqLs0bD9wn~K{uQLJ z{CGGwzvu(b-&Q4Z6072r0Cj^uzA23Ctj)HR#5B%ul)f)Y>r(3xIX^NElRND z@A*GMua-_n;UUjMUgf!76t4z^ceE%S*ZQ3bb;6w ztU*wLhoU4_=?(zRL*o-udS8AtXdMB^t2!Ae5P;Avj;dBN?2u%Pi}B=y|$F*UmU9m|uby zYKVWxR-XcehNL;eK7594Vr@{6MI zs!ODK$+A`zFcjdIl<}NpgkT_dz{if7h$b;2lnH2Ys=0iHA7w|(%R0`7v@{ghAv0!0 zWN;+vO=0BpCJ=brShbXvn3DhcjjX?Xq)EcT+3=r%m!|~elb3Zku%nuE9i2ES~RX?``9RZo}Ss7v8XkKhh+Zc_jr)Q zmtJjWeYo}*<2Jne?v=1yO&`X;0N&7e^N8sA zGSE=N6Cj^~t&e$I&oxSzQD$Q*U7tcXK@CH=uTW{NprG{Ynj?{|CM(L&FSkU+f)lIz zaGtp1Rfg?s3&MQ&u`$SR3(O^YPr!i;PI*fQ%CN7h69928qBR0O(bps@wn(s<`-B@7EX=qxp}J z$B!4#&^2S@i0~KS-xJsvd5A7YcS8ULz7x0gA*AbE#j44HQBpnedtJufp2qi{agA(r zS;}5^P`Xj5%4HGeY;d=O`iOieHcxxNLsy%mX^I_?a4|8=JtNA~{NtX*79VeCGpJA; zUVd2G=heT8M+kA;FtEhynJ#n~1ML!#$)}BpoprIC^f$})wga5EKwKOK6(#kY`zi~W zsIqc&N@rGK*7quSi0%gCeB2YJQX)MX=;dj?L4aLAFDNJk?#|vun!P;00AERXwQF^{uHv18zzvEfCu7YhNj71s4uZ$ijY#xeSOPNs?&ZT!iltvN=Z4^ z4jux*?dwDg0r+Uol-WAgAU$n~u^G}TE~iSt@rQT)qL#gG7=I3R3pl8%H2AVrq`$l8tq;!wZ&We;j z0(~GR2Pp2MU-@Sh00)yq1FX6XS`D(_DrAHtrwOsKcji!Pb216dVF>%Y)O*_@DqYct zKK~-4X^BAZ(^m#H$n9uF%M~8~%s>y@vmM3hVmqPnZFv6kX;L5PApj01Nkt*y4}EV! zl5hyvp)%%13V6~8gJhr$E97_jFEx*U_xiF9nBei6J@KJx%TW_zH*FY@BSWeWlBM{N zg=J)vMX}`$A@=?&lHb7kwCuNibAEJ`?MMT;2$T$>jUZH3JsbY>$SN?0f|#ze3(8`= z{Ze_I3)=T4gJdrpUtt_dmK8|+l!eH%%6c5`u(n0*P&bP|nzL5m5Kv>fMSF0~EbSp8Sp$3TrnW3R^bbI|uD@Eo_6<`be znNcc>EXFXW#Rd`B8iLh^KxoH7?bjA~4vKx6GgJkG+JK=;(C47~$Lptrc=Sybbw4S) zsVVAPQR4SvOb`}At17mqJQ2>;hse)tpI#7X4hqiqj<$)*r~I zCtoS@#Y)YKd|EHRv$$z7j+wPm&}rHPRecF*L+>k_eBJP~{LMQ(Jyd!Wnjv50msaO} z5SjyE+;xJNFRoOC%m=5zYy+FfrUy3Intbupw`pj=X!VAzwc6(D0#Gkq>Sw}0KWy)&<}sY#G)OKw(y5Pi zwEcYZ(wd=-Z*|K(8=B%7#J^Blg3%r~!^)yp{7N9?CaTv(YDy?GW#I+ADPVML+Cx(` zjk?{Guxh;LSttB?gf0_Xcui<~`ic_A$Po(COGXf3VrFe=W{rop3fkCT%8ARZC0!d# z&aFt$BFZxgHv zh|;HTa<_t{d%&9o+FH5&n`%i(Xl^O*70jQVz`7`F&=RWG@B?BG&| zejnc~01e-V@(hKMz;17~F4m&FSXf#C(iEK$Q6tyYxEDn`!jUV zr~eiX+~FaR36|VTGUmRuk$lbG`JgKlL>%(WU+7`pH#tg`DBx-{62g%ohyXKS9f9s2 z)8Z~{l4~||2B^5bS)DUOol`2+T$^skGRFRX$7e(VHjL-iytqS>THxUQh6M5>B_4=T zkX0a{13d?LT`-YFc^aIV^mnB{kbK*!YsjhAszh<#o%H=$wes+C`AzjhVrLrodWj$tdU> z@djPuO^)Fs$Gbh?6gJMH02U+E%6x2s2~1S%4qn{bmjMOcM9zK@Pokv;MLU1gh1g@h z9`s!z7V4Wjm&0PI6Rm-EcG321lX_z)w0AF;NIZWBx4X=$X>*|2k?4(V*j){VR>j0h zacC|N=HRv)4}5+Sf@J)^s4*1lr9nwLXELIl_cdtLvh7sFy-6|98Q@`s?Z%BRnp%{Z z@1M#3|3{}AER}78CYv*QJS@J^?`BrfuD*4kF%*V9h_Xyziy!i96ofRE8OkA{Otpge zH^7A55QZa}Q`Dek&HgBxBYRP$F#TE0E1pFa2U3m$M*9)qINyJG#kmcq4Ee;@Hg7;j zeqV|T@B;*k5cj1edt7~F3(LKkL(t-be8dLkk-IvtkQPdbjEyf6>VjW_VwB~aToe=) z$)*-~n_S40FN@f{S-|h<@~RMG@b|zXWca+mCW#!w&3QLErQc}QTJ-F_9tTS?l(_qR zgJ#NyJzQX}^G#e7th}_&gew2Mg9!9o%_9q!n3i6|@7Iy4Q95#+V(u0pgT9~Hg>S7) z#L7;fN`2V0P>Go8(BA-AO#}oafskCo&BkFhXP^~#=~`3HSK#jK8mBC>4Y=?K&!1;r zWg8OWnT~}hCGX?nNcHQiaRHovS@{y>qL8>;UG~8{}&nP zv?s7(`EvM**dQEdP3TN=RCM)<%PKLW0Fp{XNK znnj+&VjGy~3O`8>NJ{c^@g|5^Wr@qm2e0e1;kkroR$7sZ;Quc=cPW2vVM-8G5w+=k z;K}q~PvtmX%pzQ{^3pGJQ>8WH@yU69rIQ92Rj7C=$Y@jd2$J<**Wz}_Iqqia;jdUX-UDBOOcS(bEgVGI3cXxwycY`!Y zcY}0y_gTE}c)#=gKVzKz<9UX_eeb>JnsLo*&NUZLTKYX@63x(Hzx9?-rcaEy0{y$n zPt3I}>_$Q=D1@W&N>gC>BWO^o{Nc8>#BjIGpa99BT#?&(4Y_H4x#a`aql%Mn=PH;J zLLA&yT>hxf-lx}`jTBipHKmkuTc0S-e&_k-={ML*Ue_dCUk?$`^FV(~ixDI{Y&NWu z)(}HxsP(e#;&-~gdSa0{qnd(*^R?=&^bg)+zEU}euP^XvZZd%HA6ATaBX2(Ik3zZ! z`6^~@JgB~tDp>a-AO61Oh#yG(#}cEIr`6&NJA(}o8(f?m?FcziBN~EBZT@eEsHqv) z=6N4dXDr5FR8)k5Zz5QDrE#r>tIO%giLXNG)gc6?1U*fFEsxnyaiA~yc1;ItSE5s` zQq<)(15EaZIn~C!T?w_0uCY#W`+56=DhOme5fr_*@RFF=pIb^jK$9?&$;w_bDYlNoV+p^lmWg5B0Jz!6qqI>4w?N)%; z+Of7>KMj_IaKW4#u_miwd<0hRg$=Mh%b{B767&4-$t-eN)lfiEp!HJxVQ5=6nkf&F zZ3r?)7l?d8C7#zA`CZH0zq2a4+wj0v!8L-tylHG@t}v{Vu)a+_ME-+G=)1V7#FjJ`k{F=F0F7V&=@kYp zaK|T}VC$dlg~mrgr_E?k8(6Up|N6&czjz_+Ny63B@S{5k=*N6?O-9?TzA<g*RA)XW7GWkQb(V`NKCOlsW2$K2nyS? z9N?fpQ%HRgr0;Hd|A;4KOG1|7>8$KoTahM$iQwOs0Vry)fm=4}$TBN_{-7KWI#}-o z88u)wekzLBQ@_F>czH$saEZSM6#in*J)m^)i2ZnSQqhq!EB7^*bu}x~gQAcv`6PYk zH|Rp~3=iyH1C0Y`Ttu}*97~n~Gjb#UpePt7C*i;QzlwMVy1J9h2OFKYb=qh~w1&ZM zjF{XFwbpgqg%QOik;uY3RX2DVzqROXhKbTgKS?x!_Lo&80QvFDW`w4Eu)$bD0*q@R zLN8Ye%cFRR2K8OH;=C#mz#SI`t<@<|)Yx~oPn_M_>U`GMx6=$#r3D)!*ulOXLRu|~ zAq4((hn503d?|?B;0xiChio@}ql4f(ED^sp*(YFq^T#9P&^R3q`8Qfu*T>(iENo1k zlt-bQ3}DiX_-jfI;PbuCH*O_0!vBHo3yP{+6XRzU6K#qq=||>#lj9GX!n*%ig48vM zbLu=<_#g>YmdB=BnY5;}83Peee5eq|1w|}-LMGFGzZSqieP4K$aiA6l5K*41OE*6@ zJV;1$48&uj?c+u`V7BTXqe1s$!aJxyB`tZi?uV(~^w<0KM6X^Z^a-l~k^E~4m#TSh?msqz|)gy|zt0Xw|KMPe}pCeu!0j%$#~Y$^xvNe4V<- zOZ~@9=?`cjz%Wb0_BxQt;q5pZ@fA|YLUTcr%0tKFa`&AnG-b1ML5Mn zGGOEV*>y6YdT_mjXz0pt_)Ocud=1>#^c3d__h|{?x0Q>oH$KCApw|`3@t*6V z26zKtBeQl}Y*F4g`gSP~n5}f%1`>a`h5EJu0TkF3VXzzLSNN>!YXKY3c|F!lk)%o+ z)|7BN;~6MB9F_YAjIjVsJ&4EK&%MhHuw5yS&z?qj(n%$ZQjKEcUzI-0i+#DnkgtqI zEm%KdLR#>LLl&zAg9s0mAf0`c9RMFdM2nT)x^GcA3L-VO?G~Y zV5vRa_ROBdaTw$*FQrd<7{9#rNCBGGl0>Cd+xGJ{VX?%i+fLTQa}eLA->>L6dfC5* zkl}E5gj;1yAuWvxWCoii#_Gh3a2r|bvQ6eWMpJH!uYR`QG_P`g7H^S0x*FK>9))=Y zL4^Vn)vLcq)Ngu3J}c`H<+B)B7ghCmF0>MAP{eCj@yf5b!2c8||2`yR z;{Lyf2oB$jeYK9gwPR8>o1$WUACfRP=&+3$xK~RwY39KlI{YC-1K(1WOYy$@rlHbo z*RMsok=$b0a}8)kVG4;+k7~I*B!gw;&Nb1)uy}|j2+Fr~$>T;18f8e=`_8V~V#Vk0 zoR8_lM9Q(9&F)_YH}`$2=|i5Zz$F|&lQjNE5D4;GTA^aUJMnMi?kcSN26;t?S(863 zB|51mpME`DsPMnN7~3K1LA*w~xSaG5Ka%9~WG^b1>6{u^f_{-h zXk?_k$sdTNHV{Qjij7umG)wpFpTtN~yPAU0*5Bv5iLw{HXJyNAZ>7PU9t=5vhz)gz zb#~k=>%1^JdZKk< z)*@{{*@WjKqeEUS&lk@eE1}h7LXATSk$ZOt3r{F{dw(#sAVF+3*Sd7_?8Mq&lRJT= zhb=qPpM#Hwm$g+k*Rf%ESXSH4ehL6=NxI^J0v%W0jA7WLyE5f87;v9tW;+m62|yer1UB zV`0S?*hE#3J~Z<-dIMX*#2syFienaE`a4MfnD1s3kstX=9d(FRun+av>u2NK^UhEc zimm5z;W=7Di(6HxUg;~ysIdURR&ipY16Kv2Y`Y&bss486mAN1%S5omcw6?ZVVd-BK zTADgmRXca9t++3QSr(?658+@JN2_Mu=u-vem9oTg$th~!v+3W04=QoOP0X5DB60x8 z&(%}IqHeJBFW06{iQ0ZVKU2D{x~}Z*r|zr-MSK{4T-L((^)5w~weTE)U?_-ygzOt( z2!sxu8^35WyAfN>$*uiCdBL4@Ya0`TwdA#CwZlxUcV4x#u%B+xPXFpW!Ch}z_*lQ+ zJ4LWJt%luzin=LBlE2g@_5LnOCBuwE38zU z*BrD6Wy%%P4aN-;_5 zg@M5rFb2x~i{H)uvvjR~vLE8n$_51*%ls1(OYf7B)n2!K7zax5CNtz)ec4q^H>v2PD zx_J8=?bt&Bqh~PrdJ_C`_o7cKD8g~ZWy>xh2?cRxC*Wa;cpHCVzJ^>fIryYsr5y@PEGO0skr!$aJsN5Bg{0~k=lOW@T^H(CW3h7z9kHTn8*yO zRov!P%=_C%_2*P8CFu82r!v!xTt-R|;6iJDb+BB}$$@S2E!<}8Ol#^VA$HTL9Qw%y~dGI@8b zssO0o`Hk6I<9k{DYu|}puO+KEjM(q4$jReqX?8xIZRz&$f!U0MoEB|QM}^yB6*sN$_Z@&vP(@2=USca!$gu zUUoMjkyXz-+JPQr|6eb_kfUlYc|1D1lzRQssLowwXt1jB?oy}ev?J*Uk%!*$SY$TZ ze<}#bkM@_>kG=Nwr26*`2k!WKcK7ta-KPfXOt2foT_vk-Vn5X>#?z;BYukP{jskOU zhqPOTwUD~zJ7{$$(D0CW#FHt2Y8I!=(5;Fur5s*543~|-OY)7~sS7XBHXa^&GBS^c5~St~dc( zI7i`fyAfG9^@zB9O;;(g%&kpn9`1X`#as`w8>~v!` zzcdOGY-hJoy7mmrNlr%_bY`!)LU6d8PyM1--q`okNa<%YpPFB;*1Q(5-PG`8m?#Um zyt>L|BZb9c)FaWRaDUSdTva1VB8$GMCS08+9R)_<9$Pns<9Ryd42-4Qcm)pi^YR?p z_6$p__xz05Sstssq`KRCX3vexc`tlPz_vM40@q-TFy#>lJi=fv1Nbnkv^qG;=)~(3 z0p-zNn6CYOVfnZD9TF&>iw!!v$9eM0zFY?j#Z=8lF#hI9P|;JfEl;S43I-{RNMsT|E>SSO|-MWMrfanpkA}1&ux-jE7lRSlprP;gfRRI;_0b z60!d<$6d(%kH@s;UmtQtI?J#Qq<9Vwh*>?Su0RkrkpsiPK8<^S0OMy!%?t!6%!9|O zRN_2nXX;$hxk(uA=~@+G&jsCG@0=Q)-6u+_YI3qpNkQGs`B*}`jc$;J@~`{-li<}r z9>dCxhMRpx*>;kz;^khPCV?dbfhzw^lP}ktxS*4ByrRFKsIsY{m}Ri7iPLr-mki(!nL`c?uuCE06;b=s}riJ}Ngp&1G7;4jqRxqx;M%b5j1pzFzK7A}Tx<45a#x*YZ*c-5`AMz{O!tZa9)v zPd5?Xr*GB=9f1h?Q$^A=f}cNkc2~Qu+3}=uB{=Sn&sErp`VUVNunkQ5m@X#i3NYud zozfIJbsMIqZMM3fHvR)^ws)zTiH{>-qX{uFeF0Nmc3kSUZ5|ufhClA74>^8s*HIT2 z3^`x2i9Xj}DklvS(v5VLjV%Zdr_o=r%UWC#U#~n|lQlN_kHjh`uSI*VI4P8zwzo$-=Q2*$bF!&7S)=I(Ij}%3+JFQD!|p&GmRQ{jXoru1Qw{h^A!lKqGPPT*cCH$6~3; zUy+!d!f}Q^m0Mjkp(Zx9sv)dUM9Cc^^cIRQ)gQ)a`4X($1KmCW9|9l;w+671k zIS)vncrR9E02b27UEW(Wx&OCFo$d+}VK-KsaN5_D&N{L7&`G2XQj-+@OC*@22A@xEMT z%MC%cs3^-IT)0?kpY5*d>6Z~$p4?p=V|u*#iaPx&!}lfKg#7(yu(Ercos4XuiHN`| z@%cYVGJivPU3ju0^RB!}HNdPW!-pV17j(By|8!qW)8>RYTfP$Te2crdazR5lkP3X( z`e*;@9V*z+T8FX81a0Lfh9Nf{tG@8*F=JiQrRa@X|UQjWFT5oZFXL~2m zc~=yB1P^wV-gTtWX+Xz(-NT~k%I<$3vYuyH7Nl_Qdm?`z1(vw!=GUFHk3 zsy3OJ4NrMb^g??NkK^R(;Fcv|Uv6!U0Xf>aoX-#fEzm03Hr81#JD<`IWhxI}SZZ@P z3e|dxFbT=%J*@UeuB!s8Wb-YZ=mbm7jc17{=RoaprC(~D{GiViWNg0P`=E^oejW^3 zdh-p;ke9;;=GOFeWTY*%T2EU^G8i>dn!9!vkQLB%;g1Bo6*+Xa_K)*hU8Ooixd(*T zC7#UZ#=G0AE}Ns)GvSX%W7#xHHXz@~S2F8*%de&7emA>1#NAnBgHvmE2~uO5GGeo= z<*?PCd~@+vD7gP#m7)DNIfckEZxLLLjG?bA^AOZo)P6SJ$I`|_PAvhTnZ7>t!uI0J zSA?&rE{(GkPpvHbLJvNXucVg-0wr=_5D(l*od0aFE&@;T=>43^s;GTGav45 zKK^V?JDCRF1|Fbx@F*ba7Kw(JRxm0?D~!u%H~+ZYf&!dD6>9+u3>5E@2rLpj5)MRC zBNSxvy@LezD+SpMOMOy2_P3KccDm9fPi@o3LJy*_w=8Wf>5z;~;PReNc4_Ez?B-`z z<<367>&5Hsky?s(`(eDcyU6Z)XKM{;hi$31sq9pUO!KcH?~NDV0?Bw`eM?M|3VoY| z_fAP(?Q&*Qqkp?hXQXfK6nbcVH=#%5d3T%WQ@JA`AZ(HGwb=`f{H=hq!rj@YDn+AU z$kA!K6euh7QB{S*=YnX{Kv+(VDoRc=u}=gp zELuPnszm(Wslm})$kBXQm*J6*Y1_Vax)g__58WYA9vJ-I;n>nb_I+*aIpBtzs1BDK zCb{Pi@VFeS33wOTsV&52$}D5}06ie)?=U;tCx@W&!(r!lk+EIv@f$kmQPK0M(NRba zkiS(yesQDov)b1B_H~tx5ubzivP2++%e`IyrojJt4~qaSfto)(U;ORcilQC^&&OK%fO zPIy|2N7_Bx_2E6XGjxNq@BEA=h+L_bv~9H&m34>zW*f4TgWa#`Q`O3$Yv@q}_iR?M z_&ih7?{iPO`Jo$bkAs66gvm6?D(gOlh87QUuFU|9x(PlN-2yUvObjM47JDKqsCT4) z$n)$WeY@;jr^Wd?x4gbQzxoV8=cgKK?0kF5xqTjTsTQ~6@m)=FmAfpqf9^ghVjna{ z9Qm7<=m1H|0o&A$wZ!G&>hgW=TkDGxG_-FrFKjW(n!$G$(U;{bn8XI`Oq@D4vz5|N;rm+fMIE^^;8BJWsEOJR*0%u%nND3u zUF7s&CMaF<_7GbgpK+EJT}C5LO(U)*2lvZOEv102sSt~)FZ9a^JEL!a9bVWmg5j|Y z>+B#c0WmB}MN5MQ#43=EGBlg5Pm7d)%>W}@q4Pj{=VQ&9~goN>3n9(dCEXseKFMk5Yg`x{+yiuop&+w}`f44}C2(*4cNu!Lu z{@?F`E4YF>4Siq^z7XN@iwm z-sX0jHA=$D%F06|i-Piht&l(q3%al2$-j1QSQNjR0k+F8}hQ+IK`uf9eP zu5{LdEe3yd(v)rf1N26B938_~W#zyxA56yn``28r{-a8xSU=+s`hwpxnBAS$oYQV@ zZjPqBfYYp8xPggdIu(|Gl#z zx|iufYj&0UM2qMD6xIt1wl7%V92^f+*eX*|FHa^U9n0}MD@$n1{acMK<{`n^?fEuH z#(k0HJ49vqQ3}e+%JTCg?wQG>=YA&>DUV?z{`W!u``>S)8KAQC|6WRO{{OXv|Gn0K zpFqhM8H8qVxkzG$KY!Ss^G6}}5z1_6XecQu2@OTUK*-pRiI3;^d}{vv`^!f(HFb4| z!}-|GRe_3^PYn^B=$hhL%vI*lbp&HGWJp0ECM0&?56V4AMZ+vOQM45`xILfTsvIm` zua9{3x&q|0MUV(M$`$iumYN*>)iVvj@$>T!DAv};aaT8*^mRxbXPX0t5B1H>JRd&% z>Ri3ppJ8BOv75}7UtV4|GBPq**Qzvt<0_v077@y}Qi`G7Cj{c|jZjqVO3TM5UX)NaNv@ z$cGv5>Pd5*SQr?({uAHVFxdfHvsYg6PW1+HD?>;EhsJQo@P(J)R!a7T2rh zEEE+LVPRp7jg2WND0c2@KK<`40>nNFX$VS7BgF(hjSgbQH8(exwLPi#XJt+-RGaDp zDIFaVVPLR0oqXG2vX>DN>1lF2?(+2a@hRl^$HvGgXl%|yG%`D@+Rc41RfNq|>2`Nf z5F8vFw2g>_#B0A7vvKWsw0L@Pp|s{hMn(ok#$8@s&R##>U(3qM`kPIMh|96c{VjQEzHdcCQ^3A(P?ZACHuQKd~5%OgwH0h3h`olMI0vr4ow1c{RTFT3=Aw* zT9?|}btiJAfByU_$HZl@`8O7uK^x@j@r>CbKc1AOEb92|)lJ%%kx$MolgD~gj=019kY}$kq@w!~> z$ZKdU0Jm&9k=uSpAYQ83z@*#p=5)pN>fn{Hu>95063y-APbgTAM|)P_-#4Kk>QES1 zl^a`IFwoF+s^#z5*s!=HwdCbMvys5}o0HWQk6=Z;z=OU>QaKk$#`a>1Yy3@ew;r$C zMSXUS^0`wrFr<+*UX71vR6i^vB>qknsazi}usa;6=6|GCP*j{!