-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlog2scaled.py
474 lines (361 loc) · 19.2 KB
/
log2scaled.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
from helpers import *
## Load all the pickled data
samples = pickle.load(open('heat_stroke/data.p','rb'))
samples = samples[['Mouse','Time','Condition','Sac','Injection','[D-dimer]','PLT', 'GranzymeB', 'AvgDayTc',
'AvgNightTc','CorrBW(g)','Dehydration(%)','Hem_WBC(10^9/L)','Hem_RBC(10^12/L)', 'Hem_HGB(g/dL)',
'Hem_HCT(%)', 'Hem_MCV(fL)', 'Hem_MCH(pg)', 'Hem_MCHC(g/dL)', 'Hem_RDWc(%)', 'Hem_PLT(10^9/L)',
'Hem_PCT(%)', 'Hem_MPV(fL)', 'Hem_PDWc(%)']]
activity = pickle.load(open('heat_stroke/activity.p','rb'))
temperature = pickle.load(open('heat_stroke/temperature.p','rb'))
hist = pickle.load(open('heat_stroke/hist.p','rb'))
rna_genes = pickle.load(open('heat_stroke/mapped/genes.p', 'rb'))
rna_genes = rna_genes[~rna_genes.index.duplicated(keep='first')]
rna_trans = pickle.load(open('heat_stroke/mapped/transcripts.p', 'rb'))
# add a groups column for easy identification
groups = samples['Condition'] + ' ' + samples['Sac']
groups_dict = dict(zip(list(set(groups)),range(8)))
samples['Group'] = [groups_dict[i] for i in groups]
print({'rgbm'[v]: k for k,v in groups_dict.items()})
# Getting rid of bad data
# 93, 94 had low read counts
# rest have oviAri3 contamination
idx = [i for i in rna_genes.columns if i not in [93,94,86,92,67,63]]
rna_genes = rna_genes[idx]
rna_trans = rna_trans[idx]
samples = samples.loc[idx]
temperature = temperature[[i for i in temperature.columns.values if i in samples['Mouse'].tolist()]]
hist = hist[[i for i in hist.columns.values if i in samples['Mouse'].tolist()]]
## Log2 scaling
# E = log2(TPM + 1)
rna_genes = np.log2(rna_genes + 1)
rna_trans = np.log2(rna_trans + 1)
## Look at all measurements for simple, by eye, judgement
fig, ax = plt.subplots(int(len(samples.columns[5:-1])/3)+1,3,figsize=(15,40))
for n,i in enumerate(samples.columns[5:-1]):
a = (n//3, n%3)
ax[a].scatter(range(len(samples.index)),samples[i])
ax[a].set_title('$'+i.replace(r'%',r'\%').replace(r'_',r'\_')+'$')
ax[a].set_xlabel('Samples')
if i == 'GranzymeB':
ax[a].axhline(3000,c='r')
elif i == 'AvgDayTc':
ax[a].axhline(36.55,c='r')
elif i == 'Dehydration(%)':
ax[a].axhline(5.5,c='r')
plt.show()
## Show only the 3 I judged were separable by eye
fig, ax = plt.subplots(3,1,figsize=(5,15), sharex=True)
for n,i in enumerate(['GranzymeB','AvgDayTc','Dehydration(%)']):
ax[n].scatter(range(len(samples.index)),samples[i])
ax[0].set_title('GranzymeB - 3000')
ax[1].set_title('AvgDayTc - 36.55')
ax[2].set_title('Dehydration(\%) - 5.5')
ax[0].axhline(3000,c='r')
ax[1].axhline(36.55,c='r')
ax[2].axhline(5.5,c='r')
ax[2].set_xlabel('Sample')
plt.show()
## Plot temperature data
fig, ax = plt.subplots(figsize=(15,7))
print({'rgbm'[v]:k for k,v in groups_dict.items()})
print('Dotted is Saline, solid is PolyI:C')
for i in temperature.columns.values:
if i in samples['Mouse'].tolist():
l = samples.iloc[samples['Mouse'].tolist().index(i)]
ax.plot(temperature.index/60, temperature[i], c='rbgm'[l['Group']], linestyle=':' if l['Injection'] == 'Saline' else '-')
ax.set_xlabel('Time (hrs)')
ax.set_ylabel(r'Core Temperature $T_c$ (\textdegree C)')
ax.set_title('Body Temperature')
plt.show()
## Plot activity data
fig, ax = plt.subplots(figsize=(15,7))
