-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconv_2d.c
138 lines (116 loc) · 3.14 KB
/
conv_2d.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "utils.h"
typedef struct convResult
{
double **data;
size_t size;
} convResult;
double **padMatrix(double **X, size_t xSize, int padding, size_t padSize)
{
// Allocate memory for padX;
double **padX = (double **)malloc(padSize * sizeof(double *));
for (int i = 0; i < padSize; i++)
{
padX[i] = (double *)calloc(padSize, sizeof(double));
}
// Fill zero matrix with original matrix
for (int i = 0; i < xSize; i++)
{
for (int j = 0; j < xSize; j++)
{
padX[i + padding][j + padding] = X[i][j];
}
}
return padX;
}
convResult performConvolution(double **X, size_t xSize, double **K, size_t kSize, int padding, int stride)
{
// Pad image
double **padX;
size_t padSize;
if (padding > 0)
{
padSize = xSize + padding * 2;
padX = padMatrix(X, xSize, padding, padSize);
}
else
{
padSize = xSize;
padX = X;
}
// Perform convolution
size_t convSize = ((xSize - kSize + 2 * padding) / stride) + 1;
double **convX = allocateMatrix(convSize, convSize);
for (int i = 0; i < convSize; i++)
{
for (int j = 0; j < convSize; j++)
{
double sum = 0;
for (int ki = 0; ki < kSize; ki++)
{
for (int kj = 0; kj < kSize; kj++)
{
int pi = i * stride + ki;
int pj = j * stride + kj;
sum += padX[pi][pj] * K[ki][kj];
}
}
convX[i][j] = sum;
}
}
// Fill result
convResult result;
result.data = convX;
result.size = convSize;
// Free memory
if (padding > 0)
{
for (int i = 0; i < padSize; i++)
{
free(padX[i]);
}
free(padX);
}
return result;
}
int main()
{
int padding = 0, stride = 1;
// Init X
size_t xSize = 5;
double init_X[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25};
double **X = allocateMatrix(xSize, xSize);
for (int i = 0; i < xSize; i++)
{
for (int j = 0; j < xSize; j++)
{
X[i][j] = init_X[i * xSize + j];
}
}
printf("Matrix X with %zu rows and %zu cols.\n", xSize, xSize);
printMatrix(X, xSize, xSize, 0);
// Init kernel
size_t kSize = 2;
double init_K[] = {1, 2, 3, -1};
double **K = allocateMatrix(kSize, kSize);
for (int i = 0; i < kSize; i++)
{
for (int j = 0; j < kSize; j++)
{
K[i][j] = init_K[i * kSize + j];
}
}
printf("Matrix K with %zu rows and %zu cols.\n", kSize, kSize);
printMatrix(K, kSize, kSize, 1);
// Perform convolution
convResult result = performConvolution(X, xSize, K, kSize, padding, stride);
printf("Matrix convX with %zu rows and %zu cols.\n", result.size, result.size);
printMatrix(result.data, result.size, result.size, 1);
// Free memory
freeMatrix(X, xSize);
freeMatrix(K, kSize);
freeMatrix(result.data, result.size);
return 0;
}