&U$4yh12$Uxg{_#P^-zo_l`XN`gr9t3FXk?LS4?D z7dU-lFmYmabye;QB!g8zS3V>ZpB)ber&yy7Iq0>EPAWJ%KvA&_iHJuvGaG1pYGNW> z4lLx&>z|Mzns&X43qcVE8XD3kB98Chsv=d`EN071#y%80>s6>;U0tnR(11>SU>&ry zv@wW(QQ>{pdqT6vO!Rv~#^x=bZ@1IGC{acCTM!)!S^Yr}OlCU(ONB~YQe2F;A1epj zKRPEhXlQ6m(z0ht z!w6?J78XjZWmhm(-QKF!(E4`I&vVh!hYd39@9jxQO4{1k$fR)mv`?(4r~rZR>hjXJ zw#4wp&0}DYfzrFvABBd?gxl@rQw%;NV=#@^b*0t4t9Jx5mR1pcX<5PDop(=j)S|Y* z{o&@c(r}=hVQFcJLON+<%1oCIc`9f_hfx4On|l}SQ;{Py}fX+c7LLxVKX)_;F~4i672Q7fP2znJsK zkD4tmn2)VlSsyq!Zh)CW!5~6hi{ju-4GpIf24|Q+#=zzAz;RmP`TPVl284yRaFsG` z_s6@MmKI(NCEJd^zWhLPa&9}y$N<>ia+LA(T4o-v?FJN76QpvpJ{-lBXv8yUVBzBj zdorYy7KJF_`3d+Ipd^uz?`}K83Asfc4tIAGBO_l4!&e&=I=QiA z76ZRAycugWxHnZKzZuYPV71c9OHD1&Ljv^1c6&IL(UyD~TSZBUR;v+1k4X7v9|6iY zHeFyf3C(N&{*~+ZBF`0=9sK9&2`7FA_=MQwW)*mtt~MVbT~*atu*xKL0f>KO)o!WG z^9n}i=yk)dCA;5Wm8ez0z{8KiqM@T#Xt&<-l5U_!dV@O4{&Y#_^db`z zlXkPyE8lFxprD`(R7#A$A-K$=oIP_@#{IWpjh<^eO_LHGRDix3;6h`kv9iN zM^D!)Gx~aZqYPjN+Hdjbt|o3M1>jUn<=Cajqj3ocLM{#OuaCC4whQA(#5*19 z?95i%8;Y!##K$4se`DXzg0!W%91~ z%b>zH&z=Rd$2g3(j8bahZ~uw;j%O2Sgv|i4tk^j=$Ipy7!wl{@a2QPzCK&> z5F<0Q#gxPZ!!I2=%0AD5_0zrm{m_sQS~|KZ{3|k|Z*Skc78b>pu2w0@FTRtz(B}E4 zTQvuqjG0t!a%yUe{r=bD5nlJLkgQ7|8Ftk=D=iRk08$QQm>3@qBjnBPB8x1Y% zN)IFOOCkGbWwWp+IR%B6D1rKRQlkvGDnY?l;k^^14>E2GU^&bf^VU{h013D~Gc#!2 z-+{AUtY>t&FuAxMVy&a1q&0B;JC-e){nQWe4LNf@m&?XUgYEYC!~|KkGr*8QANc|7 z8!i8oBkBZ{>3;2+oQ!O#&69X3{%7av8yFawWH#xeQQPHaXOJm8)HOBTgJtf!_?wR} z46qZhT84!;AUHe#yOd4mqob!6dG7x9$>r*R^ZUO)aOmV>%Ee$*#dwZnw80Yi(S!hB3(GV9Xl6*ZSJlPxji17q+ttM zole&_`lHuGKfBv?&(6)=-rRio@+IF8U#TQAB_*Wv6M)9CgOnsBB(E-mRvK*c4%{k$ zo@>-u@j8Ru7TQF2E#BUrL7)P!9JA~WCI{`!j*$X5+TeViYj8$haY)GLcJuUjKh_I! zN$?D@ylxG^DOKqAmTI@$?M=~G&=9aCA08eOVqvklT;OcNfT2&y!C3SWcV*x%(&>Du zHzsCgjk=wFJ@e{9LLFdj07~&u7UN1i`uFeO@i8$GQ5al}0 zW=gfXdZ~$?{Tplp!e705GGW6-W%`I$g4O z7<5``6H!1~YCoDGh)yoGGgp-tG;RHOcR6daH(Q}Efiixq+K2kTUI2%K*~rAiK$otr zo*oHhRp9Qgj#tWdB4FH;G2qF_$wiLLzH4i1gX92!$;zrKM)dY?p8#6? z)3xr64TH7yLgk{3VV>^V(+*z*fXRA^Qbe*jL9o8P4aH>^F1j4QF`BK^S}ajFX_cu}`IX+F zF4X+|{J8w3MMVqE&dmK!{qys800LB&wR$|dTtwu_rn9lId?X`NQ&sKba|UPt{KOyy zcL|+@hbKi!9wd*M@u;pX5}OlwvcP)?+oR%wCkAeGz{8tKOj1(uB318R@WhE{swgEn zIe8;l;a#yPEe%a@SeQs#V0bu%ZQ8|!-9`RTGCO*ze*&=Mq86mM*jS*Wp$3HCZEPCt z_v03AL9Ys6je7Me`ckR@&@yvIh}ziR_V@FPDo#&JOT%kK@)eVi=)g;zOxMK>F_=hT zF-3DxvMkB3(3zeN0vS`!w@(JcIlF+vT8qx`qksQipw>PpI9Ra*p=V;^9Nd;^I3+e# z*l2@}ZI?neO{ugZqFDpkpLA+jCY?{qp&)C-^>~?g?%MnBFTHiQ)eh)>OS`qTwU{E0 zqoX5<7_`g=bO$NA%b)!Q!0R-YmWG8`I@;UEx<{*&YW}dX`EdRrB{g+oVnTf0GOOtA$l-$%!CCu*0%i@bXOY)M5-w)?m`IwOpKiB_FCF%I zh)@WTe{c}!N{8O)9Iv#Ait4c7(ed-AZ^Gs>X<93yX+=745HI1M!IwJu)_yj5G2Je#iOt$e5=% z>rK9{T8j%SqZ<+;VvPA4G&Hn6rC6X!_PgW4V}kK7kM1&V_sZ9o7I=w2Qs4F49yH|( zx?C<381)TQVf$MR&bNj>jvV~^_g?=`Ca3Ray5|!KXV;hb%W^9;3@mZqO^~~TRUj$5 z7H3@nE{UBTyK2}>MKz7zQ>GGD*ciIfvJ~wwxcyrSx1&r;cwAaq=?+U;zX7$pWO91P zhvEV_WMpzR6A+StleU0^5A@7+rCmGs@;!oisqlaiN}f5SsfY`-S< zd=M1Tg+oNdKnd$dF(&I>l$Oz*YjtlDDjAudR}XX{+Y0A@`m+_pM2#a3;8jJ1oSj|u z6=oa&5CdA#ohRq#(Yg=j=EC_C=;9xTd~-45fU#1W;hVA~S?prfgz9nnx&8JAh-1Sn zi#kK$t*=lbuPfV~&L9lEMy*ufM3DIbNb$u=2_}Fl4j}Foa;hduD(m7gbL20+cN`bZ z9{boGSy{;hI8R|#Uw}}fakBu~0d}#2^luJHP~O*YYcNr7)vuWE}9v<8VMNfCevV}5F zx&qOo?w`eNjuts58AC*})zs7&69?DU^u*(DfTn`T45GI=GntRT`xv$0OUtDi za}@*x1ZL(ckZVLmp$+=C)z{CCj4)78h_(dcB;nd$Vi2bbg3S|e>%^s{>8Pk8596rN zrZP!{fJ+2)E(Q8QE(?GMPft$?P4A=oFRrfG*x9WYYU#pz*KHaA4In}&E&O53am9Tb zq)cmTA1W(g@^Y|Ld%7LSmQ4Iyc#@71c8zRoY&A7CAZ)!S(34H& zx}1=etZ*VIU}0eam;gkZcjr+!Y!(S%XVmQPn7BAT=d+KToVcNyPPb>9n*;IqMb<#q z85w_^ZS+UsiKg?pgE4&zwUz^a|AP8lKu%9cXee3wl&~;J&KSS{6By)ID^_znm>nA* zKLa`nQd#TeWv zmb}RfIJ!(a*E_$g3*vSg2Vfvnk0Ar`487y0 zLHDfyYuW9Lwu3CWx|)TQ6bi|%u&fL`ZX*zzChQZ4=->>H+uPfB$>nGa;M^JYy@lJ| zy!6+vUjrs-?8{I$u=l_cq=0=dz~a@^*h@=Go0?K#p{l5=;^5)k0jnc}K?BCx5!b3D zn<$#208mH0$yioTX%;jH&R6Nr53offh%lW414Y1bt&yn7$RJ}`dw_%!EK5ubMu8QB z`E+s58!Et7R~gIN+MXj5ashn>P@C831cIQO%mMUw(g?b3!ubiVs>DeBjfPga? zWSgFu3BG=n!0lMNDCq|1HW0Z@-UQWK%vrF-4}krV%dPI*#=`^_HJ>rdQAq}y=%}gT zS-pWt>$JN0W<^Q>1#o)2vlkG6sQa3*sNY{54h#&89jJeKB?Ev2&xdi%Avkz=q2Nc5 z|1+&gKRw-B_gjx9V)OtV2y7!G_8Hl}zq`|0g7prn+zb#kA0`0YXK@W%`|n;?VBz`%#q;kJ%_>GF?1LpP#=C ztnuKrs;Z(bFl+J6w3Dvr!%iV!%OFvCWp}!5D{QEs5Y^PgeKinEqhdDU4;>wMcyIth z$%k9!p8`(cuLh?xg7tYkE@Pj6mbj*ahzI}6f_Qyvqw|BqS=R%!L0O#`mu?`!Er{u% zbe{@`fzJ#W5(8n2Y{nnZL?E98k$8+aINpq`9VV9+i-v?mP~mM^QBjlKE?Vs%x5?;x zdtN*?uIj2PZs)V#8&vUa!|{=$aw<`3$lQpy=CMs&tQrA35bDB@4z7}w@^@{ zHHysVNXFAV`~5~40B$PabNS|lcr%DVgRQ6yOb#nC)=z-|&N1K;fDaIlbN=z8Vnd;Aa!lC6gU?K;o5b{s z@)zfu6A~;PQ(av_pNasjg{~sPJ}CU zIYAb69uW!(3U0x~(z3(C4KWG>dNx7glA!YV)cRaY( z5EK`(KJMDNC@D<>K?WG9e*NkIkQNYQRH9=<87J^N@mjWccz6T^1f$THxM|^0)R_l= zK2&ds$qaqMl_Z#?#eG)R(rN+ja4>+C?MNtR14t?BvnV@z9Y`So40Ks)viT z)G7dzENDMbRV$zmV3GF~w&s&@UxlnB%@@^l@9)XAH1 z6P5y`SIInmMBZ4~*xA(XqU|yoO)M zB`^6brE~=i4e>(B9X)=9Zs9Aoe$sUWX(LnD;@zFgpj2eYKgHp}p!N?UYP4|&%|ubH zL!qp01*=Xkn9R^h?&PRta+CW%{wTy#{v=?K4=IkDh+Q?~dlGM0+^O}V>Je5T{uZ_aEg!67A4j3p($1u zZnAG%~Y3FNl;{Q^{hnBWoEh~SZs z$n<+hrP(bkEjN*MUVh1$T%HTV{F(_bcMl#R?zi8@oq?Jfu0zb^&)f}KJ)kRqX`uev z0dkc-G0xq8|4`Aj-K>Y8noEtF#J|qgQkP$2Cs_quDJZ$Iy=+WYv!9E@`7%zFXYh$A`8KZ(ESe=cnbf~CON^v z#-EI~TT*j+ux5$4h<*njvysrA@)RziFR5vxYUTGbget}Ly2+4ju^-pL=~z2BpylQ)wSh+fKA4yGR#QHZ-Um>z1@5?e0tULe zB-hFkVQ5onmuh7Z>GA~sY#LVFuL*M}#kSZBLAAkt52LZ`VxUl`|IH2v_s98#6w4}N zM?dk|tzuegNJ2$4s*I5CkQ%E}McR#K{QS<&+rDjz^R4R#`-)_Psuc2hz4<{e)%I}K zSXI~0*<~lQH6ue@HA1Tf+jd8pqvD@RhF-O)99m9uNFJn^7SiG*Uelq z3#p6W7|#hd`J3tG1!=&469D@cbe0IUaXOu3EM_N2Z2@woznXgv&^B6a9xWA8uAr0x zh#!E&0jYj^eZ5ky3spfw?L3Mtnm0j)o-JmA1(U$p;(lM7g)J>5)dkbkQ?eO@nLH$t zSII-fKt?8fh$o5%HcoSkJ_SvXHijth?uQy?5-DxR_Xg5{e*Tj+FiZmLBAR%4;^K zr>6khSGrN}|5JHrYzb$art@ zCSdrIgJ5{gQ?yIcaHB6WKjozamNc*4@HqzLpl8Xs(Z;=Dgq4oJj1!YG@bui>-39ry zwV+?WNh`HA%n}t) zOOtyXv#_uj6^&k!4{RrgQ6MfM^U6tzmck(k1QiNEl5IX60HR<=R8mrs>Ds$QIW9I% zOiJb{R?!)te*+nO0-o1|;*z0fa@eXKWEPuhxtBQM$Wmj)9-)kYfS%kJ#pL1T1y#qa z>}*4hDgfJyRLbbptNZ%<`@6dh0mlZ?3C1`e9VG0P>j_t$->7eytfX%bI#q(E=jBt5*w*@votAhvIIn|q+<1S)m0r}reE{UQe6EVp@juDt^T-VFXS zO8@zW!^OdYx@QDfV319?xiyDu>YP3yzfYp{0V!Ki5l!SEsM&6V>PXxoa~2@@!M}FC z2q6d$8C6wio}PuigH!RfT55cEM;hLX01q!ACKgd44U;_dwJBv1Wc+_N+wLX@kkmF z(^|ON8H_@qR}bsxuH6}aA~TL3*ns+_9TcdxHaGh{NI|QPQdwX?aIi-Cw|3yE06JuF z6=ny`9uySDhx0X{WDJS`X`g;XAzq`>PJ0gqwK&;?c_>Y;9D+P-M~|r=n)lQRl-bdH z0S_&AbqtETvu^5Q~DQj*kVVW!M>>_b{RLUL6D?I_ zN&NGM5fpfYweZi*&Z;xY!BZ9}=4H8}11968dxM9^ZL$7`H_WY>?aI#9Q2mc}xv>+_ z8xm#H8Mxk`zee8>FN&`BH-^e&1!RItz#o9<1)39)39<6;YLmRSKmjutxwafaf3_u0 zJ$rHuGD(AJF;Ft}y1MxKm2mXA)&0HlzHo07 zqy=ddkZvRdX(gq*JEf6sP$_9PodVJw64KIa1PK9Yz9^jn(sc&Eb3NxpJo_)@Vgq}v zImaC1zCUBE(!*&z{H2_d{3Un-F*-U`qV%ijd?kiLMedN!r@P5N!NMIN|BU_}tbvJg zeOawOkg8#4dU$zBN=O6+2FAp9a)*S~jSLQAVU;A=kO|EA%CFRHl*MR$y1AAz8EF^S zr_a)!;Ng9coZp^n(tH{el)H>LkBA&khXof!%pn?@`iPhq>ebMj%Z|%M^sBNBYd#-Sj83*J2M3egOSA60Und z)@3uFMlNn_6c3{lWDc>jv9YnT0)rN=#ISU5YSs~Z_s*T32$Fy(JjnG`!TeQG0oN$z zshDI0G48{Ml)T!($?!=L4Quai-|b`fS7wL@(0EBq8HA_Iq1A&^u#t{(5u({N^z@G| zTecY45|6&3y(f4sov9K_O$^Y={&14`lrftkiFykwPF7f<*;KmkZ!su#BPNtgX@` z03ZYx7Z>iwLbYp2ZV1oB`&7hcc%&{_Q7i{4vk+Kl`?dF7KgFg6MC3Z!Y`m@$jz#V1 z>SFL60c{rjvM})l_ML&E`7Uv?fJ}fe#%lYgr&E1uyV6-?WUdIrtxQe7I4#TAHq}S` z?**Eex3_mRF^35-C1#&3pTFm^qYmjrq&Z4&KL~nm$)j;o9q!rw?h0L-T>rQJQ$j*w zX*;x$B|0LN3-WLv_Q0xwfQ_i&v*l?rZ1W2g7=okd8TDJRG+kauWh;Rh_{IC!evh}1 zB8He-{59um5-f#+5la98%+fko-p$I%k*ZLPO$G!82is3oOI)~XXiPw+YbFKr)t?u# z^qFybH~8O0mz6C5*}m=aC~XV#gC%bd*h%+RvQZkVR1qYoeYcz^JDYz$M-4Dej*aDX zT6&Ev+z$&wuNo6A_<4S~$qOna1k%2!usddx{h$-zt+S$IU^pzaMm91g#K&j-?1My2 zqCgt#BbvB%Ru&eyx(={yHz9oiZ~ldVz&UVdGOPDLF4SjIA@0HQfNX>doNPYlVCZmZ zXux{H&rL(Kl;+TiSj1`YzxHd;#sORge0y_d7C0SmtaQlWKu@~*x3219B-I*2oB28x zq?qUWLH7^B=tayqd3Yo>3rS5utQF7om5}I$xTl!OH0=eSJKe#?jeSORz4dN65X(;2piPoCjN}sD= z)Mn=92)*`1aTSL%_(_nJCUT{TW&_$?kazPM%oJJp@xvYx$@cd4*4FE%Bs23c$bAFZ zmhc~7b(S=L08d;FJMr`LtE;QCoPQS>cyB)}my|VnHkHd^UJw;E1Y$S}3QBAd9}tg$ zN=~4YGLbI?TFH&wGl?8-Z+}(Fo^@LQj{3FTQy*ajX|QCDbTE7NrL3=S3zU_?lJ_AS zOD*KH_KAk-7j$y6sxAQ#nE(Cz*OSYED6~KOXH`i09H@?M*|_OkbMr=X&XmQaZ_QsY zF)^2VrnBdwKl>I`RdJ9;2H!6(;+*UjU0?d79SOjVp{)EIY--c+aVi7@E2|y&)(Q#= z3qA*faB2s2kfLW%YH4J_F3+I=!Yf#Tx~hz@hNEI-kJoN`38< zmffVzSKa3miK(QOPfvUdMjFc=CzG{-0JUX1je9kw#Y)@6!<2CLoxLr$py2yQp`q{J zXW)2+SPSS7A-h3ot?xgzn#jqS5gi?q{fBJCCUlCQSo~Y1a*W%*0QEI78ys70*EE|N zmzLH9m284Q#=L%-Ae-(A{Q55RI+ULGf!tB&b5DbuR@?0Ia$Dr;O-SEoP~ z@?!1Xi)ZxosDoFO1Y-(}9K;eh2%CMgd%7DwS`j9b#p7Uf9$=uy#>RGZbeJtgdIR+z zi1rAUlY&$IgLjlZW0p1LKnmxieFNvomM3k1P|bP?$c(5X!=X$O!)>H+XJ==okT+ys zwXnUBTJt`zpg&85Z?)CMr7@{1W0MP7Iykghk2A5X-_1h%DZbL{(%6ommKwfy0`VWB zN=3M2)J!oT3GOSAK8w*`qk0#8%~ed5;Lb33m5Ff)|v#Ws5t!4f!4E& zW;hAqdp*wnG1mRT2@=(AbYYw@{oVaJA>n{7Nv6(f+-^I`g{6 z=<|c=QE{K3M$jr>l&rdqnj3<_k0vVY-oO7{FEo*6ZT|JX$7Gwwe`@?p@ zAPC0Asgk2rs(qdGtcf7Ci2`1dR6c@EHWeAt+vkhNDL#3hi=5H{4MjV3uWK?{u#xK$-+wXPv>?{!8 z>*DW7f<#XNl4^~l!`%>@#cW3kJ*Nz0(V00!qvT^*r_4g}cl=tK|*Ov$F-~RW-n8 zScFv>+tQ}Qkk0Ec4~h{;&^4$34G!?^%+%ws&cLCYXR7}D&mRIAt^&6)b!W)z6lh!} zc_$^~DzomyMMp=!C`{kqRb#QlBP^m;aiQs4e5+AmP&OODi{txVf%k>a$;TJ3Dac%T z>nJj7YY*XUFneQrJ18#&lAnWK3jc?GdM3PtBq?-qa&jMEUBFcbJhIRBBQ21G<)Zu# zPF`qwifa`8-G(rmSEo(8-{PLwc zV`4w}b!?1NeQZmR?d6bseDdT8(zgCRtCh8LiC}54kteemCH_QAXbY@n*n=})-ryjK zx!v85!JmMFhbKSHRM;KPA~^AWmIOx=6n!ScG;K`Ced}p>15fdJ%E4`S*L`6 z1RWk0u)V}LYB@*(^)f{5ZhvU3Qc3Sh8d`;9O6!6a5g25--n9UQ_^Kub43&X~Gu+dC z@bIW=Lqz3$U0rKiBhhOH;4IN7)q3UhhyY9mC~bbE9N$G8qTnYIhJn5WgfN&s(mvEP zk-({^YP|q68`3Mf3S6TJz499A*7|RFF50@fB?g=l61(amq2RWcl-R(kadSHYl|p$c z8J>hV-=drF%DcjG48N$9^p!cgW9RiV7Xr=mtt8aEzFZ2|7^A5v)a67v? zrOb5IZCCFsS5{S}Z~(?n!UcwLB8&D1Y;kcaWj#GTQPDfoJqg6K1DPTekL+{pE%zNF zUltyT-mJl9&x4QA7=$d8Ih96@!4cnt@>l{&Ut5`AsBSfId?bar*! zo^9Y_dJ0_|aMx1P(%j)h0f5SBki~+v%7^XjWeD~JH)&+Di7|!?8Ae>)j7Ah~u) zDJl*@*kbtg96BY4wmJW&d6=wc>A9z5WXNkh<>KNBnjo$UPfSb{?af8kvWw5K#$VPq zR<=T-{?7R<@CloQ^Paj^6uA&-lW|Vi!F$ltSSXw=EeqXB?IFC7V4{rNZt=f1uyKg# zToi}Z2#`=x()A6=QB}1T13exZIq0%Kt0U3fE*Y(73Dg+ycNW_G7dwK^4&L>TKW4A+ zE4(`m0wk!O-q%;YzqPpK$$~`JM>-?BO+tI0LawzrA_g2BG+lj;jU1cVoUEc=WC77@ z7@jd22D6R;(r}@`w6WQQ=w$T!MH;A0Q*Lf<5V2ex9iL|Yxr3i*@dFNJxBwxIRp~$^ zRJ90#8~Bk`zsvObzJd}Q)lwq;b8c6Qogq%V7I9t{QE~^D7^W9 zRvtQEYeU3T0Z#wv`EHwo@|`ffEEb09f_uu!%4@vL8l{$U!GHh$eJS#JDt76EXN*Zf zY~aNxg*7_^z6_l3W*5n3g~hW2S_}Tym;bKcH)8e?-@EAtdO};G*=2=h6s8NkNM*Xb zBSgi6`hk^Y>QJEd*&^M}kL;#ICc*Adt}rn*Mb09jLL6S#c=hUi7~fH4RvjEcvFpmi zuZ>*acjLvnptX;M^{7Y~?PI0fDhKF^<$d##C7Lf0ghu*?