-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmap-raster.mjs
446 lines (365 loc) · 15.8 KB
/
map-raster.mjs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
// ==================================================================
// RASTER MAP DRAWING ROUTINES
// ------------------------------------------------------------------
import { fQS, MAX_COLOR_VALUE, TWO_PI, DEGS_IN_CIRCLE, deg2Rad, SVG_NS } from './globals.mjs';
import { Point, LatLon } from './data-types.mjs';
import { MAP_VIEW_ORIGIN, MAP_WIDTH, MAP_HEIGHT, MAP_TILT,
MAP_AREAS, project } from './concialdi.mjs';
import { initVectorMap, drawGraticule, drawSpecialCircles } from "./map-vector.mjs";
import { getSunLatLon } from './solar-position.mjs';
// ------------------------------------------------------------------
// Channels in Canvas data: RGBA
const NUM_CANVAS_DATA_CHANNELS = 4;
// Filenames of the source raster maps in plate carrée projection.
const NE_I_FILENAME = 'ne-i.jpg';
const NE_HYPSO_FILENAME = 'ne-hypso.jpg';
const NASA_BLUE_FILENAME = 'nasa-blue-marble-ng.jpg';
const NASA_BLACK_FILENAME = 'nasa-black-marble.jpg';
// Source raster maps' pixels per degree measure.
// Note: All maps are expected to have 3600×1800 dimensions.
const SOURCE_RASTER_PPD = 10;
// HiDPI factor: Canvas dimensions will be upscaled by this factor
const CANVAS_PIXEL_DENSITY = 2;
// Min-max distance of the solar terminator in radians from the solar position;
// interval is used for terminator "blurring"
const MIN_TERMINATOR_DISTANCE = deg2Rad(89);
const MAX_TERMINATOR_DISTANCE = deg2Rad(92);
// ------------------------------------------------------------------
// Declare available raster map styles (data type and instances)
class RasterStyle {
constructor(filenames, isDayNight, graticuleColor) {
this.filenames = filenames;
this.isDayNight = isDayNight;
this.graticuleColor = graticuleColor;
}
}
export const [
RASTER_NE_I,
RASTER_NE_HYPSO,
RASTER_NASA_BLUE,
RASTER_NASA_BLACK,
RASTER_NE_I_DAY_NIGHT,
RASTER_NE_HYPSO_DAY_NIGHT,
RASTER_NASA_DAY_NIGHT,
] = [
[[NE_I_FILENAME ], false, '#0002'],
[[NE_HYPSO_FILENAME ], false, '#0002'],
[[NASA_BLUE_FILENAME ], false, '#fff3'],
[[NASA_BLACK_FILENAME ], false, '#fff3'],
[[NE_I_FILENAME ], true , '#0002'],
[[NE_HYPSO_FILENAME ], true , '#0002'],
[[NASA_BLUE_FILENAME, NASA_BLACK_FILENAME], true , '#fff3'],
].map(params => new RasterStyle(...params));
// ------------------------------------------------------------------
let RasterMapIsInit = false;
// Main Canvas, Canvas context, and Canvas data
const Canvas = fQS('canvas');
const CanvasContext = Canvas.getContext('2d');
let CanvasData;
// Ratio of canvas length per SVG length
let CanvasPerSvgFactor;
// Current selected raster style
let CurrentRasterStyle;
// Source map(s)' raw image data
let SourceRasterRawData;
// Current position of the sun as a LatLon object in radians
let SunPosition;
// ------------------------------------------------------------------
// Class to represent a 1°×1° cell of the raster map
class MapCell {
constructor(swLatLon, cellCorners, maskCorners) {