print({'rgbm'[v]:k for k,v in groups_dict.items()})
print('Dotted is PolyI:C, solid is Saline')
for i in activity.columns.values:
if i in samples['Mouse'].tolist():
l = samples.iloc[samples['Mouse'].tolist().index(i)]
ax.plot(activity.index/60, activity[i], c='rgbm'[l['Group']], linestyle='-' if l['Injection'] == 'Saline' else ':')
ax.set_xlabel('Time (hrs)')
ax.set_ylabel('Activity')
ax.set_title('Activity')
plt.show()
## Clustermap histology data
print({'rgbm'[v]:k for k,v in groups_dict.items()})
h = sns.clustermap(
pd.DataFrame(np.array(hist),index=hist.index,
columns=[samples.iloc[samples['Mouse'].tolist().index(i)]['Injection'] for i in hist.columns]),
row_cluster=False,
col_colors=['rbgm'[samples.iloc[samples['Mouse'].tolist().index(i)]['Group']] for i in hist.columns])
plt.show()
## PCA for Transcripts
from sklearn.decomposition import PCA
gene_trans = PCA()
pc_trans = gene_trans.fit_transform(rna_trans.T)
fig, ax = plt.subplots(2,2,figsize=(15,15))
fig.suptitle('Log2-scaled Transcripts')
ax[0,0].scatter(pc_trans[:,0], pc_trans[:,1], c=['rgbm'[i] for i in samples['Group']])
ax[0,0].set_title(str({'rgbm'[v]: k for k,v in groups_dict.items()}))
ax[0,1].scatter(pc_trans[:,0], pc_trans[:,1], c=['b' if samples['Sac'][i] == '1 Day' else 'r' for i in samples.index])
ax[0,1].set_title('Sac - \'r\': TcMax, \'b\': Day 1')
ax[1,0].scatter(pc_trans[:,0], pc_trans[:,1], c=['b' if samples['Condition'][i] == 'Control' else 'r' for i in samples.index])
ax[1,0].set_title('Condition - \'r\': Heat, \'b\': Control')
ax[1,1].scatter(pc_trans[:,0], pc_trans[:,1], c=['b' if samples['Injection'][i] == 'Saline' else 'r' for i in samples.index])
ax[1,1].set_title('Injection - \'r\': Poly I:C, \'b\': Saline')
for i in [(0,0),(0,1),(1,0),(1,1)]:
ax[i].set_xlabel('Principal Component 1 - '+str(np.round(100*gene_trans.explained_variance_ratio_[0],1))+r'\%')
ax[i].set_ylabel('Principal Component 2 - '+str(np.round(100*gene_trans.explained_variance_ratio_[1],1))+r'\%')
for i in range(len(pc_trans[:,0])):
ax[0,0].annotate(samples.index.values[i],xy=(pc_trans[i,0]+1,pc_trans[i,1]+1))
ax[0,1].annotate(samples.index.values[i],xy=(pc_trans[i,0]+1,pc_trans[i,1]+1))
ax[1,0].annotate(samples.index.values[i],xy=(pc_trans[i,0]+1,pc_trans[i,1]+1))
ax[1,1].annotate(samples.index.values[i],xy=(pc_trans[i,0]+1,pc_trans[i,1]+1))
fig, ax = plt.subplots()
ax.bar(range(42),gene_trans.explained_variance_ratio_.tolist())
# ax.plot(range(42),[sum(gene_trans.explained_variance_ratio_[:i+1]) for i in range(42)],c='r')
ax.set_title('Log2-scaled Transcripts')
ax.set_xlabel('Principal Component')
ax.set_ylabel(r'Variance Explained (\%)')
plt.show()
## PCA for Genes
from sklearn.decomposition import PCA
gene_pca = PCA()
pc_genes = gene_pca.fit_transform(rna_genes.T)
fig, ax = plt.subplots(2,2,figsize=(15,15))
fig.suptitle('Log2-scaled Genes')
ax[0,0].scatter(pc_genes[:,0], pc_genes[:,1], c=['rgbm'[i] for i in samples['Group']])
ax[0,0].set_title(str({'rgbm'[v]: k for k,v in groups_dict.items()}))
ax[0,1].scatter(pc_genes[:,0], pc_genes[:,1], c=['b' if samples['Sac'][i] == '1 Day' else 'r' for i in samples.index])
ax[0,1].set_title('Sac - \'r\': TcMax, \'b\': Day 1')
ax[1,0].scatter(pc_genes[:,0], pc_genes[:,1], c=['b' if samples['Condition'][i] == 'Control' else 'r' for i in samples.index])
