diff --git a/third_party/vma.h b/third_party/vma.h deleted file mode 100644 index 536ffcd..0000000 --- a/third_party/vma.h +++ /dev/null @@ -1,19107 +0,0 @@ -// -// Copyright (c) 2017-2024 Advanced Micro Devices, Inc. All rights reserved. -// -// Permission is hereby granted, free of charge, to any person obtaining a copy -// of this software and associated documentation files (the "Software"), to deal -// in the Software without restriction, including without limitation the rights -// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -// copies of the Software, and to permit persons to whom the Software is -// furnished to do so, subject to the following conditions: -// -// The above copyright notice and this permission notice shall be included in -// all copies or substantial portions of the Software. -// -// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN -// THE SOFTWARE. -// - -#ifndef AMD_VULKAN_MEMORY_ALLOCATOR_H -#define AMD_VULKAN_MEMORY_ALLOCATOR_H - -/** \mainpage Vulkan Memory Allocator - -Version 3.2.0 - -Copyright (c) 2017-2024 Advanced Micro Devices, Inc. All rights reserved. \n -License: MIT \n -See also: [product page on GPUOpen](https://gpuopen.com/gaming-product/vulkan-memory-allocator/), -[repository on GitHub](https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator) - - -API documentation divided into groups: [Topics](topics.html) - -General documentation chapters: - -- User guide - - \subpage quick_start - - [Project setup](@ref quick_start_project_setup) - - [Initialization](@ref quick_start_initialization) - - [Resource allocation](@ref quick_start_resource_allocation) - - \subpage choosing_memory_type - - [Usage](@ref choosing_memory_type_usage) - - [Required and preferred flags](@ref choosing_memory_type_required_preferred_flags) - - [Explicit memory types](@ref choosing_memory_type_explicit_memory_types) - - [Custom memory pools](@ref choosing_memory_type_custom_memory_pools) - - [Dedicated allocations](@ref choosing_memory_type_dedicated_allocations) - - \subpage memory_mapping - - [Copy functions](@ref memory_mapping_copy_functions) - - [Mapping functions](@ref memory_mapping_mapping_functions) - - [Persistently mapped memory](@ref memory_mapping_persistently_mapped_memory) - - [Cache flush and invalidate](@ref memory_mapping_cache_control) - - \subpage staying_within_budget - - [Querying for budget](@ref staying_within_budget_querying_for_budget) - - [Controlling memory usage](@ref staying_within_budget_controlling_memory_usage) - - \subpage resource_aliasing - - \subpage custom_memory_pools - - [Choosing memory type index](@ref custom_memory_pools_MemTypeIndex) - - [When not to use custom pools](@ref custom_memory_pools_when_not_use) - - [Linear allocation algorithm](@ref linear_algorithm) - - [Free-at-once](@ref linear_algorithm_free_at_once) - - [Stack](@ref linear_algorithm_stack) - - [Double stack](@ref linear_algorithm_double_stack) - - [Ring buffer](@ref linear_algorithm_ring_buffer) - - \subpage defragmentation - - \subpage statistics - - [Numeric statistics](@ref statistics_numeric_statistics) - - [JSON dump](@ref statistics_json_dump) - - \subpage allocation_annotation - - [Allocation user data](@ref allocation_user_data) - - [Allocation names](@ref allocation_names) - - \subpage virtual_allocator - - \subpage debugging_memory_usage - - [Memory initialization](@ref debugging_memory_usage_initialization) - - [Margins](@ref debugging_memory_usage_margins) - - [Corruption detection](@ref debugging_memory_usage_corruption_detection) - - [Leak detection features](@ref debugging_memory_usage_leak_detection) - - \subpage other_api_interop -- \subpage usage_patterns - - [GPU-only resource](@ref usage_patterns_gpu_only) - - [Staging copy for upload](@ref usage_patterns_staging_copy_upload) - - [Readback](@ref usage_patterns_readback) - - [Advanced data uploading](@ref usage_patterns_advanced_data_uploading) - - [Other use cases](@ref usage_patterns_other_use_cases) -- \subpage configuration - - [Pointers to Vulkan functions](@ref config_Vulkan_functions) - - [Custom host memory allocator](@ref custom_memory_allocator) - - [Device memory allocation callbacks](@ref allocation_callbacks) - - [Device heap memory limit](@ref heap_memory_limit) -- Extension support - - \subpage vk_khr_dedicated_allocation - - \subpage enabling_buffer_device_address - - \subpage vk_ext_memory_priority - - \subpage vk_amd_device_coherent_memory - - \subpage vk_khr_external_memory_win32 -- \subpage general_considerations - - [Thread safety](@ref general_considerations_thread_safety) - - [Versioning and compatibility](@ref general_considerations_versioning_and_compatibility) - - [Validation layer warnings](@ref general_considerations_validation_layer_warnings) - - [Allocation algorithm](@ref general_considerations_allocation_algorithm) - - [Features not supported](@ref general_considerations_features_not_supported) - -\defgroup group_init Library initialization - -\brief API elements related to the initialization and management of the entire library, especially #VmaAllocator object. - -\defgroup group_alloc Memory allocation - -\brief API elements related to the allocation, deallocation, and management of Vulkan memory, buffers, images. -Most basic ones being: vmaCreateBuffer(), vmaCreateImage(). - -\defgroup group_virtual Virtual allocator - -\brief API elements related to the mechanism of \ref virtual_allocator - using the core allocation algorithm -for user-defined purpose without allocating any real GPU memory. - -\defgroup group_stats Statistics - -\brief API elements that query current status of the allocator, from memory usage, budget, to full dump of the internal state in JSON format. -See documentation chapter: \ref statistics. -*/ - - -#ifdef __cplusplus -extern "C" { -#endif - -#if !defined(VULKAN_H_) -#include -#endif - -#if !defined(VMA_VULKAN_VERSION) - #if defined(VK_VERSION_1_4) - #define VMA_VULKAN_VERSION 1004000 - #elif defined(VK_VERSION_1_3) - #define VMA_VULKAN_VERSION 1003000 - #elif defined(VK_VERSION_1_2) - #define VMA_VULKAN_VERSION 1002000 - #elif defined(VK_VERSION_1_1) - #define VMA_VULKAN_VERSION 1001000 - #else - #define VMA_VULKAN_VERSION 1000000 - #endif -#endif - -#if defined(__ANDROID__) && defined(VK_NO_PROTOTYPES) && VMA_STATIC_VULKAN_FUNCTIONS - extern PFN_vkGetInstanceProcAddr vkGetInstanceProcAddr; - extern PFN_vkGetDeviceProcAddr vkGetDeviceProcAddr; - extern PFN_vkGetPhysicalDeviceProperties vkGetPhysicalDeviceProperties; - extern PFN_vkGetPhysicalDeviceMemoryProperties vkGetPhysicalDeviceMemoryProperties; - extern PFN_vkAllocateMemory vkAllocateMemory; - extern PFN_vkFreeMemory vkFreeMemory; - extern PFN_vkMapMemory vkMapMemory; - extern PFN_vkUnmapMemory vkUnmapMemory; - extern PFN_vkFlushMappedMemoryRanges vkFlushMappedMemoryRanges; - extern PFN_vkInvalidateMappedMemoryRanges vkInvalidateMappedMemoryRanges; - extern PFN_vkBindBufferMemory vkBindBufferMemory; - extern PFN_vkBindImageMemory vkBindImageMemory; - extern PFN_vkGetBufferMemoryRequirements vkGetBufferMemoryRequirements; - extern PFN_vkGetImageMemoryRequirements vkGetImageMemoryRequirements; - extern PFN_vkCreateBuffer vkCreateBuffer; - extern PFN_vkDestroyBuffer vkDestroyBuffer; - extern PFN_vkCreateImage vkCreateImage; - extern PFN_vkDestroyImage vkDestroyImage; - extern PFN_vkCmdCopyBuffer vkCmdCopyBuffer; - #if VMA_VULKAN_VERSION >= 1001000 - extern PFN_vkGetBufferMemoryRequirements2 vkGetBufferMemoryRequirements2; - extern PFN_vkGetImageMemoryRequirements2 vkGetImageMemoryRequirements2; - extern PFN_vkBindBufferMemory2 vkBindBufferMemory2; - extern PFN_vkBindImageMemory2 vkBindImageMemory2; - extern PFN_vkGetPhysicalDeviceMemoryProperties2 vkGetPhysicalDeviceMemoryProperties2; - #endif // #if VMA_VULKAN_VERSION >= 1001000 -#endif // #if defined(__ANDROID__) && VMA_STATIC_VULKAN_FUNCTIONS && VK_NO_PROTOTYPES - -#if !defined(VMA_DEDICATED_ALLOCATION) - #if VK_KHR_get_memory_requirements2 && VK_KHR_dedicated_allocation - #define VMA_DEDICATED_ALLOCATION 1 - #else - #define VMA_DEDICATED_ALLOCATION 0 - #endif -#endif - -#if !defined(VMA_BIND_MEMORY2) - #if VK_KHR_bind_memory2 - #define VMA_BIND_MEMORY2 1 - #else - #define VMA_BIND_MEMORY2 0 - #endif -#endif - -#if !defined(VMA_MEMORY_BUDGET) - #if VK_EXT_memory_budget && (VK_KHR_get_physical_device_properties2 || VMA_VULKAN_VERSION >= 1001000) - #define VMA_MEMORY_BUDGET 1 - #else - #define VMA_MEMORY_BUDGET 0 - #endif -#endif - -// Defined to 1 when VK_KHR_buffer_device_address device extension or equivalent core Vulkan 1.2 feature is defined in its headers. -#if !defined(VMA_BUFFER_DEVICE_ADDRESS) - #if VK_KHR_buffer_device_address || VMA_VULKAN_VERSION >= 1002000 - #define VMA_BUFFER_DEVICE_ADDRESS 1 - #else - #define VMA_BUFFER_DEVICE_ADDRESS 0 - #endif -#endif - -// Defined to 1 when VK_EXT_memory_priority device extension is defined in Vulkan headers. -#if !defined(VMA_MEMORY_PRIORITY) - #if VK_EXT_memory_priority - #define VMA_MEMORY_PRIORITY 1 - #else - #define VMA_MEMORY_PRIORITY 0 - #endif -#endif - -// Defined to 1 when VK_KHR_maintenance4 device extension is defined in Vulkan headers. -#if !defined(VMA_KHR_MAINTENANCE4) - #if VK_KHR_maintenance4 - #define VMA_KHR_MAINTENANCE4 1 - #else - #define VMA_KHR_MAINTENANCE4 0 - #endif -#endif - -// Defined to 1 when VK_KHR_maintenance5 device extension is defined in Vulkan headers. -#if !defined(VMA_KHR_MAINTENANCE5) - #if VK_KHR_maintenance5 - #define VMA_KHR_MAINTENANCE5 1 - #else - #define VMA_KHR_MAINTENANCE5 0 - #endif -#endif - - -// Defined to 1 when VK_KHR_external_memory device extension is defined in Vulkan headers. -#if !defined(VMA_EXTERNAL_MEMORY) - #if VK_KHR_external_memory - #define VMA_EXTERNAL_MEMORY 1 - #else - #define VMA_EXTERNAL_MEMORY 0 - #endif -#endif - -// Defined to 1 when VK_KHR_external_memory_win32 device extension is defined in Vulkan headers. -#if !defined(VMA_EXTERNAL_MEMORY_WIN32) - #if VK_KHR_external_memory_win32 - #define VMA_EXTERNAL_MEMORY_WIN32 1 - #else - #define VMA_EXTERNAL_MEMORY_WIN32 0 - #endif -#endif - -// Define these macros to decorate all public functions with additional code, -// before and after returned type, appropriately. This may be useful for -// exporting the functions when compiling VMA as a separate library. Example: -// #define VMA_CALL_PRE __declspec(dllexport) -// #define VMA_CALL_POST __cdecl -#ifndef VMA_CALL_PRE - #define VMA_CALL_PRE -#endif -#ifndef VMA_CALL_POST - #define VMA_CALL_POST -#endif - -// Define this macro to decorate pNext pointers with an attribute specifying the Vulkan -// structure that will be extended via the pNext chain. -#ifndef VMA_EXTENDS_VK_STRUCT - #define VMA_EXTENDS_VK_STRUCT(vkStruct) -#endif - -// Define this macro to decorate pointers with an attribute specifying the -// length of the array they point to if they are not null. -// -// The length may be one of -// - The name of another parameter in the argument list where the pointer is declared -// - The name of another member in the struct where the pointer is declared -// - The name of a member of a struct type, meaning the value of that member in -// the context of the call. For example -// VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryHeapCount"), -// this means the number of memory heaps available in the device associated -// with the VmaAllocator being dealt with. -#ifndef VMA_LEN_IF_NOT_NULL - #define VMA_LEN_IF_NOT_NULL(len) -#endif - -// The VMA_NULLABLE macro is defined to be _Nullable when compiling with Clang. -// see: https://clang.llvm.org/docs/AttributeReference.html#nullable -#ifndef VMA_NULLABLE - #ifdef __clang__ - #define VMA_NULLABLE _Nullable - #else - #define VMA_NULLABLE - #endif -#endif - -// The VMA_NOT_NULL macro is defined to be _Nonnull when compiling with Clang. -// see: https://clang.llvm.org/docs/AttributeReference.html#nonnull -#ifndef VMA_NOT_NULL - #ifdef __clang__ - #define VMA_NOT_NULL _Nonnull - #else - #define VMA_NOT_NULL - #endif -#endif - -// If non-dispatchable handles are represented as pointers then we can give -// then nullability annotations -#ifndef VMA_NOT_NULL_NON_DISPATCHABLE - #if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__) ) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(__powerpc64__) - #define VMA_NOT_NULL_NON_DISPATCHABLE VMA_NOT_NULL - #else - #define VMA_NOT_NULL_NON_DISPATCHABLE - #endif -#endif - -#ifndef VMA_NULLABLE_NON_DISPATCHABLE - #if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__) ) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(__powerpc64__) - #define VMA_NULLABLE_NON_DISPATCHABLE VMA_NULLABLE - #else - #define VMA_NULLABLE_NON_DISPATCHABLE - #endif -#endif - -#ifndef VMA_STATS_STRING_ENABLED - #define VMA_STATS_STRING_ENABLED 1 -#endif - -//////////////////////////////////////////////////////////////////////////////// -//////////////////////////////////////////////////////////////////////////////// -// -// INTERFACE -// -//////////////////////////////////////////////////////////////////////////////// -//////////////////////////////////////////////////////////////////////////////// - -// Sections for managing code placement in file, only for development purposes e.g. for convenient folding inside an IDE. -#ifndef _VMA_ENUM_DECLARATIONS - -/** -\addtogroup group_init -@{ -*/ - -/// Flags for created #VmaAllocator. -typedef enum VmaAllocatorCreateFlagBits -{ - /** \brief Allocator and all objects created from it will not be synchronized internally, so you must guarantee they are used from only one thread at a time or synchronized externally by you. - - Using this flag may increase performance because internal mutexes are not used. - */ - VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT = 0x00000001, - /** \brief Enables usage of VK_KHR_dedicated_allocation extension. - - The flag works only if VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_0`. - When it is `VK_API_VERSION_1_1`, the flag is ignored because the extension has been promoted to Vulkan 1.1. - - Using this extension will automatically allocate dedicated blocks of memory for - some buffers and images instead of suballocating place for them out of bigger - memory blocks (as if you explicitly used #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT - flag) when it is recommended by the driver. It may improve performance on some - GPUs. - - You may set this flag only if you found out that following device extensions are - supported, you enabled them while creating Vulkan device passed as - VmaAllocatorCreateInfo::device, and you want them to be used internally by this - library: - - - VK_KHR_get_memory_requirements2 (device extension) - - VK_KHR_dedicated_allocation (device extension) - - When this flag is set, you can experience following warnings reported by Vulkan - validation layer. You can ignore them. - - > vkBindBufferMemory(): Binding memory to buffer 0x2d but vkGetBufferMemoryRequirements() has not been called on that buffer. - */ - VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT = 0x00000002, - /** - Enables usage of VK_KHR_bind_memory2 extension. - - The flag works only if VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_0`. - When it is `VK_API_VERSION_1_1`, the flag is ignored because the extension has been promoted to Vulkan 1.1. - - You may set this flag only if you found out that this device extension is supported, - you enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device, - and you want it to be used internally by this library. - - The extension provides functions `vkBindBufferMemory2KHR` and `vkBindImageMemory2KHR`, - which allow to pass a chain of `pNext` structures while binding. - This flag is required if you use `pNext` parameter in vmaBindBufferMemory2() or vmaBindImageMemory2(). - */ - VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT = 0x00000004, - /** - Enables usage of VK_EXT_memory_budget extension. - - You may set this flag only if you found out that this device extension is supported, - you enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device, - and you want it to be used internally by this library, along with another instance extension - VK_KHR_get_physical_device_properties2, which is required by it (or Vulkan 1.1, where this extension is promoted). - - The extension provides query for current memory usage and budget, which will probably - be more accurate than an estimation used by the library otherwise. - */ - VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT = 0x00000008, - /** - Enables usage of VK_AMD_device_coherent_memory extension. - - You may set this flag only if you: - - - found out that this device extension is supported and enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device, - - checked that `VkPhysicalDeviceCoherentMemoryFeaturesAMD::deviceCoherentMemory` is true and set it while creating the Vulkan device, - - want it to be used internally by this library. - - The extension and accompanying device feature provide access to memory types with - `VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD` and `VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD` flags. - They are useful mostly for writing breadcrumb markers - a common method for debugging GPU crash/hang/TDR. - - When the extension is not enabled, such memory types are still enumerated, but their usage is illegal. - To protect from this error, if you don't create the allocator with this flag, it will refuse to allocate any memory or create a custom pool in such memory type, - returning `VK_ERROR_FEATURE_NOT_PRESENT`. - */ - VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT = 0x00000010, - /** - Enables usage of "buffer device address" feature, which allows you to use function - `vkGetBufferDeviceAddress*` to get raw GPU pointer to a buffer and pass it for usage inside a shader. - - You may set this flag only if you: - - 1. (For Vulkan version < 1.2) Found as available and enabled device extension - VK_KHR_buffer_device_address. - This extension is promoted to core Vulkan 1.2. - 2. Found as available and enabled device feature `VkPhysicalDeviceBufferDeviceAddressFeatures::bufferDeviceAddress`. - - When this flag is set, you can create buffers with `VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT` using VMA. - The library automatically adds `VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT` to - allocated memory blocks wherever it might be needed. - - For more information, see documentation chapter \ref enabling_buffer_device_address. - */ - VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT = 0x00000020, - /** - Enables usage of VK_EXT_memory_priority extension in the library. - - You may set this flag only if you found available and enabled this device extension, - along with `VkPhysicalDeviceMemoryPriorityFeaturesEXT::memoryPriority == VK_TRUE`, - while creating Vulkan device passed as VmaAllocatorCreateInfo::device. - - When this flag is used, VmaAllocationCreateInfo::priority and VmaPoolCreateInfo::priority - are used to set priorities of allocated Vulkan memory. Without it, these variables are ignored. - - A priority must be a floating-point value between 0 and 1, indicating the priority of the allocation relative to other memory allocations. - Larger values are higher priority. The granularity of the priorities is implementation-dependent. - It is automatically passed to every call to `vkAllocateMemory` done by the library using structure `VkMemoryPriorityAllocateInfoEXT`. - The value to be used for default priority is 0.5. - For more details, see the documentation of the VK_EXT_memory_priority extension. - */ - VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT = 0x00000040, - /** - Enables usage of VK_KHR_maintenance4 extension in the library. - - You may set this flag only if you found available and enabled this device extension, - while creating Vulkan device passed as VmaAllocatorCreateInfo::device. - */ - VMA_ALLOCATOR_CREATE_KHR_MAINTENANCE4_BIT = 0x00000080, - /** - Enables usage of VK_KHR_maintenance5 extension in the library. - - You should set this flag if you found available and enabled this device extension, - while creating Vulkan device passed as VmaAllocatorCreateInfo::device. - */ - VMA_ALLOCATOR_CREATE_KHR_MAINTENANCE5_BIT = 0x00000100, - - /** - Enables usage of VK_KHR_external_memory_win32 extension in the library. - - You should set this flag if you found available and enabled this device extension, - while creating Vulkan device passed as VmaAllocatorCreateInfo::device. - For more information, see \ref vk_khr_external_memory_win32. - */ - VMA_ALLOCATOR_CREATE_KHR_EXTERNAL_MEMORY_WIN32_BIT = 0x00000200, - - VMA_ALLOCATOR_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF -} VmaAllocatorCreateFlagBits; -/// See #VmaAllocatorCreateFlagBits. -typedef VkFlags VmaAllocatorCreateFlags; - -/** @} */ - -/** -\addtogroup group_alloc -@{ -*/ - -/// \brief Intended usage of the allocated memory. -typedef enum VmaMemoryUsage -{ - /** No intended memory usage specified. - Use other members of VmaAllocationCreateInfo to specify your requirements. - */ - VMA_MEMORY_USAGE_UNKNOWN = 0, - /** - \deprecated Obsolete, preserved for backward compatibility. - Prefers `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`. - */ - VMA_MEMORY_USAGE_GPU_ONLY = 1, - /** - \deprecated Obsolete, preserved for backward compatibility. - Guarantees `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` and `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT`. - */ - VMA_MEMORY_USAGE_CPU_ONLY = 2, - /** - \deprecated Obsolete, preserved for backward compatibility. - Guarantees `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT`, prefers `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`. - */ - VMA_MEMORY_USAGE_CPU_TO_GPU = 3, - /** - \deprecated Obsolete, preserved for backward compatibility. - Guarantees `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT`, prefers `VK_MEMORY_PROPERTY_HOST_CACHED_BIT`. - */ - VMA_MEMORY_USAGE_GPU_TO_CPU = 4, - /** - \deprecated Obsolete, preserved for backward compatibility. - Prefers not `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`. - */ - VMA_MEMORY_USAGE_CPU_COPY = 5, - /** - Lazily allocated GPU memory having `VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT`. - Exists mostly on mobile platforms. Using it on desktop PC or other GPUs with no such memory type present will fail the allocation. - - Usage: Memory for transient attachment images (color attachments, depth attachments etc.), created with `VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT`. - - Allocations with this usage are always created as dedicated - it implies #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. - */ - VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED = 6, - /** - Selects best memory type automatically. - This flag is recommended for most common use cases. - - When using this flag, if you want to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT), - you must pass one of the flags: #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT - in VmaAllocationCreateInfo::flags. - - It can be used only with functions that let the library know `VkBufferCreateInfo` or `VkImageCreateInfo`, e.g. - vmaCreateBuffer(), vmaCreateImage(), vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo() - and not with generic memory allocation functions. - */ - VMA_MEMORY_USAGE_AUTO = 7, - /** - Selects best memory type automatically with preference for GPU (device) memory. - - When using this flag, if you want to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT), - you must pass one of the flags: #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT - in VmaAllocationCreateInfo::flags. - - It can be used only with functions that let the library know `VkBufferCreateInfo` or `VkImageCreateInfo`, e.g. - vmaCreateBuffer(), vmaCreateImage(), vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo() - and not with generic memory allocation functions. - */ - VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE = 8, - /** - Selects best memory type automatically with preference for CPU (host) memory. - - When using this flag, if you want to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT), - you must pass one of the flags: #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT - in VmaAllocationCreateInfo::flags. - - It can be used only with functions that let the library know `VkBufferCreateInfo` or `VkImageCreateInfo`, e.g. - vmaCreateBuffer(), vmaCreateImage(), vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo() - and not with generic memory allocation functions. - */ - VMA_MEMORY_USAGE_AUTO_PREFER_HOST = 9, - - VMA_MEMORY_USAGE_MAX_ENUM = 0x7FFFFFFF -} VmaMemoryUsage; - -/// Flags to be passed as VmaAllocationCreateInfo::flags. -typedef enum VmaAllocationCreateFlagBits -{ - /** \brief Set this flag if the allocation should have its own memory block. - - Use it for special, big resources, like fullscreen images used as attachments. - - If you use this flag while creating a buffer or an image, `VkMemoryDedicatedAllocateInfo` - structure is applied if possible. - */ - VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT = 0x00000001, - - /** \brief Set this flag to only try to allocate from existing `VkDeviceMemory` blocks and never create new such block. - - If new allocation cannot be placed in any of the existing blocks, allocation - fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY` error. - - You should not use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT and - #VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT at the same time. It makes no sense. - */ - VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT = 0x00000002, - /** \brief Set this flag to use a memory that will be persistently mapped and retrieve pointer to it. - - Pointer to mapped memory will be returned through VmaAllocationInfo::pMappedData. - - It is valid to use this flag for allocation made from memory type that is not - `HOST_VISIBLE`. This flag is then ignored and memory is not mapped. This is - useful if you need an allocation that is efficient to use on GPU - (`DEVICE_LOCAL`) and still want to map it directly if possible on platforms that - support it (e.g. Intel GPU). - */ - VMA_ALLOCATION_CREATE_MAPPED_BIT = 0x00000004, - /** \deprecated Preserved for backward compatibility. Consider using vmaSetAllocationName() instead. - - Set this flag to treat VmaAllocationCreateInfo::pUserData as pointer to a - null-terminated string. Instead of copying pointer value, a local copy of the - string is made and stored in allocation's `pName`. The string is automatically - freed together with the allocation. It is also used in vmaBuildStatsString(). - */ - VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT = 0x00000020, - /** Allocation will be created from upper stack in a double stack pool. - - This flag is only allowed for custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT flag. - */ - VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT = 0x00000040, - /** Create both buffer/image and allocation, but don't bind them together. - It is useful when you want to bind yourself to do some more advanced binding, e.g. using some extensions. - The flag is meaningful only with functions that bind by default: vmaCreateBuffer(), vmaCreateImage(). - Otherwise it is ignored. - - If you want to make sure the new buffer/image is not tied to the new memory allocation - through `VkMemoryDedicatedAllocateInfoKHR` structure in case the allocation ends up in its own memory block, - use also flag #VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT. - */ - VMA_ALLOCATION_CREATE_DONT_BIND_BIT = 0x00000080, - /** Create allocation only if additional device memory required for it, if any, won't exceed - memory budget. Otherwise return `VK_ERROR_OUT_OF_DEVICE_MEMORY`. - */ - VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT = 0x00000100, - /** \brief Set this flag if the allocated memory will have aliasing resources. - - Usage of this flag prevents supplying `VkMemoryDedicatedAllocateInfoKHR` when #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT is specified. - Otherwise created dedicated memory will not be suitable for aliasing resources, resulting in Vulkan Validation Layer errors. - */ - VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT = 0x00000200, - /** - Requests possibility to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT). - - - If you use #VMA_MEMORY_USAGE_AUTO or other `VMA_MEMORY_USAGE_AUTO*` value, - you must use this flag to be able to map the allocation. Otherwise, mapping is incorrect. - - If you use other value of #VmaMemoryUsage, this flag is ignored and mapping is always possible in memory types that are `HOST_VISIBLE`. - This includes allocations created in \ref custom_memory_pools. - - Declares that mapped memory will only be written sequentially, e.g. using `memcpy()` or a loop writing number-by-number, - never read or accessed randomly, so a memory type can be selected that is uncached and write-combined. - - \warning Violating this declaration may work correctly, but will likely be very slow. - Watch out for implicit reads introduced by doing e.g. `pMappedData[i] += x;` - Better prepare your data in a local variable and `memcpy()` it to the mapped pointer all at once. - */ - VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT = 0x00000400, - /** - Requests possibility to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT). - - - If you use #VMA_MEMORY_USAGE_AUTO or other `VMA_MEMORY_USAGE_AUTO*` value, - you must use this flag to be able to map the allocation. Otherwise, mapping is incorrect. - - If you use other value of #VmaMemoryUsage, this flag is ignored and mapping is always possible in memory types that are `HOST_VISIBLE`. - This includes allocations created in \ref custom_memory_pools. - - Declares that mapped memory can be read, written, and accessed in random order, - so a `HOST_CACHED` memory type is preferred. - */ - VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT = 0x00000800, - /** - Together with #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT, - it says that despite request for host access, a not-`HOST_VISIBLE` memory type can be selected - if it may improve performance. - - By using this flag, you declare that you will check if the allocation ended up in a `HOST_VISIBLE` memory type - (e.g. using vmaGetAllocationMemoryProperties()) and if not, you will create some "staging" buffer and - issue an explicit transfer to write/read your data. - To prepare for this possibility, don't forget to add appropriate flags like - `VK_BUFFER_USAGE_TRANSFER_DST_BIT`, `VK_BUFFER_USAGE_TRANSFER_SRC_BIT` to the parameters of created buffer or image. - */ - VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT = 0x00001000, - /** Allocation strategy that chooses smallest possible free range for the allocation - to minimize memory usage and fragmentation, possibly at the expense of allocation time. - */ - VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT = 0x00010000, - /** Allocation strategy that chooses first suitable free range for the allocation - - not necessarily in terms of the smallest offset but the one that is easiest and fastest to find - to minimize allocation time, possibly at the expense of allocation quality. - */ - VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT = 0x00020000, - /** Allocation strategy that chooses always the lowest offset in available space. - This is not the most efficient strategy but achieves highly packed data. - Used internally by defragmentation, not recommended in typical usage. - */ - VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT = 0x00040000, - /** Alias to #VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT. - */ - VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT, - /** Alias to #VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT. - */ - VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT, - /** A bit mask to extract only `STRATEGY` bits from entire set of flags. - */ - VMA_ALLOCATION_CREATE_STRATEGY_MASK = - VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT | - VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT | - VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT, - - VMA_ALLOCATION_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF -} VmaAllocationCreateFlagBits; -/// See #VmaAllocationCreateFlagBits. -typedef VkFlags VmaAllocationCreateFlags; - -/// Flags to be passed as VmaPoolCreateInfo::flags. -typedef enum VmaPoolCreateFlagBits -{ - /** \brief Use this flag if you always allocate only buffers and linear images or only optimal images out of this pool and so Buffer-Image Granularity can be ignored. - - This is an optional optimization flag. - - If you always allocate using vmaCreateBuffer(), vmaCreateImage(), - vmaAllocateMemoryForBuffer(), then you don't need to use it because allocator - knows exact type of your allocations so it can handle Buffer-Image Granularity - in the optimal way. - - If you also allocate using vmaAllocateMemoryForImage() or vmaAllocateMemory(), - exact type of such allocations is not known, so allocator must be conservative - in handling Buffer-Image Granularity, which can lead to suboptimal allocation - (wasted memory). In that case, if you can make sure you always allocate only - buffers and linear images or only optimal images out of this pool, use this flag - to make allocator disregard Buffer-Image Granularity and so make allocations - faster and more optimal. - */ - VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT = 0x00000002, - - /** \brief Enables alternative, linear allocation algorithm in this pool. - - Specify this flag to enable linear allocation algorithm, which always creates - new allocations after last one and doesn't reuse space from allocations freed in - between. It trades memory consumption for simplified algorithm and data - structure, which has better performance and uses less memory for metadata. - - By using this flag, you can achieve behavior of free-at-once, stack, - ring buffer, and double stack. - For details, see documentation chapter \ref linear_algorithm. - */ - VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT = 0x00000004, - - /** Bit mask to extract only `ALGORITHM` bits from entire set of flags. - */ - VMA_POOL_CREATE_ALGORITHM_MASK = - VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT, - - VMA_POOL_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF -} VmaPoolCreateFlagBits; -/// Flags to be passed as VmaPoolCreateInfo::flags. See #VmaPoolCreateFlagBits. -typedef VkFlags VmaPoolCreateFlags; - -/// Flags to be passed as VmaDefragmentationInfo::flags. -typedef enum VmaDefragmentationFlagBits -{ - /* \brief Use simple but fast algorithm for defragmentation. - May not achieve best results but will require least time to compute and least allocations to copy. - */ - VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FAST_BIT = 0x1, - /* \brief Default defragmentation algorithm, applied also when no `ALGORITHM` flag is specified. - Offers a balance between defragmentation quality and the amount of allocations and bytes that need to be moved. - */ - VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT = 0x2, - /* \brief Perform full defragmentation of memory. - Can result in notably more time to compute and allocations to copy, but will achieve best memory packing. - */ - VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FULL_BIT = 0x4, - /** \brief Use the most roboust algorithm at the cost of time to compute and number of copies to make. - Only available when bufferImageGranularity is greater than 1, since it aims to reduce - alignment issues between different types of resources. - Otherwise falls back to same behavior as #VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FULL_BIT. - */ - VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT = 0x8, - - /// A bit mask to extract only `ALGORITHM` bits from entire set of flags. - VMA_DEFRAGMENTATION_FLAG_ALGORITHM_MASK = - VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FAST_BIT | - VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT | - VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FULL_BIT | - VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT, - - VMA_DEFRAGMENTATION_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF -} VmaDefragmentationFlagBits; -/// See #VmaDefragmentationFlagBits. -typedef VkFlags VmaDefragmentationFlags; - -/// Operation performed on single defragmentation move. See structure #VmaDefragmentationMove. -typedef enum VmaDefragmentationMoveOperation -{ - /// Buffer/image has been recreated at `dstTmpAllocation`, data has been copied, old buffer/image has been destroyed. `srcAllocation` should be changed to point to the new place. This is the default value set by vmaBeginDefragmentationPass(). - VMA_DEFRAGMENTATION_MOVE_OPERATION_COPY = 0, - /// Set this value if you cannot move the allocation. New place reserved at `dstTmpAllocation` will be freed. `srcAllocation` will remain unchanged. - VMA_DEFRAGMENTATION_MOVE_OPERATION_IGNORE = 1, - /// Set this value if you decide to abandon the allocation and you destroyed the buffer/image. New place reserved at `dstTmpAllocation` will be freed, along with `srcAllocation`, which will be destroyed. - VMA_DEFRAGMENTATION_MOVE_OPERATION_DESTROY = 2, -} VmaDefragmentationMoveOperation; - -/** @} */ - -/** -\addtogroup group_virtual -@{ -*/ - -/// Flags to be passed as VmaVirtualBlockCreateInfo::flags. -typedef enum VmaVirtualBlockCreateFlagBits -{ - /** \brief Enables alternative, linear allocation algorithm in this virtual block. - - Specify this flag to enable linear allocation algorithm, which always creates - new allocations after last one and doesn't reuse space from allocations freed in - between. It trades memory consumption for simplified algorithm and data - structure, which has better performance and uses less memory for metadata. - - By using this flag, you can achieve behavior of free-at-once, stack, - ring buffer, and double stack. - For details, see documentation chapter \ref linear_algorithm. - */ - VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT = 0x00000001, - - /** \brief Bit mask to extract only `ALGORITHM` bits from entire set of flags. - */ - VMA_VIRTUAL_BLOCK_CREATE_ALGORITHM_MASK = - VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT, - - VMA_VIRTUAL_BLOCK_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF -} VmaVirtualBlockCreateFlagBits; -/// Flags to be passed as VmaVirtualBlockCreateInfo::flags. See #VmaVirtualBlockCreateFlagBits. -typedef VkFlags VmaVirtualBlockCreateFlags; - -/// Flags to be passed as VmaVirtualAllocationCreateInfo::flags. -typedef enum VmaVirtualAllocationCreateFlagBits -{ - /** \brief Allocation will be created from upper stack in a double stack pool. - - This flag is only allowed for virtual blocks created with #VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT flag. - */ - VMA_VIRTUAL_ALLOCATION_CREATE_UPPER_ADDRESS_BIT = VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT, - /** \brief Allocation strategy that tries to minimize memory usage. - */ - VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT, - /** \brief Allocation strategy that tries to minimize allocation time. - */ - VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT, - /** Allocation strategy that chooses always the lowest offset in available space. - This is not the most efficient strategy but achieves highly packed data. - */ - VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT, - /** \brief A bit mask to extract only `STRATEGY` bits from entire set of flags. - - These strategy flags are binary compatible with equivalent flags in #VmaAllocationCreateFlagBits. - */ - VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MASK = VMA_ALLOCATION_CREATE_STRATEGY_MASK, - - VMA_VIRTUAL_ALLOCATION_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF -} VmaVirtualAllocationCreateFlagBits; -/// Flags to be passed as VmaVirtualAllocationCreateInfo::flags. See #VmaVirtualAllocationCreateFlagBits. -typedef VkFlags VmaVirtualAllocationCreateFlags; - -/** @} */ - -#endif // _VMA_ENUM_DECLARATIONS - -#ifndef _VMA_DATA_TYPES_DECLARATIONS - -/** -\addtogroup group_init -@{ */ - -/** \struct VmaAllocator -\brief Represents main object of this library initialized. - -Fill structure #VmaAllocatorCreateInfo and call function vmaCreateAllocator() to create it. -Call function vmaDestroyAllocator() to destroy it. - -It is recommended to create just one object of this type per `VkDevice` object, -right after Vulkan is initialized and keep it alive until before Vulkan device is destroyed. -*/ -VK_DEFINE_HANDLE(VmaAllocator) - -/** @} */ - -/** -\addtogroup group_alloc -@{ -*/ - -/** \struct VmaPool -\brief Represents custom memory pool - -Fill structure VmaPoolCreateInfo and call function vmaCreatePool() to create it. -Call function vmaDestroyPool() to destroy it. - -For more information see [Custom memory pools](@ref choosing_memory_type_custom_memory_pools). -*/ -VK_DEFINE_HANDLE(VmaPool) - -/** \struct VmaAllocation -\brief Represents single memory allocation. - -It may be either dedicated block of `VkDeviceMemory` or a specific region of a bigger block of this type -plus unique offset. - -There are multiple ways to create such object. -You need to fill structure VmaAllocationCreateInfo. -For more information see [Choosing memory type](@ref choosing_memory_type). - -Although the library provides convenience functions that create Vulkan buffer or image, -allocate memory for it and bind them together, -binding of the allocation to a buffer or an image is out of scope of the allocation itself. -Allocation object can exist without buffer/image bound, -binding can be done manually by the user, and destruction of it can be done -independently of destruction of the allocation. - -The object also