// Original LatLon of the cell's SW corner in degrees
this.swLatLon = swLatLon;
// Array of projected coordinates (as Point objects) of the cell corners
// starting from the SW corner going counterclockwise
this.cellCorners = cellCorners;
// Same as above but for the cell mask to account for the half-cells along
// the Bering Strait cut: we only draw pixels within the mask
this.maskCorners = maskCorners;
const isNorthPolar = cellCorners[2].isEqualTo(cellCorners[3]);
const isSouthPolar = cellCorners[0].isEqualTo(cellCorners[1]);
// Indicates if this cell is adjacent to the N/S pole
this.isPolar = isNorthPolar || isSouthPolar;
// If isPolar, indicates if this cell is adjacent to the N pole
this.isNorthPolar = isNorthPolar;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// Draws this cell's portion of the raster map by writing into the global
// CanvasData object and reading from the SourceRasterRawData object
drawCell() {
const xs = this.maskCorners.map(point => point.x);
const ys = this.maskCorners.map(point => point.y);
const minX = Math.floor(Math.min(...xs));
const maxX = Math.ceil (Math.max(...xs));
const minY = Math.floor(Math.min(...ys));
const maxY = Math.ceil (Math.max(...ys));
for (let x = minX; x <= maxX; x++) {
for (let y = minY; y <= maxY; y++) {
const pixelPos = new Point(x, y);
if (!this.isInMask(pixelPos)) continue;
const latLon = this.isPolar
? this.getPolarInverseLatLon(pixelPos)
: this.getInverseLatLon (pixelPos);
const pixelOffset = new Point(
(latLon.lon + DEGS_IN_CIRCLE/2) % DEGS_IN_CIRCLE,
DEGS_IN_CIRCLE/4 - latLon.lat,
);
const srcDataIdx = NUM_CANVAS_DATA_CHANNELS * (
Math.floor(SOURCE_RASTER_PPD * pixelOffset.y) * DEGS_IN_CIRCLE * SOURCE_RASTER_PPD +
Math.floor(SOURCE_RASTER_PPD * pixelOffset.x)
);
const destDataIdx = NUM_CANVAS_DATA_CHANNELS * (y * Canvas.width + x);
const pixelData = [
SourceRasterRawData[0][srcDataIdx ],
SourceRasterRawData[0][srcDataIdx + 1],
SourceRasterRawData[0][srcDataIdx + 2],
];
if (CurrentRasterStyle.isDayNight) {
const distance = SunPosition.getDistanceTo(latLon.toRadians());
let dayRatio =
distance <= MIN_TERMINATOR_DISTANCE
? 1
: distance >= MAX_TERMINATOR_DISTANCE
? 0
: 1 - (distance - MIN_TERMINATOR_DISTANCE) / (MAX_TERMINATOR_DISTANCE - MIN_TERMINATOR_DISTANCE);
const has2SourceImages = SourceRasterRawData.length === 2;
if (!has2SourceImages) dayRatio = (dayRatio + 1)/2;
pixelData[0] *= dayRatio;
pixelData[1] *= dayRatio;
pixelData[2] *= dayRatio;
if (has2SourceImages && dayRatio < 1) {
pixelData[0] += SourceRasterRawData[1][srcDataIdx ] * (1 - dayRatio);
pixelData[1] += SourceRasterRawData[1][srcDataIdx + 1] * (1 - dayRatio);
pixelData[2] += SourceRasterRawData[1][srcDataIdx + 2] * (1 - dayRatio);
}
}
CanvasData.data[destDataIdx ] = pixelData[0];
CanvasData.data[destDataIdx + 1] = pixelData[1];
CanvasData.data[destDataIdx + 2] = pixelData[2];
CanvasData.data[destDataIdx + 3] = MAX_COLOR_VALUE;
}
}
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// Returns true if the given point lies inside the cell mask.
// This is implemented as a simplified point-in-polygon algorithm.