ax[1,0].set_title('Condition - \'r\': Heat, \'b\': Control')
ax[1,1].scatter(pc_genes[:,0], pc_genes[:,1], c=['b' if samples['Injection'][i] == 'Saline' else 'r' for i in samples.index])
ax[1,1].set_title('Injection - \'r\': Poly I:C, \'b\': Saline')
for i in [(0,0),(0,1),(1,0),(1,1)]:
ax[i].set_xlabel('Principal Component 1 - '+str(np.round(100*gene_pca.explained_variance_ratio_[0],1))+r'\%')
ax[i].set_ylabel('Principal Component 2 - '+str(np.round(100*gene_pca.explained_variance_ratio_[1],1))+r'\%')
for i in range(len(pc_genes[:,0])):
ax[0,0].annotate(samples.index.values[i],xy=(pc_genes[i,0]+1,pc_genes[i,1]+1))
ax[0,1].annotate(samples.index.values[i],xy=(pc_genes[i,0]+1,pc_genes[i,1]+1))
ax[1,0].annotate(samples.index.values[i],xy=(pc_genes[i,0]+1,pc_genes[i,1]+1))
ax[1,1].annotate(samples.index.values[i],xy=(pc_genes[i,0]+1,pc_genes[i,1]+1))
fig, ax = plt.subplots()
ax.bar(range(42),gene_pca.explained_variance_ratio_.tolist())
# ax.plot(range(42),[sum(gene_pca.explained_variance_ratio_[:i+1]) for i in range(42)],c='r')
ax.set_title('Log2-scaled Genes')
ax.set_xlabel('Principal Component')
ax.set_ylabel(r'Variance Explained (\%)')
plt.show()
## Statistics for what is separated by each PC from genes
num=3
fig, ax = plt.subplots(figsize=(12,1.25*num))
for i in range(num):
print('PC'+str(i+1)+':')
ax.scatter(pc_genes[:,i],[i+1]*pc_genes.shape[0],
c=['b' if samples['Condition'][i] == 'Control' else 'r' for i in samples.index])
p = sp.stats.fisher_exact(
[[sum([pc_genes[n,i] > 0 for n,j in enumerate(samples.index) if samples['Condition'][j] == 'Control']),
sum([pc_genes[n,i] < 0 for n,j in enumerate(samples.index) if samples['Condition'][j] == 'Control'])],
[sum([pc_genes[n,i] > 0 for n,j in enumerate(samples.index) if samples['Condition'][j] == 'Heat']),
sum([pc_genes[n,i] < 0 for n,j in enumerate(samples.index) if samples['Condition'][j] == 'Heat'])]]
)[1]
print('Condition p =',p,bold = p<0.05/4)
ax.scatter(pc_genes[:,i],[i+1.15]*pc_genes.shape[0],
c=['k' if samples['Sac'][i] == '1 Day' else 'y' for i in samples.index])
p = sp.stats.fisher_exact(
[[sum([pc_genes[n,i] > 0 for n,j in enumerate(samples.index) if samples['Sac'][j] == '1 Day']),
sum([pc_genes[n,i] < 0 for n,j in enumerate(samples.index) if samples['Sac'][j] == '1 Day'])],
[sum([pc_genes[n,i] > 0 for n,j in enumerate(samples.index) if samples['Sac'][j] == 'TcMax']),
sum([pc_genes[n,i] < 0 for n,j in enumerate(samples.index) if samples['Sac'][j] == 'TcMax'])]]
)[1]
print('Sac p =',p,bold = p < 0.05/4)
ax.scatter(pc_genes[:,i],[i+1.3]*pc_genes.shape[0],
c=['c' if samples['Injection'][i] == 'Saline' else 'm' for i in samples.index])
p = sp.stats.fisher_exact(
[[sum([pc_genes[n,i] > 0 for n,j in enumerate(samples.index) if samples['Injection'][j] == 'Saline']),
sum([pc_genes[n,i] < 0 for n,j in enumerate(samples.index) if samples['Injection'][j] == 'Saline'])],
[sum([pc_genes[n,i] > 0 for n,j in enumerate(samples.index) if samples['Injection'][j] != 'Saline']),
sum([pc_genes[n,i] < 0 for n,j in enumerate(samples.index) if samples['Injection'][j] != 'Saline'])]]
)[1]
print('Injection p =',p,bold = p<0.05/4)
p = sp.stats.fisher_exact(
[[sum([pc_genes[n,i] > 0 for n,j in enumerate(samples.index) if samples['Group'][j] == 3]),
sum(pc_genes[n,i] < 0 for n,j in enumerate(samples.index) if samples['Group'][j] == 3)],