remembers its size and some other information. -To retrieve this information, use function vmaGetAllocationInfo() and inspect -returned structure VmaAllocationInfo. -*/ -VK_DEFINE_HANDLE(VmaAllocation) - -/** \struct VmaDefragmentationContext -\brief An opaque object that represents started defragmentation process. - -Fill structure #VmaDefragmentationInfo and call function vmaBeginDefragmentation() to create it. -Call function vmaEndDefragmentation() to destroy it. -*/ -VK_DEFINE_HANDLE(VmaDefragmentationContext) - -/** @} */ - -/** -\addtogroup group_virtual -@{ -*/ - -/** \struct VmaVirtualAllocation -\brief Represents single memory allocation done inside VmaVirtualBlock. - -Use it as a unique identifier to virtual allocation within the single block. - -Use value `VK_NULL_HANDLE` to represent a null/invalid allocation. -*/ -VK_DEFINE_NON_DISPATCHABLE_HANDLE(VmaVirtualAllocation) - -/** @} */ - -/** -\addtogroup group_virtual -@{ -*/ - -/** \struct VmaVirtualBlock -\brief Handle to a virtual block object that allows to use core allocation algorithm without allocating any real GPU memory. - -Fill in #VmaVirtualBlockCreateInfo structure and use vmaCreateVirtualBlock() to create it. Use vmaDestroyVirtualBlock() to destroy it. -For more information, see documentation chapter \ref virtual_allocator. - -This object is not thread-safe - should not be used from multiple threads simultaneously, must be synchronized externally. -*/ -VK_DEFINE_HANDLE(VmaVirtualBlock) - -/** @} */ - -/** -\addtogroup group_init -@{ -*/ - -/// Callback function called after successful vkAllocateMemory. -typedef void (VKAPI_PTR* PFN_vmaAllocateDeviceMemoryFunction)( - VmaAllocator VMA_NOT_NULL allocator, - uint32_t memoryType, - VkDeviceMemory VMA_NOT_NULL_NON_DISPATCHABLE memory, - VkDeviceSize size, - void* VMA_NULLABLE pUserData); - -/// Callback function called before vkFreeMemory. -typedef void (VKAPI_PTR* PFN_vmaFreeDeviceMemoryFunction)( - VmaAllocator VMA_NOT_NULL allocator, - uint32_t memoryType, - VkDeviceMemory VMA_NOT_NULL_NON_DISPATCHABLE memory, - VkDeviceSize size, - void* VMA_NULLABLE pUserData); - -/** \brief Set of callbacks that the library will call for `vkAllocateMemory` and `vkFreeMemory`. - -Provided for informative purpose, e.g. to gather statistics about number of -allocations or total amount of memory allocated in Vulkan. - -Used in VmaAllocatorCreateInfo::pDeviceMemoryCallbacks. -*/ -typedef struct VmaDeviceMemoryCallbacks -{ - /// Optional, can be null. - PFN_vmaAllocateDeviceMemoryFunction VMA_NULLABLE pfnAllocate; - /// Optional, can be null. - PFN_vmaFreeDeviceMemoryFunction VMA_NULLABLE pfnFree; - /// Optional, can be null. - void* VMA_NULLABLE pUserData; -} VmaDeviceMemoryCallbacks; - -/** \brief Pointers to some Vulkan functions - a subset used by the library. - -Used in VmaAllocatorCreateInfo::pVulkanFunctions. -*/ -typedef struct VmaVulkanFunctions -{ - /// Required when using VMA_DYNAMIC_VULKAN_FUNCTIONS. - PFN_vkGetInstanceProcAddr VMA_NULLABLE vkGetInstanceProcAddr; - /// Required when using VMA_DYNAMIC_VULKAN_FUNCTIONS. - PFN_vkGetDeviceProcAddr VMA_NULLABLE vkGetDeviceProcAddr; - PFN_vkGetPhysicalDeviceProperties VMA_NULLABLE vkGetPhysicalDeviceProperties; - PFN_vkGetPhysicalDeviceMemoryProperties VMA_NULLABLE vkGetPhysicalDeviceMemoryProperties; - PFN_vkAllocateMemory VMA_NULLABLE vkAllocateMemory; - PFN_vkFreeMemory VMA_NULLABLE vkFreeMemory; - PFN_vkMapMemory VMA_NULLABLE vkMapMemory; - PFN_vkUnmapMemory VMA_NULLABLE vkUnmapMemory; - PFN_vkFlushMappedMemoryRanges VMA_NULLABLE vkFlushMappedMemoryRanges; - PFN_vkInvalidateMappedMemoryRanges VMA_NULLABLE vkInvalidateMappedMemoryRanges; - PFN_vkBindBufferMemory VMA_NULLABLE vkBindBufferMemory; - PFN_vkBindImageMemory VMA_NULLABLE vkBindImageMemory; - PFN_vkGetBufferMemoryRequirements VMA_NULLABLE vkGetBufferMemoryRequirements; - PFN_vkGetImageMemoryRequirements VMA_NULLABLE vkGetImageMemoryRequirements; - PFN_vkCreateBuffer VMA_NULLABLE vkCreateBuffer; - PFN_vkDestroyBuffer VMA_NULLABLE vkDestroyBuffer; - PFN_vkCreateImage VMA_NULLABLE vkCreateImage; - PFN_vkDestroyImage VMA_NULLABLE vkDestroyImage; - PFN_vkCmdCopyBuffer VMA_NULLABLE vkCmdCopyBuffer; -#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 - /// Fetch "vkGetBufferMemoryRequirements2" on Vulkan >= 1.1, fetch "vkGetBufferMemoryRequirements2KHR" when using VK_KHR_dedicated_allocation extension. - PFN_vkGetBufferMemoryRequirements2KHR VMA_NULLABLE vkGetBufferMemoryRequirements2KHR; - /// Fetch "vkGetImageMemoryRequirements2" on Vulkan >= 1.1, fetch "vkGetImageMemoryRequirements2KHR" when using VK_KHR_dedicated_allocation extension. - PFN_vkGetImageMemoryRequirements2KHR VMA_NULLABLE vkGetImageMemoryRequirements2KHR; -#endif -#if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000 - /// Fetch "vkBindBufferMemory2" on Vulkan >= 1.1, fetch "vkBindBufferMemory2KHR" when using VK_KHR_bind_memory2 extension. - PFN_vkBindBufferMemory2KHR VMA_NULLABLE vkBindBufferMemory2KHR; - /// Fetch "vkBindImageMemory2" on Vulkan >= 1.1, fetch "vkBindImageMemory2KHR" when using VK_KHR_bind_memory2 extension. - PFN_vkBindImageMemory2KHR VMA_NULLABLE vkBindImageMemory2KHR; -#endif -#if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000 - /// Fetch from "vkGetPhysicalDeviceMemoryProperties2" on Vulkan >= 1.1, but you can also fetch it from "vkGetPhysicalDeviceMemoryProperties2KHR" if you enabled extension VK_KHR_get_physical_device_properties2. - PFN_vkGetPhysicalDeviceMemoryProperties2KHR VMA_NULLABLE vkGetPhysicalDeviceMemoryProperties2KHR; -#endif -#if VMA_KHR_MAINTENANCE4 || VMA_VULKAN_VERSION >= 1003000 - /// Fetch from "vkGetDeviceBufferMemoryRequirements" on Vulkan >= 1.3, but you can also fetch it from "vkGetDeviceBufferMemoryRequirementsKHR" if you enabled extension VK_KHR_maintenance4. - PFN_vkGetDeviceBufferMemoryRequirementsKHR VMA_NULLABLE vkGetDeviceBufferMemoryRequirements; - /// Fetch from "vkGetDeviceImageMemoryRequirements" on Vulkan >= 1.3, but you can also fetch it from "vkGetDeviceImageMemoryRequirementsKHR" if you enabled extension VK_KHR_maintenance4. - PFN_vkGetDeviceImageMemoryRequirementsKHR VMA_NULLABLE vkGetDeviceImageMemoryRequirements; -#endif -#if VMA_EXTERNAL_MEMORY_WIN32 - PFN_vkGetMemoryWin32HandleKHR VMA_NULLABLE vkGetMemoryWin32HandleKHR; -#else - void* VMA_NULLABLE vkGetMemoryWin32HandleKHR; -#endif -} VmaVulkanFunctions; - -/// Description of a Allocator to be created. -typedef struct VmaAllocatorCreateInfo -{ - /// Flags for created allocator. Use #VmaAllocatorCreateFlagBits enum. - VmaAllocatorCreateFlags flags; - /// Vulkan physical device. - /** It must be valid throughout whole lifetime of created allocator. */ - VkPhysicalDevice VMA_NOT_NULL physicalDevice; - /// Vulkan device. - /** It must be valid throughout whole lifetime of created allocator. */ - VkDevice VMA_NOT_NULL device; - /// Preferred size of a single `VkDeviceMemory` block to be allocated from large heaps > 1 GiB. Optional. - /** Set to 0 to use default, which is currently 256 MiB. */ - VkDeviceSize preferredLargeHeapBlockSize; - /// Custom CPU memory allocation callbacks. Optional. - /** Optional, can be null. When specified, will also be used for all CPU-side memory allocations. */ - const VkAllocationCallbacks* VMA_NULLABLE pAllocationCallbacks; - /// Informative callbacks for `vkAllocateMemory`, `vkFreeMemory`. Optional. - /** Optional, can be null. */ - const VmaDeviceMemoryCallbacks* VMA_NULLABLE pDeviceMemoryCallbacks; - /** \brief Either null or a pointer to an array of limits on maximum number of bytes that can be allocated out of particular Vulkan memory heap. - - If not NULL, it must be a pointer to an array of - `VkPhysicalDeviceMemoryProperties::memoryHeapCount` elements, defining limit on - maximum number of bytes that can be allocated out of particular Vulkan memory - heap. - - Any of the elements may be equal to `VK_WHOLE_SIZE`, which means no limit on that - heap. This is also the default in case of `pHeapSizeLimit` = NULL. - - If there is a limit defined for a heap: - - - If user tries to allocate more memory from that heap using this allocator, - the allocation fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY`. - - If the limit is smaller than heap size reported in `VkMemoryHeap::size`, the - value of this limit will be reported instead when using vmaGetMemoryProperties(). - - Warning! Using this feature may not be equivalent to installing a GPU with - smaller amount of memory, because graphics driver doesn't necessary fail new - allocations with `VK_ERROR_OUT_OF_DEVICE_MEMORY` result when memory capacity is - exceeded. It may return success and just silently migrate some device memory - blocks to system RAM. This driver behavior can also be controlled using - VK_AMD_memory_overallocation_behavior extension. - */ - const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryHeapCount") pHeapSizeLimit; - - /** \brief Pointers to Vulkan functions. Can be null. - - For details see [Pointers to Vulkan functions](@ref config_Vulkan_functions). - */ - const VmaVulkanFunctions* VMA_NULLABLE pVulkanFunctions; - /** \brief Handle to Vulkan instance object. - - Starting from version 3.0.0 this member is no longer optional, it must be set! - */ - VkInstance VMA_NOT_NULL instance; - /** \brief Optional. Vulkan version that the application uses. - - It must be a value in the format as created by macro `VK_MAKE_VERSION` or a constant like: `VK_API_VERSION_1_1`, `VK_API_VERSION_1_0`. - The patch version number specified is ignored. Only the major and minor versions are considered. - Only versions 1.0...1.4 are supported by the current implementation. - Leaving it initialized to zero is equivalent to `VK_API_VERSION_1_0`. - It must match the Vulkan version used by the application and supported on the selected physical device, - so it must be no higher than `VkApplicationInfo::apiVersion` passed to `vkCreateInstance` - and no higher than `VkPhysicalDeviceProperties::apiVersion` found on the physical device used. - */ - uint32_t vulkanApiVersion; -#if VMA_EXTERNAL_MEMORY - /** \brief Either null or a pointer to an array of external memory handle types for each Vulkan memory type. - - If not NULL, it must be a pointer to an array of `VkPhysicalDeviceMemoryProperties::memoryTypeCount` - elements, defining external memory handle types of particular Vulkan memory type, - to be passed using `VkExportMemoryAllocateInfoKHR`. - - Any of the elements may be equal to 0, which means not to use `VkExportMemoryAllocateInfoKHR` on this memory type. - This is also the default in case of `pTypeExternalMemoryHandleTypes` = NULL. - */ - const VkExternalMemoryHandleTypeFlagsKHR* VMA_NULLABLE VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryTypeCount") pTypeExternalMemoryHandleTypes; -#endif // #if VMA_EXTERNAL_MEMORY -} VmaAllocatorCreateInfo; - -/// Information about existing #VmaAllocator object. -typedef struct VmaAllocatorInfo -{ - /** \brief Handle to Vulkan instance object. - - This is the same value as has been passed through VmaAllocatorCreateInfo::instance. - */ - VkInstance VMA_NOT_NULL instance; - /** \brief Handle to Vulkan physical device object. - - This is the same value as has been passed through VmaAllocatorCreateInfo::physicalDevice. - */ - VkPhysicalDevice VMA_NOT_NULL physicalDevice; - /** \brief Handle to Vulkan device object. - - This is the same value as has been passed through VmaAllocatorCreateInfo::device. - */ - VkDevice VMA_NOT_NULL device; -} VmaAllocatorInfo; - -/** @} */ - -/** -\addtogroup group_stats -@{ -*/ - -/** \brief Calculated statistics of memory usage e.g. in a specific memory type, heap, custom pool, or total. - -These are fast to calculate. -See functions: vmaGetHeapBudgets(), vmaGetPoolStatistics(). -*/ -typedef struct VmaStatistics -{ - /** \brief Number of `VkDeviceMemory` objects - Vulkan memory blocks allocated. - */ - uint32_t blockCount; - /** \brief Number of #VmaAllocation objects allocated. - - Dedicated allocations have their own blocks, so each one adds 1 to `allocationCount` as well as `blockCount`. - */ - uint32_t allocationCount; - /** \brief Number of bytes allocated in `VkDeviceMemory` blocks. - - \note To avoid confusion, please be aware that what Vulkan calls an "allocation" - a whole `VkDeviceMemory` object - (e.g. as in `VkPhysicalDeviceLimits::maxMemoryAllocationCount`) is called a "block" in VMA, while VMA calls - "allocation" a #VmaAllocation object that represents a memory region sub-allocated from such block, usually for a single buffer or image. - */ - VkDeviceSize blockBytes; - /** \brief Total number of bytes occupied by all #VmaAllocation objects. - - Always less or equal than `blockBytes`. - Difference `(blockBytes - allocationBytes)` is the amount of memory allocated from Vulkan - but unused by any #VmaAllocation. - */ - VkDeviceSize allocationBytes; -} VmaStatistics; - -/** \brief More detailed statistics than #VmaStatistics. - -These are slower to calculate. Use for debugging purposes. -See functions: vmaCalculateStatistics(), vmaCalculatePoolStatistics(). - -Previous version of the statistics API provided averages, but they have been removed -because they can be easily calculated as: - -\code -VkDeviceSize allocationSizeAvg = detailedStats.statistics.allocationBytes / detailedStats.statistics.allocationCount; -VkDeviceSize unusedBytes = detailedStats.statistics.blockBytes - detailedStats.statistics.allocationBytes; -VkDeviceSize unusedRangeSizeAvg = unusedBytes / detailedStats.unusedRangeCount; -\endcode -*/ -typedef struct VmaDetailedStatistics -{ - /// Basic statistics. - VmaStatistics statistics; - /// Number of free ranges of memory between allocations. - uint32_t unusedRangeCount; - /// Smallest allocation size. `VK_WHOLE_SIZE` if there are 0 allocations. - VkDeviceSize allocationSizeMin; - /// Largest allocation size. 0 if there are 0 allocations. - VkDeviceSize allocationSizeMax; - /// Smallest empty range size. `VK_WHOLE_SIZE` if there are 0 empty ranges. - VkDeviceSize unusedRangeSizeMin; - /// Largest empty range size. 0 if there are 0 empty ranges. - VkDeviceSize unusedRangeSizeMax; -} VmaDetailedStatistics; - -/** \brief General statistics from current state of the Allocator - -total memory usage across all memory heaps and types. - -These are slower to calculate. Use for debugging purposes. -See function vmaCalculateStatistics(). -*/ -typedef struct VmaTotalStatistics -{ - VmaDetailedStatistics memoryType[VK_MAX_MEMORY_TYPES]; - VmaDetailedStatistics memoryHeap[VK_MAX_MEMORY_HEAPS]; - VmaDetailedStatistics total; -} VmaTotalStatistics; - -/** \brief Statistics of current memory usage and available budget for a specific memory heap. - -These are fast to calculate. -See function vmaGetHeapBudgets(). -*/ -typedef struct VmaBudget -{ - /** \brief Statistics fetched from the library. - */ - VmaStatistics statistics; - /** \brief Estimated current memory usage of the program, in bytes. - - Fetched from system using VK_EXT_memory_budget extension if enabled. - - It might be different than `statistics.blockBytes` (usually higher) due to additional implicit objects - also occupying the memory, like swapchain, pipelines, descriptor heaps, command buffers, or - `VkDeviceMemory` blocks allocated outside of this library, if any. - */ - VkDeviceSize usage; - /** \brief Estimated amount of memory available to the program, in bytes. - - Fetched from system using VK_EXT_memory_budget extension if enabled. - - It might be different (most probably smaller) than `VkMemoryHeap::size[heapIndex]` due to factors - external to the program, decided by the operating system. - Difference `budget - usage` is the amount of additional memory that can probably - be allocated without problems. Exceeding the budget may result in various problems. - */ - VkDeviceSize budget; -} VmaBudget; - -/** @} */ - -/** -\addtogroup group_alloc -@{ -*/ - -/** \brief Parameters of new #VmaAllocation. - -To be used with functions like vmaCreateBuffer(), vmaCreateImage(), and many others. -*/ -typedef struct VmaAllocationCreateInfo -{ - /// Use #VmaAllocationCreateFlagBits enum. - VmaAllocationCreateFlags flags; - /** \brief Intended usage of memory. - - You can leave #VMA_MEMORY_USAGE_UNKNOWN if you specify memory requirements in other way. \n - If `pool` is not null, this member is ignored. - */ - VmaMemoryUsage usage; - /** \brief Flags that must be set in a Memory Type chosen for an allocation. - - Leave 0 if you specify memory requirements in other way. \n - If `pool` is not null, this member is ignored.*/ - VkMemoryPropertyFlags requiredFlags; - /** \brief Flags that preferably should be set in a memory type chosen for an allocation. - - Set to 0 if no additional flags are preferred. \n - If `pool` is not null, this member is ignored. */ - VkMemoryPropertyFlags preferredFlags; - /** \brief Bitmask containing one bit set for every memory type acceptable for this allocation. - - Value 0 is equivalent to `UINT32_MAX` - it means any memory type is accepted if - it meets other requirements specified by this structure, with no further - restrictions on memory type index. \n - If `pool` is not null, this member is ignored. - */ - uint32_t memoryTypeBits; - /** \brief Pool that this allocation should be created in. - - Leave `VK_NULL_HANDLE` to allocate from default pool. If not null, members: - `usage`, `requiredFlags`, `preferredFlags`, `memoryTypeBits` are ignored. - */ - VmaPool VMA_NULLABLE pool; - /** \brief Custom general-purpose pointer that will be stored in #VmaAllocation, can be read as VmaAllocationInfo::pUserData and changed using vmaSetAllocationUserData(). - - If #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT is used, it must be either - null or pointer to a null-terminated string. The string will be then copied to - internal buffer, so it doesn't need to be valid after allocation call. - */ - void* VMA_NULLABLE pUserData; - /** \brief A floating-point value between 0 and 1, indicating the priority of the allocation relative to other memory allocations. - - It is used only when #VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT flag was used during creation of the #VmaAllocator object - and this allocation ends up as dedicated or is explicitly forced as dedicated using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. - Otherwise, it has the priority of a memory block where it is placed and this variable is ignored. - */ - float priority; -} VmaAllocationCreateInfo; - -/// Describes parameter of created #VmaPool. -typedef struct VmaPoolCreateInfo -{ - /** \brief Vulkan memory type index to allocate this pool from. - */ - uint32_t memoryTypeIndex; - /** \brief Use combination of #VmaPoolCreateFlagBits. - */ - VmaPoolCreateFlags flags; - /** \brief Size of a single `VkDeviceMemory` block to be allocated as part of this pool, in bytes. Optional. - - Specify nonzero to set explicit, constant size of memory blocks used by this - pool. - - Leave 0 to use default and let the library manage block sizes automatically. - Sizes of particular blocks may vary. - In this case, the pool will also support dedicated allocations. - */ - VkDeviceSize blockSize; - /** \brief Minimum number of blocks to be always allocated in this pool, even if they stay empty. - - Set to 0 to have no preallocated blocks and allow the pool be completely empty. - */ - size_t minBlockCount; - /** \brief Maximum number of blocks that can be allocated in this pool. Optional. - - Set to 0 to use default, which is `SIZE_MAX`, which means no limit. - - Set to same value as VmaPoolCreateInfo::minBlockCount to have fixed amount of memory allocated - throughout whole lifetime of this pool. - */ - size_t maxBlockCount; - /** \brief A floating-point value between 0 and 1, indicating the priority of the allocations in this pool relative to other memory allocations. - - It is used only when #VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT flag was used during creation of the #VmaAllocator object. - Otherwise, this variable is ignored. - */ - float priority; - /** \brief Additional minimum alignment to be used for all allocations created from this pool. Can be 0. - - Leave 0 (default) not to impose any additional alignment. If not 0, it must be a power of two. - It can be useful in cases where alignment returned by Vulkan by functions like `vkGetBufferMemoryRequirements` is not enough, - e.g. when doing interop with OpenGL. - */ - VkDeviceSize minAllocationAlignment; - /** \brief Additional `pNext` chain to be attached to `VkMemoryAllocateInfo` used for every allocation made by this pool. Optional. - - Optional, can be null. If not null, it must point to a `pNext` chain of structures that can be attached to `VkMemoryAllocateInfo`. - It can be useful for special needs such as adding `VkExportMemoryAllocateInfoKHR`. - Structures pointed by this member must remain alive and unchanged for the whole lifetime of the custom pool. - - Please note that some structures, e.g. `VkMemoryPriorityAllocateInfoEXT`, `VkMemoryDedicatedAllocateInfoKHR`, - can be attached automatically by this library when using other, more convenient of its features. - */ - void* VMA_NULLABLE VMA_EXTENDS_VK_STRUCT(VkMemoryAllocateInfo) pMemoryAllocateNext; -} VmaPoolCreateInfo; - -/** @} */ - -/** -\addtogroup group_alloc -@{ -*/ - -/** -Parameters of #VmaAllocation objects, that can be retrieved using function vmaGetAllocationInfo(). - -There is also an extended version of this structure that carries additional parameters: #VmaAllocationInfo2. -*/ -typedef struct VmaAllocationInfo -{ - /** \brief Memory type index that this allocation was allocated from. - - It never changes. - */ - uint32_t memoryType; - /** \brief Handle to Vulkan memory object. - - Same memory object can be shared by multiple allocations. - - It can change after the allocation is moved during \ref defragmentation. - */ - VkDeviceMemory VMA_NULLABLE_NON_DISPATCHABLE deviceMemory; - /** \brief Offset in `VkDeviceMemory` object to the beginning of this allocation, in bytes. `(deviceMemory, offset)` pair is unique to this allocation. - - You usually don't need to use this offset. If you create a buffer or an image together with the allocation using e.g. function - vmaCreateBuffer(), vmaCreateImage(), functions that operate on these resources refer to the beginning of the buffer or image, - not entire device memory block. Functions like vmaMapMemory(), vmaBindBufferMemory() also refer to the beginning of the allocation - and apply this offset automatically. - - It can change after the allocation is moved during \ref defragmentation. - */ - VkDeviceSize offset; - /** \brief Size of this allocation, in bytes. - - It never changes. - - \note Allocation size returned in this variable may be greater than the size - requested for the resource e.g. as `VkBufferCreateInfo::size`. Whole size of the - allocation is accessible for operations on memory e.g. using a pointer after - mapping with vmaMapMemory(), but operations on the resource e.g. using - `vkCmdCopyBuffer` must be limited to the size of the resource. - */ - VkDeviceSize size; - /** \brief Pointer to the beginning of this allocation as mapped data. - - If the allocation hasn't been mapped using vmaMapMemory() and hasn't been - created with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag, this value is null. - - It can change after call to vmaMapMemory(), vmaUnmapMemory(). - It can also change after the allocation is moved during \ref defragmentation. - */ - void* VMA_NULLABLE pMappedData; - /** \brief Custom general-purpose pointer that was passed as VmaAllocationCreateInfo::pUserData or set using vmaSetAllocationUserData(). - - It can change after call to vmaSetAllocationUserData() for this allocation. - */ - void* VMA_NULLABLE pUserData; - /** \brief Custom allocation name that was set with vmaSetAllocationName(). - - It can change after call to vmaSetAllocationName() for this allocation. - - Another way to set custom name is to pass it in VmaAllocationCreateInfo::pUserData with - additional flag #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT set [DEPRECATED]. - */ - const char* VMA_NULLABLE pName; -} VmaAllocationInfo; - -/// Extended parameters of a #VmaAllocation object that can be retrieved using function vmaGetAllocationInfo2(). -typedef struct VmaAllocationInfo2 -{ - /** \brief Basic parameters of the allocation. - - If you need only these, you can use function vmaGetAllocationInfo() and structure #VmaAllocationInfo instead. - */ - VmaAllocationInfo allocationInfo; - /** \brief Size of the `VkDeviceMemory` block that the allocation belongs to. - - In case of an allocation with dedicated memory, it will be equal to `allocationInfo.size`. - */ - VkDeviceSize blockSize; - /** \brief `VK_TRUE` if the allocation has dedicated memory, `VK_FALSE` if it was placed as part of a larger memory block. - - When `VK_TRUE`, it also means `VkMemoryDedicatedAllocateInfo` was used when creating the allocation - (if VK_KHR_dedicated_allocation extension or Vulkan version >= 1.1 is enabled). - */ - VkBool32 dedicatedMemory; -} VmaAllocationInfo2; - -/** Callback function called during vmaBeginDefragmentation() to check custom criterion about ending current defragmentation pass. - -Should return true if the defragmentation needs to stop current pass. -*/ -typedef VkBool32 (VKAPI_PTR* PFN_vmaCheckDefragmentationBreakFunction)(void* VMA_NULLABLE pUserData); - -/** \brief Parameters for defragmentation. - -To be used with function vmaBeginDefragmentation(). -*/ -typedef struct VmaDefragmentationInfo -{ - /// \brief Use combination of #VmaDefragmentationFlagBits. - VmaDefragmentationFlags flags; - /** \brief Custom pool to be defragmented. - - If null then default pools will undergo defragmentation process. - */ - VmaPool VMA_NULLABLE pool; - /** \brief Maximum numbers of bytes that can be copied during single pass, while moving allocations to different places. - - `0` means no limit. - */ - VkDeviceSize maxBytesPerPass; - /** \brief Maximum number of allocations that can be moved during single pass to a different place. - - `0` means no limit. - */ - uint32_t maxAllocationsPerPass; - /** \brief Optional custom callback for stopping vmaBeginDefragmentation(). - - Have to return true for breaking current defragmentation pass. - */ - PFN_vmaCheckDefragmentationBreakFunction VMA_NULLABLE pfnBreakCallback; - /// \brief Optional data to pass to custom callback for stopping pass of defragmentation. - void* VMA_NULLABLE pBreakCallbackUserData; -} VmaDefragmentationInfo; - -/// Single move of an allocation to be done for defragmentation. -typedef struct VmaDefragmentationMove -{ - /// Operation to be performed on the allocation by vmaEndDefragmentationPass(). Default value is #VMA_DEFRAGMENTATION_MOVE_OPERATION_COPY. You can modify it. - VmaDefragmentationMoveOperation operation; - /// Allocation that should be moved. - VmaAllocation VMA_NOT_NULL srcAllocation; - /** \brief Temporary allocation pointing to destination memory that will replace `srcAllocation`. - - \warning Do not store this allocation in your data structures! It exists only temporarily, for the duration of the defragmentation pass, - to be used for binding new buffer/image to the destination memory using e.g. vmaBindBufferMemory(). - vmaEndDefragmentationPass() will destroy it and make `srcAllocation` point to this memory. - */ - VmaAllocation VMA_NOT_NULL dstTmpAllocation; -} VmaDefragmentationMove; - -/** \brief Parameters for incremental defragmentation steps. - -To be used with function vmaBeginDefragmentationPass(). -*/ -typedef struct VmaDefragmentationPassMoveInfo -{ - /// Number of elements in the `pMoves` array. - uint32_t moveCount; - /** \brief Array of moves to be performed by the user in the current defragmentation pass. - - Pointer to an array of `moveCount` elements, owned by VMA, created in vmaBeginDefragmentationPass(), destroyed in vmaEndDefragmentationPass(). - - For each element, you should: - - 1. Create a new buffer/image in the place pointed by VmaDefragmentationMove::dstMemory + VmaDefragmentationMove::dstOffset. - 2. Copy data from the VmaDefragmentationMove::srcAllocation e.g. using `vkCmdCopyBuffer`, `vkCmdCopyImage`. - 3. Make sure these commands finished executing on the GPU. - 4. Destroy the old buffer/image. - - Only then you can finish defragmentation pass by calling vmaEndDefragmentationPass(). - After this call, the allocation will point to the new place in memory. - - Alternatively, if you cannot move specific allocation, you can set VmaDefragmentationMove::operation to #VMA_DEFRAGMENTATION_MOVE_OPERATION_IGNORE. - - Alternatively, if you decide you want to completely remove the allocation: - - 1. Destroy its buffer/image. - 2. Set VmaDefragmentationMove::operation to #VMA_DEFRAGMENTATION_MOVE_OPERATION_DESTROY. - - Then, after vmaEndDefragmentationPass() the allocation will be freed. - */ - VmaDefragmentationMove* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(moveCount) pMoves; -} VmaDefragmentationPassMoveInfo; - -/// Statistics returned for defragmentation process in function vmaEndDefragmentation(). -typedef struct VmaDefragmentationStats -{ - /// Total number of bytes that have been copied while moving allocations to different places. - VkDeviceSize bytesMoved; - /// Total number of bytes that have been released to the system by freeing empty `VkDeviceMemory` objects. - VkDeviceSize bytesFreed; - /// Number of allocations that have been moved to different places. - uint32_t allocationsMoved; - /// Number of empty `VkDeviceMemory` objects that have been released to the system. - uint32_t deviceMemoryBlocksFreed; -} VmaDefragmentationStats; - -/** @} */ - -/** -\addtogroup group_virtual -@{ -*/ - -/// Parameters of created #VmaVirtualBlock object to be passed to vmaCreateVirtualBlock(). -typedef struct VmaVirtualBlockCreateInfo -{ - /** \brief Total size of the virtual block. - - Sizes can be expressed in bytes or any units you want as long as you are consistent in using them. - For example, if you allocate from some array of structures, 1 can mean single instance of entire structure. - */ - VkDeviceSize size; - - /** \brief Use combination of #VmaVirtualBlockCreateFlagBits. - */ - VmaVirtualBlockCreateFlags flags; - - /** \brief Custom CPU memory allocation callbacks. Optional. - - Optional, can be null. When specified, they will be used for all CPU-side memory allocations. - */ - const VkAllocationCallbacks* VMA_NULLABLE pAllocationCallbacks; -} VmaVirtualBlockCreateInfo; - -/// Parameters of created virtual allocation to be passed to vmaVirtualAllocate(). -typedef struct VmaVirtualAllocationCreateInfo -{ - /** \brief Size of the allocation. - - Cannot be zero. - */ - VkDeviceSize size; - /** \brief Required alignment of the allocation. Optional. - - Must be power of two. Special value 0 has the same meaning as 1 - means no special alignment is required, so allocation can start at any offset. - */ - VkDeviceSize alignment; - /** \brief Use combination of #VmaVirtualAllocationCreateFlagBits. - */ - VmaVirtualAllocationCreateFlags flags; - /** \brief Custom pointer to be associated with the allocation. Optional. - - It can be any value and can be used for user-defined purposes. It can be fetched or changed later. - */ - void* VMA_NULLABLE pUserData; -} VmaVirtualAllocationCreateInfo; - -/// Parameters of an existing virtual allocation, returned by vmaGetVirtualAllocationInfo(). -typedef struct VmaVirtualAllocationInfo -{ - /** \brief Offset of the allocation. - - Offset at which the allocation was made. - */ - VkDeviceSize offset; - /** \brief Size of the allocation. - - Same value as passed in VmaVirtualAllocationCreateInfo::size. - */ - VkDeviceSize size; - /** \brief Custom pointer associated with the allocation. - - Same value as passed in VmaVirtualAllocationCreateInfo::pUserData or to vmaSetVirtualAllocationUserData(). - */ - void* VMA_NULLABLE pUserData; -} VmaVirtualAllocationInfo; - -/** @} */ - -#endif // _VMA_DATA_TYPES_DECLARATIONS - -#ifndef _VMA_FUNCTION_HEADERS - -/** -\addtogroup group_init -@{ -*/ - -/// Creates #VmaAllocator object. -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAllocator( - const VmaAllocatorCreateInfo* VMA_NOT_NULL pCreateInfo, - VmaAllocator VMA_NULLABLE* VMA_NOT_NULL pAllocator); - -/// Destroys allocator object. -VMA_CALL_PRE void VMA_CALL_POST vmaDestroyAllocator( - VmaAllocator VMA_NULLABLE allocator); - -/** \brief Returns information about existing #VmaAllocator object - handle to Vulkan device etc. - -It might be useful if you want to keep just the #VmaAllocator handle and fetch other required handles to -`VkPhysicalDevice`, `VkDevice` etc. every time using this function. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocatorInfo( - VmaAllocator VMA_NOT_NULL allocator, - VmaAllocatorInfo* VMA_NOT_NULL pAllocatorInfo); - -/** -PhysicalDeviceProperties are fetched from physicalDevice by the allocator. -You can access it here, without fetching it again on your own. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaGetPhysicalDeviceProperties( - VmaAllocator VMA_NOT_NULL allocator, - const VkPhysicalDeviceProperties* VMA_NULLABLE* VMA_NOT_NULL ppPhysicalDeviceProperties); - -/** -PhysicalDeviceMemoryProperties are fetched from physicalDevice by the allocator. -You can access it here, without fetching it again on your own. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryProperties( - VmaAllocator VMA_NOT_NULL allocator, - const VkPhysicalDeviceMemoryProperties* VMA_NULLABLE* VMA_NOT_NULL ppPhysicalDeviceMemoryProperties); - -/** -\brief Given Memory Type Index, returns Property Flags of this memory type. - -This is just a convenience function. Same information can be obtained using -vmaGetMemoryProperties(). -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryTypeProperties( - VmaAllocator VMA_NOT_NULL allocator, - uint32_t memoryTypeIndex, - VkMemoryPropertyFlags* VMA_NOT_NULL pFlags); - -/** \brief Sets index of the current frame. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaSetCurrentFrameIndex( - VmaAllocator VMA_NOT_NULL allocator, - uint32_t frameIndex); - -/** @} */ - -/** -\addtogroup group_stats -@{ -*/ - -/** \brief Retrieves statistics from current state of the Allocator. - -This function is called "calculate" not "get" because it has to traverse all -internal data structures, so it may be quite slow. Use it for debugging purposes. -For faster but more brief statistics suitable to be called every frame or every allocation, -use vmaGetHeapBudgets(). - -Note that when using allocator from multiple threads, returned information may immediately -become outdated. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaCalculateStatistics( - VmaAllocator VMA_NOT_NULL allocator, - VmaTotalStatistics* VMA_NOT_NULL pStats); - -/** \brief Retrieves information about current memory usage and budget for all memory heaps. - -\param allocator -\param[out] pBudgets Must point to array with number of elements at least equal to number of memory heaps in physical device used. - -This function is called "get" not "calculate" because it is very fast, suitable to be called -every frame or every allocation. For more detailed statistics use vmaCalculateStatistics(). - -Note that when using allocator from multiple threads, returned information may immediately -become outdated. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaGetHeapBudgets( - VmaAllocator VMA_NOT_NULL allocator, - VmaBudget* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryHeapCount") pBudgets); - -/** @} */ - -/** -\addtogroup group_alloc -@{ -*/ - -/** -\brief Helps to find memoryTypeIndex, given memoryTypeBits and VmaAllocationCreateInfo. - -This algorithm tries to find a memory type that: - -- Is allowed by memoryTypeBits. -- Contains all the flags from pAllocationCreateInfo->requiredFlags. -- Matches intended usage. -- Has as many flags from pAllocationCreateInfo->preferredFlags as possible. - -\return Returns VK_ERROR_FEATURE_NOT_PRESENT if not found. Receiving such result -from this function or any other allocating function probably means that your -device doesn't support any memory type with requested features for the specific -type of resource you want to use it for. Please check parameters of your -resource, like image layout (OPTIMAL versus LINEAR) or mip level count. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndex( - VmaAllocator VMA_NOT_NULL allocator, - uint32_t memoryTypeBits, - const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo, - uint32_t* VMA_NOT_NULL pMemoryTypeIndex); - -/** -\brief Helps to find memoryTypeIndex, given VkBufferCreateInfo and VmaAllocationCreateInfo. - -It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex. -It internally creates a temporary, dummy buffer that never has memory bound. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForBufferInfo( - VmaAllocator VMA_NOT_NULL allocator, - const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo, - const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo, - uint32_t* VMA_NOT_NULL pMemoryTypeIndex); - -/** -\brief Helps to find memoryTypeIndex, given VkImageCreateInfo and VmaAllocationCreateInfo. - -It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex. -It internally creates a temporary, dummy image that never has memory bound. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForImageInfo( - VmaAllocator VMA_NOT_NULL allocator, - const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo, - const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo, - uint32_t* VMA_NOT_NULL pMemoryTypeIndex); - -/** \brief Allocates Vulkan device memory and creates #VmaPool object. - -\param allocator Allocator object. -\param pCreateInfo Parameters of pool to create. -\param[out] pPool Handle to created pool. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreatePool( - VmaAllocator VMA_NOT_NULL allocator, - const VmaPoolCreateInfo* VMA_NOT_NULL pCreateInfo, - VmaPool VMA_NULLABLE* VMA_NOT_NULL pPool); - -/** \brief Destroys #VmaPool object and frees Vulkan device memory. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaDestroyPool( - VmaAllocator VMA_NOT_NULL allocator, - VmaPool VMA_NULLABLE pool); - -/** @} */ - -/** -\addtogroup group_stats -@{ -*/ - -/** \brief Retrieves statistics of existing #VmaPool object. - -\param allocator Allocator object. -\param pool Pool object. -\param[out] pPoolStats Statistics of specified pool. - -Note that when using the pool from multiple threads, returned information may immediately -become outdated. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolStatistics( - VmaAllocator VMA_NOT_NULL allocator, - VmaPool VMA_NOT_NULL pool, - VmaStatistics* VMA_NOT_NULL pPoolStats); - -/** \brief Retrieves detailed statistics of existing #VmaPool object. - -\param allocator Allocator object. -\param pool Pool object. -\param[out] pPoolStats Statistics of specified pool. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaCalculatePoolStatistics( - VmaAllocator VMA_NOT_NULL allocator, - VmaPool VMA_NOT_NULL pool, - VmaDetailedStatistics* VMA_NOT_NULL pPoolStats); - -/** @} */ - -/** -\addtogroup group_alloc -@{ -*/ - -/** \brief Checks magic number in margins around all allocations in given memory pool in search for corruptions. - -Corruption detection is enabled only when `VMA_DEBUG_DETECT_CORRUPTION` macro is defined to nonzero, -`VMA_DEBUG_MARGIN` is defined to nonzero and the pool is created in memory type that is -`HOST_VISIBLE` and `HOST_COHERENT`. For more information, see [Corruption detection](@ref debugging_memory_usage_corruption_detection). - -Possible return values: - -- `VK_ERROR_FEATURE_NOT_PRESENT` - corruption detection is not enabled for specified pool. -- `VK_SUCCESS` - corruption detection has been performed and succeeded. -- `VK_ERROR_UNKNOWN` - corruption detection has been performed and found memory corruptions around one of the allocations. - `VMA_ASSERT` is also fired in that case. -- Other value: Error returned by Vulkan, e.g. memory mapping failure. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckPoolCorruption( - VmaAllocator VMA_NOT_NULL allocator, - VmaPool VMA_NOT_NULL pool); - -/** \brief Retrieves name of a custom pool. - -After the call `ppName` is either null or points to an internally-owned null-terminated string -containing name of the pool that was previously set. The pointer becomes invalid when the pool is -destroyed or its name is changed using vmaSetPoolName(). -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolName( - VmaAllocator VMA_NOT_NULL allocator, - VmaPool VMA_NOT_NULL pool, - const char* VMA_NULLABLE* VMA_NOT_NULL ppName); - -/** \brief Sets name of a custom pool. - -`pName` can be either null or pointer to a null-terminated string with new name for the pool. -Function makes internal copy of the string, so it can be changed or freed immediately after this call. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaSetPoolName( - VmaAllocator VMA_NOT_NULL allocator, - VmaPool VMA_NOT_NULL pool, - const char* VMA_NULLABLE pName); - -/** \brief General purpose memory allocation. - -\param allocator -\param pVkMemoryRequirements -\param pCreateInfo -\param[out] pAllocation Handle to allocated memory. -\param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo(). - -You should free the memory using vmaFreeMemory() or vmaFreeMemoryPages(). - -It is recommended to use vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage(), -vmaCreateBuffer(), vmaCreateImage() instead whenever possible. