|
| 1 | +From iris.prelude Require Import options. |
| 2 | +From iris.algebra Require Export cmra updates. |
| 3 | +From iris.algebra Require Import proofmode_classes functions. |
| 4 | +From iris.base_logic Require Import upred. |
| 5 | +From iris.base_logic.lib Require Export own iprop invariants wsat. |
| 6 | +From iris.proofmode Require Import base ltac_tactics tactics coq_tactics reduction. |
| 7 | +From iris.bi Require Import derived_laws. |
| 8 | + |
| 9 | +Section FactoringUpred. |
| 10 | + |
| 11 | +Context {Σ: gFunctors}. |
| 12 | + |
| 13 | +(* Split-Own *) |
| 14 | + |
| 15 | +Lemma uPred_ownM_separates_out x (P : iProp Σ) |
| 16 | + : (P -∗ uPred_ownM x) ∗ P ⊢ ( |
| 17 | + (uPred_ownM x) |
| 18 | + ∗ |
| 19 | + ((uPred_ownM x) -∗ P) |
| 20 | + ). |
| 21 | +Proof. |
| 22 | + uPred.unseal. |
| 23 | + split. |
| 24 | + intros n x0 val t. |
| 25 | + |
| 26 | + unfold uPred_holds, upred.uPred_sep_def in t. |
| 27 | + destruct t as [x1 [x2 [sum [t1 t2]]]]. |
| 28 | + |
| 29 | + unfold uPred_holds, upred.uPred_wand_def in t1. |
| 30 | + |
| 31 | + assert (✓{n} (x1 ⋅ x2)) as val_12. { setoid_rewrite <- sum. trivial. } |
| 32 | + assert (n ≤ n) as nle by trivial. |
| 33 | + have t11 := t1 n x2 nle val_12 t2. |
| 34 | + |
| 35 | + unfold uPred_holds in t11. unfold upred.uPred_ownM_def in t11. |
| 36 | + unfold includedN in t11. destruct t11 as [z h]. |
| 37 | + |
| 38 | + unfold uPred_holds. unfold upred.uPred_sep_def. |
| 39 | + exists x. exists z. |
| 40 | + |
| 41 | + assert (uPred_holds P n x0) as ux0. { |
| 42 | + eapply uPred_mono. { apply t2. } |
| 43 | + { setoid_rewrite sum. unfold includedN. exists x1. |
| 44 | + rewrite cmra_comm. trivial. } |
| 45 | + trivial. |
| 46 | + } |
| 47 | + |
| 48 | + split. |
| 49 | + { setoid_rewrite sum. trivial. } |
| 50 | + split. |
| 51 | + { unfold uPred_holds. unfold upred.uPred_ownM_def. trivial. } |
| 52 | + { unfold uPred_holds. unfold upred.uPred_wand_def. intros n' x' incl val2 uh. |
| 53 | + unfold uPred_holds in uh. |
| 54 | + unfold upred.uPred_ownM_def in uh. |
| 55 | + unfold includedN in uh. destruct uh as [w j]. |
| 56 | + setoid_rewrite j. |
| 57 | + apply uPred_mono with (n1 := n) (x1 := x0); trivial. |
| 58 | + assert (z ⋅ (x ⋅ w) ≡ (z ⋅ x) ⋅ w) as associ. { apply cmra_assoc. } |
| 59 | + setoid_rewrite associ. |
| 60 | + assert ((z ⋅ x) ≡ (x ⋅ z)) as commu. { apply cmra_comm. } |
| 61 | + setoid_rewrite commu. |
| 62 | + unfold includedN. exists w. |
| 63 | + apply dist_le with (n := n); trivial. |
| 64 | + setoid_rewrite sum. |
| 65 | + setoid_rewrite h. |
| 66 | + trivial. |
| 67 | + } |
| 68 | +Qed. |
| 69 | + |
| 70 | +(* Split-Own-Except0 *) |
| 71 | + |
