forked from MJafarMashhadi/hybrid-net
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransfer_learning.py
215 lines (169 loc) · 7.66 KB
/
transfer_learning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
from typing import Dict, Any, Tuple, Union, Callable, Iterable
import itertools
import pandas as pd
import tensorflow as tf
import metrics
import model_helper
metrics_reporting = [
metrics.Precision(name='prec_5', tolerance=5),
metrics.Recall(name='recall_5', tolerance=5),
metrics.Precision(name='prec_15', tolerance=15),
metrics.Recall(name='recall_15', tolerance=15),
metrics.Precision(name='prec_25', tolerance=25),
metrics.Recall(name='recall_25', tolerance=25),
metrics.ClassPrecision(),
metrics.ClassRecall(),
]
def evaluate_model(_model, dataset, metrics_=None): # TODO: probably belongs to somewhere else
if not metrics_:
metrics_ = metrics_reporting
batch_results_mean = pd.Series(dtype='float16')
n = 0
for bi, data in dataset.enumerate():
ins, ground_truth = data
prediction = _model.predict_on_batch(ins)
ground_truth = tf.squeeze(ground_truth)
metric_names = list()
metric_results = list()
for metric in metrics_:
metric.reset_states()
metric.update_state(ground_truth, prediction)
metric_names.append(metric.name)
metric_results.append(metric.result())
batch_results = pd.Series(metric_results, index=metric_names, dtype='float16')
batch_results_mean = batch_results_mean.add(batch_results, fill_value=0.)
n += 1
batch_results_mean /= n
return batch_results_mean
def trainable_count(model):
weights = model.trainable_weights
weight_ids = set()
total = 0
for w in weights:
if id(w) not in weight_ids:
weight_ids.add(id(w))
total += int(tf.keras.backend.count_params(w))
return total
def freeze_last_n_layers(model: tf.keras.Model, n: int):
print('unfreezing', n, 'layers')
N = len(model.layers)
trainable = [False] * (N - n) + [True] * n
for layer, t in zip(model.layers, trainable):
layer: tf.keras.layers.Layer
layer.trainable = t
for layer, t in zip(model.layers, trainable):
assert layer.trainable == t
def prepare_transfer_model(original_model: tf.keras.Model, original_model_params: Dict[str, Any], layers_to_drop:int =0, **new_params) -> tf.keras.Model:
if layers_to_drop == 0:
return original_model
new_model_params = original_model_params.copy()
new_model_params.update(new_params)
new_model = model_helper.make_model(**new_model_params)
if layers_to_drop < 0:
return new_model
for old_layer, new_layer in zip(original_model.layers[:-layers_to_drop], new_model.layers):
new_layer: tf.keras.layers.Layer
old_layer: tf.keras.layers.Layer
new_layer.set_weights(old_layer.get_weights())
freeze_last_n_layers(new_model, layers_to_drop)
return new_model
def load_model(file_name: str, validation_dataset: tf.data.Dataset, ):
from model_helper import MaskStealingLayer
from metrics import soft_dice_loss, F1, Precision, Recall
@tf.function
def f1_score(y_true, y_pred):
return 0
new_model = tf.keras.models.load_model(file_name, custom_objects={
'MaskStealingLayer': MaskStealingLayer,
'soft_dice_loss': soft_dice_loss,
'f1_score': f1_score, # F1(Precision(), Recall()),
})
return (new_model,
evaluate_model(new_model, validation_dataset),)
def train_and_test_transfer_model(X: Union[int, float], optimizer: Union[str, tf.keras.optimizers.Optimizer],
training_dataset: tf.data.Dataset, validation_dataset: tf.data.Dataset,
loss: Union[str, tf.keras.losses.Loss, Callable],
metrics_: Iterable[Union[str, tf.keras.metrics.Metric]],
plot: bool=False, summary: bool=False, epochs=100, unfreeze_schedule=None,
**model_args) -> Tuple[tf.keras.Model, pd.Series, pd.DataFrame]:
if isinstance(X, int):
#ke hichi
pass
elif isinstance(X, float):
raise NotImplemented("Not yet implemented fractions!")
else:
raise ValueError(f"Expected int or float, got {type(X)}")
new_model = prepare_transfer_model(**model_args)
new_model.compile(loss=loss, optimizer=optimizer, metrics=metrics_)
if plot:
tf.keras.utils.plot_model(new_model, show_shapes=True)
if summary:
new_model.summary()
training_subset = training_dataset.unbatch().take(X).batch(25)
_history = new_model.fit(training_subset,
epochs=epochs,
validation_data=validation_dataset,
callbacks=[
UnfreezeLayersSchedulerCallback(unfreeze_schedule),
# tensorboard_callback,
tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=5),
])
return (new_model,
evaluate_model(new_model, validation_dataset),
pd.DataFrame(_history.history))
class UnfreezeLayersSchedulerCallback(tf.keras.callbacks.Callback):
def __init__(self, schedule, *args, **kwargs):
super(UnfreezeLayersSchedulerCallback, self).__init__(*args, **kwargs)
self.schedule = schedule
def on_epoch_begin(self, epoch, logs=None):
if not self.schedule:
return
self.model: tf.keras.Model
model = self.model
n = self.schedule.get(epoch, None)
if n is None:
return
params_before = trainable_count(model)
freeze_last_n_layers(model, n)
model.compile(loss=model.loss, optimizer=model.optimizer, metrics=model.metrics)
# assert params_before != trainable_count(model)
def alternate_training_loop(
optimizer: Union[str, tf.keras.optimizers.Optimizer],
training_dataset: tf.data.Dataset, validation_dataset: tf.data.Dataset,
new_model: tf.keras.Model,
loss: Union[str, tf.keras.losses.Loss, Callable],
metrics_: Iterable[Union[str, tf.keras.metrics.Metric]],
epochs=100,
transfer_learning_plan=Dict[int, Tuple[float, int]]
):
history = tf.keras.callbacks.History()
history.set_model(new_model)
history.on_train_begin()
for epoch in range(epochs):
history.on_epoch_begin(epoch)
if epoch in transfer_learning_plan:
new_lr, new_layers = transfer_learning_plan[epoch]
optimizer = new_model.optimizer
if new_lr is not None:
# Change learning rate
optimizer = tf.keras.optimizers.Adam(learning_rate=new_lr)
if new_layers is not None:
freeze_last_n_layers(new_model, new_layers)
new_model.compile(loss=loss, optimizer=optimizer, metrics=metrics_)
for bi, (inputs, targets) in enumerate(training_dataset):
history.on_batch_begin(bi)
# Open a GradientTape.
with tf.GradientTape() as tape:
# Forward pass.
predictions = new_model(inputs)
# Compute the loss value for this batch.
loss_value = new_model.loss(targets, predictions)
# Get gradients of loss wrt the *trainable* weights.
gradients = tape.gradient(loss_value, new_model.trainable_weights)
# Update the weights of the model.
optimizer.apply_gradients(zip(gradients, new_model.trainable_weights))
history.on_batch_end(bi)
evaluation_results = evaluate_model(new_model, validation_dataset, new_model.metrics)
print(f'epoch = {epoch}, evaluation = {evaluation_results}')
history.on_epoch_end(epoch, evaluation_results.to_dict())
return history