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemory( - VmaAllocator VMA_NOT_NULL allocator, - const VkMemoryRequirements* VMA_NOT_NULL pVkMemoryRequirements, - const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo, - VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation, - VmaAllocationInfo* VMA_NULLABLE pAllocationInfo); - -/** \brief General purpose memory allocation for multiple allocation objects at once. - -\param allocator Allocator object. -\param pVkMemoryRequirements Memory requirements for each allocation. -\param pCreateInfo Creation parameters for each allocation. -\param allocationCount Number of allocations to make. -\param[out] pAllocations Pointer to array that will be filled with handles to created allocations. -\param[out] pAllocationInfo Optional. Pointer to array that will be filled with parameters of created allocations. - -You should free the memory using vmaFreeMemory() or vmaFreeMemoryPages(). - -Word "pages" is just a suggestion to use this function to allocate pieces of memory needed for sparse binding. -It is just a general purpose allocation function able to make multiple allocations at once. -It may be internally optimized to be more efficient than calling vmaAllocateMemory() `allocationCount` times. - -All allocations are made using same parameters. All of them are created out of the same memory pool and type. -If any allocation fails, all allocations already made within this function call are also freed, so that when -returned result is not `VK_SUCCESS`, `pAllocation` array is always entirely filled with `VK_NULL_HANDLE`. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryPages( - VmaAllocator VMA_NOT_NULL allocator, - const VkMemoryRequirements* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pVkMemoryRequirements, - const VmaAllocationCreateInfo* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pCreateInfo, - size_t allocationCount, - VmaAllocation VMA_NULLABLE* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pAllocations, - VmaAllocationInfo* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) pAllocationInfo); - -/** \brief Allocates memory suitable for given `VkBuffer`. - -\param allocator -\param buffer -\param pCreateInfo -\param[out] pAllocation Handle to allocated memory. -\param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo(). - -It only creates #VmaAllocation. To bind the memory to the buffer, use vmaBindBufferMemory(). - -This is a special-purpose function. In most cases you should use vmaCreateBuffer(). - -You must free the allocation using vmaFreeMemory() when no longer needed. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForBuffer( - VmaAllocator VMA_NOT_NULL allocator, - VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer, - const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo, - VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation, - VmaAllocationInfo* VMA_NULLABLE pAllocationInfo); - -/** \brief Allocates memory suitable for given `VkImage`. - -\param allocator -\param image -\param pCreateInfo -\param[out] pAllocation Handle to allocated memory. -\param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo(). - -It only creates #VmaAllocation. To bind the memory to the buffer, use vmaBindImageMemory(). - -This is a special-purpose function. In most cases you should use vmaCreateImage(). - -You must free the allocation using vmaFreeMemory() when no longer needed. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForImage( - VmaAllocator VMA_NOT_NULL allocator, - VkImage VMA_NOT_NULL_NON_DISPATCHABLE image, - const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo, - VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation, - VmaAllocationInfo* VMA_NULLABLE pAllocationInfo); - -/** \brief Frees memory previously allocated using vmaAllocateMemory(), vmaAllocateMemoryForBuffer(), or vmaAllocateMemoryForImage(). - -Passing `VK_NULL_HANDLE` as `allocation` is valid. Such function call is just skipped. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemory( - VmaAllocator VMA_NOT_NULL allocator, - const VmaAllocation VMA_NULLABLE allocation); - -/** \brief Frees memory and destroys multiple allocations. - -Word "pages" is just a suggestion to use this function to free pieces of memory used for sparse binding. -It is just a general purpose function to free memory and destroy allocations made using e.g. vmaAllocateMemory(), -vmaAllocateMemoryPages() and other functions. -It may be internally optimized to be more efficient than calling vmaFreeMemory() `allocationCount` times. - -Allocations in `pAllocations` array can come from any memory pools and types. -Passing `VK_NULL_HANDLE` as elements of `pAllocations` array is valid. Such entries are just skipped. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemoryPages( - VmaAllocator VMA_NOT_NULL allocator, - size_t allocationCount, - const VmaAllocation VMA_NULLABLE* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pAllocations); - -/** \brief Returns current information about specified allocation. - -Current parameters of given allocation are returned in `pAllocationInfo`. - -Although this function doesn't lock any mutex, so it should be quite efficient, -you should avoid calling it too often. -You can retrieve same VmaAllocationInfo structure while creating your resource, from function -vmaCreateBuffer(), vmaCreateImage(). You can remember it if you are sure parameters don't change -(e.g. due to defragmentation). - -There is also a new function vmaGetAllocationInfo2() that offers extended information -about the allocation, returned using new structure #VmaAllocationInfo2. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo( - VmaAllocator VMA_NOT_NULL allocator, - VmaAllocation VMA_NOT_NULL allocation, - VmaAllocationInfo* VMA_NOT_NULL pAllocationInfo); - -/** \brief Returns extended information about specified allocation. - -Current parameters of given allocation are returned in `pAllocationInfo`. -Extended parameters in structure #VmaAllocationInfo2 include memory block size -and a flag telling whether the allocation has dedicated memory. -It can be useful e.g. for interop with OpenGL. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo2( - VmaAllocator VMA_NOT_NULL allocator, - VmaAllocation VMA_NOT_NULL allocation, - VmaAllocationInfo2* VMA_NOT_NULL pAllocationInfo); - -/** \brief Sets pUserData in given allocation to new value. - -The value of pointer `pUserData` is copied to allocation's `pUserData`. -It is opaque, so you can use it however you want - e.g. -as a pointer, ordinal number or some handle to you own data. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationUserData( - VmaAllocator VMA_NOT_NULL allocator, - VmaAllocation VMA_NOT_NULL allocation, - void* VMA_NULLABLE pUserData); - -/** \brief Sets pName in given allocation to new value. - -`pName` must be either null, or pointer to a null-terminated string. The function -makes local copy of the string and sets it as allocation's `pName`. String -passed as pName doesn't need to be valid for whole lifetime of the allocation - -you can free it after this call. String previously pointed by allocation's -`pName` is freed from memory. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationName( - VmaAllocator VMA_NOT_NULL allocator, - VmaAllocation VMA_NOT_NULL allocation, - const char* VMA_NULLABLE pName); - -/** -\brief Given an allocation, returns Property Flags of its memory type. - -This is just a convenience function. Same information can be obtained using -vmaGetAllocationInfo() + vmaGetMemoryProperties(). -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationMemoryProperties( - VmaAllocator VMA_NOT_NULL allocator, - VmaAllocation VMA_NOT_NULL allocation, - VkMemoryPropertyFlags* VMA_NOT_NULL pFlags); - - -#if VMA_EXTERNAL_MEMORY_WIN32 -/** -\brief Given an allocation, returns Win32 handle that may be imported by other processes or APIs. - -\param hTargetProcess Must be a valid handle to target process or null. If it's null, the function returns - handle for the current process. -\param[out] pHandle Output parameter that returns the handle. - -The function fills `pHandle` with handle that can be used in target process. -The handle is fetched using function `vkGetMemoryWin32HandleKHR`. -When no longer needed, you must close it using: - -\code -CloseHandle(handle); -\endcode - -You can close it any time, before or after destroying the allocation object. -It is reference-counted internally by Windows. - -Note the handle is returned for the entire `VkDeviceMemory` block that the allocation belongs to. -If the allocation is sub-allocated from a larger block, you may need to consider the offset of the allocation -(VmaAllocationInfo::offset). - -If the function fails with `VK_ERROR_FEATURE_NOT_PRESENT` error code, please double-check -that VmaVulkanFunctions::vkGetMemoryWin32HandleKHR function pointer is set, e.g. either by using `VMA_DYNAMIC_VULKAN_FUNCTIONS` -or by manually passing it through VmaAllocatorCreateInfo::pVulkanFunctions. - -For more information, see chapter \ref vk_khr_external_memory_win32. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaGetMemoryWin32Handle(VmaAllocator VMA_NOT_NULL allocator, - VmaAllocation VMA_NOT_NULL allocation, HANDLE hTargetProcess, HANDLE* VMA_NOT_NULL pHandle); -#endif // VMA_EXTERNAL_MEMORY_WIN32 - -/** \brief Maps memory represented by given allocation and returns pointer to it. - -Maps memory represented by given allocation to make it accessible to CPU code. -When succeeded, `*ppData` contains pointer to first byte of this memory. - -\warning -If the allocation is part of a bigger `VkDeviceMemory` block, returned pointer is -correctly offsetted to the beginning of region assigned to this particular allocation. -Unlike the result of `vkMapMemory`, it points to the allocation, not to the beginning of the whole block. -You should not add VmaAllocationInfo::offset to it! - -Mapping is internally reference-counted and synchronized, so despite raw Vulkan -function `vkMapMemory()` cannot be used to map same block of `VkDeviceMemory` -multiple times simultaneously, it is safe to call this function on allocations -assigned to the same memory block. Actual Vulkan memory will be mapped on first -mapping and unmapped on last unmapping. - -If the function succeeded, you must call vmaUnmapMemory() to unmap the -allocation when mapping is no longer needed or before freeing the allocation, at -the latest. - -It also safe to call this function multiple times on the same allocation. You -must call vmaUnmapMemory() same number of times as you called vmaMapMemory(). - -It is also safe to call this function on allocation created with -#VMA_ALLOCATION_CREATE_MAPPED_BIT flag. Its memory stays mapped all the time. -You must still call vmaUnmapMemory() same number of times as you called -vmaMapMemory(). You must not call vmaUnmapMemory() additional time to free the -"0-th" mapping made automatically due to #VMA_ALLOCATION_CREATE_MAPPED_BIT flag. - -This function fails when used on allocation made in memory type that is not -`HOST_VISIBLE`. - -This function doesn't automatically flush or invalidate caches. -If the allocation is made from a memory types that is not `HOST_COHERENT`, -you also need to use vmaInvalidateAllocation() / vmaFlushAllocation(), as required by Vulkan specification. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaMapMemory( - VmaAllocator VMA_NOT_NULL allocator, - VmaAllocation VMA_NOT_NULL allocation, - void* VMA_NULLABLE* VMA_NOT_NULL ppData); - -/** \brief Unmaps memory represented by given allocation, mapped previously using vmaMapMemory(). - -For details, see description of vmaMapMemory(). - -This function doesn't automatically flush or invalidate caches. -If the allocation is made from a memory types that is not `HOST_COHERENT`, -you also need to use vmaInvalidateAllocation() / vmaFlushAllocation(), as required by Vulkan specification. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaUnmapMemory( - VmaAllocator VMA_NOT_NULL allocator, - VmaAllocation VMA_NOT_NULL allocation); - -/** \brief Flushes memory of given allocation. - -Calls `vkFlushMappedMemoryRanges()` for memory associated with given range of given allocation. -It needs to be called after writing to a mapped memory for memory types that are not `HOST_COHERENT`. -Unmap operation doesn't do that automatically. - -- `offset` must be relative to the beginning of allocation. -- `size` can be `VK_WHOLE_SIZE`. It means all memory from `offset` the the end of given allocation. -- `offset` and `size` don't have to be aligned. - They are internally rounded down/up to multiply of `nonCoherentAtomSize`. -- If `size` is 0, this call is ignored. -- If memory type that the `allocation` belongs to is not `HOST_VISIBLE` or it is `HOST_COHERENT`, - this call is ignored. - -Warning! `offset` and `size` are relative to the contents of given `allocation`. -If you mean whole allocation, you can pass 0 and `VK_WHOLE_SIZE`, respectively. -Do not pass allocation's offset as `offset`!!! - -This function returns the `VkResult` from `vkFlushMappedMemoryRanges` if it is -called, otherwise `VK_SUCCESS`. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocation( - VmaAllocator VMA_NOT_NULL allocator, - VmaAllocation VMA_NOT_NULL allocation, - VkDeviceSize offset, - VkDeviceSize size); - -/** \brief Invalidates memory of given allocation. - -Calls `vkInvalidateMappedMemoryRanges()` for memory associated with given range of given allocation. -It needs to be called before reading from a mapped memory for memory types that are not `HOST_COHERENT`. -Map operation doesn't do that automatically. - -- `offset` must be relative to the beginning of allocation. -- `size` can be `VK_WHOLE_SIZE`. It means all memory from `offset` the the end of given allocation. -- `offset` and `size` don't have to be aligned. - They are internally rounded down/up to multiply of `nonCoherentAtomSize`. -- If `size` is 0, this call is ignored. -- If memory type that the `allocation` belongs to is not `HOST_VISIBLE` or it is `HOST_COHERENT`, - this call is ignored. - -Warning! `offset` and `size` are relative to the contents of given `allocation`. -If you mean whole allocation, you can pass 0 and `VK_WHOLE_SIZE`, respectively. -Do not pass allocation's offset as `offset`!!! - -This function returns the `VkResult` from `vkInvalidateMappedMemoryRanges` if -it is called, otherwise `VK_SUCCESS`. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocation( - VmaAllocator VMA_NOT_NULL allocator, - VmaAllocation VMA_NOT_NULL allocation, - VkDeviceSize offset, - VkDeviceSize size); - -/** \brief Flushes memory of given set of allocations. - -Calls `vkFlushMappedMemoryRanges()` for memory associated with given ranges of given allocations. -For more information, see documentation of vmaFlushAllocation(). - -\param allocator -\param allocationCount -\param allocations -\param offsets If not null, it must point to an array of offsets of regions to flush, relative to the beginning of respective allocations. Null means all offsets are zero. -\param sizes If not null, it must point to an array of sizes of regions to flush in respective allocations. Null means `VK_WHOLE_SIZE` for all allocations. - -This function returns the `VkResult` from `vkFlushMappedMemoryRanges` if it is -called, otherwise `VK_SUCCESS`. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocations( - VmaAllocator VMA_NOT_NULL allocator, - uint32_t allocationCount, - const VmaAllocation VMA_NOT_NULL* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) allocations, - const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) offsets, - const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) sizes); - -/** \brief Invalidates memory of given set of allocations. - -Calls `vkInvalidateMappedMemoryRanges()` for memory associated with given ranges of given allocations. -For more information, see documentation of vmaInvalidateAllocation(). - -\param allocator -\param allocationCount -\param allocations -\param offsets If not null, it must point to an array of offsets of regions to flush, relative to the beginning of respective allocations. Null means all offsets are zero. -\param sizes If not null, it must point to an array of sizes of regions to flush in respective allocations. Null means `VK_WHOLE_SIZE` for all allocations. - -This function returns the `VkResult` from `vkInvalidateMappedMemoryRanges` if it is -called, otherwise `VK_SUCCESS`. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocations( - VmaAllocator VMA_NOT_NULL allocator, - uint32_t allocationCount, - const VmaAllocation VMA_NOT_NULL* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) allocations, - const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) offsets, - const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) sizes); - -/** \brief Maps the allocation temporarily if needed, copies data from specified host pointer to it, and flushes the memory from the host caches if needed. - -\param allocator -\param pSrcHostPointer Pointer to the host data that become source of the copy. -\param dstAllocation Handle to the allocation that becomes destination of the copy. -\param dstAllocationLocalOffset Offset within `dstAllocation` where to write copied data, in bytes. -\param size Number of bytes to copy. - -This is a convenience function that allows to copy data from a host pointer to an allocation easily. -Same behavior can be achieved by calling vmaMapMemory(), `memcpy()`, vmaUnmapMemory(), vmaFlushAllocation(). - -This function can be called only for allocations created in a memory type that has `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag. -It can be ensured e.g. by using #VMA_MEMORY_USAGE_AUTO and #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or -#VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT. -Otherwise, the function will fail and generate a Validation Layers error. - -`dstAllocationLocalOffset` is relative to the contents of given `dstAllocation`. -If you mean whole allocation, you should pass 0. -Do not pass allocation's offset within device memory block this parameter! -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCopyMemoryToAllocation( - VmaAllocator VMA_NOT_NULL allocator, - const void* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(size) pSrcHostPointer, - VmaAllocation VMA_NOT_NULL dstAllocation, - VkDeviceSize dstAllocationLocalOffset, - VkDeviceSize size); - -/** \brief Invalidates memory in the host caches if needed, maps the allocation temporarily if needed, and copies data from it to a specified host pointer. - -\param allocator -\param srcAllocation Handle to the allocation that becomes source of the copy. -\param srcAllocationLocalOffset Offset within `srcAllocation` where to read copied data, in bytes. -\param pDstHostPointer Pointer to the host memory that become destination of the copy. -\param size Number of bytes to copy. - -This is a convenience function that allows to copy data from an allocation to a host pointer easily. -Same behavior can be achieved by calling vmaInvalidateAllocation(), vmaMapMemory(), `memcpy()`, vmaUnmapMemory(). - -This function should be called only for allocations created in a memory type that has `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` -and `VK_MEMORY_PROPERTY_HOST_CACHED_BIT` flag. -It can be ensured e.g. by using #VMA_MEMORY_USAGE_AUTO and #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT. -Otherwise, the function may fail and generate a Validation Layers error. -It may also work very slowly when reading from an uncached memory. - -`srcAllocationLocalOffset` is relative to the contents of given `srcAllocation`. -If you mean whole allocation, you should pass 0. -Do not pass allocation's offset within device memory block as this parameter! -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCopyAllocationToMemory( - VmaAllocator VMA_NOT_NULL allocator, - VmaAllocation VMA_NOT_NULL srcAllocation, - VkDeviceSize srcAllocationLocalOffset, - void* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(size) pDstHostPointer, - VkDeviceSize size); - -/** \brief Checks magic number in margins around all allocations in given memory types (in both default and custom pools) in search for corruptions. - -\param allocator -\param memoryTypeBits Bit mask, where each bit set means that a memory type with that index should be checked. - -Corruption detection is enabled only when `VMA_DEBUG_DETECT_CORRUPTION` macro is defined to nonzero, -`VMA_DEBUG_MARGIN` is defined to nonzero and only for memory types that are -`HOST_VISIBLE` and `HOST_COHERENT`. For more information, see [Corruption detection](@ref debugging_memory_usage_corruption_detection). - -Possible return values: - -- `VK_ERROR_FEATURE_NOT_PRESENT` - corruption detection is not enabled for any of specified memory types. -- `VK_SUCCESS` - corruption detection has been performed and succeeded. -- `VK_ERROR_UNKNOWN` - corruption detection has been performed and found memory corruptions around one of the allocations. - `VMA_ASSERT` is also fired in that case. -- Other value: Error returned by Vulkan, e.g. memory mapping failure. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckCorruption( - VmaAllocator VMA_NOT_NULL allocator, - uint32_t memoryTypeBits); - -/** \brief Begins defragmentation process. - -\param allocator Allocator object. -\param pInfo Structure filled with parameters of defragmentation. -\param[out] pContext Context object that must be passed to vmaEndDefragmentation() to finish defragmentation. -\returns -- `VK_SUCCESS` if defragmentation can begin. -- `VK_ERROR_FEATURE_NOT_PRESENT` if defragmentation is not supported. - -For more information about defragmentation, see documentation chapter: -[Defragmentation](@ref defragmentation). -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentation( - VmaAllocator VMA_NOT_NULL allocator, - const VmaDefragmentationInfo* VMA_NOT_NULL pInfo, - VmaDefragmentationContext VMA_NULLABLE* VMA_NOT_NULL pContext); - -/** \brief Ends defragmentation process. - -\param allocator Allocator object. -\param context Context object that has been created by vmaBeginDefragmentation(). -\param[out] pStats Optional stats for the defragmentation. Can be null. - -Use this function to finish defragmentation started by vmaBeginDefragmentation(). -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaEndDefragmentation( - VmaAllocator VMA_NOT_NULL allocator, - VmaDefragmentationContext VMA_NOT_NULL context, - VmaDefragmentationStats* VMA_NULLABLE pStats); - -/** \brief Starts single defragmentation pass. - -\param allocator Allocator object. -\param context Context object that has been created by vmaBeginDefragmentation(). -\param[out] pPassInfo Computed information for current pass. -\returns -- `VK_SUCCESS` if no more moves are possible. Then you can omit call to vmaEndDefragmentationPass() and simply end whole defragmentation. -- `VK_INCOMPLETE` if there are pending moves returned in `pPassInfo`. You need to perform them, call vmaEndDefragmentationPass(), - and then preferably try another pass with vmaBeginDefragmentationPass(). -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentationPass( - VmaAllocator VMA_NOT_NULL allocator, - VmaDefragmentationContext VMA_NOT_NULL context, - VmaDefragmentationPassMoveInfo* VMA_NOT_NULL pPassInfo); - -/** \brief Ends single defragmentation pass. - -\param allocator Allocator object. -\param context Context object that has been created by vmaBeginDefragmentation(). -\param pPassInfo Computed information for current pass filled by vmaBeginDefragmentationPass() and possibly modified by you. - -Returns `VK_SUCCESS` if no more moves are possible or `VK_INCOMPLETE` if more defragmentations are possible. - -Ends incremental defragmentation pass and commits all defragmentation moves from `pPassInfo`. -After this call: - -- Allocations at `pPassInfo[i].srcAllocation` that had `pPassInfo[i].operation ==` #VMA_DEFRAGMENTATION_MOVE_OPERATION_COPY - (which is the default) will be pointing to the new destination place. -- Allocation at `pPassInfo[i].srcAllocation` that had `pPassInfo[i].operation ==` #VMA_DEFRAGMENTATION_MOVE_OPERATION_DESTROY - will be freed. - -If no more moves are possible you can end whole defragmentation. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaEndDefragmentationPass( - VmaAllocator VMA_NOT_NULL allocator, - VmaDefragmentationContext VMA_NOT_NULL context, - VmaDefragmentationPassMoveInfo* VMA_NOT_NULL pPassInfo); - -/** \brief Binds buffer to allocation. - -Binds specified buffer to region of memory represented by specified allocation. -Gets `VkDeviceMemory` handle and offset from the allocation. -If you want to create a buffer, allocate memory for it and bind them together separately, -you should use this function for binding instead of standard `vkBindBufferMemory()`, -because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple -allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously -(which is illegal in Vulkan). - -It is recommended to use function vmaCreateBuffer() instead of this one. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory( - VmaAllocator VMA_NOT_NULL allocator, - VmaAllocation VMA_NOT_NULL allocation, - VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer); - -/** \brief Binds buffer to allocation with additional parameters. - -\param allocator -\param allocation -\param allocationLocalOffset Additional offset to be added while binding, relative to the beginning of the `allocation`. Normally it should be 0. -\param buffer -\param pNext A chain of structures to be attached to `VkBindBufferMemoryInfoKHR` structure used internally. Normally it should be null. - -This function is similar to vmaBindBufferMemory(), but it provides additional parameters. - -If `pNext` is not null, #VmaAllocator object must have been created with #VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT flag -or with VmaAllocatorCreateInfo::vulkanApiVersion `>= VK_API_VERSION_1_1`. Otherwise the call fails. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory2( - VmaAllocator VMA_NOT_NULL allocator, - VmaAllocation VMA_NOT_NULL allocation, - VkDeviceSize allocationLocalOffset, - VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer, - const void* VMA_NULLABLE VMA_EXTENDS_VK_STRUCT(VkBindBufferMemoryInfoKHR) pNext); - -/** \brief Binds image to allocation. - -Binds specified image to region of memory represented by specified allocation. -Gets `VkDeviceMemory` handle and offset from the allocation. -If you want to create an image, allocate memory for it and bind them together separately, -you should use this function for binding instead of standard `vkBindImageMemory()`, -because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple -allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously -(which is illegal in Vulkan). - -It is recommended to use function vmaCreateImage() instead of this one. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory( - VmaAllocator VMA_NOT_NULL allocator, - VmaAllocation VMA_NOT_NULL allocation, - VkImage VMA_NOT_NULL_NON_DISPATCHABLE image); - -/** \brief Binds image to allocation with additional parameters. - -\param allocator -\param allocation -\param allocationLocalOffset Additional offset to be added while binding, relative to the beginning of the `allocation`. Normally it should be 0. -\param image -\param pNext A chain of structures to be attached to `VkBindImageMemoryInfoKHR` structure used internally. Normally it should be null. - -This function is similar to vmaBindImageMemory(), but it provides additional parameters. - -If `pNext` is not null, #VmaAllocator object must have been created with #VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT flag -or with VmaAllocatorCreateInfo::vulkanApiVersion `>= VK_API_VERSION_1_1`. Otherwise the call fails. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory2( - VmaAllocator VMA_NOT_NULL allocator, - VmaAllocation VMA_NOT_NULL allocation, - VkDeviceSize allocationLocalOffset, - VkImage VMA_NOT_NULL_NON_DISPATCHABLE image, - const void* VMA_NULLABLE VMA_EXTENDS_VK_STRUCT(VkBindImageMemoryInfoKHR) pNext); - -/** \brief Creates a new `VkBuffer`, allocates and binds memory for it. - -\param allocator -\param pBufferCreateInfo -\param pAllocationCreateInfo -\param[out] pBuffer Buffer that was created. -\param[out] pAllocation Allocation that was created. -\param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo(). - -This function automatically: - --# Creates buffer. --# Allocates appropriate memory for it. --# Binds the buffer with the memory. - -If any of these operations fail, buffer and allocation are not created, -returned value is negative error code, `*pBuffer` and `*pAllocation` are null. - -If the function succeeded, you must destroy both buffer and allocation when you -no longer need them using either convenience function vmaDestroyBuffer() or -separately, using `vkDestroyBuffer()` and vmaFreeMemory(). - -If #VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag was used, -VK_KHR_dedicated_allocation extension is used internally to query driver whether -it requires or prefers the new buffer to have dedicated allocation. If yes, -and if dedicated allocation is possible -(#VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT is not used), it creates dedicated -allocation for this buffer, just like when using -#VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. - -\note This function creates a new `VkBuffer`. Sub-allocation of parts of one large buffer, -although recommended as a good practice, is out of scope of this library and could be implemented -by the user as a higher-level logic on top of VMA. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBuffer( - VmaAllocator VMA_NOT_NULL allocator, - const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo, - const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo, - VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer, - VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation, - VmaAllocationInfo* VMA_NULLABLE pAllocationInfo); - -/** \brief Creates a buffer with additional minimum alignment. - -Similar to vmaCreateBuffer() but provides additional parameter `minAlignment` which allows to specify custom, -minimum alignment to be used when placing the buffer inside a larger memory block, which may be needed e.g. -for interop with OpenGL. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBufferWithAlignment( - VmaAllocator VMA_NOT_NULL allocator, - const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo, - const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo, - VkDeviceSize minAlignment, - VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer, - VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation, - VmaAllocationInfo* VMA_NULLABLE pAllocationInfo); - -/** \brief Creates a new `VkBuffer`, binds already created memory for it. - -\param allocator -\param allocation Allocation that provides memory to be used for binding new buffer to it. -\param pBufferCreateInfo -\param[out] pBuffer Buffer that was created. - -This function automatically: - --# Creates buffer. --# Binds the buffer with the supplied memory. - -If any of these operations fail, buffer is not created, -returned value is negative error code and `*pBuffer` is null. - -If the function succeeded, you must destroy the buffer when you -no longer need it using `vkDestroyBuffer()`. If you want to also destroy the corresponding -allocation you can use convenience function vmaDestroyBuffer(). - -\note There is a new version of this function augmented with parameter `allocationLocalOffset` - see vmaCreateAliasingBuffer2(). -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingBuffer( - VmaAllocator VMA_NOT_NULL allocator, - VmaAllocation VMA_NOT_NULL allocation, - const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo, - VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer); - -/** \brief Creates a new `VkBuffer`, binds already created memory for it. - -\param allocator -\param allocation Allocation that provides memory to be used for binding new buffer to it. -\param allocationLocalOffset Additional offset to be added while binding, relative to the beginning of the allocation. Normally it should be 0. -\param pBufferCreateInfo -\param[out] pBuffer Buffer that was created. - -This function automatically: - --# Creates buffer. --# Binds the buffer with the supplied memory. - -If any of these operations fail, buffer is not created, -returned value is negative error code and `*pBuffer` is null. - -If the function succeeded, you must destroy the buffer when you -no longer need it using `vkDestroyBuffer()`. If you want to also destroy the corresponding -allocation you can use convenience function vmaDestroyBuffer(). - -\note This is a new version of the function augmented with parameter `allocationLocalOffset`. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingBuffer2( - VmaAllocator VMA_NOT_NULL allocator, - VmaAllocation VMA_NOT_NULL allocation, - VkDeviceSize allocationLocalOffset, - const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo, - VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer); - -/** \brief Destroys Vulkan buffer and frees allocated memory. - -This is just a convenience function equivalent to: - -\code -vkDestroyBuffer(device, buffer, allocationCallbacks); -vmaFreeMemory(allocator, allocation); -\endcode - -It is safe to pass null as buffer and/or allocation. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaDestroyBuffer( - VmaAllocator VMA_NOT_NULL allocator, - VkBuffer VMA_NULLABLE_NON_DISPATCHABLE buffer, - VmaAllocation VMA_NULLABLE allocation); - -/// Function similar to vmaCreateBuffer(). -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateImage( - VmaAllocator VMA_NOT_NULL allocator, - const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo, - const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo, - VkImage VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pImage, - VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation, - VmaAllocationInfo* VMA_NULLABLE pAllocationInfo); - -/// Function similar to vmaCreateAliasingBuffer() but for images. -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingImage( - VmaAllocator VMA_NOT_NULL allocator, - VmaAllocation VMA_NOT_NULL allocation, - const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo, - VkImage VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pImage); - -/// Function similar to vmaCreateAliasingBuffer2() but for images. -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingImage2( - VmaAllocator VMA_NOT_NULL allocator, - VmaAllocation VMA_NOT_NULL allocation, - VkDeviceSize allocationLocalOffset, - const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo, - VkImage VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pImage); - -/** \brief Destroys Vulkan image and frees allocated memory. - -This is just a convenience function equivalent to: - -\code -vkDestroyImage(device, image, allocationCallbacks); -vmaFreeMemory(allocator, allocation); -\endcode - -It is safe to pass null as image and/or allocation. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaDestroyImage( - VmaAllocator VMA_NOT_NULL allocator, - VkImage VMA_NULLABLE_NON_DISPATCHABLE image, - VmaAllocation VMA_NULLABLE allocation); - -/** @} */ - -/** -\addtogroup group_virtual -@{ -*/ - -/** \brief Creates new #VmaVirtualBlock object. - -\param pCreateInfo Parameters for creation. -\param[out] pVirtualBlock Returned virtual block object or `VMA_NULL` if creation failed. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateVirtualBlock( - const VmaVirtualBlockCreateInfo* VMA_NOT_NULL pCreateInfo, - VmaVirtualBlock VMA_NULLABLE* VMA_NOT_NULL pVirtualBlock); - -/** \brief Destroys #VmaVirtualBlock object. - -Please note that you should consciously handle virtual allocations that could remain unfreed in the block. -You should either free them individually using vmaVirtualFree() or call vmaClearVirtualBlock() -if you are sure this is what you want. If you do neither, an assert is called. - -If you keep pointers to some additional metadata associated with your virtual allocations in their `pUserData`, -don't forget to free them. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaDestroyVirtualBlock( - VmaVirtualBlock VMA_NULLABLE virtualBlock); - -/** \brief Returns true of the #VmaVirtualBlock is empty - contains 0 virtual allocations and has all its space available for new allocations. -*/ -VMA_CALL_PRE VkBool32 VMA_CALL_POST vmaIsVirtualBlockEmpty( - VmaVirtualBlock VMA_NOT_NULL virtualBlock); - -/** \brief Returns information about a specific virtual allocation within a virtual block, like its size and `pUserData` pointer. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaGetVirtualAllocationInfo( - VmaVirtualBlock VMA_NOT_NULL virtualBlock, - VmaVirtualAllocation VMA_NOT_NULL_NON_DISPATCHABLE allocation, VmaVirtualAllocationInfo* VMA_NOT_NULL pVirtualAllocInfo); - -/** \brief Allocates new virtual allocation inside given #VmaVirtualBlock. - -If the allocation fails due to not enough free space available, `VK_ERROR_OUT_OF_DEVICE_MEMORY` is returned -(despite the function doesn't ever allocate actual GPU memory). -`pAllocation` is then set to `VK_NULL_HANDLE` and `pOffset`, if not null, it set to `UINT64_MAX`. - -\param virtualBlock Virtual block -\param pCreateInfo Parameters for the allocation -\param[out] pAllocation Returned handle of the new allocation -\param[out] pOffset Returned offset of the new allocation. Optional, can be null. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaVirtualAllocate( - VmaVirtualBlock VMA_NOT_NULL virtualBlock, - const VmaVirtualAllocationCreateInfo* VMA_NOT_NULL pCreateInfo, - VmaVirtualAllocation VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pAllocation, - VkDeviceSize* VMA_NULLABLE pOffset); - -/** \brief Frees virtual allocation inside given #VmaVirtualBlock. - -It is correct to call this function with `allocation == VK_NULL_HANDLE` - it does nothing. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaVirtualFree( - VmaVirtualBlock VMA_NOT_NULL virtualBlock, - VmaVirtualAllocation VMA_NULLABLE_NON_DISPATCHABLE allocation); - -/** \brief Frees all virtual allocations inside given #VmaVirtualBlock. - -You must either call this function or free each virtual allocation individually with vmaVirtualFree() -before destroying a virtual block. Otherwise, an assert is called. - -If you keep pointer to some additional metadata associated with your virtual allocation in its `pUserData`, -don't forget to free it as well. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaClearVirtualBlock( - VmaVirtualBlock VMA_NOT_NULL virtualBlock); - -/** \brief Changes custom pointer associated with given virtual allocation. -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaSetVirtualAllocationUserData( - VmaVirtualBlock VMA_NOT_NULL virtualBlock, - VmaVirtualAllocation VMA_NOT_NULL_NON_DISPATCHABLE allocation, - void* VMA_NULLABLE pUserData); - -/** \brief Calculates and returns statistics about virtual allocations and memory usage in given #VmaVirtualBlock. - -This function is fast to call. For more detailed statistics, see vmaCalculateVirtualBlockStatistics(). -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaGetVirtualBlockStatistics( - VmaVirtualBlock VMA_NOT_NULL virtualBlock, - VmaStatistics* VMA_NOT_NULL pStats); - -/** \brief Calculates and returns detailed statistics about virtual allocations and memory usage in given #VmaVirtualBlock. - -This function is slow to call. Use for debugging purposes. -For less detailed statistics, see vmaGetVirtualBlockStatistics(). -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaCalculateVirtualBlockStatistics( - VmaVirtualBlock VMA_NOT_NULL virtualBlock, - VmaDetailedStatistics* VMA_NOT_NULL pStats); - -/** @} */ - -#if VMA_STATS_STRING_ENABLED -/** -\addtogroup group_stats -@{ -*/ - -/** \brief Builds and returns a null-terminated string in JSON format with information about given #VmaVirtualBlock. -\param virtualBlock Virtual block. -\param[out] ppStatsString Returned string. -\param detailedMap Pass `VK_FALSE` to only obtain statistics as returned by vmaCalculateVirtualBlockStatistics(). Pass `VK_TRUE` to also obtain full list of allocations and free spaces. - -Returned string must be freed using vmaFreeVirtualBlockStatsString(). -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaBuildVirtualBlockStatsString( - VmaVirtualBlock VMA_NOT_NULL virtualBlock, - char* VMA_NULLABLE* VMA_NOT_NULL ppStatsString, - VkBool32 detailedMap); - -/// Frees a string returned by vmaBuildVirtualBlockStatsString(). -VMA_CALL_PRE void VMA_CALL_POST vmaFreeVirtualBlockStatsString( - VmaVirtualBlock VMA_NOT_NULL virtualBlock, - char* VMA_NULLABLE pStatsString); - -/** \brief Builds and returns statistics as a null-terminated string in JSON format. -\param allocator -\param[out] ppStatsString Must be freed using vmaFreeStatsString() function. -\param detailedMap -*/ -VMA_CALL_PRE void VMA_CALL_POST vmaBuildStatsString( - VmaAllocator VMA_NOT_NULL allocator, - char* VMA_NULLABLE* VMA_NOT_NULL ppStatsString, - VkBool32 detailedMap); - -VMA_CALL_PRE void VMA_CALL_POST vmaFreeStatsString( - VmaAllocator VMA_NOT_NULL allocator, - char* VMA_NULLABLE pStatsString); - -/** @} */ - -#endif // VMA_STATS_STRING_ENABLED - -#endif // _VMA_FUNCTION_HEADERS - -#ifdef __cplusplus -} -#endif - -#endif // AMD_VULKAN_MEMORY_ALLOCATOR_H - -//////////////////////////////////////////////////////////////////////////////// -//////////////////////////////////////////////////////////////////////////////// -// -// IMPLEMENTATION -// -//////////////////////////////////////////////////////////////////////////////// -//////////////////////////////////////////////////////////////////////////////// - -// For Visual Studio IntelliSense. -#if defined(__cplusplus) && defined(__INTELLISENSE__) -#define VMA_IMPLEMENTATION -#endif - -#ifdef VMA_IMPLEMENTATION -#undef VMA_IMPLEMENTATION - -#include -#include -#include -#include -#include -#include - -#if !defined(VMA_CPP20) - #if __cplusplus >= 202002L || _MSVC_LANG >= 202002L // C++20 - #define VMA_CPP20 1 - #else - #define VMA_CPP20 0 - #endif -#endif - -#ifdef _MSC_VER - #include // For functions like __popcnt, _BitScanForward etc. -#endif -#if VMA_CPP20 - #include -#endif - -#if VMA_STATS_STRING_ENABLED - #include // For snprintf -#endif - -/******************************************************************************* -CONFIGURATION SECTION - -Define some of these macros before each #include of this header or change them -here if you need other then default behavior depending on your environment. -*/ -#ifndef _VMA_CONFIGURATION - -/* -Define this macro to 1 to make the library fetch pointers to Vulkan functions -internally, like: - - vulkanFunctions.vkAllocateMemory = &vkAllocateMemory; -*/ -#if !defined(VMA_STATIC_VULKAN_FUNCTIONS) && !defined(VK_NO_PROTOTYPES) - #define VMA_STATIC_VULKAN_FUNCTIONS 1 -#endif - -/* -Define this macro to 1 to make the library fetch pointers to Vulkan functions -internally, like: - - vulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkGetDeviceProcAddr(device, "vkAllocateMemory"); - -To use this feature in new versions of VMA you now have to pass -VmaVulkanFunctions::vkGetInstanceProcAddr and vkGetDeviceProcAddr as -VmaAllocatorCreateInfo::pVulkanFunctions. Other members can be null. -*/ -#if !defined(VMA_DYNAMIC_VULKAN_FUNCTIONS) - #define VMA_DYNAMIC_VULKAN_FUNCTIONS 1 -#endif - -#ifndef VMA_USE_STL_SHARED_MUTEX - #if __cplusplus >= 201703L || _MSVC_LANG >= 201703L // C++17 - #define VMA_USE_STL_SHARED_MUTEX 1 - // Visual studio defines __cplusplus properly only when passed additional parameter: /Zc:__cplusplus - // Otherwise it is always 199711L, despite shared_mutex works since Visual Studio 2015 Update 2. - #elif defined(_MSC_FULL_VER) && _MSC_FULL_VER >= 190023918 && __cplusplus == 199711L && _MSVC_LANG >= 201703L - #define VMA_USE_STL_SHARED_MUTEX 1 - #else - #define VMA_USE_STL_SHARED_MUTEX 0 - #endif -#endif - -/* -Define this macro to include custom header files without having to edit this file directly, e.g.: - - // Inside of "my_vma_configuration_user_includes.h": - - #include "my_custom_assert.h" // for MY_CUSTOM_ASSERT - #include "my_custom_min.h" // for my_custom_min - #include - #include - - // Inside a different file, which includes "vk_mem_alloc.h": - - #define VMA_CONFIGURATION_USER_INCLUDES_H "my_vma_configuration_user_includes.h" - #define VMA_ASSERT(expr) MY_CUSTOM_ASSERT(expr) - #define VMA_MIN(v1, v2) (my_custom_min(v1, v2)) - #include "vk_mem_alloc.h" - ... - -The following headers are used in this CONFIGURATION section only, so feel free to -remove them if not needed. -*/ -#if !defined(VMA_CONFIGURATION_USER_INCLUDES_H) - #include // for assert - #include // for min, max, swap - #include -#else - #include VMA_CONFIGURATION_USER_INCLUDES_H -#endif - -#ifndef VMA_NULL - // Value used as null pointer. Define it to e.g.: nullptr, NULL, 0, (void*)0. - #define VMA_NULL nullptr -#endif - -#ifndef VMA_FALLTHROUGH - #if __cplusplus >= 201703L || _MSVC_LANG >= 201703L // C++17 - #define VMA_FALLTHROUGH [[fallthrough]] - #else - #define VMA_FALLTHROUGH - #endif -#endif - -// Normal assert to check for programmer's errors, especially in Debug configuration. -#ifndef VMA_ASSERT - #ifdef NDEBUG - #define VMA_ASSERT(expr) - #else - #define VMA_ASSERT(expr) assert(expr) - #endif -#endif - -// Assert that will be called very often, like inside data structures e.g. operator[]. -// Making it non-empty can make program slow. -#ifndef VMA_HEAVY_ASSERT - #ifdef NDEBUG - #define VMA_HEAVY_ASSERT(expr) - #else - #define VMA_HEAVY_ASSERT(expr) //VMA_ASSERT(expr) - #endif -#endif - -// Assert used for reporting memory leaks - unfreed allocations. -#ifndef VMA_ASSERT_LEAK - #define VMA_ASSERT_LEAK(expr) VMA_ASSERT(expr) -#endif - -// If your compiler is not compatible with C++17 and definition of -// aligned_alloc() function is missing, uncommenting following line may help: - -//#include - -#if defined(__ANDROID_API__) && (__ANDROID_API__ < 16) -#include -static void* vma_aligned_alloc(size_t alignment, size_t size) -{ - // alignment must be >= sizeof(void*) - if(alignment < sizeof(void*)) - { - alignment = sizeof(void*); - } - - return memalign(alignment, size); -} -#elif defined(__APPLE__) || defined(__ANDROID__) || (defined(__linux__) && defined(__GLIBCXX__) && !defined(_GLIBCXX_HAVE_ALIGNED_ALLOC)) -#include - -#if defined(__APPLE__) -#include -#endif - -static void* vma_aligned_alloc(size_t alignment, size_t size) -{ - // Unfortunately, aligned_alloc causes VMA to crash due to it returning null pointers. (At least under 11.4) - // Therefore, for now disable this specific exception until a proper solution is found. - //#if defined(__APPLE__) && (defined(MAC_OS_X_VERSION_10_16) || defined(__IPHONE_14_0)) - //#if MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_16 || __IPHONE_OS_VERSION_MAX_ALLOWED >= __IPHONE_14_0 - // // For C++14, usr/include/malloc/_malloc.h declares aligned_alloc()) only - // // with the MacOSX11.0 SDK in Xcode 12 (which is what adds - // // MAC_OS_X_VERSION_10_16), even though the function is marked - // // available for 10.15. That is why the preprocessor checks for 10.16 but - // // the __builtin_available checks for 10.15. - // // People who use C++17 could call aligned_alloc with the 10.15 SDK already. - // if (__builtin_available(macOS 10.15, iOS 13, *)) - // return aligned_alloc(alignment, size); - //#endif - //#endif - - // alignment must be >= sizeof(void*) - if(alignment < sizeof(void*)) - { - alignment = sizeof(void*); - } - - void *pointer; - if(posix_memalign(&pointer, alignment, size) == 0) - return pointer; - return VMA_NULL; -} -#elif defined(_WIN32) -static void* vma_aligned_alloc(size_t alignment, size_t size) -{ - return _aligned_malloc(size, alignment); -} -#elif __cplusplus >= 201703L || _MSVC_LANG >= 201703L // C++17 -static void* vma_aligned_alloc(size_t alignment, size_t size) -{ - return aligned_alloc(alignment, size); -} -#else -static void* vma_aligned_alloc(size_t alignment, size_t size) -{ - VMA_ASSERT(0 && "Could not implement aligned_alloc automatically. Please enable C++17 or later in your compiler or provide custom implementation of macro VMA_SYSTEM_ALIGNED_MALLOC (and VMA_SYSTEM_ALIGNED_FREE if needed) using the API of your system."); - return VMA_NULL; -} -#endif - -#if defined(_WIN32) -static void vma_aligned_free(void* ptr) -{ - _aligned_free(ptr); -} -#else -static void vma_aligned_free(void* VMA_NULLABLE ptr) -{ - free(ptr); -} -#endif - -#ifndef VMA_ALIGN_OF - #define VMA_ALIGN_OF(type) (alignof(type)) -#endif - -#ifndef VMA_SYSTEM_ALIGNED_MALLOC - #define VMA_SYSTEM_ALIGNED_MALLOC(size, alignment) vma_aligned_alloc((alignment), (size)) -#endif - -#ifndef VMA_SYSTEM_ALIGNED_FREE - // VMA_SYSTEM_FREE is the old name, but might have been defined by the user - #if defined(VMA_SYSTEM_FREE) - #define VMA_SYSTEM_ALIGNED_FREE(ptr) VMA_SYSTEM_FREE(ptr) - #else - #define VMA_SYSTEM_ALIGNED_FREE(ptr) vma_aligned_free(ptr) - #endif -#endif - -#ifndef VMA_COUNT_BITS_SET - // Returns number of bits set to 1 in (v) - #define VMA_COUNT_BITS_SET(v) VmaCountBitsSet(v) -#endif - -#ifndef VMA_BITSCAN_LSB - // Scans integer for index of first nonzero value from the Least Significant Bit (LSB). If mask is 0 then returns UINT8_MAX - #define VMA_BITSCAN_LSB(mask) VmaBitScanLSB(mask) -#endif - -#ifndef VMA_BITSCAN_MSB - // Scans integer for index of first nonzero value from the Most Significant Bit (MSB). If mask is 0 then returns UINT8_MAX - #define VMA_BITSCAN_MSB(mask) VmaBitScanMSB(mask) -#endif - -#ifndef VMA_MIN - #define VMA_MIN(v1, v2) ((std::min)((v1), (v2))) -#endif - -#ifndef VMA_MAX - #define VMA_MAX(v1, v2) ((std::max)((v1), (v2))) -#endif - -#ifndef VMA_SORT - #define VMA_SORT(beg, end, cmp) std::sort(beg, end, cmp) -#endif - -#ifndef VMA_DEBUG_LOG_FORMAT - #define VMA_DEBUG_LOG_FORMAT(format, ...) - /* - #define VMA_DEBUG_LOG_FORMAT(format, ...) do { \ - printf((format), __VA_ARGS__); \ - printf("\n"); \ - } while(false) - */ -#endif - -#ifndef VMA_DEBUG_LOG - #define VMA_DEBUG_LOG(str) VMA_DEBUG_LOG_FORMAT("%s", (str)) -#endif - -#ifndef VMA_LEAK_LOG_FORMAT - #define VMA_LEAK_LOG_FORMAT(format, ...) VMA_DEBUG_LOG_FORMAT(format, __VA_ARGS__) -#endif - -#ifndef VMA_CLASS_NO_COPY - #define VMA_CLASS_NO_COPY(className) \ - private: \ - className(const className&) = delete; \ - className& operator=(const className&) = delete; -#endif -#ifndef VMA_CLASS_NO_COPY_NO_MOVE - #define VMA_CLASS_NO_COPY_NO_MOVE(className) \ - private: \ - className(const className&) = delete; \ - className(className&&) = delete; \ - className& operator=(const className&) = delete; \ - className& operator=(className&&) = delete; -#endif - -// Define this macro to 1 to enable functions: vmaBuildStatsString, vmaFreeStatsString. -#if VMA_STATS_STRING_ENABLED - static inline void VmaUint32ToStr(char* VMA_NOT_NULL outStr, size_t strLen, uint32_t num) - { - snprintf(outStr, strLen, "%" PRIu32, num); - } - static inline void VmaUint64ToStr(char* VMA_NOT_NULL outStr, size_t strLen, uint64_t num) - { - snprintf(outStr, strLen, "%" PRIu64, num); - } - static inline void VmaPtrToStr(char* VMA_NOT_NULL outStr, size_t strLen, const void* ptr) - { - snprintf(outStr, strLen, "%p", ptr); - } -#endif - -#ifndef VMA_MUTEX - class VmaMutex - { - VMA_CLASS_NO_COPY_NO_MOVE(VmaMutex) - public: - VmaMutex() { } - void Lock() { m_Mutex.lock(); } - void Unlock() { m_Mutex.unlock(); } - bool TryLock() { return m_Mutex.try_lock(); } - private: - std::mutex m_Mutex; - }; - #define VMA_MUTEX VmaMutex -#endif - -// Read-write mutex, where "read" is shared access, "write" is exclusive access. -#ifndef VMA_RW_MUTEX - #if VMA_USE_STL_SHARED_MUTEX - // Use std::shared_mutex from C++17. - #include - class VmaRWMutex - { - public: - void LockRead() { m_Mutex.lock_shared(); } - void UnlockRead() { m_Mutex.unlock_shared(); } - bool TryLockRead() { return m_Mutex.try_lock_shared(); } - void LockWrite() { m_Mutex.lock(); } - void UnlockWrite() { m_Mutex.unlock(); } - bool TryLockWrite() { return m_Mutex.try_lock(); } - private: - std::shared_mutex m_Mutex; - }; - #define VMA_RW_MUTEX VmaRWMutex - #elif defined(_WIN32) && defined(WINVER) && defined(SRWLOCK_INIT) && WINVER >= 0x0600 - // Use SRWLOCK from WinAPI. - // Minimum supported client = Windows Vista, server = Windows Server 2008. - class VmaRWMutex - { - public: - VmaRWMutex() { InitializeSRWLock(&m_Lock); } - void LockRead() { AcquireSRWLockShared(&m_Lock); } - void UnlockRead() { ReleaseSRWLockShared(&m_Lock); } - bool TryLockRead() { return TryAcquireSRWLockShared(&m_Lock) != FALSE; } - void LockWrite() { AcquireSRWLockExclusive(&m_Lock); } - void UnlockWrite() { ReleaseSRWLockExclusive(&m_Lock); } - bool TryLockWrite() { return TryAcquireSRWLockExclusive(&m_Lock) != FALSE; } - private: - SRWLOCK m_Lock; - }; - #define VMA_RW_MUTEX VmaRWMutex - #else - // Less efficient fallback: Use normal mutex. - class VmaRWMutex - { - public: - void LockRead() { m_Mutex.Lock(); } - void UnlockRead() { m_Mutex.Unlock(); } - bool TryLockRead() { return m_Mutex.TryLock(); } - void LockWrite() { m_Mutex.Lock(); } - void UnlockWrite() { m_Mutex.Unlock(); } - bool TryLockWrite() { return m_Mutex.TryLock(); } - private: - VMA_MUTEX m_Mutex; - }; - #define VMA_RW_MUTEX VmaRWMutex - #endif // #if VMA_USE_STL_SHARED_MUTEX -#endif // #ifndef VMA_RW_MUTEX - -/* -If providing your own implementation, you need to implement a subset of std::atomic. -*/ -#ifndef VMA_ATOMIC_UINT32 - #include - #define VMA_ATOMIC_UINT32 std::atomic -#endif - -#ifndef VMA_ATOMIC_UINT64 - #include - #define VMA_ATOMIC_UINT64 std::atomic -#endif - -#ifndef VMA_DEBUG_ALWAYS_DEDICATED_MEMORY - /** - Every allocation will have its own memory block. - Define to 1 for debugging purposes only. - */ - #define VMA_DEBUG_ALWAYS_DEDICATED_MEMORY (0) -#endif - -#ifndef VMA_MIN_ALIGNMENT - /** - Minimum alignment of all allocations, in bytes. - Set to more than 1 for debugging purposes. Must be power of two. - */ - #ifdef VMA_DEBUG_ALIGNMENT // Old name - #define VMA_MIN_ALIGNMENT VMA_DEBUG_ALIGNMENT - #else - #define VMA_MIN_ALIGNMENT (1) - #endif -#endif - -#ifndef VMA_DEBUG_MARGIN - /** - Minimum margin after every allocation, in bytes. - Set nonzero for debugging purposes only. - */ - #define VMA_DEBUG_MARGIN (0) -#endif - -#ifndef VMA_DEBUG_INITIALIZE_ALLOCATIONS - /** - Define this macro to 1 to automatically fill new allocations and destroyed - allocations with some bit pattern. - */ - #define VMA_DEBUG_INITIALIZE_ALLOCATIONS (0) -#endif - -#ifndef VMA_DEBUG_DETECT_CORRUPTION - /** - Define this macro to 1 together with non-zero value of VMA_DEBUG_MARGIN to - enable writing magic value to the margin after every allocation and - validating it, so that memory corruptions (out-of-bounds writes) are detected. - */ - #define VMA_DEBUG_DETECT_CORRUPTION (0) -#endif - -#ifndef VMA_DEBUG_GLOBAL_MUTEX - /** - Set this to 1 for debugging purposes only, to enable single mutex protecting all - entry calls to the library. Can be useful for debugging multithreading issues. - */ - #define VMA_DEBUG_GLOBAL_MUTEX (0) -#endif - -#ifndef VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY - /** - Minimum value for VkPhysicalDeviceLimits::bufferImageGranularity. - Set to more than 1 for debugging purposes only. Must be power of two. - */ - #define VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY (1) -#endif - -#ifndef VMA_DEBUG_DONT_EXCEED_MAX_MEMORY_ALLOCATION_COUNT - /* - Set this to 1 to make VMA never exceed VkPhysicalDeviceLimits::maxMemoryAllocationCount - and return error instead of leaving up to Vulkan implementation what to do in such cases. - */ - #define VMA_DEBUG_DONT_EXCEED_MAX_MEMORY_ALLOCATION_COUNT (0) -#endif - -#ifndef VMA_SMALL_HEAP_MAX_SIZE - /// Maximum size of a memory heap in Vulkan to consider it "small". - #define VMA_SMALL_HEAP_MAX_SIZE (1024ull * 1024 * 1024) -#endif - -#ifndef VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE - /// Default size of a block allocated as single VkDeviceMemory from a "large" heap. - #define VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE (256ull * 1024 * 1024) -#endif - -/* -Mapping hysteresis is a logic that launches when vmaMapMemory/vmaUnmapMemory is called -or a persistently mapped allocation is created and destroyed several times in a row. -It keeps additional +1 mapping of a device memory block to prevent calling actual -vkMapMemory/vkUnmapMemory too many times, which may improve performance and help -tools like RenderDoc. -*/ -#ifndef VMA_MAPPING_HYSTERESIS_ENABLED - #define VMA_MAPPING_HYSTERESIS_ENABLED 1 -#endif - -#define VMA_VALIDATE(cond) do { if(!(cond)) { \ - VMA_ASSERT(0 && "Validation failed: " #cond); \ - return false; \ - } } while(false) - -/******************************************************************************* -END OF CONFIGURATION -*/ -#endif // _VMA_CONFIGURATION - - -static const uint8_t VMA_ALLOCATION_FILL_PATTERN_CREATED = 0xDC; -static const uint8_t VMA_ALLOCATION_FILL_PATTERN_DESTROYED = 0xEF; -// Decimal 2139416166, float NaN, little-endian binary 66 E6 84 7F. -static const uint32_t VMA_CORRUPTION_DETECTION_MAGIC_VALUE = 0x7F84E666; - -// Copy of some Vulkan definitions so we don't need to check their existence just to handle few constants. -static const uint32_t VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY = 0x00000040; -static const uint32_t VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY = 0x00000080; -static const uint32_t VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY = 0x00020000; -static const uint32_t VK_IMAGE_CREATE_DISJOINT_BIT_COPY = 0x00000200; -static const int32_t VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT_COPY = 1000158000; -static const uint32_t VMA_ALLOCATION_INTERNAL_STRATEGY_MIN_OFFSET = 0x10000000u; -static const uint32_t VMA_ALLOCATION_TRY_COUNT = 32; -static const uint32_t VMA_VENDOR_ID_AMD = 4098; - -// This one is tricky. Vulkan specification defines this code as available since -// Vulkan 1.0, but doesn't actually define it in Vulkan SDK earlier than 1.2.131. -// See pull request #207. -#define VK_ERROR_UNKNOWN_COPY ((VkResult)-13) - - -#if VMA_STATS_STRING_ENABLED -// Correspond to values of enum VmaSuballocationType. -static const char* VMA_SUBALLOCATION_TYPE_NAMES[] = -{ - "FREE", - "UNKNOWN", - "BUFFER", - "IMAGE_UNKNOWN", - "IMAGE_LINEAR", - "IMAGE_OPTIMAL", -}; -#endif - -static VkAllocationCallbacks VmaEmptyAllocationCallbacks = - { VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL }; - - -#ifndef _VMA_ENUM_DECLARATIONS - -enum VmaSuballocationType -{ - VMA_SUBALLOCATION_TYPE_FREE = 0, - VMA_SUBALLOCATION_TYPE_UNKNOWN = 1, - VMA_SUBALLOCATION_TYPE_BUFFER = 2, - VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN = 3, - VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR = 4, - VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL = 5, - VMA_SUBALLOCATION_TYPE_MAX_ENUM = 0x7FFFFFFF -}; - -enum VMA_CACHE_OPERATION -{ - VMA_CACHE_FLUSH, - VMA_CACHE_INVALIDATE -}; - -enum class VmaAllocationRequestType -{ - Normal, - TLSF, - // Used by "Linear" algorithm. - UpperAddress, - EndOf1st, - EndOf2nd, -}; - -#endif // _VMA_ENUM_DECLARATIONS - -#ifndef _VMA_FORWARD_DECLARATIONS -// Opaque handle used by allocation algorithms to identify single allocation in any conforming way. -VK_DEFINE_NON_DISPATCHABLE_HANDLE(VmaAllocHandle); - -struct VmaMutexLock; -struct VmaMutexLockRead; -struct VmaMutexLockWrite; - -template -struct AtomicTransactionalIncrement; - -template -struct VmaStlAllocator; - -template -class VmaVector; - -template -class VmaSmallVector; - -template -class VmaPoolAllocator; - -template -struct VmaListItem; - -template -class VmaRawList; - -template -class VmaList; - -template -class VmaIntrusiveLinkedList; - -#if VMA_STATS_STRING_ENABLED -class VmaStringBuilder; -class VmaJsonWriter; -#endif - -class VmaDeviceMemoryBlock; - -struct VmaDedicatedAllocationListItemTraits; -class VmaDedicatedAllocationList; - -struct VmaSuballocation; -struct VmaSuballocationOffsetLess; -struct VmaSuballocationOffsetGreater; -struct VmaSuballocationItemSizeLess; - -typedef VmaList> VmaSuballocationList; - -struct VmaAllocationRequest; - -class VmaBlockMetadata; -class VmaBlockMetadata_Linear; -class VmaBlockMetadata_TLSF; - -class VmaBlockVector; - -struct VmaPoolListItemTraits; - -struct VmaCurrentBudgetData; - -class VmaAllocationObjectAllocator; - -#endif // _VMA_FORWARD_DECLARATIONS - - -#ifndef _VMA_FUNCTIONS - -/* -Returns number of bits set to 1 in (v). - -On specific platforms and compilers you can use intrinsics like: - -Visual Studio: - return __popcnt(v); -GCC, Clang: - return static_cast(__builtin_popcount(v)); - -Define macro VMA_COUNT_BITS_SET to provide your optimized implementation. -But you need to check in runtime whether user's CPU supports these, as some old processors don't. -*/ -static inline uint32_t VmaCountBitsSet(uint32_t v) -{ -#if VMA_CPP20 - return std::popcount(v); -#else - uint32_t c = v - ((v >> 1) & 0x55555555); - c = ((c >> 2) & 0x33333333) + (c & 0x33333333); - c = ((c >> 4) + c) & 0x0F0F0F0F; - c = ((c >> 8) + c) & 0x00FF00FF; - c = ((c >> 16) + c) & 0x0000FFFF; - return c; -#endif -} - -static inline uint8_t VmaBitScanLSB(uint64_t mask) -{ -#if defined(_MSC_VER) && defined(_WIN64) - unsigned long pos; - if (_BitScanForward64(&pos, mask)) - return static_cast(pos); - return UINT8_MAX; -#elif VMA_CPP20 - if(mask) - return static_cast(std::countr_zero(mask)); - return UINT8_MAX; -#elif defined __GNUC__ || defined __clang__ - return static_cast(__builtin_ffsll(mask)) - 1U; -#else - uint8_t pos = 0; - uint64_t bit = 1; - do - { - if (mask & bit) - return pos; - bit <<= 1; - } while (pos++ < 63); - return UINT8_MAX; -#endif -} - -static inline uint8_t VmaBitScanLSB(uint32_t mask) -{ -#ifdef _MSC_VER - unsigned long pos; - if (_BitScanForward(&pos, mask)) - return static_cast(pos); - return UINT8_MAX; -#elif VMA_CPP20 - if(mask) - return static_cast(std::countr_zero(mask)); - return UINT8_MAX; -#elif defined __GNUC__ || defined __clang__ - return static_cast(__builtin_ffs(mask)) - 1U; -#else - uint8_t pos = 0; - uint32_t bit = 1; - do - { - if (mask & bit) - return pos; - bit <<= 1; - } while (pos++ < 31); - return UINT8_MAX; -#endif -} - -static inline uint8_t VmaBitScanMSB(uint64_t mask) -{ -#if defined(_MSC_VER) && defined(_WIN64) - unsigned long pos; - if (_BitScanReverse64(&pos, mask)) - return static_cast(pos); -#elif VMA_CPP20 - if(mask) - return 63 - static_cast(std::countl_zero(mask)); -#elif defined __GNUC__ || defined __clang__ - if (mask) - return 63 - static_cast(__builtin_clzll(mask)); -#else - uint8_t pos = 63; - uint64_t bit = 1ULL << 63; - do - { - if (mask & bit) - return pos; - bit >>= 1; - } while (pos-- > 0); -#endif - return UINT8_MAX; -} - -static inline uint8_t VmaBitScanMSB(uint32_t mask) -{ -#ifdef _MSC_VER - unsigned long pos; - if (_BitScanReverse(&pos, mask)) - return static_cast(pos); -#elif VMA_CPP20 - if(mask) - return 31 - static_cast(std::countl_zero(mask)); -#elif defined __GNUC__ || defined __clang__ - if (mask) - return 31 - static_cast(__builtin_clz(mask)); -#else - uint8_t pos = 31; - uint32_t bit = 1UL << 31; - do - { - if (mask & bit) - return pos; - bit >>= 1; - } while (pos-- > 0); -#endif - return UINT8_MAX; -} - -/* -Returns true if given number is a power of two. -T must be unsigned integer number or signed integer but always nonnegative. -For 0 returns true. -*/ -template -inline bool VmaIsPow2(T x) -{ - return (x & (x - 1)) == 0; -} - -// Aligns given value up to nearest multiply of align value. For example: VmaAlignUp(11, 8) = 16. -// Use types like uint32_t, uint64_t as T. -template -static inline T VmaAlignUp(T val, T alignment) -{ - VMA_HEAVY_ASSERT(VmaIsPow2(alignment)); - return (val + alignment - 1) & ~(alignment - 1); -} - -// Aligns given value down to nearest multiply of align value. For example: VmaAlignDown(11, 8) = 8. -// Use types like uint32_t, uint64_t as T. -template -static inline T VmaAlignDown(T val, T alignment) -{ - VMA_HEAVY_ASSERT(VmaIsPow2(alignment)); - return val & ~(alignment - 1); -} - -// Division with mathematical rounding to nearest number. -template -static inline T VmaRoundDiv(T x, T y) -{ - return (x + (y / (T)2)) / y; -} - -// Divide by 'y' and round up to nearest integer. -template -static inline T VmaDivideRoundingUp(T x, T y) -{ - return (x + y - (T)1) / y; -} - -// Returns smallest power of 2 greater or equal to v. -static inline uint32_t VmaNextPow2(uint32_t v) -{ - v--; - v |= v >> 1; - v |= v >> 2; - v |= v >> 4; - v |= v >> 8; - v |= v >> 16; - v++; - return v; -} - -static inline uint64_t VmaNextPow2(uint64_t v) -{ - v--; - v |= v >> 1; - v |= v >> 2; - v |= v >> 4; - v |= v >> 8; - v |= v >> 16; - v |= v >> 32; - v++; - return v; -} - -// Returns largest power of 2 less or equal to v. -static inline uint32_t VmaPrevPow2(uint32_t v) -{ - v |= v >> 1; - v |= v >> 2; - v |= v >> 4; - v |= v >> 8; - v |= v >> 16; - v = v ^ (v >> 1); - return v; -} - -static inline uint64_t VmaPrevPow2(uint64_t v) -{ - v |= v >> 1; - v |= v >> 2; - v |= v >> 4; - v |= v >> 8; - v |= v >> 16; - v |= v >> 32; - v = v ^ (v >> 1); - return v; -} - -static inline bool VmaStrIsEmpty(const char* pStr) -{ - return pStr == VMA_NULL || *pStr == '\0'; -} - -/* -Returns true if two memory blocks occupy overlapping pages. -ResourceA must be in less memory offset than ResourceB. - -Algorithm is based on "Vulkan 1.0.39 - A Specification (with all registered Vulkan extensions)" -chapter 11.6 "Resource Memory Association", paragraph "Buffer-Image Granularity". -*/ -static inline bool VmaBlocksOnSamePage( - VkDeviceSize resourceAOffset, - VkDeviceSize resourceASize, - VkDeviceSize resourceBOffset, - VkDeviceSize pageSize) -{ - VMA_ASSERT(resourceAOffset + resourceASize <= resourceBOffset && resourceASize > 0 && pageSize > 0); - VkDeviceSize resourceAEnd = resourceAOffset + resourceASize - 1; - VkDeviceSize resourceAEndPage = resourceAEnd & ~(pageSize - 1); - VkDeviceSize resourceBStart = resourceBOffset; - VkDeviceSize resourceBStartPage = resourceBStart & ~(pageSize - 1); - return resourceAEndPage == resourceBStartPage; -} - -/* -Returns true if given suballocation types could conflict and must respect -VkPhysicalDeviceLimits::bufferImageGranularity. They conflict if one is buffer -or linear image and another one is optimal image. If type is unknown, behave -conservatively. -*/ -static inline bool VmaIsBufferImageGranularityConflict( - VmaSuballocationType suballocType1, - VmaSuballocationType suballocType2) -{ - if (suballocType1 > suballocType2) - { - std::swap(suballocType1, suballocType2); - } - - switch (suballocType1) - { - case VMA_SUBALLOCATION_TYPE_FREE: - return false; - case VMA_SUBALLOCATION_TYPE_UNKNOWN: - return true; - case VMA_SUBALLOCATION_TYPE_BUFFER: - return - suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN || - suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL; - case VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN: - return - suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN || - suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR || - suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL; - case VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR: - return - suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL; - case VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL: - return false; - default: - VMA_ASSERT(0); - return true; - } -} - -static void VmaWriteMagicValue(void* pData, VkDeviceSize offset) -{ -#if VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_DETECT_CORRUPTION - uint32_t* pDst = (uint32_t*)((char*)pData + offset); - const size_t numberCount = VMA_DEBUG_MARGIN / sizeof(uint32_t); - for (size_t i = 0; i < numberCount; ++i, ++pDst) - { - *pDst = VMA_CORRUPTION_DETECTION_MAGIC_VALUE; - } -#else - // no-op -#endif -} - -static bool VmaValidateMagicValue(const void* pData, VkDeviceSize offset) -{ -#if VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_DETECT_CORRUPTION - const uint32_t* pSrc = (const uint32_t*)((const char*)pData + offset); - const size_t numberCount = VMA_DEBUG_MARGIN / sizeof(uint32_t); - for (size_t i = 0; i < numberCount; ++i, ++pSrc) - { - if (*pSrc != VMA_CORRUPTION_DETECTION_MAGIC_VALUE) - { - return false; - } - } -#endif - return true; -} - -/* -Fills structure with parameters of an example buffer to be used for transfers -during GPU memory defragmentation. -*/ -static void VmaFillGpuDefragmentationBufferCreateInfo(VkBufferCreateInfo& outBufCreateInfo) -{ - memset(&outBufCreateInfo, 0, sizeof(outBufCreateInfo)); - outBufCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; - outBufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; - outBufCreateInfo.size = (VkDeviceSize)VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE; // Example size. -} - - -/* -Performs binary search and returns iterator to first element that is greater or -equal to (key), according to comparison (cmp). - -Cmp should return true if first argument is less than second argument. - -Returned value is the found element, if present in the collection or place where -new element with value (key) should be inserted. -*/ -template -static IterT VmaBinaryFindFirstNotLess(IterT beg, IterT end, const KeyT& key, const CmpLess& cmp) -{ - size_t down = 0, up = size_t(end - beg); - while (down < up) - { - const size_t mid = down + (up - down) / 2; // Overflow-safe midpoint calculation - if (cmp(*(beg + mid), key)) - { - down = mid + 1; - } - else - { - up = mid; - } - } - return beg + down; -} - -template -IterT VmaBinaryFindSorted(const IterT& beg, const IterT& end, const KeyT& value, const CmpLess& cmp) -{ - IterT it = VmaBinaryFindFirstNotLess( - beg, end, value, cmp); - if (it == end || - (!cmp(*it, value) && !cmp(value, *it))) - { - return it; - } - return end; -} - -/* -Returns true if all pointers in the array are not-null and unique. -Warning! O(n^2) complexity. Use only inside VMA_HEAVY_ASSERT. -T must be pointer type, e.g. VmaAllocation, VmaPool. -*/ -template -static bool VmaValidatePointerArray(uint32_t count, const T* arr) -{ - for (uint32_t i = 0; i < count; ++i) - { - const T iPtr = arr[i]; - if (iPtr == VMA_NULL) - { - return false; - } - for (uint32_t j = i + 1; j < count; ++j) - { - if (iPtr == arr[j]) - { - return false; - } - } - } - return true; -} - -template -static inline void VmaPnextChainPushFront(MainT* mainStruct, NewT* newStruct) -{ - newStruct->pNext = mainStruct->pNext; - mainStruct->pNext = newStruct; -} -// Finds structure with s->sType == sType in mainStruct->pNext chain. -// Returns pointer to it. If not found, returns null. -template -static inline const FindT* VmaPnextChainFind(const MainT* mainStruct, VkStructureType sType) -{ - for(const VkBaseInStructure* s = (const VkBaseInStructure*)mainStruct->pNext; - s != VMA_NULL; s = s->pNext) - { - if(s->sType == sType) - { - return (const FindT*)s; - } - } - return VMA_NULL; -} - -// An abstraction over buffer or image `usage` flags, depending on available extensions. -struct VmaBufferImageUsage -{ -#if VMA_KHR_MAINTENANCE5 - typedef uint64_t BaseType; // VkFlags64 -#else - typedef uint32_t BaseType; // VkFlags32 -#endif - - static const VmaBufferImageUsage UNKNOWN; - - BaseType Value; - - VmaBufferImageUsage() { *this = UNKNOWN; } - explicit VmaBufferImageUsage(BaseType usage) : Value(usage) { } - VmaBufferImageUsage(const VkBufferCreateInfo &createInfo, bool useKhrMaintenance5); - explicit VmaBufferImageUsage(const VkImageCreateInfo &createInfo); - - bool operator==(const VmaBufferImageUsage& rhs) const { return Value == rhs.Value; } - bool operator!=(const VmaBufferImageUsage& rhs) const { return Value != rhs.Value; } - - bool Contains(BaseType flag) const { return (Value & flag) != 0; } - bool ContainsDeviceAccess() const - { - // This relies on values of VK_IMAGE_USAGE_TRANSFER* being the same as VK_BUFFER_IMAGE_TRANSFER*. - return (Value & ~BaseType(VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_TRANSFER_SRC_BIT)) != 0; - } -}; - -const VmaBufferImageUsage VmaBufferImageUsage::UNKNOWN = VmaBufferImageUsage(0); - -VmaBufferImageUsage::VmaBufferImageUsage(const VkBufferCreateInfo &createInfo, - bool useKhrMaintenance5) -{ -#if VMA_KHR_MAINTENANCE5 - if(useKhrMaintenance5) - { - // If VkBufferCreateInfo::pNext chain contains VkBufferUsageFlags2CreateInfoKHR, - // take usage from it and ignore VkBufferCreateInfo::usage, per specification - // of the VK_KHR_maintenance5 extension. - const VkBufferUsageFlags2CreateInfoKHR* const usageFlags2 = - VmaPnextChainFind(&createInfo, VK_STRUCTURE_TYPE_BUFFER_USAGE_FLAGS_2_CREATE_INFO_KHR); - if(usageFlags2) - { - this->Value = usageFlags2->usage; - return; - } - } -#endif - - this->Value = (BaseType)createInfo.usage; -} - -VmaBufferImageUsage::VmaBufferImageUsage(const VkImageCreateInfo &createInfo) -{ - // Maybe in the future there will be VK_KHR_maintenanceN extension with structure - // VkImageUsageFlags2CreateInfoKHR, like the one for buffers... - - this->Value = (BaseType)createInfo.usage; -} - -// This is the main algorithm that guides the selection of a memory type best for an allocation - -// converts usage to required/preferred/not preferred flags. -static bool FindMemoryPreferences( - bool isIntegratedGPU, - const VmaAllocationCreateInfo& allocCreateInfo, - VmaBufferImageUsage bufImgUsage, - VkMemoryPropertyFlags& outRequiredFlags, - VkMemoryPropertyFlags& outPreferredFlags, - VkMemoryPropertyFlags& outNotPreferredFlags) -{ - outRequiredFlags = allocCreateInfo.requiredFlags; - outPreferredFlags = allocCreateInfo.preferredFlags; - outNotPreferredFlags = 0; - - switch(allocCreateInfo.usage) - { - case VMA_MEMORY_USAGE_UNKNOWN: - break; - case VMA_MEMORY_USAGE_GPU_ONLY: - if(!isIntegratedGPU || (outPreferredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) - { - outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; - } - break; - case VMA_MEMORY_USAGE_CPU_ONLY: - outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT; - break; - case VMA_MEMORY_USAGE_CPU_TO_GPU: - outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; - if(!isIntegratedGPU || (outPreferredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) - { - outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; - } - break; - case VMA_MEMORY_USAGE_GPU_TO_CPU: - outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; - outPreferredFlags |= VK_MEMORY_PROPERTY_HOST_CACHED_BIT; - break; - case VMA_MEMORY_USAGE_CPU_COPY: - outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; - break; - case VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED: - outRequiredFlags |= VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT; - break; - case VMA_MEMORY_USAGE_AUTO: - case VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE: - case VMA_MEMORY_USAGE_AUTO_PREFER_HOST: - { - if(bufImgUsage == VmaBufferImageUsage::UNKNOWN) - { - VMA_ASSERT(0 && "VMA_MEMORY_USAGE_AUTO* values can only be used with functions like vmaCreateBuffer, vmaCreateImage so that the details of the created resource are known." - " Maybe you use VkBufferUsageFlags2CreateInfoKHR but forgot to use VMA_ALLOCATOR_CREATE_KHR_MAINTENANCE5_BIT?" ); - return false; - } - - const bool deviceAccess = bufImgUsage.ContainsDeviceAccess(); - const bool hostAccessSequentialWrite = (allocCreateInfo.flags & VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT) != 0; - const bool hostAccessRandom = (allocCreateInfo.flags & VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT) != 0; - const bool hostAccessAllowTransferInstead = (allocCreateInfo.flags & VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT) != 0; - const bool preferDevice = allocCreateInfo.usage == VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE; - const bool preferHost = allocCreateInfo.usage == VMA_MEMORY_USAGE_AUTO_PREFER_HOST; - - // CPU random access - e.g. a buffer written to or transferred from GPU to read back on CPU. - if(hostAccessRandom) - { - // Prefer cached. Cannot require it, because some platforms don't have it (e.g. Raspberry Pi - see #362)! - outPreferredFlags |= VK_MEMORY_PROPERTY_HOST_CACHED_BIT; - - if (!isIntegratedGPU && deviceAccess && hostAccessAllowTransferInstead && !preferHost) - { - // Nice if it will end up in HOST_VISIBLE, but more importantly prefer DEVICE_LOCAL. - // Omitting HOST_VISIBLE here is intentional. - // In case there is DEVICE_LOCAL | HOST_VISIBLE | HOST_CACHED, it will pick that one. - // Otherwise, this will give same weight to DEVICE_LOCAL as HOST_VISIBLE | HOST_CACHED and select the former if occurs first on the list. - outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; - } - else - { - // Always CPU memory. - outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; - } - } - // CPU sequential write - may be CPU or host-visible GPU memory, uncached and write-combined. - else if(hostAccessSequentialWrite) - { - // Want uncached and write-combined. - outNotPreferredFlags |= VK_MEMORY_PROPERTY_HOST_CACHED_BIT; - - if(!isIntegratedGPU && deviceAccess && hostAccessAllowTransferInstead && !preferHost) - { - outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; - } - else - { - outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; - // Direct GPU access, CPU sequential write (e.g. a dynamic uniform buffer updated every frame) - if(deviceAccess) - { - // Could go to CPU memory or GPU BAR/unified. Up to the user to decide. If no preference, choose GPU memory. - if(preferHost) - outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; - else - outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; - } - // GPU no direct access, CPU sequential write (e.g. an upload buffer to be transferred to the GPU) - else - { - // Could go to CPU memory or GPU BAR/unified. Up to the user to decide. If no preference, choose CPU memory. - if(preferDevice) - outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; - else - outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; - } - } - } - // No CPU access - else - { - // if(deviceAccess) - // - // GPU access, no CPU access (e.g. a color attachment image) - prefer GPU memory, - // unless there is a clear preference from the user not to do so. - // - // else: - // - // No direct GPU access, no CPU access, just transfers. - // It may be staging copy intended for e.g. preserving image for next frame (then better GPU memory) or - // a "swap file" copy to free some GPU memory (then better CPU memory). - // Up to the user to decide. If no preferece, assume the former and choose GPU memory. - - if(preferHost) - outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; - else - outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; - } - break; - } - default: - VMA_ASSERT(0); - } - - // Avoid DEVICE_COHERENT unless explicitly requested. - if(((allocCreateInfo.requiredFlags | allocCreateInfo.preferredFlags) & - (VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY | VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY)) == 0) - { - outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY; - } - - return true; -} - -//////////////////////////////////////////////////////////////////////////////// -// Memory allocation - -static void* VmaMalloc(const VkAllocationCallbacks* pAllocationCallbacks, size_t size, size_t alignment) -{ - void* result = VMA_NULL; - if ((pAllocationCallbacks != VMA_NULL) && - (pAllocationCallbacks->pfnAllocation != VMA_NULL)) - { - result = (*pAllocationCallbacks->pfnAllocation)( - pAllocationCallbacks->pUserData, - size, - alignment, - VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); - } - else - { - result = VMA_SYSTEM_ALIGNED_MALLOC(size, alignment); - } - VMA_ASSERT(result != VMA_NULL && "CPU memory allocation failed."); - return result; -} - -static void VmaFree(const VkAllocationCallbacks* pAllocationCallbacks, void* ptr) -{ - if ((pAllocationCallbacks != VMA_NULL) && - (pAllocationCallbacks->pfnFree != VMA_NULL)) - { - (*pAllocationCallbacks->pfnFree)(pAllocationCallbacks->pUserData, ptr); - } - else - { - VMA_SYSTEM_ALIGNED_FREE(ptr); - } -} - -template -static T* VmaAllocate(const VkAllocationCallbacks* pAllocationCallbacks) -{ - return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T), VMA_ALIGN_OF(T)); -} - -template -static T* VmaAllocateArray(const VkAllocationCallbacks* pAllocationCallbacks, size_t count) -{ - return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T) * count, VMA_ALIGN_OF(T)); -} - -#define vma_new(allocator, type) new(VmaAllocate(allocator))(type) - -#define vma_new_array(allocator, type, count) new(VmaAllocateArray((allocator), (count)))(type) - -template -static void vma_delete(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr) -{ - ptr->~T(); - VmaFree(pAllocationCallbacks, ptr); -} - -template -static void vma_delete_array(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr, size_t count) -{ - if (ptr != VMA_NULL) - { - for (size_t i = count; i--; ) - { - ptr[i].