-k*@_m|ed!WPQm+0!?s* zv|aF=%q(6XU`qDWGM)&yMHH5RbeaEC*Q&5A8;R>7I6v1!(tju*NB2dSS2Hs8zT6M* ztBZzFDvXuH58ZplPZ%azc!HI*0(ht->b)GDoyD4-xjbM?V%4pCSZfYS%Wwu*n2AMb zsg0b})B#I=Y=y@$c;|;u37IbHLoj~6>BMzX==lv+HEDszw0M0avk!A^7 z9{83#dmpw0$nF)SUgo8Db&3D>cEJ)u0ZCR%14AC?K&>irjUlPs$a0z|c2(aPcOz}U zj1z*xwe%~95z(IxZZucxbjcCR!B;`Dd$XweYMs>=CaK|H!AAKoXyNU780VGX(0VG_ z&_JF!lnF@h-iecL`KJJd9WX8-c4O?rK+&)&;IYSs1fg;V*+RuXwAO%|AanM;zKRN- z_2BYGDqLZIO$Ps;0xlFDd$uy1lXzI>)+{76ZuI~aBQDeKqGE4dQNZ@2SA75t8FORW zthcFI!=Ohg`%60*o>>Mo_Hd%IvFS9C448{aCVJHDBFJ>oV`D|fN<^+N;s&7BQsa(= znzyc8A+H6kDw`)o3R2A%?mOwz7$mZvWGo)B!8VaDj|^?ln&eAi<+*7r{Dp>HYYPDo z938X#hmk3IABL7QhhMNf&p(s$rSK3m@Z#6b!%V;ct$dwy<_F5AJ7CJP``-ozL5t-F1ccPWd#HcTvuY* z4pB?q!nwZh->FIGpui;EtgZ5rFfeW>#7%1~lA@2OY{O$<={GVp1=Qqv|2w-%QaiK_ zjGT&TXb?&x%zLA@E#7k0tA zfbhJi8K-kgN)c*cZ-Ujv$sFV$wvwTth|L5GXQ&QA9!R5W+>`LN(tR2Njj*PYcMVfifhX*r-C%7oq+2U(KQG zhN5=7R=_RWq3ts91S+7LKyzG^98(ZT22IF0S94!>DV@ha!W(8IkR=?BB@y!CK68W| z*J-dDgoxn|HT#2#n?tu`6C&erq4FY)@6NFDAf!iC$x&c3IFfrcpoh=W?mz_%%o(Dp zF*%g-j{qJ1#AAM!k0+LI-h>2ue%>^OCBAxH>we6ktanNN?br779^qz~eY}p2CetD9 z+hsR>iCmn7H>OtWdD02N`42I&9TADRRaNpB4Y3{stcE@=qB`IU>Ho@5?&}GEIQ(UVTKOBC@_C9Ci4b-_G ztdp`?R7O^`dWPo2p8;$krGIQ{>c&iw@Yx#m{tQ&&f}gr`3-Xp8u)1d%{1ZIwOG-*= z>J;Hj5fxm&?(d$l<>9pb4<1V}_lsK7{YD+5tup~hj4CBn`wi&2I~5Lq5dl)Q9^iv8 zet#VYlzP;aos|`Ce-Km&A;lf`vtOV3?Sta8y0jD{BCV*Hx@a9Pa3OLj{0J=OHtW=Ay0YrQc5N9}jci(4Xa`K%{&PjmWmnbtpp!0sL z4LM@rb766+^OTkCs5&lI{Z-%p1BOM>B z(Mr~JqX&IJe;&k^Y>Qs2Q`XC;$7w3Ku+an8FZO9kTboG2y7z}4nIejQ3;?O(E{N)O zL7z7AR|$xkDi;5~uZkfd_oqD9(<#$1Bf@psiysoXp1pkT(37qo7Gz5YC;P@A?*e{9 zE^v~`TfBMs`CdMYn%df@+w}{LZR4AV!rUB+1WZlG%SndTwag1%o2=2V;C?g#Pxuyq zIVmo|ux+ICpw*bQGyDa6+k#`(EU-Wn3gWyc$Hwr-gD@UEC@e1iEwnl|HU^qI&6ytd_B+?#_m~sl+u=>K z)PojWr>(NhOikX$Yz@`{ICXY26Eid4g}4aZIWblB^agaVoAk=(=MAheKPVJDV*E^1 zm>1qK&Z5odEW%PU-tYbQZy!Uwzw6c{$9w=5%3bZ6{Ji1)qa9H(Fa64FH!~oeIED0Bj>Ce4J9P*A3v+MhaRV8A%er!u7w4|+-(~xtLznC zS{fRUQfHXikUP5ySlNC(U}1ya#M)ATnWD|f9pO?deg(f`zO%6V5Y)Xug|F_r2K%q) zW#08mK^TGRx7gQ3Q+w=;5sEv`9I1I$TM#$_=?Ln#HZ;8X%?>&F8YN_8WZl;c>f|*# zW!)x=6PU2s=4#+qAO=mu!~)`(sDy-kA?YaGFQ|sHz)#H-+Igf8ogiQT9!Z9*OG8)S zy*u6 zDS-e9(kxs{P}blDWk2-G4e6V5LQj$m>q80(MM9fMNoWO2&&)K`)3fC!1qbr$9A2<- zAZY>^89VoFxKkl-H#0MXi3mU^(gRdx+W}lN*x}+j?L|e5JM&ol89yw!QwLXI6+=!0 zRXU)rIU}!w@Tmrwo~v?0dmJ=n*82aB9BS^bJb78B5&lNYN9>Y)l#2zFD1*b*Hw>K} z+w%|f6x%>E}3vEM%TlCYqb{Z5}_&hy5 zk|pC%%jtlTprrIIBQ^Wirl***!+FbWt>!;3U!Z-@E7aB0U|5J!LjvH&oLV^8*yV+V zg^-Yzl*D;*G;=9U)}})S11})!cK1z1L!V~XaL%+$fs>-6lR9Dvze?`)YfA5CXloqv zqiEi1Uz>cvOVII54#uTG84qo$AcsRYVjoeTPFZ5<+rZdv*l3)qf9~D8_g7eN_L&LP zDz?VS|A;5Zu z3v2P^hG~N?hTL2l9?08fgX}-XV}6GxYw!*}At(PafdlOe8YSZ}rV1CRRz zxfw3G_il@nkO|xp_ucu!+LNte({lu7!xuWwSnywKfb>ZRO>Id@7%q+ zj5^D*&V0X7_b2SedHs2kV1y^f%~%=ZtsdAbdASJDthfXS>Rxq92C))D!!tp7&M$MPX>}{6QfW z+`a4sO=i;TpG(x3jvs%Xn9$frxSwDQVsa;S&OFZ$1o5A`0nnX#U_j4H$-uy1q*~SN zNpea;Shq^uf|I3E1dV1&Zpky!ak1#oR^ue4Y-XTNBmC8AIV>KtRHMZF;Kz~)|174g zp&w?y7bl2pYIEtb&s;X%_%V@Ch zLn%1OoF~nxtAW6{yO$~44@ zcK7H@DL2{4AdSMBWn3Ec2*V}TBvOY+2zlcA1XedWenkqu(MngKS7-7lNbv~o&whp} zCLGKaZ=8}H`$uy7eI7h=`1^N>sDcjq3gILe6!6-?aB@vHmnT_*BoWNEVg-xd0WZC~ zPuba{&l6q1f$pok$m3!GHNs1Zi8G@6aMgqX=HXCvvP~)S*Xd~$ejAgiE|AI9MR`BCSy*^Ac@g-lF7pV0R`lLLh8GCbPd??)11gYWzcZ7qt5=B9z^UWEnb5>IM3Q3N9}%X?u)!zGu}Py;e{lgwP`(a0rg|DgeyG~RU+SL)50 z=JntGV^>!=v5jV-r3I5H#=2DO^APa&a$2b7!x;maGo$(VW#7p&gn$fzhtc+t&e z$E{txy!iRV0=JSqw@{7`54RWEGTlR&IcqbLlIZt-muYMQl-6}XB$EfnXEh8plPRcz z`5DJW*W%_5#Cik^Q{jFQ5-=xJ~sXcR& zoE$LMvM5~onx;_f5#DB$gMx}SZcC-O2?ujm$fu(54Uj^j#Y`=fgM*4&Adtdn2ebCE3_7kTR(xhQzRtHMQV`vu{Zzi0I&w+(q^yazVGWU(4z^O zMMGQL_0jeW@HU23CK8sGYh(`1i=D`s>1pVb0YBrv|FU30BUswr8NU~cq(HW~hN1?J zuk-VBp!he3 zsxqTB(8c$rDSI(w)uy#xr)*0KvRDxQ%YUv@QBisD(mB}JfQP&Vz$lPfK&Lfd4iX=J zUiBOjgpr7lB8`qZ0polIS-;>% zMow-a;vOjp8@bx^z{0w|h<+Km&u(U3Xleono0gt#mKmO8=*LGx0}b47LywOf8y){h zLdpm)fB$Rfl!EiP^BLGTN5{v8&|d}(j=X`FAp^aq@PoFPj9}`FeLYOzc)LED2WI@p z$cRdvYu1KaD6PNciE$^bEI58Z&A^ZVeDrRZr2ta^2uVpBX-zieG?hkkKHjX8Mi(n1 zBcrQ}Q(M{|UlgQ3mfDX;(ryEf>)4!7)i6767?&U-gO49Sf*jxZry&=V0pMyb!0Lsf z;|A-1Ry^k+p?Vm_R$k8L6wY=u9^bH^+3MR5V{t$gxPVSoK&_&I`3G%-4HhYQt)koc zIF5e+1_O)O5vB@+bhZm)>y+_OQJKI>6Bbvsvx7vq3~EuBT4827ClO9qMF2O4tfiP3 zn(?pa+!tUP7^JMM+SO(t4gu{4vN~-vgalPp1&Yu4P{_dDsJ7Ruu^fTv7@wva9qrTR zV-N2Aud|}6>dTinR!!US8dz(f+6M+-oexMHn$=zmaPGW+Z$d0jynf>M4&byLNZ^nIoAvkrKTz7%qy1^MP7?kP6c~DZ(8rFn< zOBf_3KF8npYH9o-_^7Gjr(mGmO1}GwNVo0uEj*<7_mxh`_z&ciXCDm2{APRD&s-6+ z;J4RJq)?!GRsq$xqR8c#P>xo%lF!Lv2s}{mzcjdf1cZbt(uq+~QEO|KG}^a}>T)KQ zFE&alz?s+`CyAmEQCKlwu^tY>gt5K@8fa)}OZzY#Aps>|u^`hgHQk5iDjd6a492i7 z_?_E1alZBN@NjYA-eJ0R5+Pr$BoJ`3_#B$|dUoq$%x=Ha-g58{r#fDOz0(6LYW9T51c*&unJ+FI!mNOCH8SqSrUsv3`?<2TETxo-2sVsN^Lk9*1 z!kj_AbOU9h|6N9`=&d7)&5crx&2Qh{^#)}69!-7w_U&ee&5`oa|Eju~vzyEZff=ej z*o`7E0N@0{lwdtoZLU*xbok5gnt32z{AOAI@AZ;x0Pp_}iiH{B7$pC1?rTHL{~Njc d|K~4X5rwLh>kejVXx>~6X$b}Ka#5oX{|7h@Sj7MU literal 0 HcmV?d00001 diff --git a/docs/source/index.rst b/docs/source/index.rst new file mode 100644 index 0000000..1380390 --- /dev/null +++ b/docs/source/index.rst @@ -0,0 +1,71 @@ + + +.. raw:: html + +

+ +.. raw:: html + +
+ PyPI version + License: MIT + Documentation Status + +
+ +
+
+ + +YESciEval was created by `Scientific Knowledge Organization (SciKnowOrg group) `_ at `Technische Informationsbibliothek (TIB) `_. Don't hesitate to open an issue on the `YESciEval repository `_ if something is broken or if you have further questions. + +.. seealso:: + + See the `Quickstart `_ for more quick information on how to use OntoLearner. + + + +If you find this repository helpful, feel free to cite our publication `YESciEval: Robust LLM-as-a-Judge for Scientific Question Answering `_: + + .. code-block:: bibtex + + @article{d2025yescieval, + title={YESciEval: Robust LLM-as-a-Judge for Scientific Question Answering}, + author={D'Souza, Jennifer and Giglou, Hamed Babaei and M{\"u}nch, Quentin}, + journal={arXiv preprint arXiv:2505.14279}, + year={2025} + } + + + + +.. toctree:: + :maxdepth: 1 + :caption: Getting Started + :hidden: + + installation + quickstart + +.. toctree:: + :maxdepth: 1 + :caption: Evaluator + :hidden: + + rubrics + judges + + + +.. toctree:: + :maxdepth: 1 + :caption: Package Reference + :glob: + :hidden: + + package_reference/base + package_reference/judge + package_reference/rubric + package_reference/ diff --git a/docs/source/installation.rst b/docs/source/installation.rst new file mode 100644 index 0000000..14c91d4 --- /dev/null +++ b/docs/source/installation.rst @@ -0,0 +1,63 @@ +Installation +============= + +We recommend **Python 3.10+**,`PyTorch 1.4.0+ `_, and `transformers v4.41.0+ `_. + + +Install with pip +----------------------- + +.. sidebar:: Verify the installation + + Once the isntallation is done, verify the installation by: + + .. code-block:: python + + import yescieval + + print(yescieval.__version__) + + +.. tab:: From PyPI + + YESciEval is available on the Python Package Index at `pypi.org `_ for installation. + :: + + pip install -U yescieval + +.. tab:: From GitHub + + The following pip install will installs the latest version of OntoLearner from the `main` branch of the YESciEval at GitHub using `pip`. + + :: + + pip install git+https://github.com/sciknoworg/YESciEval.git + + +Install from Source +---------------------- +You can install YESciEval directly from source to take advantage of the bleeding edge main branch for development. + + +1. Clone the repository: + +.. code-block:: bash + + git clone https://github.com/sciknoworg/YESciEval.git + cd YESciEval + +2. (Optional but recommended) Create and activate a virtual environment: + +.. code-block:: bash + + python -m venv venv + source venv/bin/activate # On Windows: venv\Scripts\activate + +3. Install dependencies and the library + +.. code-block:: bash + + pip install -e . + +.. hint:: The -e flag installs the package in editable mode, which is ideal for developmentโ€”changes in the code reflect immediately. + diff --git a/docs/source/judges.rst b/docs/source/judges.rst new file mode 100644 index 0000000..e69de29 diff --git a/docs/source/quickstart.rst b/docs/source/quickstart.rst new file mode 100644 index 0000000..4886587 --- /dev/null +++ b/docs/source/quickstart.rst @@ -0,0 +1,87 @@ +Quickstart +================= + +YESciEval is a library designed to evaluate the quality of synthesized scientific answers using predefined rubrics and advanced LLM-based judgment models. This guide walks you through how to evaluate answers based on **informativeness** using a pretrained judge and parse LLM output into structured JSON. + + +**Example: Evaluating an Answer Using Informativeness + AskAutoJudge** + +.. code-block:: python + + from yescieval import Informativeness, AskAutoJudge, GPTParser + + # Sample papers used as context + papers = { + "A Study on AI": "This paper discusses recent advances in artificial intelligence, including deep learning.", + "Machine Learning Basics": "An overview of supervised learning methods such as decision trees and SVMs.", + "Neural Networks Explained": "Explains backpropagation and gradient descent for training networks.", + "Ethics in AI": "Explores ethical concerns in automated decision-making systems.", + "Applications of AI in Healthcare": "Details how AI improves diagnostics and personalized medicine." + } + + # Input question and synthesized answer + question = "How is AI used in modern healthcare systems?" + answer = ( + "AI is being used in healthcare for diagnosing diseases, predicting patient outcomes, " + "and assisting in treatment planning. It also supports personalized medicine and medical imaging." + ) + + # Step 1: Create a rubric + rubric = Informativeness(papers=papers, question=question, answer=answer) + instruction_prompt = rubric.instruct() + + # Step 2: Load the evaluation model (judge) + judge = AskAutoJudge() + judge.from_pretrained(token="your_huggingface_token", device="cpu") + + # Step 3: Evaluate the answer + result = judge.evaluate(rubric=rubric) + + print("Raw Evaluation Output:") + print(result) + +.. tip:: + + - Ensure your Hugging Face model token has access to the model (e.g., ``YESciEval-ASK-Llama-3.1-8B``). + - Use the ``device="cuda"`` if running on GPU for better performance. + - Add more rubrics such as ``Informativeness``, ``Relevancy``, etc for multi-criteria evaluation. + +**Parsing Raw Output with GPTParser** + +If the model outputs unstructured or loosely structured text, you can use GPTParser to parse it into valid JSON. + +.. code-block:: python + + from yescieval import GPTParser + + raw_output = "` {rating: `4`, rational: The answer covers key aspects of how AI is applied in healthcare, such as diagnostics and personalized medicine.