| 72 | +Lemma uPred_ownM_separates_out_except0 x (P : iProp Σ) |
| 73 | + : (P -∗ ◇ uPred_ownM x) ∗ P ⊢ ( |
| 74 | + (◇ uPred_ownM x) |
| 75 | + ∗ |
| 76 | + (uPred_ownM x -∗ P) |
| 77 | + ). |
| 78 | +Proof. |
| 79 | + unfold "◇". uPred.unseal. |
| 80 | + split. |
| 81 | + intros n x0 val t. |
| 82 | + |
| 83 | + unfold uPred_holds, upred.uPred_sep_def in t. |
| 84 | + destruct t as [x1 [x2 [sum [t1 t2]]]]. |
| 85 | + |
| 86 | + unfold uPred_holds, upred.uPred_wand_def in t1. |
| 87 | + |
| 88 | + assert (✓{n} (x1 ⋅ x2)) as val_12. { setoid_rewrite <- sum. trivial. } |
| 89 | + assert (n ≤ n) as nle by trivial. |
| 90 | + have t11 := t1 n x2 nle val_12 t2. |
| 91 | + |
| 92 | + unfold uPred_holds in t11. unfold upred.uPred_or_def in t11. |
| 93 | + destruct t11 as [tlatfalse|t11]. |
| 94 | + { |
| 95 | + unfold uPred_holds in tlatfalse. unfold upred.uPred_later_def in tlatfalse. |
| 96 | + unfold uPred_holds in tlatfalse. unfold upred.uPred_pure_def in tlatfalse. |
| 97 | + destruct n; try contradiction. |
| 98 | + unfold uPred_holds, upred.uPred_sep_def. exists ε, x0. |
| 99 | + split. |
| 100 | + { rewrite ucmra_unit_left_id. trivial. } |
| 101 | + split. |
| 102 | + { unfold uPred_holds, upred.uPred_or_def. left. unfold uPred_holds, upred.uPred_later_def. trivial. } |
| 103 | + unfold uPred_holds, upred.uPred_wand_def. |
| 104 | + intros n' x' le0 valxx uh. |
| 105 | + assert (n' = 0) by lia. subst n'. |
| 106 | + setoid_rewrite sum. |
| 107 | + eapply uPred_mono. { apply t2. } |
| 108 | + { unfold includedN. exists (x1 ⋅ x'). |
| 109 | + assert (x2 ⋅ (x1 ⋅ x') ≡ (x2 ⋅ x1 ⋅ x')) as J. { apply cmra_assoc. } |
| 110 | + setoid_rewrite J. |
| 111 | + assert (x1 ⋅ x2 ≡ x2 ⋅ x1) as K. { apply cmra_comm. } |
| 112 | + setoid_rewrite K. |
| 113 | + trivial. |
| 114 | + } |
| 115 | + lia. |
| 116 | + } |
| 117 | + |
| 118 | + unfold uPred_holds in t11. unfold upred.uPred_ownM_def in t11. |
| 119 | + unfold includedN in t11. destruct t11 as [z h]. |
| 120 | + |
| 121 | + unfold uPred_holds. unfold upred.uPred_sep_def. |
| 122 | + exists x. exists z. |
| 123 | + |
| 124 | + split. |
| 125 | + { setoid_rewrite sum. trivial. } |
| 126 | + split. |
| 127 | + { unfold uPred_holds, upred.uPred_or_def. right. |
| 128 | + unfold uPred_holds, upred.uPred_ownM_def. trivial. } |
| 129 | + { unfold uPred_holds, upred.uPred_wand_def. |
| 130 | + intros n' x' incl val2 uh. |
| 131 | + unfold uPred_holds in uh. |
| 132 | + unfold upred.uPred_ownM_def in uh. |
| 133 | + unfold includedN in uh. destruct uh as [w j]. |
| 134 | + setoid_rewrite j. |
| 135 | + |
| 136 | + |
| 137 | + assert (uPred_holds P n x0) as ux0. { |