~T(); - } - VmaFree(pAllocationCallbacks, ptr); - } -} - -static char* VmaCreateStringCopy(const VkAllocationCallbacks* allocs, const char* srcStr) -{ - if (srcStr != VMA_NULL) - { - const size_t len = strlen(srcStr); - char* const result = vma_new_array(allocs, char, len + 1); - memcpy(result, srcStr, len + 1); - return result; - } - return VMA_NULL; -} - -#if VMA_STATS_STRING_ENABLED -static char* VmaCreateStringCopy(const VkAllocationCallbacks* allocs, const char* srcStr, size_t strLen) -{ - if (srcStr != VMA_NULL) - { - char* const result = vma_new_array(allocs, char, strLen + 1); - memcpy(result, srcStr, strLen); - result[strLen] = '\0'; - return result; - } - return VMA_NULL; -} -#endif // VMA_STATS_STRING_ENABLED - -static void VmaFreeString(const VkAllocationCallbacks* allocs, char* str) -{ - if (str != VMA_NULL) - { - const size_t len = strlen(str); - vma_delete_array(allocs, str, len + 1); - } -} - -template -size_t VmaVectorInsertSorted(VectorT& vector, const typename VectorT::value_type& value) -{ - const size_t indexToInsert = VmaBinaryFindFirstNotLess( - vector.data(), - vector.data() + vector.size(), - value, - CmpLess()) - vector.data(); - VmaVectorInsert(vector, indexToInsert, value); - return indexToInsert; -} - -template -bool VmaVectorRemoveSorted(VectorT& vector, const typename VectorT::value_type& value) -{ - CmpLess comparator; - typename VectorT::iterator it = VmaBinaryFindFirstNotLess( - vector.begin(), - vector.end(), - value, - comparator); - if ((it != vector.end()) && !comparator(*it, value) && !comparator(value, *it)) - { - size_t indexToRemove = it - vector.begin(); - VmaVectorRemove(vector, indexToRemove); - return true; - } - return false; -} -#endif // _VMA_FUNCTIONS - -#ifndef _VMA_STATISTICS_FUNCTIONS - -static void VmaClearStatistics(VmaStatistics& outStats) -{ - outStats.blockCount = 0; - outStats.allocationCount = 0; - outStats.blockBytes = 0; - outStats.allocationBytes = 0; -} - -static void VmaAddStatistics(VmaStatistics& inoutStats, const VmaStatistics& src) -{ - inoutStats.blockCount += src.blockCount; - inoutStats.allocationCount += src.allocationCount; - inoutStats.blockBytes += src.blockBytes; - inoutStats.allocationBytes += src.allocationBytes; -} - -static void VmaClearDetailedStatistics(VmaDetailedStatistics& outStats) -{ - VmaClearStatistics(outStats.statistics); - outStats.unusedRangeCount = 0; - outStats.allocationSizeMin = VK_WHOLE_SIZE; - outStats.allocationSizeMax = 0; - outStats.unusedRangeSizeMin = VK_WHOLE_SIZE; - outStats.unusedRangeSizeMax = 0; -} - -static void VmaAddDetailedStatisticsAllocation(VmaDetailedStatistics& inoutStats, VkDeviceSize size) -{ - inoutStats.statistics.allocationCount++; - inoutStats.statistics.allocationBytes += size; - inoutStats.allocationSizeMin = VMA_MIN(inoutStats.allocationSizeMin, size); - inoutStats.allocationSizeMax = VMA_MAX(inoutStats.allocationSizeMax, size); -} - -static void VmaAddDetailedStatisticsUnusedRange(VmaDetailedStatistics& inoutStats, VkDeviceSize size) -{ - inoutStats.unusedRangeCount++; - inoutStats.unusedRangeSizeMin = VMA_MIN(inoutStats.unusedRangeSizeMin, size); - inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, size); -} - -static void VmaAddDetailedStatistics(VmaDetailedStatistics& inoutStats, const VmaDetailedStatistics& src) -{ - VmaAddStatistics(inoutStats.statistics, src.statistics); - inoutStats.unusedRangeCount += src.unusedRangeCount; - inoutStats.allocationSizeMin = VMA_MIN(inoutStats.allocationSizeMin, src.allocationSizeMin); - inoutStats.allocationSizeMax = VMA_MAX(inoutStats.allocationSizeMax, src.allocationSizeMax); - inoutStats.unusedRangeSizeMin = VMA_MIN(inoutStats.unusedRangeSizeMin, src.unusedRangeSizeMin); - inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, src.unusedRangeSizeMax); -} - -#endif // _VMA_STATISTICS_FUNCTIONS - -#ifndef _VMA_MUTEX_LOCK -// Helper RAII class to lock a mutex in constructor and unlock it in destructor (at the end of scope). -struct VmaMutexLock -{ - VMA_CLASS_NO_COPY_NO_MOVE(VmaMutexLock) -public: - VmaMutexLock(VMA_MUTEX& mutex, bool useMutex = true) : - m_pMutex(useMutex ? &mutex : VMA_NULL) - { - if (m_pMutex) { m_pMutex->Lock(); } - } - ~VmaMutexLock() { if (m_pMutex) { m_pMutex->Unlock(); } } - -private: - VMA_MUTEX* m_pMutex; -}; - -// Helper RAII class to lock a RW mutex in constructor and unlock it in destructor (at the end of scope), for reading. -struct VmaMutexLockRead -{ - VMA_CLASS_NO_COPY_NO_MOVE(VmaMutexLockRead) -public: - VmaMutexLockRead(VMA_RW_MUTEX& mutex, bool useMutex) : - m_pMutex(useMutex ? &mutex : VMA_NULL) - { - if (m_pMutex) { m_pMutex->LockRead(); } - } - ~VmaMutexLockRead() { if (m_pMutex) { m_pMutex->UnlockRead(); } } - -private: - VMA_RW_MUTEX* m_pMutex; -}; - -// Helper RAII class to lock a RW mutex in constructor and unlock it in destructor (at the end of scope), for writing. -struct VmaMutexLockWrite -{ - VMA_CLASS_NO_COPY_NO_MOVE(VmaMutexLockWrite) -public: - VmaMutexLockWrite(VMA_RW_MUTEX& mutex, bool useMutex) - : m_pMutex(useMutex ? &mutex : VMA_NULL) - { - if (m_pMutex) { m_pMutex->LockWrite(); } - } - ~VmaMutexLockWrite() { if (m_pMutex) { m_pMutex->UnlockWrite(); } } - -private: - VMA_RW_MUTEX* m_pMutex; -}; - -#if VMA_DEBUG_GLOBAL_MUTEX - static VMA_MUTEX gDebugGlobalMutex; - #define VMA_DEBUG_GLOBAL_MUTEX_LOCK VmaMutexLock debugGlobalMutexLock(gDebugGlobalMutex, true); -#else - #define VMA_DEBUG_GLOBAL_MUTEX_LOCK -#endif -#endif // _VMA_MUTEX_LOCK - -#ifndef _VMA_ATOMIC_TRANSACTIONAL_INCREMENT -// An object that increments given atomic but decrements it back in the destructor unless Commit() is called. -template -struct AtomicTransactionalIncrement -{ -public: - using T = decltype(AtomicT().load()); - - ~AtomicTransactionalIncrement() - { - if(m_Atomic) - --(*m_Atomic); - } - - void Commit() { m_Atomic = VMA_NULL; } - T Increment(AtomicT* atomic) - { - m_Atomic = atomic; - return m_Atomic->fetch_add(1); - } - -private: - AtomicT* m_Atomic = VMA_NULL; -}; -#endif // _VMA_ATOMIC_TRANSACTIONAL_INCREMENT - -#ifndef _VMA_STL_ALLOCATOR -// STL-compatible allocator. -template -struct VmaStlAllocator -{ - const VkAllocationCallbacks* const m_pCallbacks; - typedef T value_type; - - VmaStlAllocator(const VkAllocationCallbacks* pCallbacks) : m_pCallbacks(pCallbacks) {} - template - VmaStlAllocator(const VmaStlAllocator& src) : m_pCallbacks(src.m_pCallbacks) {} - VmaStlAllocator(const VmaStlAllocator&) = default; - VmaStlAllocator& operator=(const VmaStlAllocator&) = delete; - - T* allocate(size_t n) { return VmaAllocateArray(m_pCallbacks, n); } - void deallocate(T* p, size_t n) { VmaFree(m_pCallbacks, p); } - - template - bool operator==(const VmaStlAllocator& rhs) const - { - return m_pCallbacks == rhs.m_pCallbacks; - } - template - bool operator!=(const VmaStlAllocator& rhs) const - { - return m_pCallbacks != rhs.m_pCallbacks; - } -}; -#endif // _VMA_STL_ALLOCATOR - -#ifndef _VMA_VECTOR -/* Class with interface compatible with subset of std::vector. -T must be POD because constructors and destructors are not called and memcpy is -used for these objects. */ -template -class VmaVector -{ -public: - typedef T value_type; - typedef T* iterator; - typedef const T* const_iterator; - - VmaVector(const AllocatorT& allocator); - VmaVector(size_t count, const AllocatorT& allocator); - // This version of the constructor is here for compatibility with pre-C++14 std::vector. - // value is unused. - VmaVector(size_t count, const T& value, const AllocatorT& allocator) : VmaVector(count, allocator) {} - VmaVector(const VmaVector& src); - VmaVector& operator=(const VmaVector& rhs); - ~VmaVector() { VmaFree(m_Allocator.m_pCallbacks, m_pArray); } - - bool empty() const { return m_Count == 0; } - size_t size() const { return m_Count; } - T* data() { return m_pArray; } - T& front() { VMA_HEAVY_ASSERT(m_Count > 0); return m_pArray[0]; } - T& back() { VMA_HEAVY_ASSERT(m_Count > 0); return m_pArray[m_Count - 1]; } - const T* data() const { return m_pArray; } - const T& front() const { VMA_HEAVY_ASSERT(m_Count > 0); return m_pArray[0]; } - const T& back() const { VMA_HEAVY_ASSERT(m_Count > 0); return m_pArray[m_Count - 1]; } - - iterator begin() { return m_pArray; } - iterator end() { return m_pArray + m_Count; } - const_iterator cbegin() const { return m_pArray; } - const_iterator cend() const { return m_pArray + m_Count; } - const_iterator begin() const { return cbegin(); } - const_iterator end() const { return cend(); } - - void pop_front() { VMA_HEAVY_ASSERT(m_Count > 0); remove(0); } - void pop_back() { VMA_HEAVY_ASSERT(m_Count > 0); resize(size() - 1); } - void push_front(const T& src) { insert(0, src); } - - void push_back(const T& src); - void reserve(size_t newCapacity, bool freeMemory = false); - void resize(size_t newCount); - void clear() { resize(0); } - void shrink_to_fit(); - void insert(size_t index, const T& src); - void remove(size_t index); - - T& operator[](size_t index) { VMA_HEAVY_ASSERT(index < m_Count); return m_pArray[index]; } - const T& operator[](size_t index) const { VMA_HEAVY_ASSERT(index < m_Count); return m_pArray[index]; } - -private: - AllocatorT m_Allocator; - T* m_pArray; - size_t m_Count; - size_t m_Capacity; -}; - -#ifndef _VMA_VECTOR_FUNCTIONS -template -VmaVector::VmaVector(const AllocatorT& allocator) - : m_Allocator(allocator), - m_pArray(VMA_NULL), - m_Count(0), - m_Capacity(0) {} - -template -VmaVector::VmaVector(size_t count, const AllocatorT& allocator) - : m_Allocator(allocator), - m_pArray(count ? (T*)VmaAllocateArray(allocator.m_pCallbacks, count) : VMA_NULL), - m_Count(count), - m_Capacity(count) {} - -template -VmaVector::VmaVector(const VmaVector& src) - : m_Allocator(src.m_Allocator), - m_pArray(src.m_Count ? (T*)VmaAllocateArray(src.m_Allocator.m_pCallbacks, src.m_Count) : VMA_NULL), - m_Count(src.m_Count), - m_Capacity(src.m_Count) -{ - if (m_Count != 0) - { - memcpy(m_pArray, src.m_pArray, m_Count * sizeof(T)); - } -} - -template -VmaVector& VmaVector::operator=(const VmaVector& rhs) -{ - if (&rhs != this) - { - resize(rhs.m_Count); - if (m_Count != 0) - { - memcpy(m_pArray, rhs.m_pArray, m_Count * sizeof(T)); - } - } - return *this; -} - -template -void VmaVector::push_back(const T& src) -{ - const size_t newIndex = size(); - resize(newIndex + 1); - m_pArray[newIndex] = src; -} - -template -void VmaVector::reserve(size_t newCapacity, bool freeMemory) -{ - newCapacity = VMA_MAX(newCapacity, m_Count); - - if ((newCapacity < m_Capacity) && !freeMemory) - { - newCapacity = m_Capacity; - } - - if (newCapacity != m_Capacity) - { - T* const newArray = newCapacity ? VmaAllocateArray(m_Allocator, newCapacity) : VMA_NULL; - if (m_Count != 0) - { - memcpy(newArray, m_pArray, m_Count * sizeof(T)); - } - VmaFree(m_Allocator.m_pCallbacks, m_pArray); - m_Capacity = newCapacity; - m_pArray = newArray; - } -} - -template -void VmaVector::resize(size_t newCount) -{ - size_t newCapacity = m_Capacity; - if (newCount > m_Capacity) - { - newCapacity = VMA_MAX(newCount, VMA_MAX(m_Capacity * 3 / 2, (size_t)8)); - } - - if (newCapacity != m_Capacity) - { - T* const newArray = newCapacity ? VmaAllocateArray(m_Allocator.m_pCallbacks, newCapacity) : VMA_NULL; - const size_t elementsToCopy = VMA_MIN(m_Count, newCount); - if (elementsToCopy != 0) - { - memcpy(newArray, m_pArray, elementsToCopy * sizeof(T)); - } - VmaFree(m_Allocator.m_pCallbacks, m_pArray); - m_Capacity = newCapacity; - m_pArray = newArray; - } - - m_Count = newCount; -} - -template -void VmaVector::shrink_to_fit() -{ - if (m_Capacity > m_Count) - { - T* newArray = VMA_NULL; - if (m_Count > 0) - { - newArray = VmaAllocateArray(m_Allocator.m_pCallbacks, m_Count); - memcpy(newArray, m_pArray, m_Count * sizeof(T)); - } - VmaFree(m_Allocator.m_pCallbacks, m_pArray); - m_Capacity = m_Count; - m_pArray = newArray; - } -} - -template -void VmaVector::insert(size_t index, const T& src) -{ - VMA_HEAVY_ASSERT(index <= m_Count); - const size_t oldCount = size(); - resize(oldCount + 1); - if (index < oldCount) - { - memmove(m_pArray + (index + 1), m_pArray + index, (oldCount - index) * sizeof(T)); - } - m_pArray[index] = src; -} - -template -void VmaVector::remove(size_t index) -{ - VMA_HEAVY_ASSERT(index < m_Count); - const size_t oldCount = size(); - if (index < oldCount - 1) - { - memmove(m_pArray + index, m_pArray + (index + 1), (oldCount - index - 1) * sizeof(T)); - } - resize(oldCount - 1); -} -#endif // _VMA_VECTOR_FUNCTIONS - -template -static void VmaVectorInsert(VmaVector& vec, size_t index, const T& item) -{ - vec.insert(index, item); -} - -template -static void VmaVectorRemove(VmaVector& vec, size_t index) -{ - vec.remove(index); -} -#endif // _VMA_VECTOR - -#ifndef _VMA_SMALL_VECTOR -/* -This is a vector (a variable-sized array), optimized for the case when the array is small. - -It contains some number of elements in-place, which allows it to avoid heap allocation -when the actual number of elements is below that threshold. This allows normal "small" -cases to be fast without losing generality for large inputs. -*/ -template -class VmaSmallVector -{ -public: - typedef T value_type; - typedef T* iterator; - - VmaSmallVector(const AllocatorT& allocator); - VmaSmallVector(size_t count, const AllocatorT& allocator); - template - VmaSmallVector(const VmaSmallVector&) = delete; - template - VmaSmallVector& operator=(const VmaSmallVector&) = delete; - ~VmaSmallVector() = default; - - bool empty() const { return m_Count == 0; } - size_t size() const { return m_Count; } - T* data() { return m_Count > N ? m_DynamicArray.data() : m_StaticArray; } - T& front() { VMA_HEAVY_ASSERT(m_Count > 0); return data()[0]; } - T& back() { VMA_HEAVY_ASSERT(m_Count > 0); return data()[m_Count - 1]; } - const T* data() const { return m_Count > N ? m_DynamicArray.data() : m_StaticArray; } - const T& front() const { VMA_HEAVY_ASSERT(m_Count > 0); return data()[0]; } - const T& back() const { VMA_HEAVY_ASSERT(m_Count > 0); return data()[m_Count - 1]; } - - iterator begin() { return data(); } - iterator end() { return data() + m_Count; } - - void pop_front() { VMA_HEAVY_ASSERT(m_Count > 0); remove(0); } - void pop_back() { VMA_HEAVY_ASSERT(m_Count > 0); resize(size() - 1); } - void push_front(const T& src) { insert(0, src); } - - void push_back(const T& src); - void resize(size_t newCount, bool freeMemory = false); - void clear(bool freeMemory = false); - void insert(size_t index, const T& src); - void remove(size_t index); - - T& operator[](size_t index) { VMA_HEAVY_ASSERT(index < m_Count); return data()[index]; } - const T& operator[](size_t index) const { VMA_HEAVY_ASSERT(index < m_Count); return data()[index]; } - -private: - size_t m_Count; - T m_StaticArray[N]; // Used when m_Size <= N - VmaVector m_DynamicArray; // Used when m_Size > N -}; - -#ifndef _VMA_SMALL_VECTOR_FUNCTIONS -template -VmaSmallVector::VmaSmallVector(const AllocatorT& allocator) - : m_Count(0), - m_DynamicArray(allocator) {} - -template -VmaSmallVector::VmaSmallVector(size_t count, const AllocatorT& allocator) - : m_Count(count), - m_DynamicArray(count > N ? count : 0, allocator) {} - -template -void VmaSmallVector::push_back(const T& src) -{ - const size_t newIndex = size(); - resize(newIndex + 1); - data()[newIndex] = src; -} - -template -void VmaSmallVector::resize(size_t newCount, bool freeMemory) -{ - if (newCount > N && m_Count > N) - { - // Any direction, staying in m_DynamicArray - m_DynamicArray.resize(newCount); - if (freeMemory) - { - m_DynamicArray.shrink_to_fit(); - } - } - else if (newCount > N && m_Count <= N) - { - // Growing, moving from m_StaticArray to m_DynamicArray - m_DynamicArray.resize(newCount); - if (m_Count > 0) - { - memcpy(m_DynamicArray.data(), m_StaticArray, m_Count * sizeof(T)); - } - } - else if (newCount <= N && m_Count > N) - { - // Shrinking, moving from m_DynamicArray to m_StaticArray - if (newCount > 0) - { - memcpy(m_StaticArray, m_DynamicArray.data(), newCount * sizeof(T)); - } - m_DynamicArray.resize(0); - if (freeMemory) - { - m_DynamicArray.shrink_to_fit(); - } - } - else - { - // Any direction, staying in m_StaticArray - nothing to do here - } - m_Count = newCount; -} - -template -void VmaSmallVector::clear(bool freeMemory) -{ - m_DynamicArray.clear(); - if (freeMemory) - { - m_DynamicArray.shrink_to_fit(); - } - m_Count = 0; -} - -template -void VmaSmallVector::insert(size_t index, const T& src) -{ - VMA_HEAVY_ASSERT(index <= m_Count); - const size_t oldCount = size(); - resize(oldCount + 1); - T* const dataPtr = data(); - if (index < oldCount) - { - // I know, this could be more optimal for case where memmove can be memcpy directly from m_StaticArray to m_DynamicArray. - memmove(dataPtr + (index + 1), dataPtr + index, (oldCount - index) * sizeof(T)); - } - dataPtr[index] = src; -} - -template -void VmaSmallVector::remove(size_t index) -{ - VMA_HEAVY_ASSERT(index < m_Count); - const size_t oldCount = size(); - if (index < oldCount - 1) - { - // I know, this could be more optimal for case where memmove can be memcpy directly from m_DynamicArray to m_StaticArray. - T* const dataPtr = data(); - memmove(dataPtr + index, dataPtr + (index + 1), (oldCount - index - 1) * sizeof(T)); - } - resize(oldCount - 1); -} -#endif // _VMA_SMALL_VECTOR_FUNCTIONS -#endif // _VMA_SMALL_VECTOR - -#ifndef _VMA_POOL_ALLOCATOR -/* -Allocator for objects of type T using a list of arrays (pools) to speed up -allocation. Number of elements that can be allocated is not bounded because -allocator can create multiple blocks. -*/ -template -class VmaPoolAllocator -{ - VMA_CLASS_NO_COPY_NO_MOVE(VmaPoolAllocator) -public: - VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, uint32_t firstBlockCapacity); - ~VmaPoolAllocator(); - template T* Alloc(Types&&... args); - void Free(T* ptr); - -private: - union Item - { - uint32_t NextFreeIndex; - alignas(T) char Value[sizeof(T)]; - }; - struct ItemBlock - { - Item* pItems; - uint32_t Capacity; - uint32_t FirstFreeIndex; - }; - - const VkAllocationCallbacks* m_pAllocationCallbacks; - const uint32_t m_FirstBlockCapacity; - VmaVector> m_ItemBlocks; - - ItemBlock& CreateNewBlock(); -}; - -#ifndef _VMA_POOL_ALLOCATOR_FUNCTIONS -template -VmaPoolAllocator::VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, uint32_t firstBlockCapacity) - : m_pAllocationCallbacks(pAllocationCallbacks), - m_FirstBlockCapacity(firstBlockCapacity), - m_ItemBlocks(VmaStlAllocator(pAllocationCallbacks)) -{ - VMA_ASSERT(m_FirstBlockCapacity > 1); -} - -template -VmaPoolAllocator::~VmaPoolAllocator() -{ - for (size_t i = m_ItemBlocks.size(); i--;) - vma_delete_array(m_pAllocationCallbacks, m_ItemBlocks[i].pItems, m_ItemBlocks[i].Capacity); - m_ItemBlocks.clear(); -} - -template -template T* VmaPoolAllocator::Alloc(Types&&... args) -{ - for (size_t i = m_ItemBlocks.size(); i--; ) - { - ItemBlock& block = m_ItemBlocks[i]; - // This block has some free items: Use first one. - if (block.FirstFreeIndex != UINT32_MAX) - { - Item* const pItem = &block.pItems[block.FirstFreeIndex]; - block.FirstFreeIndex = pItem->NextFreeIndex; - T* result = (T*)&pItem->Value; - new(result)T(std::forward(args)...); // Explicit constructor call. - return result; - } - } - - // No block has free item: Create new one and use it. - ItemBlock& newBlock = CreateNewBlock(); - Item* const pItem = &newBlock.pItems[0]; - newBlock.FirstFreeIndex = pItem->NextFreeIndex; - T* result = (T*)&pItem->Value; - new(result) T(std::forward(args)...); // Explicit constructor call. - return result; -} - -template -void VmaPoolAllocator::Free(T* ptr) -{ - // Search all memory blocks to find ptr. - for (size_t i = m_ItemBlocks.size(); i--; ) - { - ItemBlock& block = m_ItemBlocks[i]; - - // Casting to union. - Item* pItemPtr; - memcpy(&pItemPtr, &ptr, sizeof(pItemPtr)); - - // Check if pItemPtr is in address range of this block. - if ((pItemPtr >= block.pItems) && (pItemPtr < block.pItems + block.Capacity)) - { - ptr->~T(); // Explicit destructor call. - const uint32_t index = static_cast(pItemPtr - block.pItems); - pItemPtr->NextFreeIndex = block.FirstFreeIndex; - block.FirstFreeIndex = index; - return; - } - } - VMA_ASSERT(0 && "Pointer doesn't belong to this memory pool."); -} - -template -typename VmaPoolAllocator::ItemBlock& VmaPoolAllocator::CreateNewBlock() -{ - const uint32_t newBlockCapacity = m_ItemBlocks.empty() ? - m_FirstBlockCapacity : m_ItemBlocks.back().Capacity * 3 / 2; - - const ItemBlock newBlock = - { - vma_new_array(m_pAllocationCallbacks, Item, newBlockCapacity), - newBlockCapacity, - 0 - }; - - m_ItemBlocks.push_back(newBlock); - - // Setup singly-linked list of all free items in this block. - for (uint32_t i = 0; i < newBlockCapacity - 1; ++i) - newBlock.pItems[i].NextFreeIndex = i + 1; - newBlock.pItems[newBlockCapacity - 1].NextFreeIndex = UINT32_MAX; - return m_ItemBlocks.back(); -} -#endif // _VMA_POOL_ALLOCATOR_FUNCTIONS -#endif // _VMA_POOL_ALLOCATOR - -#ifndef _VMA_RAW_LIST -template -struct VmaListItem -{ - VmaListItem* pPrev; - VmaListItem* pNext; - T Value; -}; - -// Doubly linked list. -template -class VmaRawList -{ - VMA_CLASS_NO_COPY_NO_MOVE(VmaRawList) -public: - typedef VmaListItem ItemType; - - VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks); - // Intentionally not calling Clear, because that would be unnecessary - // computations to return all items to m_ItemAllocator as free. - ~VmaRawList() = default; - - size_t GetCount() const { return m_Count; } - bool IsEmpty() const { return m_Count == 0; } - - ItemType* Front() { return m_pFront; } - ItemType* Back() { return m_pBack; } - const ItemType* Front() const { return m_pFront; } - const ItemType* Back() const { return m_pBack; } - - ItemType* PushFront(); - ItemType* PushBack(); - ItemType* PushFront(const T& value); - ItemType* PushBack(const T& value); - void PopFront(); - void PopBack(); - - // Item can be null - it means PushBack. - ItemType* InsertBefore(ItemType* pItem); - // Item can be null - it means PushFront. - ItemType* InsertAfter(ItemType* pItem); - ItemType* InsertBefore(ItemType* pItem, const T& value); - ItemType* InsertAfter(ItemType* pItem, const T& value); - - void Clear(); - void Remove(ItemType* pItem); - -private: - const VkAllocationCallbacks* const m_pAllocationCallbacks; - VmaPoolAllocator m_ItemAllocator; - ItemType* m_pFront; - ItemType* m_pBack; - size_t m_Count; -}; - -#ifndef _VMA_RAW_LIST_FUNCTIONS -template -VmaRawList::VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks) - : m_pAllocationCallbacks(pAllocationCallbacks), - m_ItemAllocator(pAllocationCallbacks, 128), - m_pFront(VMA_NULL), - m_pBack(VMA_NULL), - m_Count(0) {} - -template -VmaListItem* VmaRawList::PushFront() -{ - ItemType* const pNewItem = m_ItemAllocator.Alloc(); - pNewItem->pPrev = VMA_NULL; - if (IsEmpty()) - { - pNewItem->pNext = VMA_NULL; - m_pFront = pNewItem; - m_pBack = pNewItem; - m_Count = 1; - } - else - { - pNewItem->pNext = m_pFront; - m_pFront->pPrev = pNewItem; - m_pFront = pNewItem; - ++m_Count; - } - return pNewItem; -} - -template -VmaListItem* VmaRawList::PushBack() -{ - ItemType* const pNewItem = m_ItemAllocator.Alloc(); - pNewItem->pNext = VMA_NULL; - if(IsEmpty()) - { - pNewItem->pPrev = VMA_NULL; - m_pFront = pNewItem; - m_pBack = pNewItem; - m_Count = 1; - } - else - { - pNewItem->pPrev = m_pBack; - m_pBack->pNext = pNewItem; - m_pBack = pNewItem; - ++m_Count; - } - return pNewItem; -} - -template -VmaListItem* VmaRawList::PushFront(const T& value) -{ - ItemType* const pNewItem = PushFront(); - pNewItem->Value = value; - return pNewItem; -} - -template -VmaListItem* VmaRawList::PushBack(const T& value) -{ - ItemType* const pNewItem = PushBack(); - pNewItem->Value = value; - return pNewItem; -} - -template -void VmaRawList::PopFront() -{ - VMA_HEAVY_ASSERT(m_Count > 0); - ItemType* const pFrontItem = m_pFront; - ItemType* const pNextItem = pFrontItem->pNext; - if (pNextItem != VMA_NULL) - { - pNextItem->pPrev = VMA_NULL; - } - m_pFront = pNextItem; - m_ItemAllocator.Free(pFrontItem); - --m_Count; -} - -template -void VmaRawList::PopBack() -{ - VMA_HEAVY_ASSERT(m_Count > 0); - ItemType* const pBackItem = m_pBack; - ItemType* const pPrevItem = pBackItem->pPrev; - if(pPrevItem != VMA_NULL) - { - pPrevItem->pNext = VMA_NULL; - } - m_pBack = pPrevItem; - m_ItemAllocator.Free(pBackItem); - --m_Count; -} - -template -void VmaRawList::Clear() -{ - if (IsEmpty() == false) - { - ItemType* pItem = m_pBack; - while (pItem != VMA_NULL) - { - ItemType* const pPrevItem = pItem->pPrev; - m_ItemAllocator.Free(pItem); - pItem = pPrevItem; - } - m_pFront = VMA_NULL; - m_pBack = VMA_NULL; - m_Count = 0; - } -} - -template -void VmaRawList::Remove(ItemType* pItem) -{ - VMA_HEAVY_ASSERT(pItem != VMA_NULL); - VMA_HEAVY_ASSERT(m_Count > 0); - - if(pItem->pPrev != VMA_NULL) - { - pItem->pPrev->pNext = pItem->pNext; - } - else - { - VMA_HEAVY_ASSERT(m_pFront == pItem); - m_pFront = pItem->pNext; - } - - if(pItem->pNext != VMA_NULL) - { - pItem->pNext->pPrev = pItem->pPrev; - } - else - { - VMA_HEAVY_ASSERT(m_pBack == pItem); - m_pBack = pItem->pPrev; - } - - m_ItemAllocator.Free(pItem); - --m_Count; -} - -template -VmaListItem* VmaRawList::InsertBefore(ItemType* pItem) -{ - if(pItem != VMA_NULL) - { - ItemType* const prevItem = pItem->pPrev; - ItemType* const newItem = m_ItemAllocator.Alloc(); - newItem->pPrev = prevItem; - newItem->pNext = pItem; - pItem->pPrev = newItem; - if(prevItem != VMA_NULL) - { - prevItem->pNext = newItem; - } - else - { - VMA_HEAVY_ASSERT(m_pFront == pItem); - m_pFront = newItem; - } - ++m_Count; - return newItem; - } - else - return PushBack(); -} - -template -VmaListItem* VmaRawList::InsertAfter(ItemType* pItem) -{ - if(pItem != VMA_NULL) - { - ItemType* const nextItem = pItem->pNext; - ItemType* const newItem = m_ItemAllocator.Alloc(); - newItem->pNext = nextItem; - newItem->pPrev = pItem; - pItem->pNext = newItem; - if(nextItem != VMA_NULL) - { - nextItem->pPrev = newItem; - } - else - { - VMA_HEAVY_ASSERT(m_pBack == pItem); - m_pBack = newItem; - } - ++m_Count; - return newItem; - } - else - return PushFront(); -} - -template -VmaListItem* VmaRawList::InsertBefore(ItemType* pItem, const T& value) -{ - ItemType* const newItem = InsertBefore(pItem); - newItem->Value = value; - return newItem; -} - -template -VmaListItem* VmaRawList::InsertAfter(ItemType* pItem, const T& value) -{ - ItemType* const newItem = InsertAfter(pItem); - newItem->Value = value; - return newItem; -} -#endif // _VMA_RAW_LIST_FUNCTIONS -#endif // _VMA_RAW_LIST - -#ifndef _VMA_LIST -template -class VmaList -{ - VMA_CLASS_NO_COPY_NO_MOVE(VmaList) -public: - class reverse_iterator; - class const_iterator; - class const_reverse_iterator; - - class iterator - { - friend class const_iterator; - friend class VmaList; - public: - iterator() : m_pList(VMA_NULL), m_pItem(VMA_NULL) {} - iterator(const reverse_iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {} - - T& operator*() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return m_pItem->Value; } - T* operator->() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return &m_pItem->Value; } - - bool operator==(const iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem == rhs.m_pItem; } - bool operator!=(const iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem != rhs.m_pItem; } - - iterator operator++(int) { iterator result = *this; ++*this; return result; } - iterator operator--(int) { iterator result = *this; --*this; return result; } - - iterator& operator++() { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); m_pItem = m_pItem->pNext; return *this; } - iterator& operator--(); - - private: - VmaRawList* m_pList; - VmaListItem* m_pItem; - - iterator(VmaRawList* pList, VmaListItem* pItem) : m_pList(pList), m_pItem(pItem) {} - }; - class reverse_iterator - { - friend class const_reverse_iterator; - friend class VmaList; - public: - reverse_iterator() : m_pList(VMA_NULL), m_pItem(VMA_NULL) {} - reverse_iterator(const iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {} - - T& operator*() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return m_pItem->Value; } - T* operator->() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return &m_pItem->Value; } - - bool operator==(const reverse_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem == rhs.m_pItem; } - bool operator!=(const reverse_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem != rhs.m_pItem; } - - reverse_iterator operator++(int) { reverse_iterator result = *this; ++* this; return result; } - reverse_iterator operator--(int) { reverse_iterator result = *this; --* this; return result; } - - reverse_iterator& operator++() { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); m_pItem = m_pItem->pPrev; return *this; } - reverse_iterator& operator--(); - - private: - VmaRawList* m_pList; - VmaListItem* m_pItem; - - reverse_iterator(VmaRawList* pList, VmaListItem* pItem) : m_pList(pList), m_pItem(pItem) {} - }; - class const_iterator - { - friend class VmaList; - public: - const_iterator() : m_pList(VMA_NULL), m_pItem(VMA_NULL) {} - const_iterator(const iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {} - const_iterator(const reverse_iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {} - - iterator drop_const() { return { const_cast*>(m_pList), const_cast*>(m_pItem) }; } - - const T& operator*() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return m_pItem->Value; } - const T* operator->() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return &m_pItem->Value; } - - bool operator==(const const_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem == rhs.m_pItem; } - bool operator!=(const const_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem != rhs.m_pItem; } - - const_iterator operator++(int) { const_iterator result = *this; ++* this; return result; } - const_iterator operator--(int) { const_iterator result = *this; --* this; return result; } - - const_iterator& operator++() { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); m_pItem = m_pItem->pNext; return *this; } - const_iterator& operator--(); - - private: - const VmaRawList* m_pList; - const VmaListItem* m_pItem; - - const_iterator(const VmaRawList* pList, const VmaListItem* pItem) : m_pList(pList), m_pItem(pItem) {} - }; - class const_reverse_iterator - { - friend class VmaList; - public: - const_reverse_iterator() : m_pList(VMA_NULL), m_pItem(VMA_NULL) {} - const_reverse_iterator(const reverse_iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {} - const_reverse_iterator(const iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {} - - reverse_iterator drop_const() { return { const_cast*>(m_pList), const_cast*>(m_pItem) }; } - - const T& operator*() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return m_pItem->Value; } - const T* operator->() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return &m_pItem->Value; } - - bool operator==(const const_reverse_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem == rhs.m_pItem; } - bool operator!=(const const_reverse_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem != rhs.m_pItem; } - - const_reverse_iterator operator++(int) { const_reverse_iterator result = *this; ++* this; return result; } - const_reverse_iterator operator--(int) { const_reverse_iterator result = *this; --* this; return result; } - - const_reverse_iterator& operator++() { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); m_pItem = m_pItem->pPrev; return *this; } - const_reverse_iterator& operator--(); - - private: - const VmaRawList* m_pList; - const VmaListItem* m_pItem; - - const_reverse_iterator(const VmaRawList* pList, const VmaListItem* pItem) : m_pList(pList), m_pItem(pItem) {} - }; - - VmaList(const AllocatorT& allocator) : m_RawList(allocator.m_pCallbacks) {} - - bool empty() const { return m_RawList.IsEmpty(); } - size_t size() const { return m_RawList.GetCount(); } - - iterator begin() { return iterator(&m_RawList, m_RawList.Front()); } - iterator end() { return iterator(&m_RawList, VMA_NULL); } - - const_iterator cbegin() const { return const_iterator(&m_RawList, m_RawList.Front()); } - const_iterator cend() const { return const_iterator(&m_RawList, VMA_NULL); } - - const_iterator begin() const { return cbegin(); } - const_iterator end() const { return cend(); } - - reverse_iterator rbegin() { return reverse_iterator(&m_RawList, m_RawList.Back()); } - reverse_iterator rend() { return reverse_iterator(&m_RawList, VMA_NULL); } - - const_reverse_iterator crbegin() const { return const_reverse_iterator(&m_RawList, m_RawList.Back()); } - const_reverse_iterator crend() const { return const_reverse_iterator(&m_RawList, VMA_NULL); } - - const_reverse_iterator rbegin() const { return crbegin(); } - const_reverse_iterator rend() const { return crend(); } - - void push_back(const T& value) { m_RawList.PushBack(value); } - iterator insert(iterator it, const T& value) { return iterator(&m_RawList, m_RawList.InsertBefore(it.m_pItem, value)); } - - void clear() { m_RawList.Clear(); } - void erase(iterator it) { m_RawList.Remove(it.m_pItem); } - -private: - VmaRawList m_RawList; -}; - -#ifndef _VMA_LIST_FUNCTIONS -template -typename VmaList::iterator& VmaList::iterator::operator--() -{ - if (m_pItem != VMA_NULL) - { - m_pItem = m_pItem->pPrev; - } - else - { - VMA_HEAVY_ASSERT(!m_pList->IsEmpty()); - m_pItem = m_pList->Back(); - } - return *this; -} - -template -typename VmaList::reverse_iterator& VmaList::reverse_iterator::operator--() -{ - if (m_pItem != VMA_NULL) - { - m_pItem = m_pItem->pNext; - } - else - { - VMA_HEAVY_ASSERT(!m_pList->IsEmpty()); - m_pItem = m_pList->Front(); - } - return *this; -} - -template -typename VmaList::const_iterator& VmaList::const_iterator::operator--() -{ - if (m_pItem != VMA_NULL) - { - m_pItem = m_pItem->pPrev; - } - else - { - VMA_HEAVY_ASSERT(!m_pList->IsEmpty()); - m_pItem = m_pList->Back(); - } - return *this; -} - -template -typename VmaList::const_reverse_iterator& VmaList::const_reverse_iterator::operator--() -{ - if (m_pItem != VMA_NULL) - { - m_pItem = m_pItem->pNext; - } - else - { - VMA_HEAVY_ASSERT(!m_pList->IsEmpty()); - m_pItem = m_pList->Back(); - } - return *this; -} -#endif // _VMA_LIST_FUNCTIONS -#endif // _VMA_LIST - -#ifndef _VMA_INTRUSIVE_LINKED_LIST -/* -Expected interface of ItemTypeTraits: -struct MyItemTypeTraits -{ - typedef MyItem ItemType; - static ItemType* GetPrev(const ItemType* item) { return item->myPrevPtr; } - static ItemType* GetNext(const ItemType* item) { return item->myNextPtr; } - static ItemType*& AccessPrev(ItemType* item) { return item->myPrevPtr; } - static ItemType*& AccessNext(ItemType* item) { return item->myNextPtr; } -}; -*/ -template -class VmaIntrusiveLinkedList -{ -public: - typedef typename ItemTypeTraits::ItemType ItemType; - static ItemType* GetPrev(const ItemType* item) { return ItemTypeTraits::GetPrev(item); } - static ItemType* GetNext(const ItemType* item) { return ItemTypeTraits::GetNext(item); } - - // Movable, not copyable. - VmaIntrusiveLinkedList() = default; - VmaIntrusiveLinkedList(VmaIntrusiveLinkedList && src); - VmaIntrusiveLinkedList(const VmaIntrusiveLinkedList&) = delete; - VmaIntrusiveLinkedList& operator=(VmaIntrusiveLinkedList&& src); - VmaIntrusiveLinkedList& operator=(const VmaIntrusiveLinkedList&) = delete; - ~VmaIntrusiveLinkedList() { VMA_HEAVY_ASSERT(IsEmpty()); } - - size_t GetCount() const { return m_Count; } - bool IsEmpty() const { return m_Count == 0; } - ItemType* Front() { return m_Front; } - ItemType* Back() { return m_Back; } - const ItemType* Front() const { return m_Front; } - const ItemType* Back() const { return m_Back; } - - void PushBack(ItemType* item); - void PushFront(ItemType* item); - ItemType* PopBack(); - ItemType* PopFront(); - - // MyItem can be null - it means PushBack. - void InsertBefore(ItemType* existingItem, ItemType* newItem); - // MyItem can be null - it means PushFront. - void InsertAfter(ItemType* existingItem, ItemType* newItem); - void Remove(ItemType* item); - void RemoveAll(); - -private: - ItemType* m_Front = VMA_NULL; - ItemType* m_Back = VMA_NULL; - size_t m_Count = 0; -}; - -#ifndef _VMA_INTRUSIVE_LINKED_LIST_FUNCTIONS -template -VmaIntrusiveLinkedList::VmaIntrusiveLinkedList(VmaIntrusiveLinkedList&& src) - : m_Front(src.m_Front), m_Back(src.m_Back), m_Count(src.m_Count) -{ - src.m_Front = src.m_Back = VMA_NULL; - src.m_Count = 0; -} - -template -VmaIntrusiveLinkedList& VmaIntrusiveLinkedList::operator=(VmaIntrusiveLinkedList&& src) -{ - if (&src != this) - { - VMA_HEAVY_ASSERT(IsEmpty()); - m_Front = src.m_Front; - m_Back = src.m_Back; - m_Count = src.m_Count; - src.m_Front = src.m_Back = VMA_NULL; - src.m_Count = 0; - } - return *this; -} - -template -void VmaIntrusiveLinkedList::PushBack(ItemType* item) -{ - VMA_HEAVY_ASSERT(ItemTypeTraits::GetPrev(item) == VMA_NULL && ItemTypeTraits::GetNext(item) == VMA_NULL); - if (IsEmpty()) - { - m_Front = item; - m_Back = item; - m_Count = 1; - } - else - { - ItemTypeTraits::AccessPrev(item) = m_Back; - ItemTypeTraits::AccessNext(m_Back) = item; - m_Back = item; - ++m_Count; - } -} - -template -void VmaIntrusiveLinkedList::PushFront(ItemType* item) -{ - VMA_HEAVY_ASSERT(ItemTypeTraits::GetPrev(item) == VMA_NULL && ItemTypeTraits::GetNext(item) == VMA_NULL); - if (IsEmpty()) - { - m_Front = item; - m_Back = item; - m_Count = 1; - } - else - { - ItemTypeTraits::AccessNext(item) = m_Front; - ItemTypeTraits::AccessPrev(m_Front) = item; - m_Front = item; - ++m_Count; - } -} - -template -typename VmaIntrusiveLinkedList::ItemType* VmaIntrusiveLinkedList::PopBack() -{ - VMA_HEAVY_ASSERT(m_Count > 0); - ItemType* const backItem = m_Back; - ItemType* const prevItem = ItemTypeTraits::GetPrev(backItem); - if (prevItem != VMA_NULL) - { - ItemTypeTraits::AccessNext(prevItem) = VMA_NULL; - } - m_Back = prevItem; - --m_Count; - ItemTypeTraits::AccessPrev(backItem) = VMA_NULL; - ItemTypeTraits::AccessNext(backItem) = VMA_NULL; - return backItem; -} - -template -typename VmaIntrusiveLinkedList::ItemType* VmaIntrusiveLinkedList::PopFront() -{ - VMA_HEAVY_ASSERT(m_Count > 0); - ItemType* const frontItem = m_Front; - ItemType* const nextItem = ItemTypeTraits::GetNext(frontItem); - if (nextItem != VMA_NULL) - { - ItemTypeTraits::AccessPrev(nextItem) = VMA_NULL; - } - m_Front = nextItem; - --m_Count; - ItemTypeTraits::AccessPrev(frontItem) = VMA_NULL; - ItemTypeTraits::AccessNext(frontItem) = VMA_NULL; - return frontItem; -} - -template -void VmaIntrusiveLinkedList::InsertBefore(ItemType* existingItem, ItemType* newItem) -{ - VMA_HEAVY_ASSERT(newItem != VMA_NULL && ItemTypeTraits::GetPrev(newItem) == VMA_NULL && ItemTypeTraits::GetNext(newItem) == VMA_NULL); - if (existingItem != VMA_NULL) - { - ItemType* const prevItem = ItemTypeTraits::GetPrev(existingItem); - ItemTypeTraits::AccessPrev(newItem) = prevItem; - ItemTypeTraits::AccessNext(newItem) = existingItem; - ItemTypeTraits::AccessPrev(existingItem) = newItem; - if (prevItem != VMA_NULL) - { - ItemTypeTraits::AccessNext(prevItem) = newItem; - } - else - { - VMA_HEAVY_ASSERT(m_Front == existingItem); - m_Front = newItem; - } - ++m_Count; - } - else - PushBack(newItem); -} - -template -void VmaIntrusiveLinkedList::InsertAfter(ItemType* existingItem, ItemType* newItem) -{ - VMA_HEAVY_ASSERT(newItem != VMA_NULL && ItemTypeTraits::GetPrev(newItem) == VMA_NULL && ItemTypeTraits::GetNext(newItem) == VMA_NULL); - if (existingItem != VMA_NULL) - { - ItemType* const nextItem = ItemTypeTraits::GetNext(existingItem); - ItemTypeTraits::AccessNext(newItem) = nextItem; - ItemTypeTraits::AccessPrev(newItem) = existingItem; - ItemTypeTraits::AccessNext(existingItem) = newItem; - if (nextItem != VMA_NULL) - { - ItemTypeTraits::AccessPrev(nextItem) = newItem; - } - else - { - VMA_HEAVY_ASSERT(m_Back == existingItem); - m_Back = newItem; - } - ++m_Count; - } - else - return PushFront(newItem); -} - -template -void VmaIntrusiveLinkedList::Remove(ItemType* item) -{ - VMA_HEAVY_ASSERT(item != VMA_NULL && m_Count > 0); - if (ItemTypeTraits::GetPrev(item) != VMA_NULL) - { - ItemTypeTraits::AccessNext(ItemTypeTraits::AccessPrev(item)) = ItemTypeTraits::GetNext(item); - } - else - { - VMA_HEAVY_ASSERT(m_Front == item); - m_Front = ItemTypeTraits::GetNext(item); - } - - if (ItemTypeTraits::GetNext(item) != VMA_NULL) - { - ItemTypeTraits::AccessPrev(ItemTypeTraits::AccessNext(item)) = ItemTypeTraits::GetPrev(item); - } - else - { - VMA_HEAVY_ASSERT(m_Back == item); - m_Back = ItemTypeTraits::GetPrev(item); - } - ItemTypeTraits::AccessPrev(item) = VMA_NULL; - ItemTypeTraits::AccessNext(item) = VMA_NULL; - --m_Count; -} - -template -void VmaIntrusiveLinkedList::RemoveAll() -{ - if (!IsEmpty()) - { - ItemType* item = m_Back; - while (item != VMA_NULL) - { - ItemType* const prevItem = ItemTypeTraits::AccessPrev(item); - ItemTypeTraits::AccessPrev(item) = VMA_NULL; - ItemTypeTraits::AccessNext(item) = VMA_NULL; - item = prevItem; - } - m_Front = VMA_NULL; - m_Back = VMA_NULL; - m_Count = 0; - } -} -#endif // _VMA_INTRUSIVE_LINKED_LIST_FUNCTIONS -#endif // _VMA_INTRUSIVE_LINKED_LIST - -#if !defined(_VMA_STRING_BUILDER) && VMA_STATS_STRING_ENABLED -class VmaStringBuilder -{ -public: - VmaStringBuilder(const VkAllocationCallbacks* allocationCallbacks) : m_Data(VmaStlAllocator(allocationCallbacks)) {} - ~VmaStringBuilder() = default; - - size_t GetLength() const { return m_Data.size(); } - const char* GetData() const { return m_Data.data(); } - void AddNewLine() { Add('\n'); } - void Add(char ch) { m_Data.push_back(ch); } - - void Add(const char* pStr); - void AddNumber(uint32_t num); - void AddNumber(uint64_t num); - void AddPointer(const void* ptr); - -private: - VmaVector> m_Data; -}; - -#ifndef _VMA_STRING_BUILDER_FUNCTIONS -void VmaStringBuilder::Add(const char* pStr) -{ - const size_t strLen = strlen(pStr); - if (strLen > 0) - { - const size_t oldCount = m_Data.size(); - m_Data.resize(oldCount + strLen); - memcpy(m_Data.data() + oldCount, pStr, strLen); - } -} - -void VmaStringBuilder::AddNumber(uint32_t num) -{ - char buf[11]; - buf[10] = '\0'; - char* p = &buf[10]; - do - { - *--p = '0' + (char)(num % 10); - num /= 10; - } while (num); - Add(p); -} - -void VmaStringBuilder::AddNumber(uint64_t num) -{ - char buf[21]; - buf[20] = '\0'; - char* p = &buf[20]; - do - { - *--p = '0' + (char)(num % 10); - num /= 10; - } while (num); - Add(p); -} - -void VmaStringBuilder::AddPointer(const void* ptr) -{ - char buf[21]; - VmaPtrToStr(buf, sizeof(buf), ptr); - Add(buf); -} -#endif //_VMA_STRING_BUILDER_FUNCTIONS -#endif // _VMA_STRING_BUILDER - -#if !defined(_VMA_JSON_WRITER) && VMA_STATS_STRING_ENABLED -/* -Allows to conveniently build a correct JSON document to be written to the -VmaStringBuilder passed to the constructor. -*/ -class VmaJsonWriter -{ - VMA_CLASS_NO_COPY_NO_MOVE(VmaJsonWriter) -public: - // sb - string builder to write the document to. Must remain alive for the whole lifetime of this object. - VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb); - ~VmaJsonWriter(); - - // Begins object by writing "{". - // Inside an object, you must call pairs of WriteString and a value, e.g.: - // j.BeginObject(true); j.WriteString("A"); j.WriteNumber(1); j.WriteString("B"); j.WriteNumber(2); j.EndObject(); - // Will write: { "A": 1, "B": 2 } - void BeginObject(bool singleLine = false); - // Ends object by writing "}". - void EndObject(); - - // Begins array by writing "[". - // Inside an array, you can write a sequence of any values. - void BeginArray(bool singleLine = false); - // Ends array by writing "[". - void EndArray(); - - // Writes a string value inside "". - // pStr can contain any ANSI characters, including '"', new line etc. - they will be properly escaped. - void WriteString(const char* pStr); - - // Begins writing a string value. - // Call BeginString, ContinueString, ContinueString, ..., EndString instead of - // WriteString to conveniently build the string content incrementally, made of - // parts including numbers. - void BeginString(const char* pStr = VMA_NULL); - // Posts next part of an open string. - void ContinueString(const char* pStr); - // Posts next part of an open string. The number is converted to decimal characters. - void ContinueString(uint32_t n); - void ContinueString(uint64_t n); - // Posts next part of an open string. Pointer value is converted to characters - // using "%p" formatting - shown as hexadecimal number, e.g.: 000000081276Ad00 - void ContinueString_Pointer(const void* ptr); - // Ends writing a string value by writing '"'. - void EndString(const char* pStr = VMA_NULL); - - // Writes a number value. - void WriteNumber(uint32_t n); - void WriteNumber(uint64_t n); - // Writes a boolean value - false or true. - void WriteBool(bool b); - // Writes a null value. - void WriteNull(); - -private: - enum COLLECTION_TYPE - { - COLLECTION_TYPE_OBJECT, - COLLECTION_TYPE_ARRAY, - }; - struct StackItem - { - COLLECTION_TYPE type; - uint32_t valueCount; - bool singleLineMode; - }; - - static const char* const INDENT; - - VmaStringBuilder& m_SB; - VmaVector< StackItem, VmaStlAllocator > m_Stack; - bool m_InsideString; - - void BeginValue(bool