isInMask(point) {
let numIntersections = 0;
for (let idx = 0; idx < this.maskCorners.length; idx++) {
const edgePointA = this.maskCorners[idx];
const edgePointB = this.maskCorners[(idx + 1) % this.maskCorners.length];
if (
point.x >= Math.min(edgePointA.x, edgePointB.x) &&
point.x < Math.max(edgePointA.x, edgePointB.x)
) {
if (
point.y >= Math.max(edgePointA.y, edgePointB.y) ||
point.y >= Math.min(edgePointA.y, edgePointB.y) &&
point.y >= edgePointA.y + (point.x - edgePointA.x) / (edgePointB.x - edgePointA.x) * (edgePointB.y - edgePointA.y)
) numIntersections++;
}
}
return numIntersections % 2 === 1;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// Returns the spherical coordinates in degrees as a LatLon object
// of a given "projected" point inside this cell if cell is not polar
getInverseLatLon(point) {
// Given 1°×1° cell with corners in projected map coordinates:
// - SW corner = (A, B) = this.cellCorners[0]
// - SE corner = (C, D) = this.cellCorners[1]
// - NW corner = (E, F) = this.cellCorners[3]
// - NE corner = (G, H) = this.cellCorners[2]
const corners = this.cellCorners;
// Set of equations determining the "projected" coordinates (x′, y′)
// of an input relative coordinates in degrees (x, y) into a cell,
// where (x₀, y₀) and (x₁, y₁) are intermediate coordinates:
// 1. x₀ = A + (C - A)x
// y₀ = B + (D - B)x
// x₁ = E + (G - E)x
// y₁ = F + (H - F)x
// 2. x′ = x₀ + (x₁ - x₀)y
// y′ = y₀ + (y₁ - y₀)y
//
// Equations above combined into a system of 2 equations with unknowns x, y:
// x′ - A = (C - A)x + (E - A)y + (A + G - C - E)xy
// y′ - B = (D - B)x + (F - B)y + (B + H - D - F)xy
//
// Helper coefficients for the system of equations:
// J = x′ - A
// K = y′ - B
// L = C - A
// M = D - B
// N = E - A
// P = F - B
// Q = A + G - C - E
// R = B + H - D - F
const J = point.x - corners[0].x;
const K = point.y - corners[0].y;
const L = corners[1].x - corners[0].x;
const M = corners[1].y - corners[0].y;
const N = corners[3].x - corners[0].x;
const P = corners[3].y - corners[0].y;
const Q = corners[0].x + corners[2].x - corners[1].x - corners[3].x;
const R = corners[0].y + corners[2].y - corners[1].y - corners[3].y;
// Same system of equations above but using helper coefficients:
// J = Lx + Ny + Qxy
// K = Mx + Py + Rxy
//
// Combined equation in terms of y:
// y = (J - Lx)/(N + Qx) = (K - Mx)/(P + Rx)
//
// Quadratic equation with variable x:
// (-LR + QM)x² + (JR + NM - LP - QK)x + (JP - NK) = 0
// Quadratic equation coefficients:
const a = - L*R + Q*M;
const b = J*R + N*M - L*P - Q*K;
const c = J*P - N*K;
// Determine 2 solutions to the quadratic equation
const discriminantRoot = Math.sqrt(b*b - 4*a*c);
const x1 = (-b + discriminantRoot) / (2*a);
const x2 = (-b - discriminantRoot) / (2*a);
const y1 = (J - L * x1) / (N + Q * x1);
const y2 = (J - L * x2) / (N + Q * x2);
// Return one of the solutions added to the SW corner coordinates
const latLon = (0 <= x1 && x1 <= 1 && 0 <= y1 && y1 <= 1)
? new LatLon(y1, x1)
: new LatLon(y2, x2);
latLon.lat += this.swLatLon.lat;
latLon.lon += this.swLatLon.lon;
return latLon;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// Returns the spherical coordinates in degrees as a LatLon object
// of a given "projected" point inside this cell if cell is polar.
// The algorithm is basic triangular math assuming that the cell is
// shaped like an isosceles triangle with the vertex point at the pole.
getPolarInverseLatLon(point) {
const corners = this.cellCorners;
// Compute relative latitude as a function of the ratio of the point's
// distance to the pole
const cellHeight = corners[2].getDistanceTo(corners[1]);
const relLat = this.isNorthPolar
? 1 - corners[2].getDistanceTo(point) / cellHeight
: corners[1].getDistanceTo(point) / cellHeight;
// Compute relative longitude as a function of the angle of the point
// with respect to the pole in relation the the vertex angle
let cellWidth = this.isNorthPolar
? corners[2].getAngleTo(corners[0]) - corners[2].getAngleTo(corners[1])
: corners[1].getAngleTo(corners[2]) - corners[1].getAngleTo(corners[3]);
if (cellWidth < 0) cellWidth += TWO_PI;
let relLon = this.isNorthPolar