| 138 | + eapply uPred_mono. { apply t2. } |
| 139 | + { setoid_rewrite sum. unfold includedN. exists x1. |
| 140 | + rewrite cmra_comm. trivial. } |
| 141 | + trivial. |
| 142 | + } |
| 143 | + |
| 144 | + apply uPred_mono with (n1 := n) (x1 := x0); trivial. |
| 145 | + assert (z ⋅ (x ⋅ w) ≡ (z ⋅ x) ⋅ w) as associ. { apply cmra_assoc. } |
| 146 | + setoid_rewrite associ. |
| 147 | + assert ((z ⋅ x) ≡ (x ⋅ z)) as commu. { apply cmra_comm. } |
| 148 | + setoid_rewrite commu. |
| 149 | + unfold includedN. exists w. |
| 150 | + apply dist_le with (n := n); trivial. |
| 151 | + setoid_rewrite sum. |
| 152 | + setoid_rewrite h. |
| 153 | + trivial. |
| 154 | + } |
| 155 | +Qed. |
| 156 | + |
| 157 | +Local Lemma uPred_holds_later_m m (P : iProp Σ) n x |
| 158 | + : n < m -> (uPred_holds (▷^m P) n x). |
| 159 | +Proof. |
| 160 | + generalize n. |
| 161 | + induction m as [|m IHm]. |
| 162 | + { intros. lia. } |
| 163 | + { intro n0. intro n0_lt_sm. assert ((▷^(S m) P)%I = (▷ ▷^m P)%I) as Heq by trivial. |
| 164 | + rewrite Heq. unfold "▷". uPred.unseal. |
| 165 | + unfold uPred_holds, upred.uPred_later_def. |
| 166 | + destruct n0; trivial. apply IHm. lia. |
| 167 | + } |
| 168 | +Qed. |
| 169 | + |
| 170 | +Local Lemma uPred_holds_later_m2 m (P : iProp Σ) n x |
| 171 | + : n >= m -> (uPred_holds (▷^m P) n x <-> uPred_holds P (n - m) x). |
| 172 | +Proof. |
| 173 | + generalize n. |
| 174 | + induction m as [|m IHm]. |
| 175 | + { intro n0. replace (n0 - 0) with n0 by lia. trivial. } |
| 176 | + { intro n0. intro n0_lt_sm. assert ((▷^(S m) P)%I = (▷ ▷^m P)%I) as Heq by trivial. |
| 177 | + rewrite Heq. split. |
| 178 | + { unfold "▷". uPred.unseal. |
| 179 | + intro uh. |
| 180 | + unfold uPred_holds, upred.uPred_later_def in uh. |
| 181 | + destruct n0 as [|n0]. |
| 182 | + { lia. } |
| 183 | + { replace (S n0 - S m) with (n0 - m) by lia. |
| 184 | + apply IHm. { lia. } trivial. |
| 185 | + } |
| 186 | + } |
| 187 | + { |
| 188 | + unfold "▷". uPred.unseal. |
| 189 | + intro uh. |
| 190 | + unfold uPred_holds, upred.uPred_later_def. |
| 191 | + destruct n0 as [|n0]. |
| 192 | + { lia. } |
| 193 | + { replace (S n0 - S m) with (n0 - m) by lia. |
| 194 | + apply IHm. { lia. } trivial. } |
| 195 | + } |
| 196 | + } |
| 197 | +Qed. |
| 198 | + |
| 199 | +Local Lemma uPred_holds_later_m3 m (P : iProp Σ) n x |
| 200 | + : uPred_holds (▷^m P) n x <-> (n < m \/ uPred_holds P (n - m) x). |
| 201 | +Proof. |
| 202 | + have h : Decision (n < m) by solve_decision. destruct h. |
| 203 | + { intuition. { apply uPred_holds_later_m. trivial. } |
| 204 | + { apply uPred_holds_later_m. trivial. } |
| 205 | + } |
| 206 | + { intuition. { right. apply uPred_holds_later_m2. { lia. } trivial. } |