isString); - void WriteIndent(bool oneLess = false); -}; -const char* const VmaJsonWriter::INDENT = " "; - -#ifndef _VMA_JSON_WRITER_FUNCTIONS -VmaJsonWriter::VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb) - : m_SB(sb), - m_Stack(VmaStlAllocator(pAllocationCallbacks)), - m_InsideString(false) {} - -VmaJsonWriter::~VmaJsonWriter() -{ - VMA_ASSERT(!m_InsideString); - VMA_ASSERT(m_Stack.empty()); -} - -void VmaJsonWriter::BeginObject(bool singleLine) -{ - VMA_ASSERT(!m_InsideString); - - BeginValue(false); - m_SB.Add('{'); - - StackItem item; - item.type = COLLECTION_TYPE_OBJECT; - item.valueCount = 0; - item.singleLineMode = singleLine; - m_Stack.push_back(item); -} - -void VmaJsonWriter::EndObject() -{ - VMA_ASSERT(!m_InsideString); - - WriteIndent(true); - m_SB.Add('}'); - - VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_OBJECT); - m_Stack.pop_back(); -} - -void VmaJsonWriter::BeginArray(bool singleLine) -{ - VMA_ASSERT(!m_InsideString); - - BeginValue(false); - m_SB.Add('['); - - StackItem item; - item.type = COLLECTION_TYPE_ARRAY; - item.valueCount = 0; - item.singleLineMode = singleLine; - m_Stack.push_back(item); -} - -void VmaJsonWriter::EndArray() -{ - VMA_ASSERT(!m_InsideString); - - WriteIndent(true); - m_SB.Add(']'); - - VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_ARRAY); - m_Stack.pop_back(); -} - -void VmaJsonWriter::WriteString(const char* pStr) -{ - BeginString(pStr); - EndString(); -} - -void VmaJsonWriter::BeginString(const char* pStr) -{ - VMA_ASSERT(!m_InsideString); - - BeginValue(true); - m_SB.Add('"'); - m_InsideString = true; - if (pStr != VMA_NULL && pStr[0] != '\0') - { - ContinueString(pStr); - } -} - -void VmaJsonWriter::ContinueString(const char* pStr) -{ - VMA_ASSERT(m_InsideString); - - const size_t strLen = strlen(pStr); - for (size_t i = 0; i < strLen; ++i) - { - char ch = pStr[i]; - if (ch == '\\') - { - m_SB.Add("\\\\"); - } - else if (ch == '"') - { - m_SB.Add("\\\""); - } - else if ((uint8_t)ch >= 32) - { - m_SB.Add(ch); - } - else switch (ch) - { - case '\b': - m_SB.Add("\\b"); - break; - case '\f': - m_SB.Add("\\f"); - break; - case '\n': - m_SB.Add("\\n"); - break; - case '\r': - m_SB.Add("\\r"); - break; - case '\t': - m_SB.Add("\\t"); - break; - default: - VMA_ASSERT(0 && "Character not currently supported."); - } - } -} - -void VmaJsonWriter::ContinueString(uint32_t n) -{ - VMA_ASSERT(m_InsideString); - m_SB.AddNumber(n); -} - -void VmaJsonWriter::ContinueString(uint64_t n) -{ - VMA_ASSERT(m_InsideString); - m_SB.AddNumber(n); -} - -void VmaJsonWriter::ContinueString_Pointer(const void* ptr) -{ - VMA_ASSERT(m_InsideString); - m_SB.AddPointer(ptr); -} - -void VmaJsonWriter::EndString(const char* pStr) -{ - VMA_ASSERT(m_InsideString); - if (pStr != VMA_NULL && pStr[0] != '\0') - { - ContinueString(pStr); - } - m_SB.Add('"'); - m_InsideString = false; -} - -void VmaJsonWriter::WriteNumber(uint32_t n) -{ - VMA_ASSERT(!m_InsideString); - BeginValue(false); - m_SB.AddNumber(n); -} - -void VmaJsonWriter::WriteNumber(uint64_t n) -{ - VMA_ASSERT(!m_InsideString); - BeginValue(false); - m_SB.AddNumber(n); -} - -void VmaJsonWriter::WriteBool(bool b) -{ - VMA_ASSERT(!m_InsideString); - BeginValue(false); - m_SB.Add(b ? "true" : "false"); -} - -void VmaJsonWriter::WriteNull() -{ - VMA_ASSERT(!m_InsideString); - BeginValue(false); - m_SB.Add("null"); -} - -void VmaJsonWriter::BeginValue(bool isString) -{ - if (!m_Stack.empty()) - { - StackItem& currItem = m_Stack.back(); - if (currItem.type == COLLECTION_TYPE_OBJECT && - currItem.valueCount % 2 == 0) - { - VMA_ASSERT(isString); - } - - if (currItem.type == COLLECTION_TYPE_OBJECT && - currItem.valueCount % 2 != 0) - { - m_SB.Add(": "); - } - else if (currItem.valueCount > 0) - { - m_SB.Add(", "); - WriteIndent(); - } - else - { - WriteIndent(); - } - ++currItem.valueCount; - } -} - -void VmaJsonWriter::WriteIndent(bool oneLess) -{ - if (!m_Stack.empty() && !m_Stack.back().singleLineMode) - { - m_SB.AddNewLine(); - - size_t count = m_Stack.size(); - if (count > 0 && oneLess) - { - --count; - } - for (size_t i = 0; i < count; ++i) - { - m_SB.Add(INDENT); - } - } -} -#endif // _VMA_JSON_WRITER_FUNCTIONS - -static void VmaPrintDetailedStatistics(VmaJsonWriter& json, const VmaDetailedStatistics& stat) -{ - json.BeginObject(); - - json.WriteString("BlockCount"); - json.WriteNumber(stat.statistics.blockCount); - json.WriteString("BlockBytes"); - json.WriteNumber(stat.statistics.blockBytes); - json.WriteString("AllocationCount"); - json.WriteNumber(stat.statistics.allocationCount); - json.WriteString("AllocationBytes"); - json.WriteNumber(stat.statistics.allocationBytes); - json.WriteString("UnusedRangeCount"); - json.WriteNumber(stat.unusedRangeCount); - - if (stat.statistics.allocationCount > 1) - { - json.WriteString("AllocationSizeMin"); - json.WriteNumber(stat.allocationSizeMin); - json.WriteString("AllocationSizeMax"); - json.WriteNumber(stat.allocationSizeMax); - } - if (stat.unusedRangeCount > 1) - { - json.WriteString("UnusedRangeSizeMin"); - json.WriteNumber(stat.unusedRangeSizeMin); - json.WriteString("UnusedRangeSizeMax"); - json.WriteNumber(stat.unusedRangeSizeMax); - } - json.EndObject(); -} -#endif // _VMA_JSON_WRITER - -#ifndef _VMA_MAPPING_HYSTERESIS - -class VmaMappingHysteresis -{ - VMA_CLASS_NO_COPY_NO_MOVE(VmaMappingHysteresis) -public: - VmaMappingHysteresis() = default; - - uint32_t GetExtraMapping() const { return m_ExtraMapping; } - - // Call when Map was called. - // Returns true if switched to extra +1 mapping reference count. - bool PostMap() - { -#if VMA_MAPPING_HYSTERESIS_ENABLED - if(m_ExtraMapping == 0) - { - ++m_MajorCounter; - if(m_MajorCounter >= COUNTER_MIN_EXTRA_MAPPING) - { - m_ExtraMapping = 1; - m_MajorCounter = 0; - m_MinorCounter = 0; - return true; - } - } - else // m_ExtraMapping == 1 - PostMinorCounter(); -#endif // #if VMA_MAPPING_HYSTERESIS_ENABLED - return false; - } - - // Call when Unmap was called. - void PostUnmap() - { -#if VMA_MAPPING_HYSTERESIS_ENABLED - if(m_ExtraMapping == 0) - ++m_MajorCounter; - else // m_ExtraMapping == 1 - PostMinorCounter(); -#endif // #if VMA_MAPPING_HYSTERESIS_ENABLED - } - - // Call when allocation was made from the memory block. - void PostAlloc() - { -#if VMA_MAPPING_HYSTERESIS_ENABLED - if(m_ExtraMapping == 1) - ++m_MajorCounter; - else // m_ExtraMapping == 0 - PostMinorCounter(); -#endif // #if VMA_MAPPING_HYSTERESIS_ENABLED - } - - // Call when allocation was freed from the memory block. - // Returns true if switched to extra -1 mapping reference count. - bool PostFree() - { -#if VMA_MAPPING_HYSTERESIS_ENABLED - if(m_ExtraMapping == 1) - { - ++m_MajorCounter; - if(m_MajorCounter >= COUNTER_MIN_EXTRA_MAPPING && - m_MajorCounter > m_MinorCounter + 1) - { - m_ExtraMapping = 0; - m_MajorCounter = 0; - m_MinorCounter = 0; - return true; - } - } - else // m_ExtraMapping == 0 - PostMinorCounter(); -#endif // #if VMA_MAPPING_HYSTERESIS_ENABLED - return false; - } - -private: - static const int32_t COUNTER_MIN_EXTRA_MAPPING = 7; - - uint32_t m_MinorCounter = 0; - uint32_t m_MajorCounter = 0; - uint32_t m_ExtraMapping = 0; // 0 or 1. - - void PostMinorCounter() - { - if(m_MinorCounter < m_MajorCounter) - { - ++m_MinorCounter; - } - else if(m_MajorCounter > 0) - { - --m_MajorCounter; - --m_MinorCounter; - } - } -}; - -#endif // _VMA_MAPPING_HYSTERESIS - -#if VMA_EXTERNAL_MEMORY_WIN32 -class VmaWin32Handle -{ -public: - VmaWin32Handle() noexcept : m_hHandle(VMA_NULL) { } - explicit VmaWin32Handle(HANDLE hHandle) noexcept : m_hHandle(hHandle) { } - ~VmaWin32Handle() noexcept { if (m_hHandle != VMA_NULL) { ::CloseHandle(m_hHandle); } } - VMA_CLASS_NO_COPY_NO_MOVE(VmaWin32Handle) - -public: - // Strengthened - VkResult GetHandle(VkDevice device, VkDeviceMemory memory, PFN_vkGetMemoryWin32HandleKHR pvkGetMemoryWin32HandleKHR, HANDLE hTargetProcess, bool useMutex, HANDLE* pHandle) noexcept - { - *pHandle = VMA_NULL; - // Try to get handle first. - if (m_hHandle != VMA_NULL) - { - *pHandle = Duplicate(hTargetProcess); - return VK_SUCCESS; - } - - VkResult res = VK_SUCCESS; - // If failed, try to create it. - { - VmaMutexLockWrite lock(m_Mutex, useMutex); - if (m_hHandle == VMA_NULL) - { - res = Create(device, memory, pvkGetMemoryWin32HandleKHR, &m_hHandle); - } - } - - *pHandle = Duplicate(hTargetProcess); - return res; - } - - operator bool() const noexcept { return m_hHandle != VMA_NULL; } -private: - // Not atomic - static VkResult Create(VkDevice device, VkDeviceMemory memory, PFN_vkGetMemoryWin32HandleKHR pvkGetMemoryWin32HandleKHR, HANDLE* pHandle) noexcept - { - VkResult res = VK_ERROR_FEATURE_NOT_PRESENT; - if (pvkGetMemoryWin32HandleKHR != VMA_NULL) - { - VkMemoryGetWin32HandleInfoKHR handleInfo{ }; - handleInfo.sType = VK_STRUCTURE_TYPE_MEMORY_GET_WIN32_HANDLE_INFO_KHR; - handleInfo.memory = memory; - handleInfo.handleType = VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT_KHR; - res = pvkGetMemoryWin32HandleKHR(device, &handleInfo, pHandle); - } - return res; - } - HANDLE Duplicate(HANDLE hTargetProcess = VMA_NULL) const noexcept - { - if (!m_hHandle) - return m_hHandle; - - HANDLE hCurrentProcess = ::GetCurrentProcess(); - HANDLE hDupHandle = VMA_NULL; - if (!::DuplicateHandle(hCurrentProcess, m_hHandle, hTargetProcess ? hTargetProcess : hCurrentProcess, &hDupHandle, 0, FALSE, DUPLICATE_SAME_ACCESS)) - { - VMA_ASSERT(0 && "Failed to duplicate handle."); - } - return hDupHandle; - } -private: - HANDLE m_hHandle; - VMA_RW_MUTEX m_Mutex; // Protects access m_Handle -}; -#else -class VmaWin32Handle -{ - // ABI compatibility - void* placeholder = VMA_NULL; - VMA_RW_MUTEX placeholder2; -}; -#endif // VMA_EXTERNAL_MEMORY_WIN32 - - -#ifndef _VMA_DEVICE_MEMORY_BLOCK -/* -Represents a single block of device memory (`VkDeviceMemory`) with all the -data about its regions (aka suballocations, #VmaAllocation), assigned and free. - -Thread-safety: -- Access to m_pMetadata must be externally synchronized. -- Map, Unmap, Bind* are synchronized internally. -*/ -class VmaDeviceMemoryBlock -{ - VMA_CLASS_NO_COPY_NO_MOVE(VmaDeviceMemoryBlock) -public: - VmaBlockMetadata* m_pMetadata; - - VmaDeviceMemoryBlock(VmaAllocator hAllocator); - ~VmaDeviceMemoryBlock(); - - // Always call after construction. - void Init( - VmaAllocator hAllocator, - VmaPool hParentPool, - uint32_t newMemoryTypeIndex, - VkDeviceMemory newMemory, - VkDeviceSize newSize, - uint32_t id, - uint32_t algorithm, - VkDeviceSize bufferImageGranularity); - // Always call before destruction. - void Destroy(VmaAllocator allocator); - - VmaPool GetParentPool() const { return m_hParentPool; } - VkDeviceMemory GetDeviceMemory() const { return m_hMemory; } - uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; } - uint32_t GetId() const { return m_Id; } - void* GetMappedData() const { return m_pMappedData; } - uint32_t GetMapRefCount() const { return m_MapCount; } - - // Call when allocation/free was made from m_pMetadata. - // Used for m_MappingHysteresis. - void PostAlloc(VmaAllocator hAllocator); - void PostFree(VmaAllocator hAllocator); - - // Validates all data structures inside this object. If not valid, returns false. - bool Validate() const; - VkResult CheckCorruption(VmaAllocator hAllocator); - - // ppData can be null. - VkResult Map(VmaAllocator hAllocator, uint32_t count, void** ppData); - void Unmap(VmaAllocator hAllocator, uint32_t count); - - VkResult WriteMagicValueAfterAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize); - VkResult ValidateMagicValueAfterAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize); - - VkResult BindBufferMemory( - const VmaAllocator hAllocator, - const VmaAllocation hAllocation, - VkDeviceSize allocationLocalOffset, - VkBuffer hBuffer, - const void* pNext); - VkResult BindImageMemory( - const VmaAllocator hAllocator, - const VmaAllocation hAllocation, - VkDeviceSize allocationLocalOffset, - VkImage hImage, - const void* pNext); -#if VMA_EXTERNAL_MEMORY_WIN32 - VkResult CreateWin32Handle( - const VmaAllocator hAllocator, - PFN_vkGetMemoryWin32HandleKHR pvkGetMemoryWin32HandleKHR, - HANDLE hTargetProcess, - HANDLE* pHandle)noexcept; -#endif // VMA_EXTERNAL_MEMORY_WIN32 -private: - VmaPool m_hParentPool; // VK_NULL_HANDLE if not belongs to custom pool. - uint32_t m_MemoryTypeIndex; - uint32_t m_Id; - VkDeviceMemory m_hMemory; - - /* - Protects access to m_hMemory so it is not used by multiple threads simultaneously, e.g. vkMapMemory, vkBindBufferMemory. - Also protects m_MapCount, m_pMappedData. - Allocations, deallocations, any change in m_pMetadata is protected by parent's VmaBlockVector::m_Mutex. - */ - VMA_MUTEX m_MapAndBindMutex; - VmaMappingHysteresis m_MappingHysteresis; - uint32_t m_MapCount; - void* m_pMappedData; - - VmaWin32Handle m_Handle; -}; -#endif // _VMA_DEVICE_MEMORY_BLOCK - -#ifndef _VMA_ALLOCATION_T -struct VmaAllocationExtraData -{ - void* m_pMappedData = VMA_NULL; // Not null means memory is mapped. - VmaWin32Handle m_Handle; -}; - -struct VmaAllocation_T -{ - friend struct VmaDedicatedAllocationListItemTraits; - - enum FLAGS - { - FLAG_PERSISTENT_MAP = 0x01, - FLAG_MAPPING_ALLOWED = 0x02, - }; - -public: - enum ALLOCATION_TYPE - { - ALLOCATION_TYPE_NONE, - ALLOCATION_TYPE_BLOCK, - ALLOCATION_TYPE_DEDICATED, - }; - - // This struct is allocated using VmaPoolAllocator. - VmaAllocation_T(bool mappingAllowed); - ~VmaAllocation_T(); - - void InitBlockAllocation( - VmaDeviceMemoryBlock* block, - VmaAllocHandle allocHandle, - VkDeviceSize alignment, - VkDeviceSize size, - uint32_t memoryTypeIndex, - VmaSuballocationType suballocationType, - bool mapped); - // pMappedData not null means allocation is created with MAPPED flag. - void InitDedicatedAllocation( - VmaAllocator allocator, - VmaPool hParentPool, - uint32_t memoryTypeIndex, - VkDeviceMemory hMemory, - VmaSuballocationType suballocationType, - void* pMappedData, - VkDeviceSize size); - void Destroy(VmaAllocator allocator); - - ALLOCATION_TYPE GetType() const { return (ALLOCATION_TYPE)m_Type; } - VkDeviceSize GetAlignment() const { return m_Alignment; } - VkDeviceSize GetSize() const { return m_Size; } - void* GetUserData() const { return m_pUserData; } - const char* GetName() const { return m_pName; } - VmaSuballocationType GetSuballocationType() const { return (VmaSuballocationType)m_SuballocationType; } - - VmaDeviceMemoryBlock* GetBlock() const { VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK); return m_BlockAllocation.m_Block; } - uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; } - bool IsPersistentMap() const { return (m_Flags & FLAG_PERSISTENT_MAP) != 0; } - bool IsMappingAllowed() const { return (m_Flags & FLAG_MAPPING_ALLOWED) != 0; } - - void SetUserData(VmaAllocator hAllocator, void* pUserData) { m_pUserData = pUserData; } - void SetName(VmaAllocator hAllocator, const char* pName); - void FreeName(VmaAllocator hAllocator); - uint8_t SwapBlockAllocation(VmaAllocator hAllocator, VmaAllocation allocation); - VmaAllocHandle GetAllocHandle() const; - VkDeviceSize GetOffset() const; - VmaPool GetParentPool() const; - VkDeviceMemory GetMemory() const; - void* GetMappedData() const; - - void BlockAllocMap(); - void BlockAllocUnmap(); - VkResult DedicatedAllocMap(VmaAllocator hAllocator, void** ppData); - void DedicatedAllocUnmap(VmaAllocator hAllocator); - -#if VMA_STATS_STRING_ENABLED - VmaBufferImageUsage GetBufferImageUsage() const { return m_BufferImageUsage; } - void InitBufferUsage(const VkBufferCreateInfo &createInfo, bool useKhrMaintenance5) - { - VMA_ASSERT(m_BufferImageUsage == VmaBufferImageUsage::UNKNOWN); - m_BufferImageUsage = VmaBufferImageUsage(createInfo, useKhrMaintenance5); - } - void InitImageUsage(const VkImageCreateInfo &createInfo) - { - VMA_ASSERT(m_BufferImageUsage == VmaBufferImageUsage::UNKNOWN); - m_BufferImageUsage = VmaBufferImageUsage(createInfo); - } - void PrintParameters(class VmaJsonWriter& json) const; -#endif - -#if VMA_EXTERNAL_MEMORY_WIN32 - VkResult GetWin32Handle(VmaAllocator hAllocator, HANDLE hTargetProcess, HANDLE* hHandle) noexcept; -#endif // VMA_EXTERNAL_MEMORY_WIN32 - -private: - // Allocation out of VmaDeviceMemoryBlock. - struct BlockAllocation - { - VmaDeviceMemoryBlock* m_Block; - VmaAllocHandle m_AllocHandle; - }; - // Allocation for an object that has its own private VkDeviceMemory. - struct DedicatedAllocation - { - VmaPool m_hParentPool; // VK_NULL_HANDLE if not belongs to custom pool. - VkDeviceMemory m_hMemory; - VmaAllocationExtraData* m_ExtraData; - VmaAllocation_T* m_Prev; - VmaAllocation_T* m_Next; - }; - union - { - // Allocation out of VmaDeviceMemoryBlock. - BlockAllocation m_BlockAllocation; - // Allocation for an object that has its own private VkDeviceMemory. - DedicatedAllocation m_DedicatedAllocation; - }; - - VkDeviceSize m_Alignment; - VkDeviceSize m_Size; - void* m_pUserData; - char* m_pName; - uint32_t m_MemoryTypeIndex; - uint8_t m_Type; // ALLOCATION_TYPE - uint8_t m_SuballocationType; // VmaSuballocationType - // Reference counter for vmaMapMemory()/vmaUnmapMemory(). - uint8_t m_MapCount; - uint8_t m_Flags; // enum FLAGS -#if VMA_STATS_STRING_ENABLED - VmaBufferImageUsage m_BufferImageUsage; // 0 if unknown. -#endif - - void EnsureExtraData(VmaAllocator hAllocator); -}; -#endif // _VMA_ALLOCATION_T - -#ifndef _VMA_DEDICATED_ALLOCATION_LIST_ITEM_TRAITS -struct VmaDedicatedAllocationListItemTraits -{ - typedef VmaAllocation_T ItemType; - - static ItemType* GetPrev(const ItemType* item) - { - VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED); - return item->m_DedicatedAllocation.m_Prev; - } - static ItemType* GetNext(const ItemType* item) - { - VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED); - return item->m_DedicatedAllocation.m_Next; - } - static ItemType*& AccessPrev(ItemType* item) - { - VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED); - return item->m_DedicatedAllocation.m_Prev; - } - static ItemType*& AccessNext(ItemType* item) - { - VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED); - return item->m_DedicatedAllocation.m_Next; - } -}; -#endif // _VMA_DEDICATED_ALLOCATION_LIST_ITEM_TRAITS - -#ifndef _VMA_DEDICATED_ALLOCATION_LIST -/* -Stores linked list of VmaAllocation_T objects. -Thread-safe, synchronized internally. -*/ -class VmaDedicatedAllocationList -{ - VMA_CLASS_NO_COPY_NO_MOVE(VmaDedicatedAllocationList) -public: - VmaDedicatedAllocationList() {} - ~VmaDedicatedAllocationList(); - - void Init(bool useMutex) { m_UseMutex = useMutex; } - bool Validate(); - - void AddDetailedStatistics(VmaDetailedStatistics& inoutStats); - void AddStatistics(VmaStatistics& inoutStats); -#if VMA_STATS_STRING_ENABLED - // Writes JSON array with the list of allocations. - void BuildStatsString(VmaJsonWriter& json); -#endif - - bool IsEmpty(); - void Register(VmaAllocation alloc); - void Unregister(VmaAllocation alloc); - -private: - typedef VmaIntrusiveLinkedList DedicatedAllocationLinkedList; - - bool m_UseMutex = true; - VMA_RW_MUTEX m_Mutex; - DedicatedAllocationLinkedList m_AllocationList; -}; - -#ifndef _VMA_DEDICATED_ALLOCATION_LIST_FUNCTIONS - -VmaDedicatedAllocationList::~VmaDedicatedAllocationList() -{ - VMA_HEAVY_ASSERT(Validate()); - - if (!m_AllocationList.IsEmpty()) - { - VMA_ASSERT_LEAK(false && "Unfreed dedicated allocations found!"); - } -} - -bool VmaDedicatedAllocationList::Validate() -{ - const size_t declaredCount = m_AllocationList.GetCount(); - size_t actualCount = 0; - VmaMutexLockRead lock(m_Mutex, m_UseMutex); - for (VmaAllocation alloc = m_AllocationList.Front(); - alloc != VMA_NULL; alloc = m_AllocationList.GetNext(alloc)) - { - ++actualCount; - } - VMA_VALIDATE(actualCount == declaredCount); - - return true; -} - -void VmaDedicatedAllocationList::AddDetailedStatistics(VmaDetailedStatistics& inoutStats) -{ - for(auto* item = m_AllocationList.Front(); item != VMA_NULL; item = DedicatedAllocationLinkedList::GetNext(item)) - { - const VkDeviceSize size = item->GetSize(); - inoutStats.statistics.blockCount++; - inoutStats.statistics.blockBytes += size; - VmaAddDetailedStatisticsAllocation(inoutStats, item->GetSize()); - } -} - -void VmaDedicatedAllocationList::AddStatistics(VmaStatistics& inoutStats) -{ - VmaMutexLockRead lock(m_Mutex, m_UseMutex); - - const uint32_t allocCount = (uint32_t)m_AllocationList.GetCount(); - inoutStats.blockCount += allocCount; - inoutStats.allocationCount += allocCount; - - for(auto* item = m_AllocationList.Front(); item != VMA_NULL; item = DedicatedAllocationLinkedList::GetNext(item)) - { - const VkDeviceSize size = item->GetSize(); - inoutStats.blockBytes += size; - inoutStats.allocationBytes += size; - } -} - -#if VMA_STATS_STRING_ENABLED -void VmaDedicatedAllocationList::BuildStatsString(VmaJsonWriter& json) -{ - VmaMutexLockRead lock(m_Mutex, m_UseMutex); - json.BeginArray(); - for (VmaAllocation alloc = m_AllocationList.Front(); - alloc != VMA_NULL; alloc = m_AllocationList.GetNext(alloc)) - { - json.BeginObject(true); - alloc->PrintParameters(json); - json.EndObject(); - } - json.EndArray(); -} -#endif // VMA_STATS_STRING_ENABLED - -bool VmaDedicatedAllocationList::IsEmpty() -{ - VmaMutexLockRead lock(m_Mutex, m_UseMutex); - return m_AllocationList.IsEmpty(); -} - -void VmaDedicatedAllocationList::Register(VmaAllocation alloc) -{ - VmaMutexLockWrite lock(m_Mutex, m_UseMutex); - m_AllocationList.PushBack(alloc); -} - -void VmaDedicatedAllocationList::Unregister(VmaAllocation alloc) -{ - VmaMutexLockWrite lock(m_Mutex, m_UseMutex); - m_AllocationList.Remove(alloc); -} -#endif // _VMA_DEDICATED_ALLOCATION_LIST_FUNCTIONS -#endif // _VMA_DEDICATED_ALLOCATION_LIST - -#ifndef _VMA_SUBALLOCATION -/* -Represents a region of VmaDeviceMemoryBlock that is either assigned and returned as -allocated memory block or free. -*/ -struct VmaSuballocation -{ - VkDeviceSize offset; - VkDeviceSize size; - void* userData; - VmaSuballocationType type; -}; - -// Comparator for offsets. -struct VmaSuballocationOffsetLess -{ - bool operator()(const VmaSuballocation& lhs, const VmaSuballocation& rhs) const - { - return lhs.offset < rhs.offset; - } -}; - -struct VmaSuballocationOffsetGreater -{ - bool operator()(const VmaSuballocation& lhs, const VmaSuballocation& rhs) const - { - return lhs.offset > rhs.offset; - } -}; - -struct VmaSuballocationItemSizeLess -{ - bool operator()(const VmaSuballocationList::iterator lhs, - const VmaSuballocationList::iterator rhs) const - { - return lhs->size < rhs->size; - } - - bool operator()(const VmaSuballocationList::iterator lhs, - VkDeviceSize rhsSize) const - { - return lhs->size < rhsSize; - } -}; -#endif // _VMA_SUBALLOCATION - -#ifndef _VMA_ALLOCATION_REQUEST -/* -Parameters of planned allocation inside a VmaDeviceMemoryBlock. -item points to a FREE suballocation. -*/ -struct VmaAllocationRequest -{ - VmaAllocHandle allocHandle; - VkDeviceSize size; - VmaSuballocationList::iterator item; - void* customData; - uint64_t algorithmData; - VmaAllocationRequestType type; -}; -#endif // _VMA_ALLOCATION_REQUEST - -#ifndef _VMA_BLOCK_METADATA -/* -Data structure used for bookkeeping of allocations and unused ranges of memory -in a single VkDeviceMemory block. -*/ -class VmaBlockMetadata -{ - VMA_CLASS_NO_COPY_NO_MOVE(VmaBlockMetadata) -public: - // pAllocationCallbacks, if not null, must be owned externally - alive and unchanged for the whole lifetime of this object. - VmaBlockMetadata(const VkAllocationCallbacks* pAllocationCallbacks, - VkDeviceSize bufferImageGranularity, bool isVirtual); - virtual ~VmaBlockMetadata() = default; - - virtual void Init(VkDeviceSize size) { m_Size = size; } - bool IsVirtual() const { return m_IsVirtual; } - VkDeviceSize GetSize() const { return m_Size; } - - // Validates all data structures inside this object. If not valid, returns false. - virtual bool Validate() const = 0; - virtual size_t GetAllocationCount() const = 0; - virtual size_t GetFreeRegionsCount() const = 0; - virtual VkDeviceSize GetSumFreeSize() const = 0; - // Returns true if this block is empty - contains only single free suballocation. - virtual bool IsEmpty() const = 0; - virtual void GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) = 0; - virtual VkDeviceSize GetAllocationOffset(VmaAllocHandle allocHandle) const = 0; - virtual void* GetAllocationUserData(VmaAllocHandle allocHandle) const = 0; - - virtual VmaAllocHandle GetAllocationListBegin() const = 0; - virtual VmaAllocHandle GetNextAllocation(VmaAllocHandle prevAlloc) const = 0; - virtual VkDeviceSize GetNextFreeRegionSize(VmaAllocHandle alloc) const = 0; - - // Shouldn't modify blockCount. - virtual void AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const = 0; - virtual void AddStatistics(VmaStatistics& inoutStats) const = 0; - -#if VMA_STATS_STRING_ENABLED - virtual void PrintDetailedMap(class VmaJsonWriter& json) const = 0; -#endif - - // Tries to find a place for suballocation with given parameters inside this block. - // If succeeded, fills pAllocationRequest and returns true. - // If failed, returns false. - virtual bool CreateAllocationRequest( - VkDeviceSize allocSize, - VkDeviceSize allocAlignment, - bool upperAddress, - VmaSuballocationType allocType, - // Always one of VMA_ALLOCATION_CREATE_STRATEGY_* or VMA_ALLOCATION_INTERNAL_STRATEGY_* flags. - uint32_t strategy, - VmaAllocationRequest* pAllocationRequest) = 0; - - virtual VkResult CheckCorruption(const void* pBlockData) = 0; - - // Makes actual allocation based on request. Request must already be checked and valid. - virtual void Alloc( - const VmaAllocationRequest& request, - VmaSuballocationType type, - void* userData) = 0; - - // Frees suballocation assigned to given memory region. - virtual void Free(VmaAllocHandle allocHandle) = 0; - - // Frees all allocations. - // Careful! Don't call it if there are VmaAllocation objects owned by userData of cleared allocations! - virtual void Clear() = 0; - - virtual void SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) = 0; - virtual void DebugLogAllAllocations() const = 0; - -protected: - const VkAllocationCallbacks* GetAllocationCallbacks() const { return m_pAllocationCallbacks; } - VkDeviceSize GetBufferImageGranularity() const { return m_BufferImageGranularity; } - VkDeviceSize GetDebugMargin() const { return VkDeviceSize(IsVirtual() ? 0 : VMA_DEBUG_MARGIN); } - - void DebugLogAllocation(VkDeviceSize offset, VkDeviceSize size, void* userData) const; -#if VMA_STATS_STRING_ENABLED - // mapRefCount == UINT32_MAX means unspecified. - void PrintDetailedMap_Begin(class VmaJsonWriter& json, - VkDeviceSize unusedBytes, - size_t allocationCount, - size_t unusedRangeCount) const; - void PrintDetailedMap_Allocation(class VmaJsonWriter& json, - VkDeviceSize offset, VkDeviceSize size, void* userData) const; - void PrintDetailedMap_UnusedRange(class VmaJsonWriter& json, - VkDeviceSize offset, - VkDeviceSize size) const; - void PrintDetailedMap_End(class VmaJsonWriter& json) const; -#endif - -private: - VkDeviceSize m_Size; - const VkAllocationCallbacks* m_pAllocationCallbacks; - const VkDeviceSize m_BufferImageGranularity; - const bool m_IsVirtual; -}; - -#ifndef _VMA_BLOCK_METADATA_FUNCTIONS -VmaBlockMetadata::VmaBlockMetadata(const VkAllocationCallbacks* pAllocationCallbacks, - VkDeviceSize bufferImageGranularity, bool isVirtual) - : m_Size(0), - m_pAllocationCallbacks(pAllocationCallbacks), - m_BufferImageGranularity(bufferImageGranularity), - m_IsVirtual(isVirtual) {} - -void VmaBlockMetadata::DebugLogAllocation(VkDeviceSize offset, VkDeviceSize size, void* userData) const -{ - if (IsVirtual()) - { - VMA_LEAK_LOG_FORMAT("UNFREED VIRTUAL ALLOCATION; Offset: %" PRIu64 "; Size: %" PRIu64 "; UserData: %p", offset, size, userData); - } - else - { - VMA_ASSERT(userData != VMA_NULL); - VmaAllocation allocation = reinterpret_cast(userData); - - userData = allocation->GetUserData(); - const char* name = allocation->GetName(); - -#if VMA_STATS_STRING_ENABLED - VMA_LEAK_LOG_FORMAT("UNFREED ALLOCATION; Offset: %" PRIu64 "; Size: %" PRIu64 "; UserData: %p; Name: %s; Type: %s; Usage: %" PRIu64, - offset, size, userData, name ? name : "vma_empty", - VMA_SUBALLOCATION_TYPE_NAMES[allocation->GetSuballocationType()], - (uint64_t)allocation->GetBufferImageUsage().Value); -#else - VMA_LEAK_LOG_FORMAT("UNFREED ALLOCATION; Offset: %" PRIu64 "; Size: %" PRIu64 "; UserData: %p; Name: %s; Type: %u", - offset, size, userData, name ? name : "vma_empty", - (unsigned)allocation->GetSuballocationType()); -#endif // VMA_STATS_STRING_ENABLED - } - -} - -#if VMA_STATS_STRING_ENABLED -void VmaBlockMetadata::PrintDetailedMap_Begin(class VmaJsonWriter& json, - VkDeviceSize unusedBytes, size_t allocationCount, size_t unusedRangeCount) const -{ - json.WriteString("TotalBytes"); - json.WriteNumber(GetSize()); - - json.WriteString("UnusedBytes"); - json.WriteNumber(unusedBytes); - - json.WriteString("Allocations"); - json.WriteNumber((uint64_t)allocationCount); - - json.WriteString("UnusedRanges"); - json.WriteNumber((uint64_t)unusedRangeCount); - - json.WriteString("Suballocations"); - json.BeginArray(); -} - -void VmaBlockMetadata::PrintDetailedMap_Allocation(class VmaJsonWriter& json, - VkDeviceSize offset, VkDeviceSize size, void* userData) const -{ - json.BeginObject(true); - - json.WriteString("Offset"); - json.WriteNumber(offset); - - if (IsVirtual()) - { - json.WriteString("Size"); - json.WriteNumber(size); - if (userData) - { - json.WriteString("CustomData"); - json.BeginString(); - json.ContinueString_Pointer(userData); - json.EndString(); - } - } - else - { - ((VmaAllocation)userData)->PrintParameters(json); - } - - json.EndObject(); -} - -void VmaBlockMetadata::PrintDetailedMap_UnusedRange(class VmaJsonWriter& json, - VkDeviceSize offset, VkDeviceSize size) const -{ - json.BeginObject(true); - - json.WriteString("Offset"); - json.WriteNumber(offset); - - json.WriteString("Type"); - json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[VMA_SUBALLOCATION_TYPE_FREE]); - - json.WriteString("Size"); - json.WriteNumber(size); - - json.EndObject(); -} - -void VmaBlockMetadata::PrintDetailedMap_End(class VmaJsonWriter& json) const -{ - json.EndArray(); -} -#endif // VMA_STATS_STRING_ENABLED -#endif // _VMA_BLOCK_METADATA_FUNCTIONS -#endif // _VMA_BLOCK_METADATA - -#ifndef _VMA_BLOCK_BUFFER_IMAGE_GRANULARITY -// Before deleting object of this class remember to call 'Destroy()' -class VmaBlockBufferImageGranularity final -{ -public: - struct ValidationContext - { - const VkAllocationCallbacks* allocCallbacks; - uint16_t* pageAllocs; - }; - - VmaBlockBufferImageGranularity(VkDeviceSize bufferImageGranularity); - ~VmaBlockBufferImageGranularity(); - - bool IsEnabled() const { return m_BufferImageGranularity > MAX_LOW_BUFFER_IMAGE_GRANULARITY; } - - void Init(const VkAllocationCallbacks* pAllocationCallbacks, VkDeviceSize size); - // Before destroying object you must call free it's memory - void Destroy(const VkAllocationCallbacks* pAllocationCallbacks); - - void RoundupAllocRequest(VmaSuballocationType allocType, - VkDeviceSize& inOutAllocSize, - VkDeviceSize& inOutAllocAlignment) const; - - bool CheckConflictAndAlignUp(VkDeviceSize& inOutAllocOffset, - VkDeviceSize allocSize, - VkDeviceSize blockOffset, - VkDeviceSize blockSize, - VmaSuballocationType allocType) const; - - void AllocPages(uint8_t allocType, VkDeviceSize offset, VkDeviceSize size); - void FreePages(VkDeviceSize offset, VkDeviceSize size); - void Clear(); - - ValidationContext StartValidation(const VkAllocationCallbacks* pAllocationCallbacks, - bool isVirutal) const; - bool Validate(ValidationContext& ctx, VkDeviceSize offset, VkDeviceSize size) const; - bool FinishValidation(ValidationContext& ctx) const; - -private: - static const uint16_t MAX_LOW_BUFFER_IMAGE_GRANULARITY = 256; - - struct RegionInfo - { - uint8_t allocType; - uint16_t allocCount; - }; - - VkDeviceSize m_BufferImageGranularity; - uint32_t m_RegionCount; - RegionInfo* m_RegionInfo; - - uint32_t GetStartPage(VkDeviceSize offset) const { return OffsetToPageIndex(offset & ~(m_BufferImageGranularity - 1)); } - uint32_t GetEndPage(VkDeviceSize offset, VkDeviceSize size) const { return OffsetToPageIndex((offset + size - 1) & ~(m_BufferImageGranularity - 1)); } - - uint32_t OffsetToPageIndex(VkDeviceSize offset) const; - void AllocPage(RegionInfo& page, uint8_t allocType); -}; - -#ifndef _VMA_BLOCK_BUFFER_IMAGE_GRANULARITY_FUNCTIONS -VmaBlockBufferImageGranularity::VmaBlockBufferImageGranularity(VkDeviceSize bufferImageGranularity) - : m_BufferImageGranularity(bufferImageGranularity), - m_RegionCount(0), - m_RegionInfo(VMA_NULL) {} - -VmaBlockBufferImageGranularity::~VmaBlockBufferImageGranularity() -{ - VMA_ASSERT(m_RegionInfo == VMA_NULL && "Free not called before destroying object!"); -} - -void VmaBlockBufferImageGranularity::Init(const VkAllocationCallbacks* pAllocationCallbacks, VkDeviceSize size) -{ - if (IsEnabled()) - { - m_RegionCount = static_cast(VmaDivideRoundingUp(size, m_BufferImageGranularity)); - m_RegionInfo = vma_new_array(pAllocationCallbacks, RegionInfo, m_RegionCount); - memset(m_RegionInfo, 0, m_RegionCount * sizeof(RegionInfo)); - } -} - -void VmaBlockBufferImageGranularity::Destroy(const VkAllocationCallbacks* pAllocationCallbacks) -{ - if (m_RegionInfo) - { - vma_delete_array(pAllocationCallbacks, m_RegionInfo, m_RegionCount); - m_RegionInfo = VMA_NULL; - } -} - -void VmaBlockBufferImageGranularity::RoundupAllocRequest(VmaSuballocationType allocType, - VkDeviceSize& inOutAllocSize, - VkDeviceSize& inOutAllocAlignment) const -{ - if (m_BufferImageGranularity > 1 && - m_BufferImageGranularity <= MAX_LOW_BUFFER_IMAGE_GRANULARITY) - { - if (allocType == VMA_SUBALLOCATION_TYPE_UNKNOWN || - allocType == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN || - allocType == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL) - { - inOutAllocAlignment = VMA_MAX(inOutAllocAlignment, m_BufferImageGranularity); - inOutAllocSize = VmaAlignUp(inOutAllocSize, m_BufferImageGranularity); - } - } -} - -bool VmaBlockBufferImageGranularity::CheckConflictAndAlignUp(VkDeviceSize& inOutAllocOffset, - VkDeviceSize allocSize, - VkDeviceSize blockOffset, - VkDeviceSize blockSize, - VmaSuballocationType allocType) const -{ - if (IsEnabled()) - { - uint32_t startPage = GetStartPage(inOutAllocOffset); - if (m_RegionInfo[startPage].allocCount > 0 && - VmaIsBufferImageGranularityConflict(static_cast(m_RegionInfo[startPage].allocType), allocType)) - { - inOutAllocOffset = VmaAlignUp(inOutAllocOffset, m_BufferImageGranularity); - if (blockSize < allocSize + inOutAllocOffset - blockOffset) - return true; - ++startPage; - } - uint32_t endPage = GetEndPage(inOutAllocOffset, allocSize); - if (endPage != startPage && - m_RegionInfo[endPage].allocCount > 0 && - VmaIsBufferImageGranularityConflict(static_cast(m_RegionInfo[endPage].allocType), allocType)) - { - return true; - } - } - return false; -} - -void VmaBlockBufferImageGranularity::AllocPages(uint8_t allocType, VkDeviceSize offset, VkDeviceSize size) -{ - if (IsEnabled()) - { - uint32_t startPage = GetStartPage(offset); - AllocPage(m_RegionInfo[startPage], allocType); - - uint32_t endPage = GetEndPage(offset, size); - if (startPage != endPage) - AllocPage(m_RegionInfo[endPage], allocType); - } -} - -void VmaBlockBufferImageGranularity::FreePages(VkDeviceSize offset, VkDeviceSize size) -{ - if (IsEnabled()) - { - uint32_t startPage = GetStartPage(offset); - --m_RegionInfo[startPage].allocCount; - if (m_RegionInfo[startPage].allocCount == 0) - m_RegionInfo[startPage].allocType = VMA_SUBALLOCATION_TYPE_FREE; - uint32_t endPage = GetEndPage(offset, size); - if (startPage != endPage) - { - --m_RegionInfo[endPage].allocCount; - if (m_RegionInfo[endPage].allocCount == 0) - m_RegionInfo[endPage].allocType = VMA_SUBALLOCATION_TYPE_FREE; - } - } -} - -void VmaBlockBufferImageGranularity::Clear() -{ - if (m_RegionInfo) - memset(m_RegionInfo, 0, m_RegionCount * sizeof(RegionInfo)); -} - -VmaBlockBufferImageGranularity::ValidationContext VmaBlockBufferImageGranularity::StartValidation( - const VkAllocationCallbacks* pAllocationCallbacks, bool isVirutal) const -{ - ValidationContext ctx{ pAllocationCallbacks, VMA_NULL }; - if (!isVirutal && IsEnabled()) - { - ctx.pageAllocs = vma_new_array(pAllocationCallbacks, uint16_t, m_RegionCount); - memset(ctx.pageAllocs, 0, m_RegionCount * sizeof(uint16_t)); - } - return ctx; -} - -bool VmaBlockBufferImageGranularity::Validate(ValidationContext& ctx, - VkDeviceSize offset, VkDeviceSize size) const -{ - if (IsEnabled()) - { - uint32_t start = GetStartPage(offset); - ++ctx.pageAllocs[start]; - VMA_VALIDATE(m_RegionInfo[start].allocCount > 0); - - uint32_t end = GetEndPage(offset, size); - if (start != end) - { - ++ctx.pageAllocs[end]; - VMA_VALIDATE(m_RegionInfo[end].allocCount > 0); - } - } - return true; -} - -bool VmaBlockBufferImageGranularity::FinishValidation(ValidationContext& ctx) const -{ - // Check proper page structure - if (IsEnabled()) - { - VMA_ASSERT(ctx.pageAllocs != VMA_NULL && "Validation context not initialized!"); - - for (uint32_t page = 0; page < m_RegionCount; ++page) - { - VMA_VALIDATE(ctx.pageAllocs[page] == m_RegionInfo[page].allocCount); - } - vma_delete_array(ctx.allocCallbacks, ctx.pageAllocs, m_RegionCount); - ctx.pageAllocs = VMA_NULL; - } - return true; -} - -uint32_t VmaBlockBufferImageGranularity::OffsetToPageIndex(VkDeviceSize offset) const -{ - return static_cast(offset >> VMA_BITSCAN_MSB(m_BufferImageGranularity)); -} - -void VmaBlockBufferImageGranularity::AllocPage(RegionInfo& page, uint8_t allocType) -{ - // When current alloc type is free then it can be overridden by new type - if (page.allocCount == 0 || (page.allocCount > 0 && page.allocType == VMA_SUBALLOCATION_TYPE_FREE)) - page.allocType = allocType; - - ++page.allocCount; -} -#endif // _VMA_BLOCK_BUFFER_IMAGE_GRANULARITY_FUNCTIONS -#endif // _VMA_BLOCK_BUFFER_IMAGE_GRANULARITY - -#ifndef _VMA_BLOCK_METADATA_LINEAR -/* -Allocations and their references in internal data structure look like this: - -if(m_2ndVectorMode == SECOND_VECTOR_EMPTY): - - 0 +-------+ - | | - | | - | | - +-------+ - | Alloc | 1st[m_1stNullItemsBeginCount] - +-------+ - | Alloc | 1st[m_1stNullItemsBeginCount + 1] - +-------+ - | ... | - +-------+ - | Alloc | 1st[1st.size() - 1] - +-------+ - | | - | | - | | -GetSize() +-------+ - -if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER): - - 0 +-------+ - | Alloc | 2nd[0] - +-------+ - | Alloc | 2nd[1] - +-------+ - | ... | - +-------+ - | Alloc | 2nd[2nd.size() - 1] - +-------+ - | | - | | - | | - +-------+ - | Alloc | 1st[m_1stNullItemsBeginCount] - +-------+ - | Alloc | 1st[m_1stNullItemsBeginCount + 1] - +-------+ - | ... | - +-------+ - | Alloc | 1st[1st.size() - 1] - +-------+ - | | -GetSize() +-------+ - -if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK): - - 0 +-------+ - | | - | | - | | - +-------+ - | Alloc | 1st[m_1stNullItemsBeginCount] - +-------+ - | Alloc | 1st[m_1stNullItemsBeginCount + 1] - +-------+ - | ... | - +-------+ - | Alloc | 1st[1st.size() - 1] - +-------+ - | | - | | - | | - +-------+ - | Alloc | 2nd[2nd.size() - 1] - +-------+ - | ... | - +-------+ - | Alloc | 2nd[1] - +-------+ - | Alloc | 2nd[0] -GetSize() +-------+ - -*/ -class VmaBlockMetadata_Linear : public VmaBlockMetadata -{ - VMA_CLASS_NO_COPY_NO_MOVE(VmaBlockMetadata_Linear) -public: - VmaBlockMetadata_Linear(const VkAllocationCallbacks* pAllocationCallbacks, - VkDeviceSize bufferImageGranularity, bool isVirtual); - virtual ~VmaBlockMetadata_Linear() = default; - - VkDeviceSize GetSumFreeSize() const override { return m_SumFreeSize; } - bool IsEmpty() const override { return GetAllocationCount() == 0; } - VkDeviceSize GetAllocationOffset(VmaAllocHandle allocHandle) const override { return (VkDeviceSize)allocHandle - 1; } - - void Init(VkDeviceSize size) override; - bool Validate() const override; - size_t GetAllocationCount() const override; - size_t GetFreeRegionsCount() const override; - - void AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const override; - void AddStatistics(VmaStatistics& inoutStats) const override; - -#if VMA_STATS_STRING_ENABLED - void PrintDetailedMap(class VmaJsonWriter& json) const override; -#endif - - bool CreateAllocationRequest( - VkDeviceSize allocSize, - VkDeviceSize allocAlignment, - bool upperAddress, - VmaSuballocationType allocType, - uint32_t strategy, - VmaAllocationRequest* pAllocationRequest) override; - - VkResult CheckCorruption(const void* pBlockData) override; - - void Alloc( - const VmaAllocationRequest& request, - VmaSuballocationType type, - void* userData) override; - - void Free(VmaAllocHandle allocHandle) override; - void GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) override; - void* GetAllocationUserData(VmaAllocHandle allocHandle) const override; - VmaAllocHandle GetAllocationListBegin() const override; - VmaAllocHandle GetNextAllocation(VmaAllocHandle prevAlloc) const override; - VkDeviceSize GetNextFreeRegionSize(VmaAllocHandle alloc) const override; - void Clear() override; - void SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) override; - void DebugLogAllAllocations() const override; - -private: - /* - There are two suballocation vectors, used in ping-pong way. - The one with index m_1stVectorIndex is called 1st. - The one with index (m_1stVectorIndex ^ 1) is called 2nd. - 2nd can be non-empty only when 1st is not empty. - When 2nd is not empty, m_2ndVectorMode indicates its mode of operation. - */ - typedef VmaVector> SuballocationVectorType; - - enum SECOND_VECTOR_MODE - { - SECOND_VECTOR_EMPTY, - /* - Suballocations in 2nd vector are created later than the ones in 1st, but they - all have smaller offset. - */ - SECOND_VECTOR_RING_BUFFER, - /* - Suballocations in 2nd vector are upper side of double stack. - They all have offsets higher than those in 1st vector. - Top of this stack means smaller offsets, but higher indices in this vector. - */ - SECOND_VECTOR_DOUBLE_STACK, - }; - - VkDeviceSize m_SumFreeSize; - SuballocationVectorType m_Suballocations0, m_Suballocations1; - uint32_t