-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference_times.py
184 lines (150 loc) · 7.25 KB
/
inference_times.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import matplotlib.pyplot as plt
import numpy as np
import matplotlib
import sys
import os
from collections import defaultdict
import pickle
font = {'family' : 'sans-serif',
#'weight' : 'bold',
'size' : 14}
matplotlib.rc('font', **font)
time_results = []
#Obtain times from inference output
filename = './results_casted_all_10it/nohup.out'
fitsname = ''
modelname = ''
with open(filename) as f:
for line in f:
fitsname = line.split(":")[1].strip()[11:] if "Parsing Fits:" in line else fitsname
modelname = line.split(":")[1].strip()[6:-6] if "Used model:" in line else modelname
if "Parsing time" in line:
exectime = dict()
exectime['parser'] = float(line.split(":")[1].split()[0])
elif "L-LDA inference time" in line:
exectime['llda'] = float(line.split(":")[1].split()[0])
elif "Total execution time" in line:
exectime['total'] = float(line.split(":")[1].split()[0])
time_results.append((fitsname, modelname,exectime))
#Obtain models metadata
model_names = list(set([model for fits,model,exectime in time_results if model != '']))
#models_metadata = defaultdict(lambda: defaultdict(int))
models_metadata = dict()
for model in model_names:
models_metadata[model] = dict()
pickle_models_filename = 'models_metadata.dmp'
if not os.path.isfile(pickle_models_filename):
print("Reading models metadata...")
#Obtain number of features (vocabulary) per model
for i,model in enumerate(model_names):
with open('./llda_train_input/'+model+'_features.dat') as f:
line = f.readline()
models_metadata[model]['vocabulary_len'] = len(line.split())
#Obtain number of tokens per model
for model in model_names:
#model_data = "_".join(model.split('_')[:-1]) if "expanded" not in model else "_".join(model.split('_')[:-3])
with open('./llda_train_input/'+model+'.dat') as f:
tokens_count = 0
for line in f:
tokens_count += len(line.split())
models_metadata[model]['tokens_len'] = tokens_count
#Obtain number of topics per model
for model in model_names:
if 'expanded' in model:
tokens = model.split('_expanded')
labelmap_path = './llda_train_input/'+tokens[0]+'_labelmap.sub'
else:
labelmap_path = './llda_train_input/'+model+'_labelmap.sub'
with open(labelmap_path) as f:
topics_count = 0
for line in f:
topics_count += 1
models_metadata[model]['topics_count'] = topics_count
pickleout = open(pickle_models_filename,'wb')
pickle.dump(models_metadata,pickleout)
pickleout.close()
else:
print("Recovering models metadata from pickle dump...")
picklein = open(pickle_models_filename,'rb')
models_metadata = pickle.load(picklein)
picklein.close()
#Obtain FITS metadata
fits_names = list(set([fits for fits,model,exectime in time_results]))
fits_metadata = defaultdict(int)
fits_metadata['HD163296_CO_2_1.image.fits'] = 432*432*250
fits_metadata['uid___A002_Xa916fc_X668__IRS43_HCO32.final.image.pbcor.fits'] = 512*512*400
fits_metadata['uid___A002_Xa916fc_X668__IRS43_HCO32.final.image.pbcor.v2.fits'] = 512*512*400
fits_metadata['Orion.HNC.cbc.contsub.image.fits'] = 450*450*121
fits_metadata['Orion.HNC.cbc.contsub.image.v2.fits'] = 450*450*121
fits_metadata['DMTau.CS_5-4.image.fits'] = 420*420*330
fits_metadata['Orion.methanol.cbc.contsub.image.fits'] = 100*100*41
fits_metadata['Orion.methanol.cbc.contsub.image.v2.fits'] = 100*100*41
fits_metadata['TWHydra_CO3_2line.image.fits'] = 100*100*118
fits_metadata['TWHydra_HCOplusline.image.fits'] = 100*100*118
fits_metadata['TWHydra_HCOplusline.image.v2.fits'] = 100*100*118
#Getting Times