? +(corners[2].getAngleTo(corners[0]) - corners[2].getAngleTo(point))
: -(corners[1].getAngleTo(corners[3]) - corners[1].getAngleTo(point));
if (relLon < 0) relLon += TWO_PI;
relLon /= cellWidth;
return new LatLon(this.swLatLon.lat + relLat, this.swLatLon.lon + relLon);
}
}
// ------------------------------------------------------------------
function initRasterMap() {
if (RasterMapIsInit) return;
RasterMapIsInit = true;
Canvas.width = Canvas.clientWidth * CANVAS_PIXEL_DENSITY;
CanvasPerSvgFactor = Canvas.width / MAP_WIDTH;
Canvas.height = CanvasPerSvgFactor * MAP_HEIGHT;
CanvasData = CanvasContext.getImageData(0, 0, Canvas.width, Canvas.height);
}
// ------------------------------------------------------------------
export function drawRasterMap(style, graticuleInterval = null) {
initRasterMap();
CanvasContext.clearRect(0, 0, Canvas.width, Canvas.height);
CurrentRasterStyle = style;
if (style.isDayNight) SunPosition = getSunLatLon().toRadians();
SourceRasterRawData = [];
const images = [];
let numImagesLoaded = 0;
const onloadHandler = function() {
numImagesLoaded++;
if (numImagesLoaded < style.filenames.length) return;
images.forEach(image => {
const sourceCanvas = document.createElement('canvas');
sourceCanvas.width = image.width;
sourceCanvas.height = image.height;
const sourceContext = sourceCanvas.getContext('2d')
sourceContext.drawImage(image, 0, 0);
SourceRasterRawData.push(sourceContext.getImageData(0, 0, image.width, image.height).data);
});
MAP_AREAS.forEach((area, idx) => { drawRasterMapArea(area, idx) });
if (graticuleInterval !== null) drawRasterGraticule(graticuleInterval);
CanvasContext.putImageData(CanvasData, 0, 0);
}
style.filenames.forEach(filename => {
const image = new Image();
image.src = filename;
image.onload = onloadHandler;
images.push(image);
});
}
// ------------------------------------------------------------------
// Draws a portion of a raster map corresponding to a given MapArea and its
// index by iterating over the MapArea's 1°×1° cells
function drawRasterMapArea(area, idx) {
for (let lat = area.swCorner.lat; lat < area.neCorner.lat; lat++) {
// Account for the antimeridian and the Bering Strait half-cells
const antiMeridianAdjust = area.hasAntimeridian ? DEGS_IN_CIRCLE : 0;
const startLon = Math.floor(area.swCorner.lon);
const endLon = Math.ceil (area.neCorner.lon) + antiMeridianAdjust;
for (let lon = startLon; lon < endLon; lon++) {
const maskedLonW = Math.max(lon , area.swCorner.lon);
const maskedLonE = Math.min(lon + 1, area.neCorner.lon + antiMeridianAdjust);
const cornerPositions =
// Raw 2D list of spherical coordinates of the corners
// starting from the SW corner going counterclockwise
[
// Cell corners
[lat , lon ],
[lat , lon + 1],
[lat + 1, lon + 1],
[lat + 1, lon ],
// Cell mask corners
[lat , maskedLonW],
[lat , maskedLonE],
[lat + 1, maskedLonE],
[lat + 1, maskedLonW],
]
.map(coords => new LatLon(...coords))
// Do initial projection into map coordinates then rotate, translate,
// and scale into final map coordinates (in Canvas pixels)
.map(latLon =>
project(latLon, idx)
.rotate(MAP_TILT)
.translate(MAP_VIEW_ORIGIN)
.scale(CanvasPerSvgFactor)
);
const cell = new MapCell(
new LatLon(lat, lon),
cornerPositions.slice(0, 4),
cornerPositions.slice(4, 8),
);
cell.drawCell();
}
}
}
// ------------------------------------------------------------------
function drawRasterGraticule(interval) {
initVectorMap();
drawGraticule(interval);
drawSpecialCircles();
const mapSvg = fQS('svg');
const tempSvg = document.createElement('svg');
tempSvg.innerHTML = mapSvg.innerHTML;
tempSvg.setAttributeNS(SVG_NS, 'viewBox', mapSvg.getAttribute('viewBox'));
tempSvg.setAttribute('xmlns', SVG_NS);
tempSvg.setAttribute('width', Canvas.width);
tempSvg.setAttribute('height', Canvas.height);
mapSvg.style.display = 'none';
Array.from(tempSvg.querySelectorAll('path')).forEach(path => {
path.setAttribute('stroke', CurrentRasterStyle.graticuleColor);
});
const image = new Image();
image.src = 'data:image/svg+xml,' + encodeURIComponent(tempSvg.outerHTML);
image.onload = function() {
CanvasContext.drawImage(image, 0, 0);
};
}