} `" + + parser = GPTParser(openai_key="your_openai_key") + + parsed = parser.parse(raw_output=raw_output) + + print("Parsed Output:") + print(parsed) + +**Expected Output Format** + +.. code-block:: json + + { + "rating": 4, + "rationale": "The answer covers key aspects of how AI is applied in healthcare, such as diagnostics and personalized medicine." + } + +.. hint:: Key Components + + +------------------+-------------------------------------------------------+ + | Component | Purpose | + +==================+=======================================================+ + | Informativeness | Defines rubric to evaluate relevance to source papers | + +------------------+-------------------------------------------------------+ + | AskAutoJudge | Loads and uses a judgment model to evaluate answers | + +------------------+-------------------------------------------------------+ + | GPTParser | Parses loosely formatted text from LLMs into JSON | + +------------------+-------------------------------------------------------+ + + diff --git a/docs/source/rubrics.rst b/docs/source/rubrics.rst new file mode 100644 index 0000000..bfe6f58 --- /dev/null +++ b/docs/source/rubrics.rst @@ -0,0 +1,81 @@ + +Evaluation Rubrics +=================== + +A total of nine evaluation rubrics were defined as part of the YESciEval test framework: + +**Linguistic & Stylistic Quality** concerns grammar, clarity, and adherence to academic writing conventions. + ++--------------------+-------------------------------------------------------------+ +| Evaluation Rubric | Description | ++====================+=============================================================+ +| **1. Cohesion:** | Are the sentences connected appropriately to make the | +| | resulting synthesis cohesive? | ++--------------------+-------------------------------------------------------------+ +| **2. Conciseness:** | Is the answer short and clear, without redundant statements?| ++--------------------+-------------------------------------------------------------+ +| **3. Readability:** | Does the answer follow appropriate style and structure | +| | conventions for academic writing, particularly for | +| | readability? | ++--------------------+-------------------------------------------------------------+ + +**Logical & Structural Integrity** focuses on the reasoning and organization of information. + ++--------------------+-------------------------------------------------------------+ +| Evaluation Rubric | Description | ++====================+=============================================================+ +| **4. Coherence:** | Are the ideas connected soundly and logically? | ++--------------------+-------------------------------------------------------------+ +| **5. Integration:** | Are the sources structurally and linguistically well- | +| | integrated, using appropriate markers of provenance/ | +| | quotation and logical connectors for each reference? | ++--------------------+-------------------------------------------------------------+ +| **6. Relevancy:** | Is the information in the answer relevant to the problem? | ++--------------------+-------------------------------------------------------------+ + +**Content Accuracy & Informativeness** ensures that the response is both correct and useful. + ++--------------------+-------------------------------------------------------------+ +| Evaluation Rubric | Description | ++====================+=============================================================+ +| **7. Correctness:** | Is the information in the answer a correct representation | +| | of the content of the provided abstracts? | ++--------------------+-------------------------------------------------------------+ +| **8. Completeness:**| Is the answer a comprehensive encapsulation of the relevant| +| | information in the provided abstracts? | ++--------------------+-------------------------------------------------------------+ +| **9. Informativeness:**| Is the answer a useful and informative reply to the | +| | problem? | ++--------------------+-------------------------------------------------------------+ + + +**Usage Example** + +Here is a simple example of how to import rubrics in your code: + +.. code-block:: python + + from yescieval import Informativeness, Correctness, Completeness, + Coherence, Relevancy, Integration, + Cohesion, Readability, Conciseness + +And to use rubrics: + +.. code-block:: python + + # Example inputs + papers = { + "Paper 1": "Summary of paper 1 content.", + "Paper 2": "Summary of paper 2 content.", + "Paper 3": "Summary of paper 3 content.", + "Paper 4": "Summary of paper 4 content.", + "Paper 5": "Summary of paper 5 content." + } + question = "What are the key findings on AI in these papers?" + answer = "The synthesis answer summarizing the papers." + + # Instantiate a rubric, e.g. Coherence + rubric = Coherence(papers=papers, question=question, answer=answer) + instruction = rubric.instruct() + + print(instruction) From b948cce5acb7ab29b0430dc32cbd1257e92f9cd2 Mon Sep 17 00:00:00 2001 From: Hamed Babaei Giglou Date: Fri, 30 May 2025 16:42:12 +0200 Subject: [PATCH 05/21] :pencil2: add judge page --- docs/source/judges.rst | 4 ++++ docs/source/rubrics.rst | 26 ++++++++++++++------------ 2 files changed, 18 insertions(+), 12 deletions(-) diff --git a/docs/source/judges.rst b/docs/source/judges.rst index e69de29..e7dd962 100644 --- a/docs/source/judges.rst +++ b/docs/source/judges.rst @@ -0,0 +1,4 @@ + +Judges +======== + diff --git a/docs/source/rubrics.rst b/docs/source/rubrics.rst index bfe6f58..1f8df2d 100644 --- a/docs/source/rubrics.rst +++ b/docs/source/rubrics.rst @@ -6,18 +6,20 @@ A total of nine evaluation rubrics were defined as part of the YESciEval test fr **Linguistic & Stylistic Quality** concerns grammar, clarity, and adherence to academic writing conventions. -+--------------------+-------------------------------------------------------------+ -| Evaluation Rubric | Description | -+====================+=============================================================+ -| **1. Cohesion:** | Are the sentences connected appropriately to make the | -| | resulting synthesis cohesive? | -+--------------------+-------------------------------------------------------------+ -| **2. Conciseness:** | Is the answer short and clear, without redundant statements?| -+--------------------+-------------------------------------------------------------+ -| **3. Readability:** | Does the answer follow appropriate style and structure | -| | conventions for academic writing, particularly for | -| | readability? | -+--------------------+-------------------------------------------------------------+ +.. table:: + + +--------------------+-------------------------------------------------------------+ + | Evaluation Rubric | Description | + +====================+=============================================================+ + | **1. Cohesion:** | Are the sentences connected appropriately to make the | + | | resulting synthesis cohesive? | + +--------------------+-------------------------------------------------------------+ + | **2. Conciseness:** | Is the answer short and clear, without redundant statements?| + +--------------------+-------------------------------------------------------------+ + | **3. Readability:** | Does the answer follow appropriate style and structure | + | | conventions for academic writing, particularly for | + | | readability? | + +--------------------+-------------------------------------------------------------+ **Logical & Structural Integrity** focuses on the reasoning and organization of information. From aa1970975be9e9c579bcb477ba1a18ccfc945fce Mon Sep 17 00:00:00 2001 From: Hamed Babaei Giglou Date: Fri, 30 May 2025 16:51:24 +0200 Subject: [PATCH 06/21] :pencil2: minor changes --- .gitignore | 1 + trash/main_eval.py | 19 +++++++++++++++++++ 2 files changed, 20 insertions(+) create mode 100644 trash/main_eval.py diff --git a/.gitignore b/.gitignore index b2f1d0d..80419c2 100644 --- a/.gitignore +++ b/.gitignore @@ -4,6 +4,7 @@ __pycache__/ *$py.class .idea/ assets/models +trash/ # C extensions *.so trashdir/ diff --git a/trash/main_eval.py b/trash/main_eval.py new file mode 100644 index 0000000..4bfa058 --- /dev/null +++ b/trash/main_eval.py @@ -0,0 +1,19 @@ +from yescieval import Informativeness, AskAutoJudge + + +papers = { + "A Study on AI": "This paper discusses recent advances in AI.", + "Machine Learning Basics": "An overview of supervised learning methods." +} +question = "this is a dume question" +answer="synthesis answer" +rubric = Informativeness(papers=papers, question=question, answer=answer) +inst = rubric.instruct() + +judge = AskAutoJudge() + +judge.from_pretrained(token="...", device="cpu") + + +print(judge.evaluate(rubric=rubric)) + From 446a578cb18b0079eab46015c0dd06a8de7a745f Mon Sep 17 00:00:00 2001 From: Hamed Babaei Giglou Date: Fri, 30 May 2025 16:51:39 +0200 Subject: [PATCH 07/21] :memo: add setup.py --- setup.py | 40 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 40 insertions(+) create mode 100644 setup.py diff --git a/setup.py b/setup.py new file mode 100644 index 0000000..cb9ae8f --- /dev/null +++ b/setup.py @@ -0,0 +1,40 @@ +from setuptools import setup, find_packages + +with open("README.md", encoding="utf-8") as f: + long_description = f.read() + +setup( + name="YESciEval", + version="0.1.0", + author="Hamed