llda_times_dict = defaultdict(lambda: defaultdict(lambda: list()))
parser_times_dict = defaultdict(lambda: defaultdict(lambda: list()))
total_time_dict = defaultdict(lambda: defaultdict(lambda: list()))
for fitsname, modelname, exectime in time_results:
llda_times_dict[modelname][fitsname].append(exectime['llda'])
parser_times_dict[modelname][fitsname].append(exectime['parser'])
total_time_dict[modelname][fitsname].append(exectime['total'])
llda_average_times_fits = [(model,fits,sum(times)/float(len(times))) for model, fits_dict in llda_times_dict.items() for fits, times in fits_dict.items()]
llda_average_times_models = dict()
for model in model_names:
llda_average_times_models[model] = sum([x[2] for x in llda_average_times_fits if model == x[0]])
llda_average_times_models = [(model,time) for model, time in llda_average_times_models.items()]
llda_average_times_models.sort(key = lambda x: x[1])
fig = plt.figure(figsize=(10,4))
filters = list(set(['_'.join(model.split('_')[:-1]) if "expanded" not in model else '_'.join(model.split('_')[:-4]) for model in model_names]))
def plotModelsTimes(data,subplot_params):
plt.subplot(subplot_params[0],subplot_params[1],subplot_params[2])
mPlot, = plt.plot([models_metadata[model]['tokens_len'] for model, time in data],[time for model, time in data], label=mFilter)
#mPlot = plt.scatter([models_metadata[model]['tokens_len'] for model, time in data],[time for model, time in data])
plt.title(plotTitle)
plt.ylabel("Elapsed time [s]")
#plt.ylabel("Tiempo transcurrido (elapsed time) [s]")
#plt.xticks(range(len(llda_average_times_models)),[model.split("_")[-1] if "expanded" not in model else "e"+model.split("_")[-2] for model,time in llda_average_times_models], rotation = 'vertical')
plt.xlabel("Number of training words")
#plt.xlabel("Cantidad de palabras de entrenamiento")
#plt.xscale('log')
return mPlot
# for i, mFilter in enumerate(filters):
# dataPlot = [(x[0],x[2]) for x in llda_average_times_fits if mFilter in x[0]]
# plotModelsTimes(dataPlot,(7,2,i+1))
print(model_names)
plotTitle = "Inference Time for Standard Models"
standard_plots = []
mFilter = 'tr'
dataPlot = [(x[0],x[1]) for x in llda_average_times_models if x[0].endswith(mFilter)]
standard_plots.append(plotModelsTimes(dataPlot,(1,2,1)))
mFilter = '2'
dataPlot = [(x[0],x[1]) for x in llda_average_times_models if x[0].endswith(mFilter)]
standard_plots.append(plotModelsTimes(dataPlot,(1,2,1)))
mFilter = 'full'
dataPlot = [(x[0],x[1]) for x in llda_average_times_models if x[0].endswith(mFilter)]
standard_plots.append(plotModelsTimes(dataPlot,(1,2,1)))
ax = plt.gca()
ax.get_xaxis().get_major_formatter().set_useOffset(False)
ax.get_xaxis().get_major_formatter().set_powerlimits((-3,3))
ax.get_xaxis().get_major_formatter().set_scientific(True)
plt.legend(handles=standard_plots)
plotTitle = "Inference Time for Expanded Models"
expanded_plots = []
mFilter = '00050_x3'
dataPlot = [(x[0],x[1]) for x in llda_average_times_models if x[0].endswith(mFilter)]
expanded_plots.append(plotModelsTimes(dataPlot,(1,2,2)))
mFilter = '00100_x3'
dataPlot = [(x[0],x[1]) for x in llda_average_times_models if x[0].endswith(mFilter)]
expanded_plots.append(plotModelsTimes(dataPlot,(1,2,2)))
mFilter = '01000_x3'
dataPlot = [(x[0],x[1]) for x in llda_average_times_models if x[0].endswith(mFilter)]
expanded_plots.append(plotModelsTimes(dataPlot,(1,2,2)))
ax = plt.gca()
ax.get_xaxis().get_major_formatter().set_useOffset(False)
ax.get_xaxis().get_major_formatter().set_powerlimits((-3,3))
ax.get_xaxis().get_major_formatter().set_scientific(True)
plt.legend(handles=expanded_plots)
plt.tight_layout()
plt.show()