[sum([pc_genes[n,i] > 0 for n,j in enumerate(samples.index) if samples['Group'][j] != 3]),
sum(pc_genes[n,i] < 0 for n,j in enumerate(samples.index) if samples['Group'][j] != 3)]
]
)[1]
print('Heat TcMax p =',p,'\n',bold=p<0.05/4)
ax.set_title('Log2-scaled: Red vs Blue = Heated vs Control;\nYellow vs Black = TcMax vs 1 Day; Magenta vs Cyan = polyI:C vs Saline')
ax.set_xlabel('Value')
ax.axvline(0,c='k',linestyle='--')
fig.gca().invert_yaxis()
ax.set_ylabel('Principal Component')
ax.set_yticks(list(range(1,num+1)))
plt.show()
## Clustermapping of Genes
g = sns.clustermap(rna_genes.T, col_cluster=False,
row_colors=['rgbm'[i] for i in samples['Group']])
g.fig.suptitle('Log2-scaled Genes')
plt.show()
## Kmeans clustering of Genes
# kmeans clustering scaled data
from sklearn.cluster import KMeans
silo = []
for i in range(2,21):
kmeans = KMeans(n_clusters=i,max_iter=1000)
lbls = kmeans.fit_predict(rna_genes.T)
print(i)
silo += [sk.metrics.silhouette_score(rna_genes.T,lbls)]
if i == 2 or i == 3:
fig, ax = plt.subplots()
ax.scatter(pc_genes[:,0], pc_genes[:,1], c=['rgb'[i] for i in lbls])
ax.set_xlabel('Principal Component 1 - '+str(np.round(100*gene_pca.explained_variance_ratio_[0],1))+r'\%')
ax.set_ylabel('Principal Component 2 - '+str(np.round(100*gene_pca.explained_variance_ratio_[1],1))+r'\%')
ax.set_title('Log2-scaled Genes - K-means clustering')
fig.savefig('heat_stroke/log2genes_kmeans_pca'+str(i)+'.png')
if i == 3:
g = sns.clustermap(rna_genes.T,col_cluster=False,row_colors=['rgb'[i] for i in lbls])
g.fig.suptitle('Log2-scaled Genes')
g.savefig('heat_stroke/log2genes_kmeans_clustermap.png')
fig, ax = plt.subplots()
ax.plot(range(2,21),silo)
ax.set_xticks(list(range(2,21)))
ax.set_xlabel('k')
ax.set_ylabel('Silhouette Score')
ax.set_title('Log2-scaled Genes')
plt.show()
### LassoCV for Condition
## plotting alphas
from sklearn.linear_model import LassoCV
genes_tcmax = rna_genes[[i for i in samples.index if samples['Sac'][i] == 'TcMax']]
genes_oneday = rna_genes[[i for i in samples.index if samples['Sac'][i] == '1 Day']]
# vary these pairwise to get all possible combinations
base = genes_oneday
test = genes_tcmax
tcmax_condition = LassoCV(n_jobs=-1,cv=3)
tcmax_condition.fit(base.T,[1 if samples['Condition'][i] == 'Heat' else 0 for i in samples.index if i in base.columns])
print('Condition:',uline=True)
for i in range(10):
plt.plot(tcmax_condition.alphas_,tcmax_condition.mse_path_[:,i])
plt.xlim([max(tcmax_condition.alphas_), min(tcmax_condition.alphas_)])
plt.axvline(tcmax_condition.alpha_,c='r')
plt.xlabel('Alpha')
plt.ylabel('CVE')
plt.title('TcMax Condition')
plt.show()
## Check Heat vs Control
p = np.array(list(zip(['Heat' if i > np.mean(tcmax_condition.predict(test.T)) else 'Control' for i in tcmax_condition.predict(test.T)], [samples['Condition'][i] for i in samples.index if i in test.columns])))
print(p)
p = sum([i[0] == i[1] for i in p])
## Check empirical p-value for Heat vs Control
labels = [1 if samples['Condition'][i] == 'Heat' else 0 for i in samples.index if i in base.columns]
dist = []
for i in range(50):
np.random.shuffle(labels) # in place
guess = LassoCV(n_jobs=-1,cv=10).fit(base.T,labels).predict(test.T)
guess = [1 if i >= np.mean(guess) else 0 for i in guess]
dist += [sum(labels == np.array(guess))]
if i%10 == 9:
print(str(i+1)+' done.')