Babaei Giglou", + author_email="hamedbabaeigiglou@gmail.com", + description="YESciEval: Robust LLM-as-a-Judge for Scientific Question Answering.", + long_description=long_description, + long_description_content_type="text/markdown", + url="https://github.com/sciknoworg/YESciEval", + packages=find_packages(), + install_requires=[ + "pre-commit", + "transformers," + "torch", + "peft", + "openai", + "pandas", + "numpy", + "pydantic", + ], + classifiers=[ + "Development Status :: 5 - Production/Stable", + "Intended Audience :: Developers", + "Topic :: Software Development :: Libraries :: Python Modules", + "Programming Language :: Python :: 3", + "License :: OSI Approved :: MIT License", + "Operating System :: OS Independent", + ], + python_requires=">=3.10,<4.0.0", + project_urls={ + "Documentation": "https://yescieval.readthedocs.io/", + "Source": "https://github.com/sciknoworg/YESciEval", + "Tracker": "https://github.com/sciknoworg/YESciEval/issues", + }, +) From 435af299670a7040cb77570033c84c208a315b6e Mon Sep 17 00:00:00 2001 From: Hamed Babaei Giglou Date: Fri, 30 May 2025 16:54:47 +0200 Subject: [PATCH 08/21] :memo: fix license --- LICENSE | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/LICENSE b/LICENSE index af627d5..2234a2f 100644 --- a/LICENSE +++ b/LICENSE @@ -1,6 +1,6 @@ MIT License -Copyright (c) 2025 XXX +Copyright (c) 2025 SciKnowOrg Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal @@ -18,4 +18,4 @@ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -SOFTWARE. +SOFTWARE. \ No newline at end of file From 3e9954d3f9ef454a042d9525d2babf770b3ae319 Mon Sep 17 00:00:00 2001 From: Hamed Babaei Giglou Date: Fri, 30 May 2025 16:55:51 +0200 Subject: [PATCH 09/21] :fire: remove trash dir --- trash/main_eval.py | 19 ------------------- 1 file changed, 19 deletions(-) delete mode 100644 trash/main_eval.py diff --git a/trash/main_eval.py b/trash/main_eval.py deleted file mode 100644 index 4bfa058..0000000 --- a/trash/main_eval.py +++ /dev/null @@ -1,19 +0,0 @@ -from yescieval import Informativeness, AskAutoJudge - - -papers = { - "A Study on AI": "This paper discusses recent advances in AI.", - "Machine Learning Basics": "An overview of supervised learning methods." -} -question = "this is a dume question" -answer="synthesis answer" -rubric = Informativeness(papers=papers, question=question, answer=answer) -inst = rubric.instruct() - -judge = AskAutoJudge() - -judge.from_pretrained(token="...", device="cpu") - - -print(judge.evaluate(rubric=rubric)) - From 7be2310ae0ea08d6a335d66df41f959055acebe7 Mon Sep 17 00:00:00 2001 From: Hamed Babaei Giglou Date: Fri, 30 May 2025 17:34:56 +0200 Subject: [PATCH 10/21] :bug: typo --- yescieval/__init__.py | 20 +------------------- yescieval/judge/__init__.py | 4 ++-- yescieval/judge/judges.py | 2 +- 3 files changed, 4 insertions(+), 22 deletions(-) diff --git a/yescieval/__init__.py b/yescieval/__init__.py index d1735bc..c101362 100644 --- a/yescieval/__init__.py +++ b/yescieval/__init__.py @@ -4,24 +4,6 @@ from .base import Rubric, Parser from .rubric import (Informativeness, Correctness, Completeness, Coherence, Relevancy, Integration, Cohesion, Readability, Conciseness) -from .judge import AutoJudge, AskAutoJudge, BioASAutoJudge +from .judge import AutoJudge, AskAutoJudge, BioASQAutoJudge from .parser import GPTParser -# -# __all__ = [ -# "Rubric", -# "Informativeness", -# "Correctness", -# "Completeness", -# "Coherence", -# "Relevancy", -# "Integration", -# "Cohesion", -# "Readability", -# "Conciseness", -# "Parser", -# "AutoJudge", -# "AskAutoJudge", -# "BioASAutoJudge" -# ] -# diff --git a/yescieval/judge/__init__.py b/yescieval/judge/__init__.py index 5731352..c0a3437 100644 --- a/yescieval/judge/__init__.py +++ b/yescieval/judge/__init__.py @@ -1,7 +1,7 @@ -from .judges import AutoJudge, AskAutoJudge, BioASAutoJudge +from .judges import AutoJudge, AskAutoJudge, BioASQAutoJudge __all__ = [ "AutoJudge", "AskAutoJudge", - "BioASAutoJudge" + "BioASQAutoJudge" ] \ No newline at end of file diff --git a/yescieval/judge/judges.py b/yescieval/judge/judges.py index 579f1b0..a7415f0 100644 --- a/yescieval/judge/judges.py +++ b/yescieval/judge/judges.py @@ -44,7 +44,7 @@ def from_pretrained(self, model_id:str="SciKnowOrg/YESciEval-ASK-Llama-3.1-8B", token:str =""): return super()._from_pretrained(model_id=model_id, device=device, token=token) -class BioASAutoJudge(AutoJudge): +class BioASQAutoJudge(AutoJudge): def from_pretrained(self, model_id: str = "SciKnowOrg/YESciEval-BioASQ-Llama-3.1-8B", device: str = "auto", token: str = ""): From 558d7eb8c70f919ebe5397f5fff2f2468fc12a18 Mon Sep 17 00:00:00 2001 From: Hamed Babaei Giglou Date: Fri, 30 May 2025 17:35:10 +0200 Subject: [PATCH 11/21] :memo: documentations --- docs/source/index.rst | 4 +- docs/source/judges.rst | 91 +++++++++++++++++++++++++++++++++++++- docs/source/quickstart.rst | 2 +- docs/source/rubrics.rst | 74 +++++++++++++++---------------- 4 files changed, 127 insertions(+), 44 deletions(-) diff --git a/docs/source/index.rst b/docs/source/index.rst index 1380390..b98ef9a 100644 --- a/docs/source/index.rst +++ b/docs/source/index.rst @@ -18,6 +18,7 @@

+YESciEval provides a comprehensive library for evaluating the quality of synthesized scientific answers using predefined rubrics and sophisticated LLM-based judgment models. This framework enables you to assess answers on key criteria by utilizing pretrained judges and parsing LLM outputs into structured JSON formats for detailed analysis. YESciEval was created by `Scientific Knowledge Organization (SciKnowOrg group) `_ at `Technische Informationsbibliothek (TIB) `_. Don't hesitate to open an issue on the `YESciEval repository `_ if something is broken or if you have further questions. @@ -40,7 +41,6 @@ If you find this repository helpful, feel free to cite our publication `YESciEva - .. toctree:: :maxdepth: 1 :caption: Getting Started @@ -57,8 +57,6 @@ If you find this repository helpful, feel free to cite our publication `YESciEva rubrics judges - - .. toctree:: :maxdepth: 1 :caption: Package Reference diff --git a/docs/source/judges.rst b/docs/source/judges.rst index e7dd962..23b135f 100644 --- a/docs/source/judges.rst +++ b/docs/source/judges.rst @@ -1,4 +1,91 @@ - Judges -======== +================ + +YESciEval provides two pre-trained judge models designed to evaluate scientific text syntheses based on different domains and datasets: + +- **Ask Judge**: A multidisciplinary YESciEval judge fine-tuned on the ORKGSyn dataset from the Open Research Knowledge Graph. + +- **BioASQ Judge**: A biomedical YESciEval judge fine-tuned on the BioASQ dataset from the BioASQ challenge. + +.. hint:: Available YESciEval judge ๐Ÿค— Hugging Face: + + - `Ask Judge on Hugging Face `_ + - `BioASQ Judge on Hugging Face `_ + + +Using YESciEval Judges +------------------------ + +The following example demonstrates how to create an evaluation rubric, load a judge model, and evaluate an answer. + +.. code-block:: python + + from yescieval import Readability, AutoJudge + + papers = { + "A Study on AI": "This paper discusses recent advances in artificial intelligence, including deep learning.", + "Machine Learning Basics": "An overview of supervised learning methods such as decision trees and SVMs.", + "Neural Networks Explained": "Explains backpropagation and gradient descent for training networks.", + "Ethics in AI": "Explores ethical concerns in automated decision-making systems.", + "Applications of AI in Healthcare": "Details how AI improves diagnostics and personalized medicine." + } + + # Input question and synthesized answer + question = "How is AI used in modern healthcare systems?" + answer = ( + "AI is being used in healthcare for diagnosing diseases, predicting patient outcomes, " + "and assisting in treatment planning. It also supports personalized medicine and medical imaging." + ) + + # Step 1: Create a rubric + rubric = Readability(papers=papers, question=question, answer=answer) + instruction_prompt = rubric.instruct() + + # Step 2: Load the evaluation model (judge) + judge = AutoJudge() + judge.from_pretrained(model_id="SciKnowOrg/YESciEval-ASK-Llama-3.1-8B", + token="your_huggingface_token", + device="cpu") + + # Step 3: Evaluate the answer + result = judge.evaluate(rubric=rubric) + + print("Raw Evaluation Output:") + print(result) + +Specialized Judges vs. Custom Models +-------------------------------------- + +.. list-table:: Judge Class Overview + :header-rows: 1 + + * - Class Name + - Description + * - AutoJudge + - Base class for loading and running evaluation models (judges) with PEFT adapters. + * - AskAutoJudge + - Multidisciplinary judge tuned on the ORKGSyn dataset from the Open Research Knowledge Graph. + * - BioASQAutoJudge + - Biomedical domain judge tuned on the BioASQ dataset from the BioASQ challenge. + +The difference between **AskAutoJudge** and **BioASQAutoJudge** compared to **AutoJudge** is that these specialized judges have their own predefined model paths on Hugging Face, making it easier to load the respective domain-specific models. + +Custom Judge +-------------------- + +The `AutoJudge` class provides flexibility to load any compatible LLM model from Hugging Face by specifying the model ID. This allows you to use any pre-trained or fine-tuned model beyond the default specialized judges using YESciEval. + +For example, you can load a model and evaluate a rubric like this: + +.. code-block:: python + + # Initialize and load a custom model by specifying its Hugging Face model ID + judge = AutoJudge() + judge.from_pretrained(model_id="Qwen/Qwen3-8B", device="cpu", token="your_huggingface_token") + + # Evaluate the rubric using the loaded model + result = judge.evaluate(rubric=rubric) + + print(result) +This approach allows full control over which model is used for evaluation, supporting any LLM.. diff --git a/docs/source/quickstart.rst b/docs/source/quickstart.rst index 4886587..f266e6d 100644 --- a/docs/source/quickstart.rst +++ b/docs/source/quickstart.rst @@ -10,7 +10,7 @@ YESciEval is a library designed to evaluate the quality of synthesized scientifi from yescieval import Informativeness, AskAutoJudge, GPTParser - # Sample papers used as context + # Sample papers used in form of {"title": "abstract", ... } papers = { "A Study on AI": "This paper discusses recent advances in artificial intelligence, including deep learning.", "Machine Learning Basics": "An overview of supervised learning methods such as decision trees and SVMs.", diff --git a/docs/source/rubrics.rst b/docs/source/rubrics.rst index 1f8df2d..226f8b9 100644 --- a/docs/source/rubrics.rst +++ b/docs/source/rubrics.rst @@ -6,49 +6,47 @@ A total of nine evaluation rubrics were defined as part of the YESciEval test fr **Linguistic & Stylistic Quality** concerns grammar, clarity, and adherence to academic writing conventions. -.. table:: - - +--------------------+-------------------------------------------------------------+ - | Evaluation Rubric | Description | - +====================+=============================================================+ - | **1. Cohesion:** | Are the sentences connected appropriately to make the | - | | resulting synthesis cohesive? | - +--------------------+-------------------------------------------------------------+ - | **2. Conciseness:** | Is the answer short and clear, without redundant statements?