| 207 | + { apply uPred_holds_later_m2. { lia. } trivial. } |
| 208 | + } |
| 209 | +Qed. |
| 210 | + |
| 211 | +Lemma uPred_ownM_separates_out_except0_later x (P : iProp Σ) (m: nat) |
| 212 | + : (P -∗ ▷^m ◇ uPred_ownM x) ∗ P ⊢ ( |
| 213 | + ▷^m ((◇ uPred_ownM x) ∗ (uPred_ownM x -∗ P))). |
| 214 | +Proof. |
| 215 | + unfold "◇". uPred.unseal. |
| 216 | + split. |
| 217 | + intros n x0 val t. |
| 218 | + |
| 219 | + unfold uPred_holds, upred.uPred_sep_def in t. |
| 220 | + destruct t as [x1 [x2 [sum [t1 t2]]]]. |
| 221 | + |
| 222 | + unfold uPred_holds, upred.uPred_wand_def in t1. |
| 223 | + |
| 224 | + assert (✓{n} (x1 ⋅ x2)) as val_12. { setoid_rewrite <- sum. trivial. } |
| 225 | + assert (n ≤ n) as nle by trivial. |
| 226 | + have t11 := t1 n x2 nle val_12 t2. |
| 227 | + |
| 228 | + rewrite uPred_holds_later_m3 in t11. |
| 229 | + |
| 230 | + unfold uPred_holds in t11. unfold upred.uPred_or_def in t11. |
| 231 | + |
| 232 | + have h : Decision (n < m) by solve_decision. destruct h. |
| 233 | + { |
| 234 | + rewrite uPred_holds_later_m3. left. trivial. |
| 235 | + } |
| 236 | + |
| 237 | + (*unfold uPred_holds, upred.uPred_sep_def. exists ε, x0. |
| 238 | + split. |
| 239 | + { rewrite ucmra_unit_left_id. trivial. } |
| 240 | + split. |
| 241 | + { rewrite uPred_holds_later_m3. left. trivial. } |
| 242 | + unfold uPred_holds, upred.uPred_wand_def. |
| 243 | + intros n' x' n'_le_n valn' uh. |
| 244 | + |
| 245 | + apply upred.uPred_mono with (n1 := n) (x1 := x2); trivial. |
| 246 | + unfold includedN. exists (x1 ⋅ x'). |
| 247 | + apply dist_le with (n := n); trivial. |
| 248 | + setoid_rewrite sum. |
| 249 | + assert (x2 ⋅ (x1 ⋅ x') ≡ (x2 ⋅ x1 ⋅ x')) as J. { apply cmra_assoc. } |
| 250 | + setoid_rewrite J. |
| 251 | + |
| 252 | + assert (x1 ⋅ x2 ≡ x2 ⋅ x1) as K. { apply cmra_comm. } |
| 253 | + setoid_rewrite K. |
| 254 | + trivial. |
| 255 | + }*) |
| 256 | + |
| 257 | + destruct t11 as [n_lt_m|[tlatfalse|t11]]. |
| 258 | + { lia. } |
| 259 | + { |
| 260 | + unfold uPred_holds in tlatfalse. unfold upred.uPred_later_def in tlatfalse. |
| 261 | + unfold uPred_holds in tlatfalse. unfold upred.uPred_pure_def in tlatfalse. |
| 262 | + |
| 263 | + have h : Decision (n = m) by solve_decision. destruct h. |
| 264 | + 2: { assert (n - m > 0) as X by lia. destruct (n-m). { lia. } contradiction. } |
| 265 | + subst n. |
| 266 | + |
| 267 | + rewrite uPred_holds_later_m3. right. |
| 268 | + |
| 269 | + unfold uPred_holds, upred.uPred_sep_def. exists ε, x0. |
| 270 | + split. |
| 271 | + { rewrite ucmra_unit_left_id. trivial. } |
| 272 | + split. |