fig,ax = plt.subplots()
ax.hist(dist)
plt.axvline(p,c='r')
for n,i in enumerate(sorted(dist, reverse=True)):
if i <= p:
break
p = n/len(dist)
print('p =',p)
## Check PolyIC vs Saline, with alphas graph
tcmax_injection = LassoCV(n_jobs=-1,cv=2)
tcmax_injection.fit(base.T, [1 if samples['Injection'][i] != 'Saline' else 0 for i in samples.index if i in base.columns])
print('Injection:',uline=True)
for i in range(2):
plt.plot(tcmax_injection.alphas_,tcmax_injection.mse_path_[:,i])
plt.xlim([max(tcmax_injection.alphas_), min(tcmax_injection.alphas_)])
plt.axvline(tcmax_injection.alpha_,c='r')
plt.xlabel('Alpha')
plt.ylabel('CVE')
plt.title('TcMax Injection')
print(np.array(list(zip(['100 ug Poly I:C' if i > np.median(tcmax_injection.predict(test.T)) else 'Saline' for i in tcmax_injection.predict(test.T)], [samples['Injection'][i] for i in samples.index if i in test.columns]))))
plt.show()
## DESeq overview
de_sac = pd.read_csv('heat_stroke/DEsac.csv',index_col=0).fillna(
{'baseMean':0,'log2FoldChange':0,'lfcSE':np.nan,'stat':np.inf,
'pvalue':1,'padj':1}
)
de_injection = pd.read_csv('heat_stroke/DEinjection.csv',index_col=0).fillna(
{'baseMean':0,'log2FoldChange':0,'lfcSE':np.nan,'stat':np.inf,
'pvalue':1,'padj':1}
)
de_condition = pd.read_csv('heat_stroke/DEcondition.csv',index_col=0).fillna(
{'baseMean':0,'log2FoldChange':0,'lfcSE':np.nan,'stat':np.inf,
'pvalue':1,'padj':1}
)
sac_genes = de_sac.index[de_sac['padj'] < 0.05]
injection_genes = de_injection.index[de_injection['padj'] < 0.05]
condition_genes = de_condition.index[de_condition['padj'] < 0.05]
print('Sac:',sum(de_sac['padj'] < 0.05), str(np.round(100*sum(de_sac['padj'] < 0.05) / len(de_sac.index),4)) + '%')
print('Injection:',sum(de_injection['padj'] < 0.05), str(np.round(100*sum(de_injection['padj'] < 0.05) / len(de_injection.index),4)) + '%')
print('Condition:',sum(de_condition['padj'] < 0.05), str(np.round(100*sum(de_condition['padj'] < 0.05) / len(de_condition.index),4)) + '%')
# Venn diagram
from matplotlib_venn import venn3
abc = sum([i in sac_genes and i in condition_genes for i in injection_genes])
ab, ac = sum([i in sac_genes for i in injection_genes])-abc,sum([i in condition_genes for i in injection_genes])-abc
bc = sum([i in sac_genes for i in condition_genes])-abc
fig = plt.figure(figsize=(10,10))
venn3(subsets=(len(injection_genes)-ab-ac-abc, len(sac_genes)-ab-bc-abc, ab, len(condition_genes)-ac-bc-abc, ac, bc, abc),
set_labels=('Injection','Sac','Condition'))
plt.show()
## DESeq clustermapping
rna_sac = rna_genes.loc[sac_genes]
rna_inj = rna_genes.loc[injection_genes]
rna_con = rna_genes.loc[condition_genes]
print({'rgbm'[v]:k for k,v in groups_dict.items()})
for n,i in enumerate([rna_sac, rna_inj, rna_con]):