| - +--------------------+-------------------------------------------------------------+ - | **3. Readability:** | Does the answer follow appropriate style and structure | - | | conventions for academic writing, particularly for | - | | readability? | - +--------------------+-------------------------------------------------------------+ ++--------------------+--------------------------------------------------------------+ +| Evaluation Rubric | Description | ++====================+==============================================================+ +| **1. Cohesion:** | Are the sentences connected appropriately to make the | +| | resulting synthesis cohesive? | ++--------------------+--------------------------------------------------------------+ +| **2. Conciseness:** | Is the answer short and clear, without redundant statements?| ++--------------------+--------------------------------------------------------------+ +| **3. Readability:** | Does the answer follow appropriate style and structure | +| | conventions for academic writing, particularly for | +| | readability? | ++--------------------+--------------------------------------------------------------+ **Logical & Structural Integrity** focuses on the reasoning and organization of information. -+--------------------+-------------------------------------------------------------+ ++--------------------+--------------------------------------------------------------+ | Evaluation Rubric | Description | -+====================+=============================================================+ -| **4. Coherence:** | Are the ideas connected soundly and logically? | -+--------------------+-------------------------------------------------------------+ ++====================+==============================================================+ +| **4. Coherence:** | Are the ideas connected soundly and logically? | ++--------------------+--------------------------------------------------------------+ | **5. Integration:** | Are the sources structurally and linguistically well- | -| | integrated, using appropriate markers of provenance/ | -| | quotation and logical connectors for each reference? | -+--------------------+-------------------------------------------------------------+ -| **6. Relevancy:** | Is the information in the answer relevant to the problem? | -+--------------------+-------------------------------------------------------------+ +| | integrated, using appropriate markers of provenance/ | +| | quotation and logical connectors for each reference? | ++--------------------+--------------------------------------------------------------+ +| **6. Relevancy:** | Is the information in the answer relevant to the problem? | ++--------------------+--------------------------------------------------------------+ **Content Accuracy & Informativeness** ensures that the response is both correct and useful. -+--------------------+-------------------------------------------------------------+ ++--------------------+--------------------------------------------------------------+ | Evaluation Rubric | Description | -+====================+=============================================================+ ++====================+==============================================================+ | **7. Correctness:** | Is the information in the answer a correct representation | -| | of the content of the provided abstracts? | -+--------------------+-------------------------------------------------------------+ -| **8. Completeness:**| Is the answer a comprehensive encapsulation of the relevant| -| | information in the provided abstracts? | -+--------------------+-------------------------------------------------------------+ -| **9. Informativeness:**| Is the answer a useful and informative reply to the | -| | problem? | -+--------------------+-------------------------------------------------------------+ +| | of the content of the provided abstracts? | ++--------------------+--------------------------------------------------------------+ +| **8. Completeness:**| Is the answer a comprehensive encapsulation of the relevant | +| | information in the provided abstracts? | ++--------------------+--------------------------------------------------------------+ +| **9. Informativeness:**| Is the answer a useful and informative reply to the | +| | problem? | ++--------------------+--------------------------------------------------------------+ **Usage Example** @@ -67,11 +65,11 @@ And to use rubrics: # Example inputs papers = { - "Paper 1": "Summary of paper 1 content.", - "Paper 2": "Summary of paper 2 content.", - "Paper 3": "Summary of paper 3 content.", - "Paper 4": "Summary of paper 4 content.", - "Paper 5": "Summary of paper 5 content." + "Paper 1 title": "abstract of paper 1 ...", + "Paper 2 title": "abstract of paper 2 ...", + "Paper 3 title": "abstract of paper 3 ...", + "Paper 4 title": "abstract of paper 4 ...", + "Paper 5 title": "abstract of paper 5 ..." } question = "What are the key findings on AI in these papers?" answer = "The synthesis answer summarizing the papers." From 7843e5dcdbe90713649cc61cd486d0beeedabed5 Mon Sep 17 00:00:00 2001 From: Hamed Babaei Giglou Date: Fri, 30 May 2025 17:41:58 +0200 Subject: [PATCH 12/21] :memo: fix rubrics tables --- docs/source/rubrics.rst | 75 ++++++++++++++++++++++------------------- 1 file changed, 40 insertions(+), 35 deletions(-) diff --git a/docs/source/rubrics.rst b/docs/source/rubrics.rst index 226f8b9..007254a 100644 --- a/docs/source/rubrics.rst +++ b/docs/source/rubrics.rst @@ -6,47 +6,52 @@ A total of nine evaluation rubrics were defined as part of the YESciEval test fr **Linguistic & Stylistic Quality** concerns grammar, clarity, and adherence to academic writing conventions. -+--------------------+--------------------------------------------------------------+ -| Evaluation Rubric | Description | -+====================+==============================================================+ -| **1. Cohesion:** | Are the sentences connected appropriately to make the | -| | resulting synthesis cohesive? | -+--------------------+--------------------------------------------------------------+ -| **2. Conciseness:** | Is the answer short and clear, without redundant statements?| -+--------------------+--------------------------------------------------------------+ -| **3. Readability:** | Does the answer follow appropriate style and structure | -| | conventions for academic writing, particularly for | -| | readability? | -+--------------------+--------------------------------------------------------------+ + +.. list-table:: + :header-rows: 1 + :widths: 20 80 + + * - Evaluation Rubric + - Description + * - **1. Cohesion:** + - Are the sentences connected appropriately to make the resulting synthesis cohesive? + * - **2. Conciseness:** + - Is the answer short and clear, without redundant statements? + * - **3. Readability:** + - Does the answer follow appropriate style and structure conventions for academic writing, particularly for readability? **Logical & Structural Integrity** focuses on the reasoning and organization of information. -+--------------------+--------------------------------------------------------------+ -| Evaluation Rubric | Description | -+====================+==============================================================+ -| **4. Coherence:** | Are the ideas connected soundly and logically? | -+--------------------+--------------------------------------------------------------+ -| **5. Integration:** | Are the sources structurally and linguistically well- | -| | integrated, using appropriate markers of provenance/ | -| | quotation and logical connectors for each reference? | -+--------------------+--------------------------------------------------------------+ -| **6. Relevancy:** | Is the information in the answer relevant to the problem? | -+--------------------+--------------------------------------------------------------+ +.. list-table:: + :header-rows: 1 + :widths: 20 80 + + * - Evaluation Rubric + - Description + * - **4. Coherence:** + - Are the ideas connected soundly and logically? + * - **5. Integration:** + - Are the sources structurally and linguistically well-integrated, using appropriate markers of provenance/quotation and logical connectors for each reference? + * - **6. Relevancy:** + - Is the information in the answer relevant to the problem? + **Content Accuracy & Informativeness** ensures that the response is both correct and