This repository has been archived by the owner on Mar 6, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 3
/
chatgui.py
87 lines (68 loc) · 2.32 KB
/
chatgui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import nltk
from nltk.stem import WordNetLemmatizer
import pickle
import numpy as np
from keras.models import load_model
import json
import random
lemmatizer = WordNetLemmatizer()
model = load_model('chatbot_model.h5')
intents = json.loads(open('intents.json').read())
words = pickle.load(open('words.pkl', 'rb'))
classes = pickle.load(open('classes.pkl', 'rb'))
inputlist = []
def clean_up_sentence(sentence):
sentence_words = nltk.word_tokenize(sentence)
sentence_words = [lemmatizer.lemmatize(word.lower()) for word in sentence_words]
return sentence_words
# return bag of words array: 0 or 1 for each word in the bag that exists in the sentence
def bow(sentence, words, show_details=True):
# tokenize the pattern
sentence_words = clean_up_sentence(sentence)
# bag of words - matrix of N words, vocabulary matrix
bag = [0] * len(words)
for s in sentence_words:
for i, w in enumerate(words):
if w == s:
# assign 1 if current word is in the vocabulary position
bag[i] = 1
if show_details:
print("found in bag: %s" % w)
return np.array(bag)
def predict_class(sentence, model):
# filter out predictions below a threshold
p = bow(sentence, words, show_details=False)
res = model.predict(np.array([p]))[0]
ERROR_THRESHOLD = 0.95 #
results = [[i, r] for i, r in enumerate(res) if r > ERROR_THRESHOLD]
# sort by strength of probability
results.sort(key=lambda x: x[1], reverse=True)
if len(results) == 0:
return None
# gptbot(inputlist)
# print(inputlist)
return_list = []
for r in results:
return_list.append({"intents": classes[r[0]], "probability": str(r[1])})
return return_list
def getResponse(ints, intents_json):
result = None
tag = ints[0]['intents']
list_of_intents = intents_json['intents']
for i in list_of_intents:
if i['tag'] == tag:
result = random.choice(i['responses'])
break
return result
def chatbot_response(msg):
inputlist.append(msg)
ints = predict_class(msg, model)
if (ints == None):
return None
res = getResponse(ints, intents)
inputlist.append(" " + res)
return res
def faz_tudo(prompt):
msg = prompt
res = chatbot_response(msg)
return res