h = sns.clustermap(pd.DataFrame(np.array(i),
columns=[samples[['Sac', 'Injection', 'Condition'][n]][j] for j in i.columns.values],
index=i.index
),
col_colors=['rgbm'[samples['Group'][j]] for j in i.columns.values]
)
h.fig.suptitle(['Sac', 'Injection', 'Condition'][n])
plt.show()
## Setting up for Lasso
# use second line to make 3-way instead of 4-way
genes_tcmax = rna_genes[[i for i in samples.index if samples['Sac'][i] == 'TcMax']]
# genes_tcmax = genes_tcmax[genes_tcmax.columns[[samples.loc[i]['Injection'] == 'Saline' or samples.loc[i]['Condition'] == 'Heat' for i in genes_tcmax.columns]]]
genes_tcmax.loc['Group'] = [['Heat PolyI:C', 'Heat Saline', 'Control Saline', 'Control PolyI:C'].index(samples.loc[i]['Condition'] + ' ' + ('PolyI:C' if samples.loc[i]['Injection'] != 'Saline' else 'Saline')) for i in genes_tcmax.columns]
genes_oneday = rna_genes[[i for i in samples.index if samples['Sac'][i] == '1 Day']]
# genes_oneday = genes_oneday[genes_oneday.columns[[samples.loc[i]['Injection'] == 'Saline' or samples.loc[i]['Condition'] == 'Heat' for i in genes_oneday.columns]]]
genes_oneday.loc['Group'] = [['Heat PolyI:C', 'Heat Saline', 'Control Saline', 'Control PolyI:C'].index(samples.loc[i]['Condition'] + ' ' + ('PolyI:C' if samples.loc[i]['Injection'] != 'Saline' else 'Saline')) for i in genes_oneday.columns]
## run 3/4-way discriminating LassoCV
from sklearn.linear_model import LassoCV
tcmax_3way = LassoCV(n_jobs=-1,cv=5)
tcmax_x = genes_tcmax.loc[genes_tcmax.index[[not i is 'Group' for i in genes_tcmax.index]]]
tcmax_3way.fit(tcmax_x.T, genes_tcmax.loc['Group'])
print('TcMax:',uline=True)
for i in list(zip(np.round(tcmax_3way.predict(tcmax_x.T)), genes_tcmax.loc['Group'])):
print(int(i[0]), int(i[1]), i[0] == i[1],ignore=True)
print()
day1_3way = LassoCV(n_jobs=-1,cv=3)
oneday_x = genes_oneday.loc[genes_oneday.index[[not i is 'Group' for i in genes_oneday.index]]]
day1_3way.fit(oneday_x.T, genes_oneday.loc['Group'])
print('One Day:',uline=True)
for i in list(zip(np.floor(tcmax_3way.predict(oneday_x.T)), genes_oneday.loc['Group'])):
print(int(i[0]), int(i[1]), i[0] == i[1],ignore=True)
## Make empirical p-value for LogReg and plot
labels = np.array(genes_oneday.loc['Group'].tolist())
dist = []
for i in range(50):
np.random.shuffle(labels) # in place
lg = LogisticRegressionCV(n_jobs=-1,cv=3).fit(oneday_x.T, genes_oneday.loc['Group'])
guess = lg.predict(oneday_x.T)
dist += [sum(labels == guess)]
fig, ax = plt.subplots()
ax.hist(dist)
ax.axvline(len(labels),c='r') # H_a gets them all perfectly, so value = len(labels)
for n,i in enumerate(sorted(dist, reverse=True)):
if i <= len(labels):
break
print('p =',str(n/len(dist)))
plt.show()