-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathehrenfest4.R
65 lines (58 loc) · 2.37 KB
/
ehrenfest4.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
library(markovchain)
k <- 7
stateNames <- as.character( 0:k )
## Be careful here, because states numbered from 0,
## but R indexes from 1
transMatrix <- matrix(0, k+1,k+1)
transMatrix[1,1] <- 1
transMatrix[k+1, k+1] <- 1
for (row in 2:k) { #row 2 is state 1, row 7 is state 6
transMatrix[row, row-1] <- (row-1)*(k-(row-1))/k^2
transMatrix[row,row] <- (row-1)^2/k^2 + (k-(row-1))^2/k^2
transMatrix[row,row+1] <- (row-1)*(k-(row-1))/k^2
}
startState <- "3"
ehrenfest4 <- new("markovchain", transitionMatrix=transMatrix,
states=stateNames, name="Ehrenfest4")
print(ehrenfest4)
print( summary(ehrenfest4) )
pathLength <- 10
path <- rmarkovchain(n=pathLength,
object = ehrenfest4, t0 = startState)
cat("A sample starting from ", startState, ":", path, "\n")
path <- rmarkovchain(n=pathLength,
object = ehrenfest4, t0 = startState)
cat("Another sample starting from ", startState, ":", path, "\n")
if ( length( transientStates(ehrenfest4) ) == 0 ) {
largeN <- 1000; startStable <- 100
path <- rmarkovchain(n=largeN,
object = ehrenfest4, t0 = startState)
stablePattern <- path[startStable:largeN]
empiricalStable <- rep(0, k+1)
for (i in seq_along(stateNames)) {
empiricalStable[i] <- mean( stablePattern == stateNames[i] )
}
theorStable <- steadyStates(ehrenfest4)
cat("Empirical long-time distribution: ", empiricalStable, "\n")
cat("Theoretical stable distribution: ", theorStable, "\n")
}
## NAME: ehrenfest4.R
## USAGE: within R, at interactive prompt
## source("ehrenfest4.R")
## REQUIRED ARGUMENTS: none
## OPTIONS: none
## DESCRIPTION: An R script using the markovchain library to
## simulate an alternative Ehrenfest urn model.
## DIAGNOSTICS: some diagnostics implicit from markovchain
## CONFIGURATION AND ENVIRONMENT: library(markovchain)
## DEPENDENCIES: library(markovchain)
## INCOMPATIBILITIES: none known
## PROVENANCE: created Steve Dunbar, based on documentation in
## "The markovchain Package: A Package for Easily Handling Discrete
## Markov Chains in R" by G. Spedicato, et al.
## BUGS AND LIMITATIONS: none known
## FEATURES AND POTENTIAL IMPROVEMENTS:
## 1. Make a random start state.
## AUTHOR: Steve Dunbar
## VERSION: Version 1.0 as of Tue Jan 22 07:43:53 CST 2019
## KEYWORDS: Markov chain, stable distribution