| 273 | + { unfold uPred_holds, upred.uPred_or_def. left. unfold uPred_holds, upred.uPred_later_def. trivial. } |
| 274 | + unfold uPred_holds, upred.uPred_wand_def. |
| 275 | + intros n' x' le_m valxx uh. |
| 276 | + apply uPred_mono with (n1 := m) (x1 := x0 ⋅ x'); trivial. |
| 277 | + { |
| 278 | + setoid_rewrite sum. |
| 279 | + eapply uPred_mono. { apply t2. } |
| 280 | + { unfold includedN. exists (x1 ⋅ x'). |
| 281 | + assert (x2 ⋅ (x1 ⋅ x') ≡ (x2 ⋅ x1 ⋅ x')) as J. { apply cmra_assoc. } |
| 282 | + setoid_rewrite J. |
| 283 | + assert (x1 ⋅ x2 ≡ x2 ⋅ x1) as K. { apply cmra_comm. } |
| 284 | + setoid_rewrite K. |
| 285 | + trivial. |
| 286 | + } |
| 287 | + lia. |
| 288 | + } |
| 289 | + lia. |
| 290 | + } |
| 291 | + |
| 292 | + unfold uPred_holds in t11. unfold upred.uPred_ownM_def in t11. |
| 293 | + unfold includedN in t11. destruct t11 as [z h]. |
| 294 | + |
| 295 | + rewrite uPred_holds_later_m3. right. |
| 296 | + |
| 297 | + unfold uPred_holds. unfold upred.uPred_sep_def. |
| 298 | + destruct (cmra_extend (n-m) (x1 ⋅ x2) x z) as (xe&ze&Hx'&Hy1&Hy2); trivial. |
| 299 | + { apply cmra_validN_le with (n := n); trivial. lia. } |
| 300 | + |
| 301 | + exists xe. exists ze. |
| 302 | + |
| 303 | + split. |
| 304 | + { setoid_rewrite <- Hx'. |
| 305 | + apply dist_le with (n := n); trivial. lia. } |
| 306 | + split. |
| 307 | + { unfold uPred_holds, upred.uPred_or_def. right. |
| 308 | + unfold uPred_holds, upred.uPred_ownM_def. |
| 309 | + setoid_rewrite Hy1. trivial. } |
| 310 | + { unfold uPred_holds, upred.uPred_wand_def. |
| 311 | + intros n' x' incl val2 uh. |
| 312 | + unfold uPred_holds in uh. |
| 313 | + unfold upred.uPred_ownM_def in uh. |
| 314 | + unfold includedN in uh. destruct uh as [w j]. |
| 315 | + setoid_rewrite j. |
| 316 | + |
| 317 | + assert (uPred_holds P n x0) as ux0. { |
| 318 | + eapply uPred_mono. { apply t2. } |
| 319 | + { setoid_rewrite sum. unfold includedN. exists x1. |
| 320 | + rewrite cmra_comm. trivial. } |
| 321 | + trivial. |
| 322 | + } |
| 323 | + |
| 324 | + apply uPred_mono with (n1 := n) (x1 := x0); trivial. |
| 325 | + { |
| 326 | + assert (ze ⋅ (x ⋅ w) ≡ (ze ⋅ x) ⋅ w) as associ. { apply cmra_assoc. } |
| 327 | + setoid_rewrite associ. |
| 328 | + assert ((ze ⋅ x) ≡ (x ⋅ ze)) as commu. { apply cmra_comm. } |
| 329 | + setoid_rewrite commu. |
| 330 | + unfold includedN. exists w. |
| 331 | + apply dist_le with (n := n - m); trivial. |
| 332 | + setoid_rewrite <- Hy1. |
| 333 | + setoid_rewrite <- Hx'. |
| 334 | + apply dist_le with (n := n); trivial. |
| 335 | + { setoid_rewrite sum. trivial. } |
| 336 | + lia. |
| 337 | + } lia. |
| 338 | + } |
| 339 | +Qed. |
| 340 | + |
| 341 | +End FactoringUpred. |
0 commit comments