useful. -+--------------------+--------------------------------------------------------------+ -| Evaluation Rubric | Description | -+====================+==============================================================+ -| **7. Correctness:** | Is the information in the answer a correct representation | -| | of the content of the provided abstracts? | -+--------------------+--------------------------------------------------------------+ -| **8. Completeness:**| Is the answer a comprehensive encapsulation of the relevant | -| | information in the provided abstracts? | -+--------------------+--------------------------------------------------------------+ -| **9. Informativeness:**| Is the answer a useful and informative reply to the | -| | problem? | -+--------------------+--------------------------------------------------------------+ + +.. list-table:: + :header-rows: 1 + :widths: 20 80 + + * - Evaluation Rubric + - Description + * - **7. Correctness:** + - Is the information in the answer a correct representation of the content of the provided abstracts? + * - **8. Completeness:** + - Is the answer a comprehensive encapsulation of the relevant information in the provided abstracts? + * - **9. Informativeness:** + - Is the answer a useful and informative reply to the problem? + **Usage Example** From 7e7938b27d14fab61f7eb91454fdf0cc68560e7f Mon Sep 17 00:00:00 2001 From: Hamed Babaei Giglou Date: Fri, 30 May 2025 17:48:11 +0200 Subject: [PATCH 13/21] :memo: fix rubrics docs --- docs/source/rubrics.rst | 20 ++++++++++++++------ 1 file changed, 14 insertions(+), 6 deletions(-) diff --git a/docs/source/rubrics.rst b/docs/source/rubrics.rst index 007254a..3e78f14 100644 --- a/docs/source/rubrics.rst +++ b/docs/source/rubrics.rst @@ -1,10 +1,13 @@ -Evaluation Rubrics +Rubrics =================== -A total of nine evaluation rubrics were defined as part of the YESciEval test framework: +A total of nine evaluation rubrics were defined as part of the YESciEval test framework. -**Linguistic & Stylistic Quality** concerns grammar, clarity, and adherence to academic writing conventions. +Linguistic & Stylistic Quality +--------------------------------- + +Following ``Linguistic & Stylistic Quality`` concerns grammar, clarity, and adherence to academic writing conventions. .. list-table:: @@ -20,7 +23,9 @@ A total of nine evaluation rubrics were defined as part of the YESciEval test fr * - **3. Readability:** - Does the answer follow appropriate style and structure conventions for academic writing, particularly for readability? -**Logical & Structural Integrity** focuses on the reasoning and organization of information. +Logical & Structural Integrity +--------------------------------- +Following ``Logical & Structural Integrity`` focuses on the reasoning and organization of information. .. list-table:: :header-rows: 1 @@ -35,8 +40,10 @@ A total of nine evaluation rubrics were defined as part of the YESciEval test fr * - **6. Relevancy:** - Is the information in the answer relevant to the problem? +Content Accuracy & Informativeness +--------------------------------- -**Content Accuracy & Informativeness** ensures that the response is both correct and useful. +Following ``Content Accuracy & Informativeness`` ensures that the response is both correct and useful. .. list-table:: @@ -54,7 +61,8 @@ A total of nine evaluation rubrics were defined as part of the YESciEval test fr -**Usage Example** +Usage Example +-------------------------- Here is a simple example of how to import rubrics in your code: From 511c094481822e410e5d5c4b155b35cec1b41760 Mon Sep 17 00:00:00 2001 From: Hamed Babaei Giglou Date: Fri, 30 May 2025 18:03:40 +0200 Subject: [PATCH 14/21] :memo: add readme --- README.md | 78 +++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 78 insertions(+) diff --git a/README.md b/README.md index 38bea81..68ec1ee 100644 --- a/README.md +++ b/README.md @@ -4,6 +4,7 @@
PyPI version + YESciEval HF License: MIT Documentation Status @@ -14,6 +15,83 @@ Large Language Models (LLMs) have become pivotal in powering scientific question YESciEval provides a comprehensive library for evaluating the quality of synthesized scientific answers using predefined rubrics and sophisticated LLM-based judgment models. This framework enables you to assess answers on key criteria by utilizing pretrained judges and parsing LLM outputs into structured JSON formats for detailed analysis. + +## Installation + +```bash +pip install yescieval +``` + + +## Judges + +Specialized Judges within YESciEval are: + +| Judge | Domain | Dataset Used | ๐Ÿค— Hugging Face | +|----------------|------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------| +| **Ask Judge** | Multidisciplinary (33 disciplines) | [ORKGSyn (Open Research Knowledge Graph)](https://data.uni-hannover.de/dataset/yescieval-corpus) | [SciKnowOrg/YESciEval-ASK-Llama-3.1-8B](https://huggingface.co/SciKnowOrg/YESciEval-ASK-Llama-3.1-8B) | +| **BioASQ Judge**| Biomedical | [BioASQ](https://data.uni-hannover.de/dataset/yescieval-corpus) | [SciKnowOrg/YESciEval-BioASQ-Llama-3.1-8B](https://huggingface.co/SciKnowOrg/YESciEval-BioASQ-Llama-3.1-8B) | + + +## Quickstart Example + +```python +from yescieval import Readability, AutoJudge + +# Sample papers +papers = { + "A Study on AI": "This paper discusses recent advances in artificial intelligence, including deep learning.", + "Machine Learning Basics": "An overview of supervised learning methods such as decision trees and SVMs.", + "Neural Networks Explained": "Explains backpropagation and gradient descent for training networks.", + "Ethics in AI": "Explores ethical concerns in automated decision-making systems.", + "Applications of AI in Healthcare": "Details how AI improves diagnostics and personalized medicine." +} + +# Question and synthesized answer +question = "How is AI used in modern healthcare systems?" +answer = ( + "AI is being used in healthcare for diagnosing diseases, predicting patient outcomes, " + "and assisting in treatment planning. It also supports personalized medicine and medical imaging." +) + +# Step 1: Create a rubric +rubric = Readability(papers=papers, question=question, answer=answer) + +# Step 2: Load a judge model (Ask Judge by default) +judge = AutoJudge() +judge.from_pretrained( + model_id="SciKnowOrg/YESciEval-ASK-Llama-3.1-8B", + token="your_huggingface_token", + device="cpu" +) + +# Step 3: Evaluate the answer +result = judge.evaluate(rubric=rubric) +print("Raw Evaluation Output:") +print(result) +``` + +| Class Name | Description | +| ----------------- | -------------------------------------------------------------------------------------------- | +| `AutoJudge` | Base class for loading and running evaluation models with PEFT adapters. | +| `AskAutoJudge` | Multidisciplinary judge tuned on the ORKGSyn dataset from the Open Research Knowledge Graph. | +| `BioASQAutoJudge` | Biomedical domain judge tuned on the BioASQ dataset from the BioASQ challenge. | + + +## Citation + +If you use YESciEval in your research, please cite: + +```bibtex +@misc{yescieval2025, + title={YESciEval: Scientific Text Evaluation with LLM Judges}, + author={Your Name or Organization}, + year={2025}, + howpublished={\url{https://github.com/YourRepo/yescieval}}, +} +``` + + ## ๐Ÿ“ƒ License This work is licensed under a [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT). From 0f7d14744b35711952fd3ea371936667f77bf50a Mon Sep 17 00:00:00 2001 From: Hamed Babaei Giglou Date: Fri, 30 May 2025 18:03:54 +0200 Subject: [PATCH 15/21] :memo: add huggingface link --- docs/source/index.rst | 1 + 1 file changed, 1 insertion(+) diff --git a/docs/source/index.rst b/docs/source/index.rst index b98ef9a..b2204df 100644 --- a/docs/source/index.rst +++ b/docs/source/index.rst @@ -10,6 +10,7 @@
PyPI version + YESciEval HF License: MIT Documentation Status From 460d0b20f7b2c971a8d862a39488a883a27bbbe8 Mon Sep 17 00:00:00 2001 From: Hamed Babaei Giglou Date: Fri, 30 May 2025 18:47:04 +0200 Subject: [PATCH 16/21] :sparkles: add custom judge --- yescieval/__init__.py | 2 +- yescieval/judge/__init__.py | 5 +++-- yescieval/judge/judges.py | 17 +++++++++++++++++ 3 files changed, 21 insertions(+), 3 deletions(-) diff --git a/yescieval/__init__.py b/yescieval/__init__.py index c101362..7ae173f 100644 --- a/yescieval/__init__.py +++ b/yescieval/__init__.py @@ -4,6 +4,6 @@ from .base import Rubric, Parser from .rubric import (Informativeness, Correctness, Completeness, Coherence, Relevancy, Integration, Cohesion, Readability, Conciseness) -from .judge import AutoJudge, AskAutoJudge, BioASQAutoJudge +from .judge import AutoJudge, AskAutoJudge, BioASQAutoJudge, CustomAutoJudge from .parser import GPTParser diff --git a/yescieval/judge/__init__.py b/yescieval/judge/__init__.py index c0a3437..a3fe787 100644 --- a/yescieval/judge/__init__.py +++ b/yescieval/judge/__init__.py @@ -1,7 +1,8 @@ -from .judges import AutoJudge, AskAutoJudge, BioASQAutoJudge +from .judges import AutoJudge, AskAutoJudge, BioASQAutoJudge, CustomAutoJudge __all__ = [ "AutoJudge", "AskAutoJudge", - "BioASQAutoJudge" + "BioASQAutoJudge", + "CustomAutoJudge" ] \ No newline at end of file diff --git a/yescieval/judge/judges.py b/yescieval/judge/judges.py index a7415f0..2c436f0 100644 --- a/yescieval/judge/judges.py +++ b/yescieval/judge/judges.py @@ -49,3 +49,20 @@ def from_pretrained(self, model_id: str = "SciKnowOrg/YESciEval-BioASQ-Llama-3.1 device: str = "auto", token: str = ""): return super()._from_pretrained(model_id=model_id, device=device, token=token) + + + +class CustomAutoJudge(AutoJudge): + + def _from_pretrained(self, model_id:str, device:str="auto", token:str =""): + tokenizer = AutoTokenizer.from_pretrained(model_id, + padding_side="left", + token=token) + tokenizer.pad_token = tokenizer.eos_token + model = AutoModelForCausalLM.from_pretrained( + model_id, + torch_dtype=torch.float32, + device_map=device, + token=token + ) + return model, tokenizer From 01e73cbd2bc4274491b74ed6fce74e28d7b5e807 Mon Sep 17 00:00:00 2001 From: Hamed Babaei Giglou Date: Fri, 30 May 2025 18:47:27 +0200 Subject: [PATCH 17/21] :memo: update readme --- README.md | 54 ++++++++++++++++++++++++++++++++++++------------------ 1 file changed, 36 insertions(+), 18 deletions(-) diff --git a/README.md b/README.md index 68ec1ee..5dcf9a2 100644 --- a/README.md +++ b/README.md @@ -16,14 +16,20 @@ Large Language Models (LLMs) have become pivotal in powering scientific question YESciEval provides a comprehensive library for evaluating the quality of synthesized scientific answers using predefined rubrics and sophisticated LLM-based judgment models. This framework enables you to assess answers on key criteria by utilizing pretrained judges and parsing LLM outputs into structured JSON formats for detailed analysis. -## Installation +## ๐Ÿงช Installation +You can install ``YESciEval`` from PyPI using pip: ```bash pip install yescieval ``` +Next, verify the installation: +```python +import yescieval +print(yescieval.__version__) +``` -## Judges +## ๐Ÿ”— Essential Resources Specialized Judges within YESciEval are: @@ -31,9 +37,13 @@ Specialized Judges within YESciEval are: |----------------|------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------| | **Ask Judge** | Multidisciplinary (33 disciplines) | [ORKGSyn (Open Research Knowledge Graph)](https://data.uni-hannover.de/dataset/yescieval-corpus) | [SciKnowOrg/YESciEval-ASK-Llama-3.1-8B](https://huggingface.co/SciKnowOrg/YESciEval-ASK-Llama-3.1-8B) | | **BioASQ Judge**| Biomedical | [BioASQ](https://data.uni-hannover.de/dataset/yescieval-corpus) | [SciKnowOrg/YESciEval-BioASQ-Llama-3.1-8B](https://huggingface.co/SciKnowOrg/YESciEval-BioASQ-Llama-3.1-8B) | + + +For further information dive into YESciEval's extensive documentation to explore its models and usage at **[๐Ÿ“š YESciEval Documentation](https://yescieval.readthedocs.io/)**. +## ๐Ÿš€ Quick Tour +Get started with YESciEval in just a few lines of code. This guide demonstrates how to initialize inputs, load judge, and initiate rubric for evaluation of the answer. -## Quickstart Example ```python from yescieval import Readability, AutoJudge @@ -62,7 +72,6 @@ judge = AutoJudge() judge.from_pretrained( model_id="SciKnowOrg/YESciEval-ASK-Llama-3.1-8B", token="your_huggingface_token", - device="cpu" ) # Step 3: Evaluate the answer @@ -71,29 +80,38 @@ print("Raw Evaluation Output:") print(result) ``` -| Class Name | Description | -| ----------------- | -------------------------------------------------------------------------------------------- | -| `AutoJudge` | Base class for loading and running evaluation models with PEFT adapters. | -| `AskAutoJudge` | Multidisciplinary judge tuned on the ORKGSyn dataset from the Open Research Knowledge Graph. | +Judges within YESciEval are defined as follows: + +| Class Name | Description | +| ---------------- |----------------------------------------------------------------------------------------------| +| `AutoJudge` | Base class for loading and running evaluation models with PEFT adapters. | +| `AskAutoJudge` | Multidisciplinary judge tuned on the ORKGSyn dataset from the Open Research Knowledge Graph. | | `BioASQAutoJudge` | Biomedical domain judge tuned on the BioASQ dataset from the BioASQ challenge. | +| `CustomAutoJudge`| Custom LLM that can be used as a judge within YESciEval rubrics | +A total of nine evaluation rubrics were defined as part of the YESciEval test framework and can be used via ``yescieval``. Following simple example shows how to import rubrics in your code: -## Citation +```python +from yescieval import Informativeness, Correctness, Completeness, + Coherence, Relevancy, Integration, + Cohesion, Readability, Conciseness +``` + +A complete list of rubrics are available at YESciEval [๐Ÿ“š Rubrics](https://yescieval.readthedocs.io/rubrics.html) page. + +## ๐Ÿ’ก Acknowledgements If you use YESciEval in your research, please cite: ```bibtex -@misc{yescieval2025, - title={YESciEval: Scientific Text Evaluation with LLM Judges}, - author={Your Name or Organization}, - year={2025}, - howpublished={\url{https://github.com/YourRepo/yescieval}}, -} +@article{d2025yescieval, + title={YESciEval: Robust LLM-as-a-Judge for Scientific Question Answering}, + author={D'Souza, Jennifer and Giglou, Hamed Babaei and M{\"u}nch, Quentin}, + journal={arXiv preprint arXiv:2505.14279}, + year={2025} + } ``` - -## ๐Ÿ“ƒ License - This work is licensed under a [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT). From 0f70b8223d3650623ee70899690ecedb6dc2fc89 Mon Sep 17 00:00:00 2001 From: Hamed Babaei Giglou Date: Fri, 30 May 2025 18:47:35 +0200 Subject: [PATCH 18/21] :memo: update judge docs --- docs/source/judges.rst | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/docs/source/judges.rst b/docs/source/judges.rst index 23b135f..0eb37af 100644 --- a/docs/source/judges.rst +++ b/docs/source/judges.rst @@ -73,14 +73,14 @@ The difference between **AskAutoJudge** and **BioASQAutoJudge** compared to **Au Custom Judge -------------------- -The `AutoJudge` class provides flexibility to load any compatible LLM model from Hugging Face by specifying the model ID. This allows you to use any pre-trained or fine-tuned model beyond the default specialized judges using YESciEval. +The `CustomAutoJudge` class provides flexibility to load any compatible LLM model from Hugging Face by specifying the model ID. This allows you to use any pre-trained or fine-tuned model beyond the default specialized judges using YESciEval. For example, you can load a model and evaluate a rubric like this: .. code-block:: python # Initialize and load a custom model by specifying its Hugging Face model ID - judge = AutoJudge() + judge = CustomAutoJudge() judge.from_pretrained(model_id="Qwen/Qwen3-8B", device="cpu", token="your_huggingface_token") # Evaluate the rubric using the loaded model From 889ae04999f4418f441555dfe778d5b4643e353e Mon Sep 17 00:00:00 2001 From: Hamed Babaei Giglou Date: Fri, 30 May 2025 18:49:35 +0200 Subject: [PATCH 19/21] :test_tube: add test CI/CD --- .github/workflows/test-package.yml | 38 ++++++++++++++++++++++++++++++ 1 file changed, 38 insertions(+) create mode 100644 .github/workflows/test-package.yml diff --git a/.github/workflows/test-package.yml b/.github/workflows/test-package.yml new file mode 100644 index 0000000..bebadf9 --- /dev/null +++ b/.github/workflows/test-package.yml @@ -0,0 +1,38 @@ +name: Test YESciEval Package + +on: + push: + branches: [main] + pull_request: + branches: [main] + +jobs: + build-and-test: + runs-on: ubuntu-latest + + strategy: + matrix: + python-version: [3.10.x, 3.11.x, 3.12.x, 3.13.x] + + steps: + - name: Checkout repository + uses: actions/checkout@v3 + + - name: Set up Python ${{ matrix.python-version }} + uses: actions/setup-python@v4 + with: + python-version: ${{ matrix.python-version }} + + - name: Install Poetry + run: | + curl -sSL https://install.python-poetry.org | python3 - + echo "$HOME/.local/bin" >> $GITHUB_PATH + + - name: Configure Poetry and install dependencies + run: | + poetry config virtualenvs.create false + poetry install --no-interaction --with dev + + - name: Run tests + run: | + poetry run pytest From 7d103b4615fd91b7066089efa05991fe68bb0453 Mon Sep 17 00:00:00 2001 From: Hamed Babaei Giglou Date: Fri, 30 May 2025 18:53:51 +0200 Subject: [PATCH 20/21] :test_tube: add pytest --- pyproject.toml | 2 +- requirements.txt | 3 ++- setup.py | 1 + 3 files changed, 4 insertions(+), 2 deletions(-) diff --git a/pyproject.toml b/pyproject.toml index 153826b..4085a76 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -22,13 +22,13 @@ pandas="*" numpy="*" pydantic="*" - [tool.poetry.dev-dependencies] ruff = "*" pre-commit = "*" setuptools = "*" wheel = "*" twine = "*" +pytest = "*" [build-system] requires = ["poetry-core>=1.0.0"] diff --git a/requirements.txt b/requirements.txt index f8f48ca..0478557 100644 --- a/requirements.txt +++ b/requirements.txt @@ -5,4 +5,5 @@ peft openai pandas numpy -pydantic \ No newline at end of file +pydantic +pytest \ No newline at end of file diff --git a/setup.py b/setup.py index cb9ae8f..fc9d254 100644 --- a/setup.py +++ b/setup.py @@ -22,6 +22,7 @@ "pandas", "numpy", "pydantic", + "pytest" ], classifiers=[ "Development Status :: 5 - Production/Stable", From 316d48eb4b37cad9382d84c6fdd0d4262fb7b508 Mon Sep 17 00:00:00 2001 From: Hamed Babaei Giglou Date: Fri, 30 May 2025 18:56:43 +0200 Subject: [PATCH 21/21] :bookmark: v0.2.0 --- CHANGELOG.md | 7 +++++++ pyproject.toml | 2 +- setup.py | 2 +- yescieval/__init__.py | 2 +- 4 files changed, 10 insertions(+), 3 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index 80e0ccf..25a33f4 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -1,4 +1,11 @@ ## Changelog +### v0.2.0 (May 30, 2025) +- Add custom judge module. +- Add documentation. +- Bug fixing. +- Add readme. +- Add test CI/CD + ### v0.1.0 (May 30, 2025) - First version of YESciEval \ No newline at end of file diff --git a/pyproject.toml b/pyproject.toml index 4085a76..f92d965 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,7 +1,7 @@ [tool.poetry] name = "YESciEval" -version = "0.1.0" +version = "0.2.0" description = "YESciEval: Robust LLM-as-a-Judge for Scientific Question Answering." authors = ["Hamed Babaei Giglou "] diff --git a/setup.py b/setup.py index fc9d254..e74ca6c 100644 --- a/setup.py +++ b/setup.py @@ -5,7 +5,7 @@ setup( name="YESciEval", - version="0.1.0", + version="0.2.0", author="Hamed Babaei Giglou", author_email="hamedbabaeigiglou@gmail.com", description="YESciEval: Robust LLM-as-a-Judge for Scientific Question Answering.", diff --git a/yescieval/__init__.py b/yescieval/__init__.py index 7ae173f..9e161b4 100644 --- a/yescieval/__init__.py +++ b/yescieval/__init__.py @@ -1,5 +1,5 @@ -__version__ = "0.1.0" +__version__ = "0.2.0" from .base import Rubric, Parser from .rubric import (Informativeness, Correctness, Completeness, Coherence, Relevancy,