m_1stVectorIndex; - SECOND_VECTOR_MODE m_2ndVectorMode; - // Number of items in 1st vector with hAllocation = null at the beginning. - size_t m_1stNullItemsBeginCount; - // Number of other items in 1st vector with hAllocation = null somewhere in the middle. - size_t m_1stNullItemsMiddleCount; - // Number of items in 2nd vector with hAllocation = null. - size_t m_2ndNullItemsCount; - - SuballocationVectorType& AccessSuballocations1st() { return m_1stVectorIndex ? m_Suballocations1 : m_Suballocations0; } - SuballocationVectorType& AccessSuballocations2nd() { return m_1stVectorIndex ? m_Suballocations0 : m_Suballocations1; } - const SuballocationVectorType& AccessSuballocations1st() const { return m_1stVectorIndex ? m_Suballocations1 : m_Suballocations0; } - const SuballocationVectorType& AccessSuballocations2nd() const { return m_1stVectorIndex ? m_Suballocations0 : m_Suballocations1; } - - VmaSuballocation& FindSuballocation(VkDeviceSize offset) const; - bool ShouldCompact1st() const; - void CleanupAfterFree(); - - bool CreateAllocationRequest_LowerAddress( - VkDeviceSize allocSize, - VkDeviceSize allocAlignment, - VmaSuballocationType allocType, - uint32_t strategy, - VmaAllocationRequest* pAllocationRequest); - bool CreateAllocationRequest_UpperAddress( - VkDeviceSize allocSize, - VkDeviceSize allocAlignment, - VmaSuballocationType allocType, - uint32_t strategy, - VmaAllocationRequest* pAllocationRequest); -}; - -#ifndef _VMA_BLOCK_METADATA_LINEAR_FUNCTIONS -VmaBlockMetadata_Linear::VmaBlockMetadata_Linear(const VkAllocationCallbacks* pAllocationCallbacks, - VkDeviceSize bufferImageGranularity, bool isVirtual) - : VmaBlockMetadata(pAllocationCallbacks, bufferImageGranularity, isVirtual), - m_SumFreeSize(0), - m_Suballocations0(VmaStlAllocator(pAllocationCallbacks)), - m_Suballocations1(VmaStlAllocator(pAllocationCallbacks)), - m_1stVectorIndex(0), - m_2ndVectorMode(SECOND_VECTOR_EMPTY), - m_1stNullItemsBeginCount(0), - m_1stNullItemsMiddleCount(0), - m_2ndNullItemsCount(0) {} - -void VmaBlockMetadata_Linear::Init(VkDeviceSize size) -{ - VmaBlockMetadata::Init(size); - m_SumFreeSize = size; -} - -bool VmaBlockMetadata_Linear::Validate() const -{ - const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); - const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); - - VMA_VALIDATE(suballocations2nd.empty() == (m_2ndVectorMode == SECOND_VECTOR_EMPTY)); - VMA_VALIDATE(!suballocations1st.empty() || - suballocations2nd.empty() || - m_2ndVectorMode != SECOND_VECTOR_RING_BUFFER); - - if (!suballocations1st.empty()) - { - // Null item at the beginning should be accounted into m_1stNullItemsBeginCount. - VMA_VALIDATE(suballocations1st[m_1stNullItemsBeginCount].type != VMA_SUBALLOCATION_TYPE_FREE); - // Null item at the end should be just pop_back(). - VMA_VALIDATE(suballocations1st.back().type != VMA_SUBALLOCATION_TYPE_FREE); - } - if (!suballocations2nd.empty()) - { - // Null item at the end should be just pop_back(). - VMA_VALIDATE(suballocations2nd.back().type != VMA_SUBALLOCATION_TYPE_FREE); - } - - VMA_VALIDATE(m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount <= suballocations1st.size()); - VMA_VALIDATE(m_2ndNullItemsCount <= suballocations2nd.size()); - - VkDeviceSize sumUsedSize = 0; - const size_t suballoc1stCount = suballocations1st.size(); - const VkDeviceSize debugMargin = GetDebugMargin(); - VkDeviceSize offset = 0; - - if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) - { - const size_t suballoc2ndCount = suballocations2nd.size(); - size_t nullItem2ndCount = 0; - for (size_t i = 0; i < suballoc2ndCount; ++i) - { - const VmaSuballocation& suballoc = suballocations2nd[i]; - const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); - - VmaAllocation const alloc = (VmaAllocation)suballoc.userData; - if (!IsVirtual()) - { - VMA_VALIDATE(currFree == (alloc == VK_NULL_HANDLE)); - } - VMA_VALIDATE(suballoc.offset >= offset); - - if (!currFree) - { - if (!IsVirtual()) - { - VMA_VALIDATE((VkDeviceSize)alloc->GetAllocHandle() == suballoc.offset + 1); - VMA_VALIDATE(alloc->GetSize() == suballoc.size); - } - sumUsedSize += suballoc.size; - } - else - { - ++nullItem2ndCount; - } - - offset = suballoc.offset + suballoc.size + debugMargin; - } - - VMA_VALIDATE(nullItem2ndCount == m_2ndNullItemsCount); - } - - for (size_t i = 0; i < m_1stNullItemsBeginCount; ++i) - { - const VmaSuballocation& suballoc = suballocations1st[i]; - VMA_VALIDATE(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE && - suballoc.userData == VMA_NULL); - } - - size_t nullItem1stCount = m_1stNullItemsBeginCount; - - for (size_t i = m_1stNullItemsBeginCount; i < suballoc1stCount; ++i) - { - const VmaSuballocation& suballoc = suballocations1st[i]; - const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); - - VmaAllocation const alloc = (VmaAllocation)suballoc.userData; - if (!IsVirtual()) - { - VMA_VALIDATE(currFree == (alloc == VK_NULL_HANDLE)); - } - VMA_VALIDATE(suballoc.offset >= offset); - VMA_VALIDATE(i >= m_1stNullItemsBeginCount || currFree); - - if (!currFree) - { - if (!IsVirtual()) - { - VMA_VALIDATE((VkDeviceSize)alloc->GetAllocHandle() == suballoc.offset + 1); - VMA_VALIDATE(alloc->GetSize() == suballoc.size); - } - sumUsedSize += suballoc.size; - } - else - { - ++nullItem1stCount; - } - - offset = suballoc.offset + suballoc.size + debugMargin; - } - VMA_VALIDATE(nullItem1stCount == m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount); - - if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) - { - const size_t suballoc2ndCount = suballocations2nd.size(); - size_t nullItem2ndCount = 0; - for (size_t i = suballoc2ndCount; i--; ) - { - const VmaSuballocation& suballoc = suballocations2nd[i]; - const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); - - VmaAllocation const alloc = (VmaAllocation)suballoc.userData; - if (!IsVirtual()) - { - VMA_VALIDATE(currFree == (alloc == VK_NULL_HANDLE)); - } - VMA_VALIDATE(suballoc.offset >= offset); - - if (!currFree) - { - if (!IsVirtual()) - { - VMA_VALIDATE((VkDeviceSize)alloc->GetAllocHandle() == suballoc.offset + 1); - VMA_VALIDATE(alloc->GetSize() == suballoc.size); - } - sumUsedSize += suballoc.size; - } - else - { - ++nullItem2ndCount; - } - - offset = suballoc.offset + suballoc.size + debugMargin; - } - - VMA_VALIDATE(nullItem2ndCount == m_2ndNullItemsCount); - } - - VMA_VALIDATE(offset <= GetSize()); - VMA_VALIDATE(m_SumFreeSize == GetSize() - sumUsedSize); - - return true; -} - -size_t VmaBlockMetadata_Linear::GetAllocationCount() const -{ - return AccessSuballocations1st().size() - m_1stNullItemsBeginCount - m_1stNullItemsMiddleCount + - AccessSuballocations2nd().size() - m_2ndNullItemsCount; -} - -size_t VmaBlockMetadata_Linear::GetFreeRegionsCount() const -{ - // Function only used for defragmentation, which is disabled for this algorithm - VMA_ASSERT(0); - return SIZE_MAX; -} - -void VmaBlockMetadata_Linear::AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const -{ - const VkDeviceSize size = GetSize(); - const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); - const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); - const size_t suballoc1stCount = suballocations1st.size(); - const size_t suballoc2ndCount = suballocations2nd.size(); - - inoutStats.statistics.blockCount++; - inoutStats.statistics.blockBytes += size; - - VkDeviceSize lastOffset = 0; - - if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) - { - const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset; - size_t nextAlloc2ndIndex = 0; - while (lastOffset < freeSpace2ndTo1stEnd) - { - // Find next non-null allocation or move nextAllocIndex to the end. - while (nextAlloc2ndIndex < suballoc2ndCount && - suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL) - { - ++nextAlloc2ndIndex; - } - - // Found non-null allocation. - if (nextAlloc2ndIndex < suballoc2ndCount) - { - const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; - - // 1. Process free space before this allocation. - if (lastOffset < suballoc.offset) - { - // There is free space from lastOffset to suballoc.offset. - const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; - VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize); - } - - // 2. Process this allocation. - // There is allocation with suballoc.offset, suballoc.size. - VmaAddDetailedStatisticsAllocation(inoutStats, suballoc.size); - - // 3. Prepare for next iteration. - lastOffset = suballoc.offset + suballoc.size; - ++nextAlloc2ndIndex; - } - // We are at the end. - else - { - // There is free space from lastOffset to freeSpace2ndTo1stEnd. - if (lastOffset < freeSpace2ndTo1stEnd) - { - const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset; - VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize); - } - - // End of loop. - lastOffset = freeSpace2ndTo1stEnd; - } - } - } - - size_t nextAlloc1stIndex = m_1stNullItemsBeginCount; - const VkDeviceSize freeSpace1stTo2ndEnd = - m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size; - while (lastOffset < freeSpace1stTo2ndEnd) - { - // Find next non-null allocation or move nextAllocIndex to the end. - while (nextAlloc1stIndex < suballoc1stCount && - suballocations1st[nextAlloc1stIndex].userData == VMA_NULL) - { - ++nextAlloc1stIndex; - } - - // Found non-null allocation. - if (nextAlloc1stIndex < suballoc1stCount) - { - const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex]; - - // 1. Process free space before this allocation. - if (lastOffset < suballoc.offset) - { - // There is free space from lastOffset to suballoc.offset. - const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; - VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize); - } - - // 2. Process this allocation. - // There is allocation with suballoc.offset, suballoc.size. - VmaAddDetailedStatisticsAllocation(inoutStats, suballoc.size); - - // 3. Prepare for next iteration. - lastOffset = suballoc.offset + suballoc.size; - ++nextAlloc1stIndex; - } - // We are at the end. - else - { - // There is free space from lastOffset to freeSpace1stTo2ndEnd. - if (lastOffset < freeSpace1stTo2ndEnd) - { - const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset; - VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize); - } - - // End of loop. - lastOffset = freeSpace1stTo2ndEnd; - } - } - - if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) - { - size_t nextAlloc2ndIndex = suballocations2nd.size() - 1; - while (lastOffset < size) - { - // Find next non-null allocation or move nextAllocIndex to the end. - while (nextAlloc2ndIndex != SIZE_MAX && - suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL) - { - --nextAlloc2ndIndex; - } - - // Found non-null allocation. - if (nextAlloc2ndIndex != SIZE_MAX) - { - const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; - - // 1. Process free space before this allocation. - if (lastOffset < suballoc.offset) - { - // There is free space from lastOffset to suballoc.offset. - const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; - VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize); - } - - // 2. Process this allocation. - // There is allocation with suballoc.offset, suballoc.size. - VmaAddDetailedStatisticsAllocation(inoutStats, suballoc.size); - - // 3. Prepare for next iteration. - lastOffset = suballoc.offset + suballoc.size; - --nextAlloc2ndIndex; - } - // We are at the end. - else - { - // There is free space from lastOffset to size. - if (lastOffset < size) - { - const VkDeviceSize unusedRangeSize = size - lastOffset; - VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize); - } - - // End of loop. - lastOffset = size; - } - } - } -} - -void VmaBlockMetadata_Linear::AddStatistics(VmaStatistics& inoutStats) const -{ - const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); - const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); - const VkDeviceSize size = GetSize(); - const size_t suballoc1stCount = suballocations1st.size(); - const size_t suballoc2ndCount = suballocations2nd.size(); - - inoutStats.blockCount++; - inoutStats.blockBytes += size; - inoutStats.allocationBytes += size - m_SumFreeSize; - - VkDeviceSize lastOffset = 0; - - if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) - { - const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset; - size_t nextAlloc2ndIndex = m_1stNullItemsBeginCount; - while (lastOffset < freeSpace2ndTo1stEnd) - { - // Find next non-null allocation or move nextAlloc2ndIndex to the end. - while (nextAlloc2ndIndex < suballoc2ndCount && - suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL) - { - ++nextAlloc2ndIndex; - } - - // Found non-null allocation. - if (nextAlloc2ndIndex < suballoc2ndCount) - { - const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; - - // Process this allocation. - // There is allocation with suballoc.offset, suballoc.size. - ++inoutStats.allocationCount; - - // Prepare for next iteration. - lastOffset = suballoc.offset + suballoc.size; - ++nextAlloc2ndIndex; - } - // We are at the end. - else - { - // End of loop. - lastOffset = freeSpace2ndTo1stEnd; - } - } - } - - size_t nextAlloc1stIndex = m_1stNullItemsBeginCount; - const VkDeviceSize freeSpace1stTo2ndEnd = - m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size; - while (lastOffset < freeSpace1stTo2ndEnd) - { - // Find next non-null allocation or move nextAllocIndex to the end. - while (nextAlloc1stIndex < suballoc1stCount && - suballocations1st[nextAlloc1stIndex].userData == VMA_NULL) - { - ++nextAlloc1stIndex; - } - - // Found non-null allocation. - if (nextAlloc1stIndex < suballoc1stCount) - { - const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex]; - - // Process this allocation. - // There is allocation with suballoc.offset, suballoc.size. - ++inoutStats.allocationCount; - - // Prepare for next iteration. - lastOffset = suballoc.offset + suballoc.size; - ++nextAlloc1stIndex; - } - // We are at the end. - else - { - // End of loop. - lastOffset = freeSpace1stTo2ndEnd; - } - } - - if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) - { - size_t nextAlloc2ndIndex = suballocations2nd.size() - 1; - while (lastOffset < size) - { - // Find next non-null allocation or move nextAlloc2ndIndex to the end. - while (nextAlloc2ndIndex != SIZE_MAX && - suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL) - { - --nextAlloc2ndIndex; - } - - // Found non-null allocation. - if (nextAlloc2ndIndex != SIZE_MAX) - { - const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; - - // Process this allocation. - // There is allocation with suballoc.offset, suballoc.size. - ++inoutStats.allocationCount; - - // Prepare for next iteration. - lastOffset = suballoc.offset + suballoc.size; - --nextAlloc2ndIndex; - } - // We are at the end. - else - { - // End of loop. - lastOffset = size; - } - } - } -} - -#if VMA_STATS_STRING_ENABLED -void VmaBlockMetadata_Linear::PrintDetailedMap(class VmaJsonWriter& json) const -{ - const VkDeviceSize size = GetSize(); - const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); - const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); - const size_t suballoc1stCount = suballocations1st.size(); - const size_t suballoc2ndCount = suballocations2nd.size(); - - // FIRST PASS - - size_t unusedRangeCount = 0; - VkDeviceSize usedBytes = 0; - - VkDeviceSize lastOffset = 0; - - size_t alloc2ndCount = 0; - if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) - { - const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset; - size_t nextAlloc2ndIndex = 0; - while (lastOffset < freeSpace2ndTo1stEnd) - { - // Find next non-null allocation or move nextAlloc2ndIndex to the end. - while (nextAlloc2ndIndex < suballoc2ndCount && - suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL) - { - ++nextAlloc2ndIndex; - } - - // Found non-null allocation. - if (nextAlloc2ndIndex < suballoc2ndCount) - { - const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; - - // 1. Process free space before this allocation. - if (lastOffset < suballoc.offset) - { - // There is free space from lastOffset to suballoc.offset. - ++unusedRangeCount; - } - - // 2. Process this allocation. - // There is allocation with suballoc.offset, suballoc.size. - ++alloc2ndCount; - usedBytes += suballoc.size; - - // 3. Prepare for next iteration. - lastOffset = suballoc.offset + suballoc.size; - ++nextAlloc2ndIndex; - } - // We are at the end. - else - { - if (lastOffset < freeSpace2ndTo1stEnd) - { - // There is free space from lastOffset to freeSpace2ndTo1stEnd. - ++unusedRangeCount; - } - - // End of loop. - lastOffset = freeSpace2ndTo1stEnd; - } - } - } - - size_t nextAlloc1stIndex = m_1stNullItemsBeginCount; - size_t alloc1stCount = 0; - const VkDeviceSize freeSpace1stTo2ndEnd = - m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size; - while (lastOffset < freeSpace1stTo2ndEnd) - { - // Find next non-null allocation or move nextAllocIndex to the end. - while (nextAlloc1stIndex < suballoc1stCount && - suballocations1st[nextAlloc1stIndex].userData == VMA_NULL) - { - ++nextAlloc1stIndex; - } - - // Found non-null allocation. - if (nextAlloc1stIndex < suballoc1stCount) - { - const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex]; - - // 1. Process free space before this allocation. - if (lastOffset < suballoc.offset) - { - // There is free space from lastOffset to suballoc.offset. - ++unusedRangeCount; - } - - // 2. Process this allocation. - // There is allocation with suballoc.offset, suballoc.size. - ++alloc1stCount; - usedBytes += suballoc.size; - - // 3. Prepare for next iteration. - lastOffset = suballoc.offset + suballoc.size; - ++nextAlloc1stIndex; - } - // We are at the end. - else - { - if (lastOffset < freeSpace1stTo2ndEnd) - { - // There is free space from lastOffset to freeSpace1stTo2ndEnd. - ++unusedRangeCount; - } - - // End of loop. - lastOffset = freeSpace1stTo2ndEnd; - } - } - - if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) - { - size_t nextAlloc2ndIndex = suballocations2nd.size() - 1; - while (lastOffset < size) - { - // Find next non-null allocation or move nextAlloc2ndIndex to the end. - while (nextAlloc2ndIndex != SIZE_MAX && - suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL) - { - --nextAlloc2ndIndex; - } - - // Found non-null allocation. - if (nextAlloc2ndIndex != SIZE_MAX) - { - const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; - - // 1. Process free space before this allocation. - if (lastOffset < suballoc.offset) - { - // There is free space from lastOffset to suballoc.offset. - ++unusedRangeCount; - } - - // 2. Process this allocation. - // There is allocation with suballoc.offset, suballoc.size. - ++alloc2ndCount; - usedBytes += suballoc.size; - - // 3. Prepare for next iteration. - lastOffset = suballoc.offset + suballoc.size; - --nextAlloc2ndIndex; - } - // We are at the end. - else - { - if (lastOffset < size) - { - // There is free space from lastOffset to size. - ++unusedRangeCount; - } - - // End of loop. - lastOffset = size; - } - } - } - - const VkDeviceSize unusedBytes = size - usedBytes; - PrintDetailedMap_Begin(json, unusedBytes, alloc1stCount + alloc2ndCount, unusedRangeCount); - - // SECOND PASS - lastOffset = 0; - - if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) - { - const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset; - size_t nextAlloc2ndIndex = 0; - while (lastOffset < freeSpace2ndTo1stEnd) - { - // Find next non-null allocation or move nextAlloc2ndIndex to the end. - while (nextAlloc2ndIndex < suballoc2ndCount && - suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL) - { - ++nextAlloc2ndIndex; - } - - // Found non-null allocation. - if (nextAlloc2ndIndex < suballoc2ndCount) - { - const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; - - // 1. Process free space before this allocation. - if (lastOffset < suballoc.offset) - { - // There is free space from lastOffset to suballoc.offset. - const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; - PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); - } - - // 2. Process this allocation. - // There is allocation with suballoc.offset, suballoc.size. - PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.size, suballoc.userData); - - // 3. Prepare for next iteration. - lastOffset = suballoc.offset + suballoc.size; - ++nextAlloc2ndIndex; - } - // We are at the end. - else - { - if (lastOffset < freeSpace2ndTo1stEnd) - { - // There is free space from lastOffset to freeSpace2ndTo1stEnd. - const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset; - PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); - } - - // End of loop. - lastOffset = freeSpace2ndTo1stEnd; - } - } - } - - nextAlloc1stIndex = m_1stNullItemsBeginCount; - while (lastOffset < freeSpace1stTo2ndEnd) - { - // Find next non-null allocation or move nextAllocIndex to the end. - while (nextAlloc1stIndex < suballoc1stCount && - suballocations1st[nextAlloc1stIndex].userData == VMA_NULL) - { - ++nextAlloc1stIndex; - } - - // Found non-null allocation. - if (nextAlloc1stIndex < suballoc1stCount) - { - const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex]; - - // 1. Process free space before this allocation. - if (lastOffset < suballoc.offset) - { - // There is free space from lastOffset to suballoc.offset. - const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; - PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); - } - - // 2. Process this allocation. - // There is allocation with suballoc.offset, suballoc.size. - PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.size, suballoc.userData); - - // 3. Prepare for next iteration. - lastOffset = suballoc.offset + suballoc.size; - ++nextAlloc1stIndex; - } - // We are at the end. - else - { - if (lastOffset < freeSpace1stTo2ndEnd) - { - // There is free space from lastOffset to freeSpace1stTo2ndEnd. - const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset; - PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); - } - - // End of loop. - lastOffset = freeSpace1stTo2ndEnd; - } - } - - if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) - { - size_t nextAlloc2ndIndex = suballocations2nd.size() - 1; - while (lastOffset < size) - { - // Find next non-null allocation or move nextAlloc2ndIndex to the end. - while (nextAlloc2ndIndex != SIZE_MAX && - suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL) - { - --nextAlloc2ndIndex; - } - - // Found non-null allocation. - if (nextAlloc2ndIndex != SIZE_MAX) - { - const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; - - // 1. Process free space before this allocation. - if (lastOffset < suballoc.offset) - { - // There is free space from lastOffset to suballoc.offset. - const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; - PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); - } - - // 2. Process this allocation. - // There is allocation with suballoc.offset, suballoc.size. - PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.size, suballoc.userData); - - // 3. Prepare for next iteration. - lastOffset = suballoc.offset + suballoc.size; - --nextAlloc2ndIndex; - } - // We are at the end. - else - { - if (lastOffset < size) - { - // There is free space from lastOffset to size. - const VkDeviceSize unusedRangeSize = size - lastOffset; - PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); - } - - // End of loop. - lastOffset = size; - } - } - } - - PrintDetailedMap_End(json); -} -#endif // VMA_STATS_STRING_ENABLED - -bool VmaBlockMetadata_Linear::CreateAllocationRequest( - VkDeviceSize allocSize, - VkDeviceSize allocAlignment, - bool upperAddress, - VmaSuballocationType allocType, - uint32_t strategy, - VmaAllocationRequest* pAllocationRequest) -{ - VMA_ASSERT(allocSize > 0); - VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE); - VMA_ASSERT(pAllocationRequest != VMA_NULL); - VMA_HEAVY_ASSERT(Validate()); - - if(allocSize > GetSize()) - return false; - - pAllocationRequest->size = allocSize; - return upperAddress ? - CreateAllocationRequest_UpperAddress( - allocSize, allocAlignment, allocType, strategy, pAllocationRequest) : - CreateAllocationRequest_LowerAddress( - allocSize, allocAlignment, allocType, strategy, pAllocationRequest); -} - -VkResult VmaBlockMetadata_Linear::CheckCorruption(const void* pBlockData) -{ - VMA_ASSERT(!IsVirtual()); - SuballocationVectorType& suballocations1st = AccessSuballocations1st(); - for (size_t i = m_1stNullItemsBeginCount, count = suballocations1st.size(); i < count; ++i) - { - const VmaSuballocation& suballoc = suballocations1st[i]; - if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) - { - if (!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size)) - { - VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!"); - return VK_ERROR_UNKNOWN_COPY; - } - } - } - - SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); - for (size_t i = 0, count = suballocations2nd.size(); i < count; ++i) - { - const VmaSuballocation& suballoc = suballocations2nd[i]; - if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) - { - if (!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size)) - { - VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!"); - return VK_ERROR_UNKNOWN_COPY; - } - } - } - - return VK_SUCCESS; -} - -void VmaBlockMetadata_Linear::Alloc( - const VmaAllocationRequest& request, - VmaSuballocationType type, - void* userData) -{ - const VkDeviceSize offset = (VkDeviceSize)request.allocHandle - 1; - const VmaSuballocation newSuballoc = { offset, request.size, userData, type }; - - switch (request.type) - { - case VmaAllocationRequestType::UpperAddress: - { - VMA_ASSERT(m_2ndVectorMode != SECOND_VECTOR_RING_BUFFER && - "CRITICAL ERROR: Trying to use linear allocator as double stack while it was already used as ring buffer."); - SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); - suballocations2nd.push_back(newSuballoc); - m_2ndVectorMode = SECOND_VECTOR_DOUBLE_STACK; - } - break; - case VmaAllocationRequestType::EndOf1st: - { - SuballocationVectorType& suballocations1st = AccessSuballocations1st(); - - VMA_ASSERT(suballocations1st.empty() || - offset >= suballocations1st.back().offset + suballocations1st.back().size); - // Check if it fits before the end of the block. - VMA_ASSERT(offset + request.size <= GetSize()); - - suballocations1st.push_back(newSuballoc); - } - break; - case VmaAllocationRequestType::EndOf2nd: - { - SuballocationVectorType& suballocations1st = AccessSuballocations1st(); - // New allocation at the end of 2-part ring buffer, so before first allocation from 1st vector. - VMA_ASSERT(!suballocations1st.empty() && - offset + request.size <= suballocations1st[m_1stNullItemsBeginCount].offset); - SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); - - switch (m_2ndVectorMode) - { - case SECOND_VECTOR_EMPTY: - // First allocation from second part ring buffer. - VMA_ASSERT(suballocations2nd.empty()); - m_2ndVectorMode = SECOND_VECTOR_RING_BUFFER; - break; - case SECOND_VECTOR_RING_BUFFER: - // 2-part ring buffer is already started. - VMA_ASSERT(!suballocations2nd.empty()); - break; - case SECOND_VECTOR_DOUBLE_STACK: - VMA_ASSERT(0 && "CRITICAL ERROR: Trying to use linear allocator as ring buffer while it was already used as double stack."); - break; - default: - VMA_ASSERT(0); - } - - suballocations2nd.push_back(newSuballoc); - } - break; - default: - VMA_ASSERT(0 && "CRITICAL INTERNAL ERROR."); - } - - m_SumFreeSize -= newSuballoc.size; -} - -void VmaBlockMetadata_Linear::Free(VmaAllocHandle allocHandle) -{ - SuballocationVectorType& suballocations1st = AccessSuballocations1st(); - SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); - VkDeviceSize offset = (VkDeviceSize)allocHandle - 1; - - if (!suballocations1st.empty()) - { - // First allocation: Mark it as next empty at the beginning. - VmaSuballocation& firstSuballoc = suballocations1st[m_1stNullItemsBeginCount]; - if (firstSuballoc.offset == offset) - { - firstSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE; - firstSuballoc.userData = VMA_NULL; - m_SumFreeSize += firstSuballoc.size; - ++m_1stNullItemsBeginCount; - CleanupAfterFree(); - return; - } - } - - // Last allocation in 2-part ring buffer or top of upper stack (same logic). - if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER || - m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) - { - VmaSuballocation& lastSuballoc = suballocations2nd.back(); - if (lastSuballoc.offset == offset) - { - m_SumFreeSize += lastSuballoc.size; - suballocations2nd.pop_back(); - CleanupAfterFree(); - return; - } - } - // Last allocation in 1st vector. - else if (m_2ndVectorMode == SECOND_VECTOR_EMPTY) - { - VmaSuballocation& lastSuballoc = suballocations1st.back(); - if (lastSuballoc.offset == offset) - { - m_SumFreeSize += lastSuballoc.size; - suballocations1st.pop_back(); - CleanupAfterFree(); - return; - } - } - - VmaSuballocation refSuballoc; - refSuballoc.offset = offset; - // Rest of members stays uninitialized intentionally for better performance. - - // Item from the middle of 1st vector. - { - const SuballocationVectorType::iterator it = VmaBinaryFindSorted( - suballocations1st.begin() + m_1stNullItemsBeginCount, - suballocations1st.end(), - refSuballoc, - VmaSuballocationOffsetLess()); - if (it != suballocations1st.end()) - { - it->type = VMA_SUBALLOCATION_TYPE_FREE; - it->userData = VMA_NULL; - ++m_1stNullItemsMiddleCount; - m_SumFreeSize += it->size; - CleanupAfterFree(); - return; - } - } - - if (m_2ndVectorMode != SECOND_VECTOR_EMPTY) - { - // Item from the middle of 2nd vector. - const SuballocationVectorType::iterator it = m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER ? - VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetLess()) : - VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetGreater()); - if (it != suballocations2nd.end()) - { - it->type = VMA_SUBALLOCATION_TYPE_FREE; - it->userData = VMA_NULL; - ++m_2ndNullItemsCount; - m_SumFreeSize += it->size; - CleanupAfterFree(); - return; - } - } - - VMA_ASSERT(0 && "Allocation to free not found in linear allocator!"); -} - -void VmaBlockMetadata_Linear::GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) -{ - outInfo.offset = (VkDeviceSize)allocHandle - 1; - VmaSuballocation& suballoc = FindSuballocation(outInfo.offset); - outInfo.size = suballoc.size; - outInfo.pUserData = suballoc.userData; -} - -void* VmaBlockMetadata_Linear::GetAllocationUserData(VmaAllocHandle allocHandle) const -{ - return FindSuballocation((VkDeviceSize)allocHandle - 1).userData; -} - -VmaAllocHandle VmaBlockMetadata_Linear::GetAllocationListBegin() const -{ - // Function only used for defragmentation, which is disabled for this algorithm - VMA_ASSERT(0); - return VK_NULL_HANDLE; -} - -VmaAllocHandle VmaBlockMetadata_Linear::GetNextAllocation(VmaAllocHandle prevAlloc) const -{ - // Function only used for defragmentation, which is disabled for this algorithm - VMA_ASSERT(0); - return VK_NULL_HANDLE; -} - -VkDeviceSize VmaBlockMetadata_Linear::GetNextFreeRegionSize(VmaAllocHandle alloc) const -{ - // Function only used for defragmentation, which is disabled for this algorithm - VMA_ASSERT(0); - return 0; -} - -void VmaBlockMetadata_Linear::Clear() -{ - m_SumFreeSize = GetSize(); - m_Suballocations0.clear(); - m_Suballocations1.clear(); - // Leaving m_1stVectorIndex unchanged - it doesn't matter. - m_2ndVectorMode = SECOND_VECTOR_EMPTY; - m_1stNullItemsBeginCount = 0; - m_1stNullItemsMiddleCount = 0; - m_2ndNullItemsCount = 0; -} - -void VmaBlockMetadata_Linear::SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) -{ - VmaSuballocation& suballoc = FindSuballocation((VkDeviceSize)allocHandle - 1); - suballoc.userData = userData; -} - -void VmaBlockMetadata_Linear::DebugLogAllAllocations() const -{ - const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); - for (auto it = suballocations1st.begin() + m_1stNullItemsBeginCount; it != suballocations1st.end(); ++it) - if (it->type != VMA_SUBALLOCATION_TYPE_FREE) - DebugLogAllocation(it->offset, it->size, it->userData); - - const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); - for (auto it = suballocations2nd.begin(); it != suballocations2nd.end(); ++it) - if (it->type != VMA_SUBALLOCATION_TYPE_FREE) - DebugLogAllocation(it->offset, it->size, it->userData); -} - -VmaSuballocation& VmaBlockMetadata_Linear::FindSuballocation(VkDeviceSize offset) const -{ - const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); - const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); - - VmaSuballocation refSuballoc; - refSuballoc.offset = offset; - // Rest of members stays uninitialized intentionally for better performance. - - // Item from the 1st vector. - { - SuballocationVectorType::const_iterator it = VmaBinaryFindSorted( - suballocations1st.begin() + m_1stNullItemsBeginCount, - suballocations1st.end(), - refSuballoc, - VmaSuballocationOffsetLess()); - if (it != suballocations1st.end()) - { - return const_cast(*it); - } - } - - if (m_2ndVectorMode != SECOND_VECTOR_EMPTY) - { - // Rest of members stays uninitialized intentionally for better performance. - SuballocationVectorType::const_iterator it = m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER ? - VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetLess()) : - VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetGreater()); - if (it != suballocations2nd.end()) - { - return const_cast(*it); - } - } - - VMA_ASSERT(0 && "Allocation not found in linear allocator!"); - return const_cast(suballocations1st.back()); // Should never occur. -} - -bool VmaBlockMetadata_Linear::ShouldCompact1st() const -{ - const size_t nullItemCount = m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount; - const size_t suballocCount = AccessSuballocations1st().size(); - return suballocCount > 32 && nullItemCount * 2 >= (suballocCount - nullItemCount) * 3; -} - -void VmaBlockMetadata_Linear::CleanupAfterFree() -{ - SuballocationVectorType& suballocations1st = AccessSuballocations1st(); - SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); - - if (IsEmpty()) - { - suballocations1st.clear(); - suballocations2nd.clear(); - m_1stNullItemsBeginCount = 0; - m_1stNullItemsMiddleCount = 0; - m_2ndNullItemsCount = 0; - m_2ndVectorMode = SECOND_VECTOR_EMPTY; - } - else - { - const size_t suballoc1stCount = suballocations1st.size(); - const size_t nullItem1stCount = m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount; - VMA_ASSERT(nullItem1stCount <= suballoc1stCount); - - // Find more null items at the beginning of 1st vector. - while (m_1stNullItemsBeginCount < suballoc1stCount && - suballocations1st[m_1stNullItemsBeginCount].type == VMA_SUBALLOCATION_TYPE_FREE) - { - ++m_1stNullItemsBeginCount; - --m_1stNullItemsMiddleCount; - } - - // Find more null items at the end of 1st vector. - while (m_1stNullItemsMiddleCount > 0 && - suballocations1st.back().type == VMA_SUBALLOCATION_TYPE_FREE) - { - --m_1stNullItemsMiddleCount; - suballocations1st.pop_back(); - } - - // Find more null items at the end of 2nd vector. - while (m_2ndNullItemsCount > 0 && - suballocations2nd.back().type == VMA_SUBALLOCATION_TYPE_FREE) - { - --m_2ndNullItemsCount; - suballocations2nd.pop_back(); - } - - // Find more null items at the beginning of 2nd vector. - while (m_2ndNullItemsCount > 0 && - suballocations2nd[0].type == VMA_SUBALLOCATION_TYPE_FREE) - { - --m_2ndNullItemsCount; - VmaVectorRemove(suballocations2nd, 0); - } - - if (ShouldCompact1st()) - { - const size_t nonNullItemCount = suballoc1stCount - nullItem1stCount; - size_t srcIndex = m_1stNullItemsBeginCount; - for (size_t dstIndex = 0; dstIndex < nonNullItemCount; ++dstIndex) - { - while (suballocations1st[srcIndex].type == VMA_SUBALLOCATION_TYPE_FREE) - { - ++srcIndex; - } - if (dstIndex != srcIndex) - { - suballocations1st[dstIndex] = suballocations1st[srcIndex]; - } - ++srcIndex; - } - suballocations1st.resize(nonNullItemCount); - m_1stNullItemsBeginCount = 0; - m_1stNullItemsMiddleCount = 0; - } - - // 2nd vector became empty. - if (suballocations2nd.empty()) - { - m_2ndVectorMode = SECOND_VECTOR_EMPTY; - } - - // 1st vector became empty. - if (suballocations1st.size() - m_1stNullItemsBeginCount == 0) - { - suballocations1st.clear(); - m_1stNullItemsBeginCount = 0; - - if (!suballocations2nd.empty() && m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) - { - // Swap 1st with 2nd. Now 2nd is empty. - m_2ndVectorMode = SECOND_VECTOR_EMPTY; - m_1stNullItemsMiddleCount = m_2ndNullItemsCount; - while (m_1stNullItemsBeginCount < suballocations2nd.size() && - suballocations2nd[m_1stNullItemsBeginCount].type == VMA_SUBALLOCATION_TYPE_FREE) - { - ++m_1stNullItemsBeginCount; - --m_1stNullItemsMiddleCount; - } - m_2ndNullItemsCount = 0; - m_1stVectorIndex ^= 1; - } - } - } - - VMA_HEAVY_ASSERT(Validate()); -} - -bool VmaBlockMetadata_Linear::CreateAllocationRequest_LowerAddress( - VkDeviceSize allocSize, - VkDeviceSize allocAlignment, - VmaSuballocationType allocType, - uint32_t strategy, - VmaAllocationRequest* pAllocationRequest) -{ - const VkDeviceSize blockSize = GetSize(); - const VkDeviceSize debugMargin = GetDebugMargin(); - const VkDeviceSize bufferImageGranularity = GetBufferImageGranularity(); - SuballocationVectorType& suballocations1st = AccessSuballocations1st(); - SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); - - if (m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) - { - // Try to allocate at the end of 1st vector. - - VkDeviceSize resultBaseOffset = 0; - if (!suballocations1st.empty()) - { - const VmaSuballocation& lastSuballoc = suballocations1st.back(); - resultBaseOffset = lastSuballoc.offset + lastSuballoc.size + debugMargin; - } - - // Start from offset equal to beginning of free space. - VkDeviceSize resultOffset = resultBaseOffset; - - // Apply alignment. - resultOffset = VmaAlignUp(resultOffset, allocAlignment); - - // Check previous suballocations for BufferImageGranularity conflicts. - // Make bigger alignment if necessary. - if (bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment && !suballocations1st.empty()) - { - bool bufferImageGranularityConflict = false; - for (size_t prevSuballocIndex = suballocations1st.size(); prevSuballocIndex--; ) - { - const VmaSuballocation& prevSuballoc = suballocations1st[prevSuballocIndex]; - if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity)) - { - if (VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType)) - { - bufferImageGranularityConflict = true; - break; - } - } - else - // Already on previous page. - break; - } - if (bufferImageGranularityConflict) - { - resultOffset = VmaAlignUp(resultOffset, bufferImageGranularity); - } - } - - const VkDeviceSize freeSpaceEnd = m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? - suballocations2nd.back().offset : blockSize; - - // There is enough free space at the end after alignment. - if (resultOffset + allocSize + debugMargin <= freeSpaceEnd) - { - // Check next suballocations for BufferImageGranularity conflicts. - // If conflict exists, allocation cannot be made here. - if ((allocSize % bufferImageGranularity || resultOffset % bufferImageGranularity) && m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) - { - for (size_t nextSuballocIndex = suballocations2nd.size(); nextSuballocIndex--; ) - { - const VmaSuballocation& nextSuballoc = suballocations2nd[nextSuballocIndex]; - if (VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) - { - if (VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type)) - { - return false; - } - } - else - { - // Already on previous page. - break; - } - } - } - - // All tests passed: Success. - pAllocationRequest->allocHandle = (VmaAllocHandle)(resultOffset + 1); - // pAllocationRequest->item, customData unused. - pAllocationRequest->type = VmaAllocationRequestType::EndOf1st; - return true; - } - } - - // Wrap-around to end of 2nd vector. Try to allocate there, watching for the - // beginning of 1st vector as the end of free space. - if (m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) - { - VMA_ASSERT(!suballocations1st.empty()); - - VkDeviceSize resultBaseOffset = 0; - if (!suballocations2nd.empty()) - { - const VmaSuballocation& lastSuballoc = suballocations2nd.back(); - resultBaseOffset = lastSuballoc.offset + lastSuballoc.size + debugMargin; - } - - // Start from offset equal to beginning of free space. - VkDeviceSize resultOffset = resultBaseOffset; - - // Apply alignment. - resultOffset = VmaAlignUp(resultOffset, allocAlignment); - - // Check previous suballocations for BufferImageGranularity conflicts. - // Make bigger alignment if necessary. - if (bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment && !suballocations2nd.empty()) - { - bool bufferImageGranularityConflict = false; - for (size_t prevSuballocIndex = suballocations2nd.size(); prevSuballocIndex--; ) - { - const VmaSuballocation& prevSuballoc = suballocations2nd[prevSuballocIndex]; - if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity)) - { - if (VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType)) - { - bufferImageGranularityConflict = true; - break; - } - } - else - // Already on previous page. - break; - } - if (bufferImageGranularityConflict) - { - resultOffset = VmaAlignUp(resultOffset, bufferImageGranularity); - } - } - - size_t index1st = m_1stNullItemsBeginCount; - - // There is enough free space at the end after alignment. - if ((index1st == suballocations1st.size() && resultOffset + allocSize + debugMargin <= blockSize) || - (index1st < suballocations1st.size() && resultOffset + allocSize + debugMargin <= suballocations1st[index1st].offset)) - { - // Check next suballocations for BufferImageGranularity conflicts. - // If conflict exists, allocation cannot be made here. - if (allocSize % bufferImageGranularity || resultOffset % bufferImageGranularity) - { - for (size_t nextSuballocIndex = index1st; - nextSuballocIndex < suballocations1st.size(); - nextSuballocIndex++) - { - const VmaSuballocation& nextSuballoc = suballocations1st[nextSuballocIndex]; - if (VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) - { - if (VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type)) - { - return false; - } - } - else - { - // Already on next page. - break; - } - } - } - - // All tests passed: Success. - pAllocationRequest->allocHandle = (VmaAllocHandle)(resultOffset + 1); - pAllocationRequest->type = VmaAllocationRequestType::EndOf2nd; - // pAllocationRequest->item, customData unused. - return true; - } - } - - return false; -} - -bool VmaBlockMetadata_Linear::CreateAllocationRequest_UpperAddress( - VkDeviceSize allocSize, - VkDeviceSize allocAlignment, - VmaSuballocationType allocType, - uint32_t strategy, - VmaAllocationRequest* pAllocationRequest) -{ - const VkDeviceSize blockSize = GetSize(); - const VkDeviceSize bufferImageGranularity = GetBufferImageGranularity(); - SuballocationVectorType& suballocations1st = AccessSuballocations1st(); - SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); - - if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) - { - VMA_ASSERT(0 && "Trying to use pool with linear algorithm as double stack, while it is already being used as ring buffer."); - return false; - } - - // Try to allocate before 2nd.back(), or end of block if 2nd.empty(). - if (allocSize > blockSize) - { - return false; - } - VkDeviceSize resultBaseOffset = blockSize - allocSize; - if (!suballocations2nd.empty()) - { - const VmaSuballocation& lastSuballoc = suballocations2nd.back(); - resultBaseOffset = lastSuballoc.offset - allocSize; - if (allocSize > lastSuballoc.offset) - { - return false; - } - } - - // Start from offset equal to end of free space. - VkDeviceSize resultOffset = resultBaseOffset; - - const VkDeviceSize debugMargin = GetDebugMargin(); - - // Apply debugMargin at the end. - if (debugMargin > 0) - { - if (resultOffset < debugMargin) - { - return false; - } - resultOffset -= debugMargin; - } - - // Apply alignment. - resultOffset = VmaAlignDown(resultOffset, allocAlignment); - - // Check next suballocations from 2nd for BufferImageGranularity conflicts. - // Make bigger alignment if necessary. - if (bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment && !suballocations2nd.empty()) - { - bool bufferImageGranularityConflict = false; - for (size_t nextSuballocIndex = suballocations2nd.size(); nextSuballocIndex--; ) - { - const VmaSuballocation& nextSuballoc = suballocations2nd[nextSuballocIndex]; - if (VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) - { - if (VmaIsBufferImageGranularityConflict(nextSuballoc.type, allocType)) - { - bufferImageGranularityConflict = true; - break; - } - } - else - // Already on previous page. - break; - } - if (bufferImageGranularityConflict) - { - resultOffset = VmaAlignDown(resultOffset, bufferImageGranularity); - } - } - - // There is enough free space. - const VkDeviceSize endOf1st = !suballocations1st.empty() ? - suballocations1st.back().offset + suballocations1st.back().size : - 0; - if (endOf1st + debugMargin <= resultOffset) - { - // Check previous suballocations for BufferImageGranularity conflicts. - // If conflict exists, allocation cannot be made here. - if (bufferImageGranularity > 1) - { - for (size_t prevSuballocIndex = suballocations1st.size(); prevSuballocIndex--; ) - { - const VmaSuballocation& prevSuballoc = suballocations1st[prevSuballocIndex]; - if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity)) - { - if (VmaIsBufferImageGranularityConflict(allocType, prevSuballoc.type)) - { - return false; - } - } - else - { - // Already on next page. - break; - } - } - } - - // All tests passed: Success. - pAllocationRequest->allocHandle = (VmaAllocHandle)(resultOffset + 1); - // pAllocationRequest->item unused. - pAllocationRequest->type = VmaAllocationRequestType::UpperAddress; - return true; - } - - return false; -} -#endif // _VMA_BLOCK_METADATA_LINEAR_FUNCTIONS -#endif // _VMA_BLOCK_METADATA_LINEAR - -#ifndef _VMA_BLOCK_METADATA_TLSF -// To not search current larger region if first allocation won't succeed and skip to smaller range -// use with VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT as strategy in CreateAllocationRequest(). -// When fragmentation and reusal of previous blocks doesn't matter then use with -// VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT for fastest alloc time possible. -class VmaBlockMetadata_TLSF : public VmaBlockMetadata -{ - VMA_CLASS_NO_COPY_NO_MOVE(VmaBlockMetadata_TLSF) -public: - VmaBlockMetadata_TLSF(const VkAllocationCallbacks* pAllocationCallbacks, - VkDeviceSize bufferImageGranularity, bool isVirtual); - virtual ~VmaBlockMetadata_TLSF(); - - size_t GetAllocationCount() const override { return m_AllocCount; } - size_t GetFreeRegionsCount() const override { return m_BlocksFreeCount + 1; } - VkDeviceSize GetSumFreeSize() const override { return m_BlocksFreeSize + m_NullBlock->size; } - bool IsEmpty() const override { return m_NullBlock->offset == 0; } - VkDeviceSize GetAllocationOffset(VmaAllocHandle allocHandle) const override { return ((Block*)allocHandle)->offset; } - - void Init(VkDeviceSize size) override; - bool Validate() const override; - - void AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const override; - void AddStatistics(VmaStatistics& inoutStats) const override; - -#if VMA_STATS_STRING_ENABLED - void PrintDetailedMap(class VmaJsonWriter& json) const override; -#endif - - bool CreateAllocationRequest( - VkDeviceSize allocSize, - VkDeviceSize allocAlignment, - bool upperAddress, - VmaSuballocationType allocType, - uint32_t strategy, - VmaAllocationRequest* pAllocationRequest) override; - - VkResult CheckCorruption(const void* pBlockData) override; - void Alloc( - const VmaAllocationRequest& request, - VmaSuballocationType type, - void* userData) override; - - void Free(VmaAllocHandle allocHandle) override; - void GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) override; - void* GetAllocationUserData(VmaAllocHandle allocHandle) const override; - VmaAllocHandle GetAllocationListBegin() const override; - VmaAllocHandle GetNextAllocation(VmaAllocHandle prevAlloc) const override; - VkDeviceSize GetNextFreeRegionSize(VmaAllocHandle alloc) const override; - void Clear() override; - void SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) override; - void DebugLogAllAllocations() const override; - -private: - // According to original paper it should be preferable 4 or 5: - // M. Masmano, I. Ripoll, A. Crespo, and J. Real "TLSF: a New Dynamic Memory Allocator for Real-Time Systems" - // http://www.gii.upv.es/tlsf/files/ecrts04_tlsf.pdf - static const uint8_t SECOND_LEVEL_INDEX = 5; - static const uint16_t SMALL_BUFFER_SIZE = 256; - static const uint32_t INITIAL_BLOCK_ALLOC_COUNT = 16; - static const uint8_t MEMORY_CLASS_SHIFT = 7; - static const uint8_t MAX_MEMORY_CLASSES = 65 - MEMORY_CLASS_SHIFT; - - class Block - { - public: - VkDeviceSize offset; - VkDeviceSize size; - Block* prevPhysical; - Block* nextPhysical; - - void MarkFree() { prevFree = VMA_NULL; } - void MarkTaken() { prevFree = this; } - bool IsFree() const { return prevFree != this; } - void*& UserData() { VMA_HEAVY_ASSERT(!IsFree()); return userData; } - Block*& PrevFree() { return prevFree; } - Block*& NextFree() { VMA_HEAVY_ASSERT(IsFree()); return nextFree; } - - private: - Block* prevFree; // Address of the same block here indicates that block is taken - union - { - Block* nextFree; - void* userData; - }; - }; - - size_t m_AllocCount; - // Total number of free blocks besides null block - size_t m_BlocksFreeCount; - // Total size of free blocks excluding null block - VkDeviceSize m_BlocksFreeSize; - uint32_t m_IsFreeBitmap; - uint8_t m_MemoryClasses; - uint32_t m_InnerIsFreeBitmap[MAX_MEMORY_CLASSES]; - uint32_t m_ListsCount; - /* - * 0: 0-3 lists for small buffers - * 1+: 0-(2^SLI-1) lists for normal buffers - */ - Block** m_FreeList; - VmaPoolAllocator m_BlockAllocator; - Block* m_NullBlock; - VmaBlockBufferImageGranularity m_GranularityHandler; - - uint8_t SizeToMemoryClass(VkDeviceSize size) const; - uint16_t SizeToSecondIndex(VkDeviceSize size, uint8_t memoryClass) const; - uint32_t GetListIndex(uint8_t memoryClass, uint16_t secondIndex) const; - uint32_t GetListIndex(VkDeviceSize size) const; - - void RemoveFreeBlock(Block* block); - void InsertFreeBlock(Block* block); - void MergeBlock(Block* block, Block* prev); - - Block* FindFreeBlock(VkDeviceSize size, uint32_t& listIndex) const; - bool CheckBlock( - Block& block, - uint32_t listIndex, - VkDeviceSize allocSize, - VkDeviceSize allocAlignment, - VmaSuballocationType allocType, - VmaAllocationRequest* pAllocationRequest); -}; - -#ifndef _VMA_BLOCK_METADATA_TLSF_FUNCTIONS -VmaBlockMetadata_TLSF::VmaBlockMetadata_TLSF(const VkAllocationCallbacks* pAllocationCallbacks, - VkDeviceSize bufferImageGranularity, bool isVirtual) - : VmaBlockMetadata(pAllocationCallbacks, bufferImageGranularity, isVirtual), - m_AllocCount(0), - m_BlocksFreeCount(0), - m_BlocksFreeSize(0), - m_IsFreeBitmap(0), - m_MemoryClasses(0), - m_ListsCount(0), - m_FreeList(VMA_NULL), - m_BlockAllocator(pAllocationCallbacks, INITIAL_BLOCK_ALLOC_COUNT), - m_NullBlock(VMA_NULL), - m_GranularityHandler(bufferImageGranularity) {} - -VmaBlockMetadata_TLSF::~VmaBlockMetadata_TLSF() -{ - if (m_FreeList) - vma_delete_array(GetAllocationCallbacks(), m_FreeList, m_ListsCount); - m_GranularityHandler.Destroy(GetAllocationCallbacks()); -} - -void VmaBlockMetadata_TLSF::Init(VkDeviceSize size) -{ - VmaBlockMetadata::Init(size); - - if (!IsVirtual()) - m_GranularityHandler.Init(GetAllocationCallbacks(), size); - - m_NullBlock = m_BlockAllocator.Alloc(); - m_NullBlock->size = size; - m_NullBlock->offset = 0; - m_NullBlock->prevPhysical = VMA_NULL; - m_NullBlock->nextPhysical = VMA_NULL; - m_NullBlock->MarkFree(); - m_NullBlock->NextFree() = VMA_NULL; - m_NullBlock->PrevFree() = VMA_NULL; - uint8_t memoryClass = SizeToMemoryClass(size); - uint16_t sli = SizeToSecondIndex(size, memoryClass); - m_ListsCount = (memoryClass == 0 ? 0 : (memoryClass - 1) * (1UL << SECOND_LEVEL_INDEX) + sli) + 1; - if (IsVirtual()) - m_ListsCount += 1UL << SECOND_LEVEL_INDEX; - else - m_ListsCount += 4; - - m_MemoryClasses = memoryClass + uint8_t(2); - memset(m_InnerIsFreeBitmap, 0, MAX_MEMORY_CLASSES * sizeof(uint32_t)); - - m_FreeList = vma_new_array(GetAllocationCallbacks(), Block*, m_ListsCount); - memset(m_FreeList, 0, m_ListsCount * sizeof(Block*)); -} - -bool VmaBlockMetadata_TLSF::Validate() const -{ - VMA_VALIDATE(GetSumFreeSize() <= GetSize()); - - VkDeviceSize calculatedSize = m_NullBlock->size; - VkDeviceSize calculatedFreeSize = m_NullBlock->size; - size_t allocCount = 0; - size_t freeCount = 0; - - // Check integrity of free lists - for (uint32_t list = 0; list < m_ListsCount; ++list) - { - Block* block = m_FreeList[list]; - if (block != VMA_NULL) - { - VMA_VALIDATE(block->IsFree()); - VMA_VALIDATE(block->PrevFree() == VMA_NULL); - while (block->NextFree()) - { - VMA_VALIDATE(block->NextFree()->IsFree()); - VMA_VALIDATE(block->NextFree()->PrevFree() == block); - block = block->NextFree(); - } - } - } - - VkDeviceSize nextOffset = m_NullBlock->offset; - auto validateCtx = m_GranularityHandler.StartValidation(GetAllocationCallbacks(), IsVirtual()); - - VMA_VALIDATE(m_NullBlock->nextPhysical == VMA_NULL); - if (m_NullBlock->prevPhysical) - { - VMA_VALIDATE(m_NullBlock->prevPhysical->nextPhysical == m_NullBlock); - } - // Check all blocks - for (Block* prev = m_NullBlock->prevPhysical; prev != VMA_NULL; prev = prev->prevPhysical) - { - VMA_VALIDATE(prev->offset + prev->size == nextOffset); - nextOffset = prev->offset; - calculatedSize += prev->size; - - uint32_t listIndex = GetListIndex(prev->size); - if (prev->IsFree()) - { - ++freeCount; - // Check if free block belongs to free list - Block* freeBlock = m_FreeList[listIndex]; - VMA_VALIDATE(freeBlock != VMA_NULL); - - bool found = false; - do - { - if (freeBlock == prev) - found = true; - - freeBlock = freeBlock->NextFree(); - } while (!found && freeBlock != VMA_NULL); - - VMA_VALIDATE(found); - calculatedFreeSize += prev->size; - } - else - { - ++allocCount; - // Check if taken block is not on a free list - Block* freeBlock = m_FreeList[listIndex]; - while (freeBlock) - { - VMA_VALIDATE(freeBlock != prev); - freeBlock = freeBlock->NextFree(); - } - - if (!IsVirtual()) - { - VMA_VALIDATE(m_GranularityHandler.Validate(validateCtx, prev->offset, prev->size)); - } - } - - if (prev->prevPhysical) - { - VMA_VALIDATE(prev->prevPhysical->nextPhysical == prev); - } - } - - if (!IsVirtual()) - { - VMA_VALIDATE(m_GranularityHandler.FinishValidation(validateCtx)); - } - - VMA_VALIDATE(nextOffset == 0); - VMA_VALIDATE(calculatedSize == GetSize()); - VMA_VALIDATE(calculatedFreeSize == GetSumFreeSize()); - VMA_VALIDATE(allocCount == m_AllocCount); - VMA_VALIDATE(freeCount == m_BlocksFreeCount); - - return true; -} - -void VmaBlockMetadata_TLSF::AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const -{ - inoutStats.statistics.blockCount++; - inoutStats.statistics.blockBytes += GetSize(); - if (m_NullBlock->size > 0) - VmaAddDetailedStatisticsUnusedRange(inoutStats, m_NullBlock->size); - - for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical) - { - if (block->IsFree()) - VmaAddDetailedStatisticsUnusedRange(inoutStats, block->size); - else - VmaAddDetailedStatisticsAllocation(inoutStats, block->size); - } -} - -void VmaBlockMetadata_TLSF::AddStatistics(VmaStatistics& inoutStats) const -{ - inoutStats.blockCount++; - inoutStats.allocationCount += (uint32_t)m_AllocCount; - inoutStats.blockBytes += GetSize(); - inoutStats.allocationBytes += GetSize() - GetSumFreeSize(); -} - -#if VMA_STATS_STRING_ENABLED -void VmaBlockMetadata_TLSF::PrintDetailedMap(class VmaJsonWriter& json) const -{ - size_t blockCount = m_AllocCount + m_BlocksFreeCount; - VmaStlAllocator allocator(GetAllocationCallbacks()); - VmaVector> blockList(blockCount, allocator); - - size_t i = blockCount; - for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical) - { - blockList[--i] = block; - } - VMA_ASSERT(i == 0); - - VmaDetailedStatistics stats; - VmaClearDetailedStatistics(stats); - AddDetailedStatistics(stats); - - PrintDetailedMap_Begin(json, - stats.statistics.blockBytes - stats.statistics.allocationBytes, - stats.statistics.allocationCount, - stats.unusedRangeCount); - - for (; i < blockCount; ++i) - { - Block* block = blockList[i]; - if (block->IsFree()) - PrintDetailedMap_UnusedRange(json, block->offset, block->size); - else - PrintDetailedMap_Allocation(json, block->offset, block->size, block->UserData()); - } - if (m_NullBlock->size > 0) - PrintDetailedMap_UnusedRange(json, m_NullBlock->offset, m_NullBlock->size); - - PrintDetailedMap_End(json); -} -#endif - -bool VmaBlockMetadata_TLSF::CreateAllocationRequest( - VkDeviceSize allocSize, - VkDeviceSize allocAlignment, - bool upperAddress, - VmaSuballocationType allocType, - uint32_t strategy, - VmaAllocationRequest* pAllocationRequest) -{ - VMA_ASSERT(allocSize > 0 && "Cannot allocate empty block!"); - VMA_ASSERT(!upperAddress && "VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT can be used only with linear algorithm."); - - // For small granularity round up - if (!IsVirtual()) - m_GranularityHandler.RoundupAllocRequest(allocType, allocSize, allocAlignment); - - allocSize += GetDebugMargin(); - // Quick check for too small pool - if (allocSize > GetSumFreeSize()) - return false; - - // If no free blocks in pool then check only null block - if (m_BlocksFreeCount == 0) - return CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest); - - // Round up to the next block - VkDeviceSize sizeForNextList = allocSize; - VkDeviceSize smallSizeStep = VkDeviceSize(SMALL_BUFFER_SIZE / (IsVirtual() ? 1 << SECOND_LEVEL_INDEX : 4)); - if (allocSize > SMALL_BUFFER_SIZE) - { - sizeForNextList += (1ULL << (VMA_BITSCAN_MSB(allocSize) - SECOND_LEVEL_INDEX)); - } - else if (allocSize > SMALL_BUFFER_SIZE - smallSizeStep) - sizeForNextList = SMALL_BUFFER_SIZE + 1; - else - sizeForNextList += smallSizeStep; - - uint32_t nextListIndex = m_ListsCount; - uint32_t prevListIndex = m_ListsCount; - Block* nextListBlock = VMA_NULL; - Block* prevListBlock = VMA_NULL; - - // Check blocks according to strategies - if (strategy & VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT) - { - // Quick check for larger block first - nextListBlock = FindFreeBlock(sizeForNextList, nextListIndex); - if (nextListBlock != VMA_NULL && CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest)) - return true; - - // If not fitted then null block - if (CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest)) - return true; - - // Null block failed, search larger bucket - while (nextListBlock) - { - if (CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest)) - return true; - nextListBlock = nextListBlock->NextFree(); - } - - // Failed again, check best fit bucket - prevListBlock = FindFreeBlock(allocSize, prevListIndex); - while (prevListBlock) - { - if (CheckBlock(*prevListBlock, prevListIndex, allocSize, allocAlignment, allocType, pAllocationRequest)) - return true; - prevListBlock = prevListBlock->NextFree(); - } - } - else if (strategy & VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT) - { - // Check best fit bucket - prevListBlock = FindFreeBlock(allocSize, prevListIndex); - while (prevListBlock) - { - if (CheckBlock(*prevListBlock, prevListIndex, allocSize, allocAlignment, allocType, pAllocationRequest)) - return true; - prevListBlock = prevListBlock->NextFree(); - } - - // If failed check null block - if (CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest)) - return true; - - // Check larger bucket - nextListBlock = FindFreeBlock(sizeForNextList, nextListIndex); - while (nextListBlock) - { - if (CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest)) - return true; - nextListBlock = nextListBlock->NextFree(); - } - } - else if (strategy & VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT ) - { - // Perform search from the start - VmaStlAllocator allocator(GetAllocationCallbacks()); - VmaVector> blockList(m_BlocksFreeCount, allocator); - - size_t i = m_BlocksFreeCount; - for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical) - { - if (block->IsFree() && block->size >= allocSize) - blockList[--i] = block; - } - - for (; i < m_BlocksFreeCount; ++i) - { - Block& block = *blockList[i]; - if (CheckBlock(block, GetListIndex(block.size), allocSize, allocAlignment, allocType, pAllocationRequest)) - return true; - } - - // If failed check null block - if (CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest)) - return true; - - // Whole range searched, no more memory - return false; - } - else - { - // Check larger bucket - nextListBlock = FindFreeBlock(sizeForNextList, nextListIndex); - while (nextListBlock) - { - if (CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest)) - return true; - nextListBlock = nextListBlock->NextFree(); - } - - // If failed check null block - if (CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest)) - return true; - - // Check best fit bucket - prevListBlock = FindFreeBlock(allocSize, prevListIndex); - while (prevListBlock) - { - if (CheckBlock(*prevListBlock, prevListIndex, allocSize, allocAlignment, allocType, pAllocationRequest)) - return true; - prevListBlock = prevListBlock->NextFree(); - } - } - - // Worst case, full search has to be done - while (++nextListIndex < m_ListsCount) - { - nextListBlock = m_FreeList[nextListIndex]; - while (nextListBlock) - { - if (CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest)) - return true; - nextListBlock = nextListBlock->NextFree(); - } - } - - // No more memory sadly - return false; -} - -VkResult VmaBlockMetadata_TLSF::CheckCorruption(const void* pBlockData) -{ - for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical) - { - if (!block->IsFree()) - { - if (!VmaValidateMagicValue(pBlockData, block->offset + block->size)) - { - VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!"); - return VK_ERROR_UNKNOWN_COPY; - } - } - } - - return VK_SUCCESS; -} - -void VmaBlockMetadata_TLSF::Alloc( - const VmaAllocationRequest& request, - VmaSuballocationType type, - void* userData) -{ - VMA_ASSERT(request.type == VmaAllocationRequestType::TLSF); - - // Get block and pop it from the free list - Block* currentBlock = (Block*)request.allocHandle; - VkDeviceSize offset = request.algorithmData; - VMA_ASSERT(currentBlock != VMA_NULL); - VMA_ASSERT(currentBlock->offset <= offset); - - if (currentBlock != m_NullBlock) - RemoveFreeBlock(currentBlock); - - VkDeviceSize debugMargin = GetDebugMargin(); - VkDeviceSize misssingAlignment = offset - currentBlock->offset; - - // Append missing alignment to prev block or create new one - if (misssingAlignment) - { - Block* prevBlock = currentBlock->prevPhysical; - VMA_ASSERT(prevBlock != VMA_NULL && "There should be no missing alignment at offset 0!"); - - if (prevBlock->IsFree() && prevBlock->size != debugMargin) - { - uint32_t oldList = GetListIndex(prevBlock->size); - prevBlock->size += misssingAlignment; - // Check if new size crosses list bucket - if (oldList != GetListIndex(prevBlock->size)) - { - prevBlock->size -= misssingAlignment; - RemoveFreeBlock(prevBlock); - prevBlock->size += misssingAlignment; - InsertFreeBlock(prevBlock); - } - else - m_BlocksFreeSize += misssingAlignment; - } - else - { - Block* newBlock = m_BlockAllocator.Alloc(); - currentBlock->prevPhysical = newBlock; - prevBlock->nextPhysical = newBlock; - newBlock->prevPhysical = prevBlock; - newBlock->nextPhysical = currentBlock; - newBlock->size = misssingAlignment; - newBlock->offset = currentBlock->offset; - newBlock->MarkTaken(); - - InsertFreeBlock(newBlock); - } - - currentBlock->size -= misssingAlignment; - currentBlock->offset += misssingAlignment; - } - - VkDeviceSize size = request.size + debugMargin; - if (currentBlock->size == size) - { - if (currentBlock == m_NullBlock) - { - // Setup new null block - m_NullBlock = m_BlockAllocator.Alloc(); - m_NullBlock->size = 0; - m_NullBlock->offset = currentBlock->offset + size; - m_NullBlock->prevPhysical = currentBlock; - m_NullBlock->nextPhysical = VMA_NULL; - m_NullBlock->MarkFree(); - m_NullBlock->PrevFree() = VMA_NULL; - m_NullBlock->NextFree() = VMA_NULL; - currentBlock->nextPhysical = m_NullBlock; - currentBlock->MarkTaken(); - } - } - else - { - VMA_ASSERT(currentBlock->size > size && "Proper block already found, shouldn't find smaller one!"); - - // Create new free block - Block* newBlock = m_BlockAllocator.Alloc(); - newBlock->size = currentBlock->size - size; - newBlock->offset = currentBlock->offset + size; - newBlock->prevPhysical = currentBlock; - newBlock->nextPhysical = currentBlock->nextPhysical; - currentBlock->nextPhysical = newBlock; - currentBlock->size = size; - - if (currentBlock == m_NullBlock) - { - m_NullBlock = newBlock; - m_NullBlock->MarkFree(); - m_NullBlock->NextFree() = VMA_NULL; - m_NullBlock->PrevFree() = VMA_NULL; - currentBlock->MarkTaken(); - } - else - { - newBlock->nextPhysical->prevPhysical = newBlock; - newBlock->MarkTaken(); - InsertFreeBlock(newBlock); - } - } - currentBlock->UserData() = userData; - - if (debugMargin > 0) - { - currentBlock->size -= debugMargin; - Block* newBlock = m_BlockAllocator.Alloc(); - newBlock->size = debugMargin; - newBlock->offset = currentBlock->offset + currentBlock->size; - newBlock->prevPhysical = currentBlock; - newBlock->nextPhysical = currentBlock->nextPhysical; - newBlock->MarkTaken(); - currentBlock->nextPhysical->prevPhysical = newBlock; - currentBlock->nextPhysical = newBlock; - InsertFreeBlock(newBlock); - } - - if (!IsVirtual()) - m_GranularityHandler.AllocPages((uint8_t)(uintptr_t)request.customData, - currentBlock->offset, currentBlock->size); - ++m_AllocCount; -} - -void VmaBlockMetadata_TLSF::Free(VmaAllocHandle allocHandle) -{ - Block* block = (Block*)allocHandle; - Block* next = block->nextPhysical; - VMA_ASSERT(!block->IsFree() && "Block is already free!"); - - if (!IsVirtual()) - m_GranularityHandler.FreePages(block->offset, block->size); - --m_AllocCount; - - VkDeviceSize debugMargin = GetDebugMargin(); - if (debugMargin > 0) - { - RemoveFreeBlock(next); - MergeBlock(next, block); - block = next; - next = next->nextPhysical; - } - - // Try merging - Block* prev = block->prevPhysical; - if (prev != VMA_NULL && prev->IsFree() && prev->size != debugMargin) - { - RemoveFreeBlock(prev); - MergeBlock(block, prev); - } - - if (!next->IsFree()) - InsertFreeBlock(block); - else if (next == m_NullBlock) - MergeBlock(m_NullBlock, block); - else - { - RemoveFreeBlock(next); - MergeBlock(next, block); - InsertFreeBlock(next); - } -} - -void VmaBlockMetadata_TLSF::GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) -{ - Block* block = (Block*)allocHandle; - VMA_ASSERT(!block->IsFree() && "Cannot get allocation info for free block!"); - outInfo.offset = block->offset; - outInfo.size = block->size; - outInfo.pUserData = block->UserData(); -} - -void* VmaBlockMetadata_TLSF::GetAllocationUserData(VmaAllocHandle allocHandle) const -{ - Block* block = (Block*)allocHandle; - VMA_ASSERT(!block->IsFree() && "Cannot get user data for free block!"); - return block->UserData(); -} - -VmaAllocHandle VmaBlockMetadata_TLSF::GetAllocationListBegin() const -{ - if (m_AllocCount == 0) - return VK_NULL_HANDLE; - - for (Block* block = m_NullBlock->prevPhysical; block; block = block->prevPhysical) - { - if (!block->IsFree()) - return (VmaAllocHandle)block; - } - VMA_ASSERT(false && "If m_AllocCount > 0 then should find any allocation!"); - return VK_NULL_HANDLE; -} - -VmaAllocHandle VmaBlockMetadata_TLSF::GetNextAllocation(VmaAllocHandle prevAlloc) const -{ - Block* startBlock = (Block*)prevAlloc; - VMA_ASSERT(!startBlock->IsFree() && "Incorrect block!"); - - for (Block* block = startBlock->prevPhysical; block; block = block->prevPhysical) - { - if (!block->IsFree()) - return (VmaAllocHandle)block; - } - return VK_NULL_HANDLE; -} - -VkDeviceSize VmaBlockMetadata_TLSF::GetNextFreeRegionSize(VmaAllocHandle alloc) const -{ - Block* block = (Block*)alloc; - VMA_ASSERT(!block->IsFree() && "Incorrect block!"); - - if (block->prevPhysical) - return block->prevPhysical->IsFree() ? block->prevPhysical->size : 0; - return 0; -} - -void VmaBlockMetadata_TLSF::Clear() -{ - m_AllocCount = 0; - m_BlocksFreeCount = 0; - m_BlocksFreeSize = 0; - m_IsFreeBitmap = 0; - m_NullBlock->offset = 0; - m_NullBlock->size = GetSize(); - Block* block = m_NullBlock->prevPhysical; - m_NullBlock->prevPhysical = VMA_NULL; - while (block) - { - Block* prev = block->prevPhysical; - m_BlockAllocator.Free(block); - block = prev; - } - memset(m_FreeList, 0, m_ListsCount * sizeof(Block*)); - memset(m_InnerIsFreeBitmap, 0, m_MemoryClasses * sizeof(uint32_t)); - m_GranularityHandler.Clear(); -} - -void VmaBlockMetadata_TLSF::SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) -{ - Block* block = (Block*)allocHandle; - VMA_ASSERT(!block->IsFree() && "Trying to set user data for not allocated block!"); - block->UserData() = userData; -} - -void VmaBlockMetadata_TLSF::DebugLogAllAllocations() const -{ - for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical) - if (!block->IsFree()) - DebugLogAllocation(block->offset, block->size, block->UserData()); -} - -uint8_t VmaBlockMetadata_TLSF::SizeToMemoryClass(VkDeviceSize size) const -{ - if (size > SMALL_BUFFER_SIZE) - return uint8_t(VMA_BITSCAN_MSB(size) - MEMORY_CLASS_SHIFT); - return 0; -} - -uint16_t VmaBlockMetadata_TLSF::SizeToSecondIndex(VkDeviceSize size, uint8_t memoryClass) const -{ - if (memoryClass == 0) - { - if (IsVirtual()) - return static_cast((size - 1) / 8); - else - return static_cast((size - 1) / 64); - } - return static_cast((size >> (memoryClass + MEMORY_CLASS_SHIFT - SECOND_LEVEL_INDEX)) ^ (1U << SECOND_LEVEL_INDEX)); -} - -uint32_t VmaBlockMetadata_TLSF::GetListIndex(uint8_t memoryClass, uint16_t secondIndex) const -{ - if (memoryClass == 0) - return secondIndex; - - const uint32_t index = static_cast(memoryClass - 1) * (1 << SECOND_LEVEL_INDEX) + secondIndex; - if (IsVirtual()) - return index + (1 << SECOND_LEVEL_INDEX); - else - return index + 4; -} - -uint32_t VmaBlockMetadata_TLSF::GetListIndex(VkDeviceSize size) const -{ - uint8_t memoryClass = SizeToMemoryClass(size); - return GetListIndex(memoryClass, SizeToSecondIndex(size, memoryClass)); -} - -void VmaBlockMetadata_TLSF::RemoveFreeBlock(Block* block) -{ - VMA_ASSERT(block != m_NullBlock); - VMA_ASSERT(block->IsFree()); - - if (block->NextFree() != VMA_NULL) - block->NextFree()->PrevFree() = block->PrevFree(); - if (block->PrevFree() != VMA_NULL) - block->PrevFree()->NextFree() = block->NextFree(); - else - { - uint8_t memClass = SizeToMemoryClass(block->size); - uint16_t secondIndex = SizeToSecondIndex(block->size, memClass); - uint32_t index = GetListIndex(memClass, secondIndex); - VMA_ASSERT(m_FreeList[index] == block); - m_FreeList[index] = block->NextFree(); - if (block->NextFree() == VMA_NULL) - { - m_InnerIsFreeBitmap[memClass] &= ~(1U << secondIndex); - if (m_InnerIsFreeBitmap[memClass] == 0) - m_IsFreeBitmap &= ~(1UL << memClass); - } - } - block->MarkTaken(); - block->UserData() = VMA_NULL; - --m_BlocksFreeCount; - m_BlocksFreeSize -= block->size; -} - -void VmaBlockMetadata_TLSF::InsertFreeBlock(Block* block) -{ - VMA_ASSERT(block != m_NullBlock); - VMA_ASSERT(!block->IsFree() && "Cannot insert block twice!"); - - uint8_t memClass = SizeToMemoryClass(block->size); - uint16_t secondIndex = SizeToSecondIndex(block->size, memClass); - uint32_t index = GetListIndex(memClass, secondIndex); - VMA_ASSERT(index < m_ListsCount); - block->PrevFree() = VMA_NULL; - block->NextFree() = m_FreeList[index]; - m_FreeList[index] = block; - if (block->NextFree() != VMA_NULL) - block->NextFree()->PrevFree() = block; - else - { - m_InnerIsFreeBitmap[memClass] |= 1U << secondIndex; - m_IsFreeBitmap |= 1UL << memClass; - } - ++m_BlocksFreeCount; - m_BlocksFreeSize += block->size; -} - -void VmaBlockMetadata_TLSF::MergeBlock(Block* block, Block* prev) -{ - VMA_ASSERT(block->prevPhysical == prev && "Cannot merge separate physical regions!"); - VMA_ASSERT(!prev->IsFree() && "Cannot merge block that belongs to free list!"); - - block->offset = prev->offset; - block->size += prev->size; - block->prevPhysical = prev->prevPhysical; - if (block->prevPhysical) - block->prevPhysical->nextPhysical = block; - m_BlockAllocator.Free(prev); -} - -VmaBlockMetadata_TLSF::Block* VmaBlockMetadata_TLSF::FindFreeBlock(VkDeviceSize size, uint32_t& listIndex) const -{ - uint8_t memoryClass = SizeToMemoryClass(size); - uint32_t innerFreeMap = m_InnerIsFreeBitmap[memoryClass] & (~0U << SizeToSecondIndex(size, memoryClass)); - if (!innerFreeMap) - { - // Check higher levels for available blocks - uint32_t freeMap = m_IsFreeBitmap & (~0UL << (memoryClass + 1)); - if (!freeMap) - return VMA_NULL; // No more memory available - - // Find lowest free region - memoryClass = VMA_BITSCAN_LSB(freeMap); - innerFreeMap = m_InnerIsFreeBitmap[memoryClass]; - VMA_ASSERT(innerFreeMap != 0); - } - // Find lowest free subregion - listIndex = GetListIndex(memoryClass, VMA_BITSCAN_LSB(innerFreeMap)); - VMA_ASSERT(m_FreeList[listIndex]); - return m_FreeList[listIndex]; -} - -bool VmaBlockMetadata_TLSF::CheckBlock( - Block& block, - uint32_t listIndex, - VkDeviceSize allocSize, - VkDeviceSize allocAlignment, - VmaSuballocationType allocType, - VmaAllocationRequest* pAllocationRequest) -{ - VMA_ASSERT(block.IsFree() && "Block is already taken!"); - - VkDeviceSize alignedOffset = VmaAlignUp(block.offset, allocAlignment); - if (block.size < allocSize + alignedOffset - block.offset) - return false; - - // Check for granularity conflicts - if (!IsVirtual() && - m_GranularityHandler.CheckConflictAndAlignUp(alignedOffset, allocSize, block.offset, block.size, allocType)) - return false; - - // Alloc successful - pAllocationRequest->type = VmaAllocationRequestType::TLSF; - pAllocationRequest->allocHandle = (VmaAllocHandle)█ - pAllocationRequest->size = allocSize - GetDebugMargin(); - pAllocationRequest->customData = (void*)allocType; - pAllocationRequest->algorithmData = alignedOffset; - - // Place block at the start of list if it's normal block - if (listIndex != m_ListsCount && block.PrevFree()) - { - block.PrevFree()->NextFree() = block.NextFree(); - if (block.NextFree()) - block.NextFree()->PrevFree() = block.PrevFree(); - block.PrevFree() = VMA_NULL; - block.NextFree() = m_FreeList[listIndex]; - m_FreeList[listIndex] = █ - if (block.NextFree()) - block.NextFree()->PrevFree() = █ - } - - return true; -} -#endif // _VMA_BLOCK_METADATA_TLSF_FUNCTIONS -#endif // _VMA_BLOCK_METADATA_TLSF - -#ifndef _VMA_BLOCK_VECTOR -/* -Sequence of VmaDeviceMemoryBlock. Represents memory blocks allocated for a specific -Vulkan memory type. - -Synchronized internally with a mutex. -*/ -class VmaBlockVector -{ - friend struct VmaDefragmentationContext_T; - VMA_CLASS_NO_COPY_NO_MOVE(VmaBlockVector) -public: - VmaBlockVector( - VmaAllocator hAllocator, - VmaPool hParentPool, - uint32_t memoryTypeIndex, - VkDeviceSize preferredBlockSize, - size_t minBlockCount, - size_t maxBlockCount, - VkDeviceSize bufferImageGranularity, - bool explicitBlockSize, - uint32_t algorithm, - float priority, - VkDeviceSize minAllocationAlignment, - void* pMemoryAllocateNext); - ~VmaBlockVector(); - - VmaAllocator GetAllocator() const { return m_hAllocator; } - VmaPool GetParentPool() const { return m_hParentPool; } - bool IsCustomPool() const { return m_hParentPool != VMA_NULL; } - uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; } - VkDeviceSize GetPreferredBlockSize() const { return m_PreferredBlockSize; } - VkDeviceSize GetBufferImageGranularity() const { return m_BufferImageGranularity; } - uint32_t GetAlgorithm() const { return m_Algorithm; } - bool HasExplicitBlockSize() const { return m_ExplicitBlockSize; } - float GetPriority() const { return m_Priority; } - const void* GetAllocationNextPtr() const { return m_pMemoryAllocateNext; } - // To be used only while the m_Mutex is locked. Used during defragmentation. - size_t GetBlockCount() const { return m_Blocks.size(); } - // To be used only while the m_Mutex is locked. Used during defragmentation. - VmaDeviceMemoryBlock* GetBlock(size_t index) const { return m_Blocks[index]; } - VMA_RW_MUTEX &GetMutex() { return m_Mutex; } - - VkResult CreateMinBlocks(); - void AddStatistics(VmaStatistics& inoutStats); - void AddDetailedStatistics(VmaDetailedStatistics& inoutStats); - bool IsEmpty(); - bool IsCorruptionDetectionEnabled() const; - - VkResult Allocate( - VkDeviceSize size, - VkDeviceSize alignment, - const VmaAllocationCreateInfo& createInfo, - VmaSuballocationType suballocType, - size_t allocationCount, - VmaAllocation* pAllocations); - - void Free(const VmaAllocation hAllocation); - -#if VMA_STATS_STRING_ENABLED - void PrintDetailedMap(class VmaJsonWriter& json); -#endif - - VkResult CheckCorruption(); - -private: - const VmaAllocator m_hAllocator; - const VmaPool m_hParentPool; - const uint32_t m_MemoryTypeIndex; - const VkDeviceSize m_PreferredBlockSize; - const size_t m_MinBlockCount; - const size_t m_MaxBlockCount; - const VkDeviceSize m_BufferImageGranularity; - const bool m_ExplicitBlockSize; - const uint32_t m_Algorithm; - const float m_Priority; - const VkDeviceSize m_MinAllocationAlignment; - - void* const m_pMemoryAllocateNext; - VMA_RW_MUTEX m_Mutex; - // Incrementally sorted by sumFreeSize, ascending. - VmaVector> m_Blocks; - uint32_t m_NextBlockId; - bool m_IncrementalSort = true; - - void SetIncrementalSort(bool val) { m_IncrementalSort = val; } - - VkDeviceSize CalcMaxBlockSize() const; - // Finds and removes given block from vector. - void Remove(VmaDeviceMemoryBlock* pBlock); - // Performs single step in sorting m_Blocks. They may not be fully sorted - // after this call. - void IncrementallySortBlocks(); - void SortByFreeSize(); - - VkResult AllocatePage( - VkDeviceSize size, - VkDeviceSize alignment, - const VmaAllocationCreateInfo& createInfo, - VmaSuballocationType suballocType, - VmaAllocation* pAllocation); - - VkResult AllocateFromBlock( - VmaDeviceMemoryBlock* pBlock, - VkDeviceSize size, - VkDeviceSize alignment, - VmaAllocationCreateFlags allocFlags, - void* pUserData, - VmaSuballocationType suballocType, - uint32_t strategy, - VmaAllocation* pAllocation); - - VkResult CommitAllocationRequest( - VmaAllocationRequest& allocRequest, - VmaDeviceMemoryBlock* pBlock, - VkDeviceSize alignment, - VmaAllocationCreateFlags allocFlags, - void* pUserData, - VmaSuballocationType suballocType, - VmaAllocation* pAllocation); - - VkResult CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex); - bool HasEmptyBlock(); -}; -#endif // _VMA_BLOCK_VECTOR - -#ifndef _VMA_DEFRAGMENTATION_CONTEXT -struct VmaDefragmentationContext_T -{ - VMA_CLASS_NO_COPY_NO_MOVE(VmaDefragmentationContext_T) -public: - VmaDefragmentationContext_T( - VmaAllocator hAllocator, - const VmaDefragmentationInfo& info); - ~VmaDefragmentationContext_T(); - - void GetStats(VmaDefragmentationStats& outStats) { outStats = m_GlobalStats; } - - VkResult DefragmentPassBegin(VmaDefragmentationPassMoveInfo& moveInfo); - VkResult DefragmentPassEnd(VmaDefragmentationPassMoveInfo& moveInfo); - -private: - // Max number of allocations to ignore due to size constraints before ending single pass - static const uint8_t MAX_ALLOCS_TO_IGNORE = 16; - enum class CounterStatus { Pass, Ignore, End }; - - struct FragmentedBlock - { - uint32_t data; - VmaDeviceMemoryBlock* block; - }; - struct StateBalanced - { - VkDeviceSize avgFreeSize = 0; - VkDeviceSize avgAllocSize = UINT64_MAX; - }; - struct StateExtensive - { - enum class Operation : uint8_t - { - FindFreeBlockBuffer, FindFreeBlockTexture, FindFreeBlockAll, - MoveBuffers, MoveTextures, MoveAll, - Cleanup, Done - }; - - Operation operation = Operation::FindFreeBlockTexture; - size_t firstFreeBlock = SIZE_MAX; - }; - struct MoveAllocationData - { - VkDeviceSize size; - VkDeviceSize alignment; - VmaSuballocationType type; - VmaAllocationCreateFlags flags; - VmaDefragmentationMove move = {}; - }; - - const VkDeviceSize m_MaxPassBytes; - const uint32_t m_MaxPassAllocations; - const PFN_vmaCheckDefragmentationBreakFunction m_BreakCallback; - void* m_BreakCallbackUserData; - - VmaStlAllocator m_MoveAllocator; - VmaVector> m_Moves; - - uint8_t m_IgnoredAllocs = 0; - uint32_t m_Algorithm; - uint32_t m_BlockVectorCount; - VmaBlockVector* m_PoolBlockVector; - VmaBlockVector** m_pBlockVectors; - size_t m_ImmovableBlockCount = 0; - VmaDefragmentationStats m_GlobalStats = { 0 }; - VmaDefragmentationStats m_PassStats = { 0 }; - void* m_AlgorithmState = VMA_NULL; - - static MoveAllocationData GetMoveData(VmaAllocHandle handle, VmaBlockMetadata* metadata); - CounterStatus CheckCounters(VkDeviceSize bytes); - bool IncrementCounters(VkDeviceSize bytes); - bool ReallocWithinBlock(VmaBlockVector& vector, VmaDeviceMemoryBlock* block); - bool AllocInOtherBlock(size_t start, size_t end, MoveAllocationData& data, VmaBlockVector& vector); - - bool ComputeDefragmentation(VmaBlockVector& vector, size_t index); - bool ComputeDefragmentation_Fast(VmaBlockVector& vector); - bool ComputeDefragmentation_Balanced(VmaBlockVector& vector, size_t index, bool update); - bool ComputeDefragmentation_Full(VmaBlockVector& vector); - bool ComputeDefragmentation_Extensive(VmaBlockVector& vector, size_t index); - - void UpdateVectorStatistics(VmaBlockVector& vector, StateBalanced& state); - bool MoveDataToFreeBlocks(VmaSuballocationType currentType, - VmaBlockVector& vector, size_t firstFreeBlock, - bool& texturePresent, bool& bufferPresent, bool& otherPresent); -}; -#endif // _VMA_DEFRAGMENTATION_CONTEXT - -#ifndef _VMA_POOL_T -struct VmaPool_T -{ - friend struct VmaPoolListItemTraits; - VMA_CLASS_NO_COPY_NO_MOVE(VmaPool_T) -public: - VmaBlockVector m_BlockVector; - VmaDedicatedAllocationList m_DedicatedAllocations; - - VmaPool_T( - VmaAllocator hAllocator, - const VmaPoolCreateInfo& createInfo, - VkDeviceSize preferredBlockSize); - ~VmaPool_T(); - - uint32_t GetId() const { return m_Id; } - void SetId(uint32_t id) { VMA_ASSERT(m_Id == 0); m_Id = id; } - - const char* GetName() const { return m_Name; } - void SetName(const char* pName); - -#if VMA_STATS_STRING_ENABLED - //void PrintDetailedMap(class VmaStringBuilder& sb); -#endif - -private: - uint32_t m_Id; - char* m_Name; - VmaPool_T* m_PrevPool = VMA_NULL; - VmaPool_T* m_NextPool = VMA_NULL; -}; - -struct VmaPoolListItemTraits -{ - typedef VmaPool_T ItemType; - - static ItemType* GetPrev(const ItemType* item) { return item->m_PrevPool; } - static ItemType* GetNext(const ItemType* item) { return item->m_NextPool; } - static ItemType*& AccessPrev(ItemType* item) { return item->m_PrevPool; } - static ItemType*& AccessNext(ItemType* item) { return item->m_NextPool; } -}; -#endif // _VMA_POOL_T - -#ifndef _VMA_CURRENT_BUDGET_DATA -struct VmaCurrentBudgetData -{ - VMA_CLASS_NO_COPY_NO_MOVE(VmaCurrentBudgetData) -public: - - VMA_ATOMIC_UINT32 m_BlockCount[VK_MAX_MEMORY_HEAPS]; - VMA_ATOMIC_UINT32 m_AllocationCount[VK_MAX_MEMORY_HEAPS]; - VMA_ATOMIC_UINT64 m_BlockBytes[VK_MAX_MEMORY_HEAPS]; - VMA_ATOMIC_UINT64 m_AllocationBytes[VK_MAX_MEMORY_HEAPS]; - -#if VMA_MEMORY_BUDGET - VMA_ATOMIC_UINT32 m_OperationsSinceBudgetFetch; - VMA_RW_MUTEX m_BudgetMutex; - uint64_t m_VulkanUsage[VK_MAX_MEMORY_HEAPS]; - uint64_t m_VulkanBudget[VK_MAX_MEMORY_HEAPS]; - uint64_t m_BlockBytesAtBudgetFetch[VK_MAX_MEMORY_HEAPS]; -#endif // VMA_MEMORY_BUDGET - - VmaCurrentBudgetData(); - - void AddAllocation(uint32_t heapIndex, VkDeviceSize allocationSize); - void RemoveAllocation(uint32_t heapIndex, VkDeviceSize allocationSize); -}; - -#ifndef _VMA_CURRENT_BUDGET_DATA_FUNCTIONS -VmaCurrentBudgetData::VmaCurrentBudgetData() -{ - for (uint32_t heapIndex = 0; heapIndex < VK_MAX_MEMORY_HEAPS; ++heapIndex) - { - m_BlockCount[heapIndex] = 0; - m_AllocationCount[heapIndex] = 0; - m_BlockBytes[heapIndex] = 0; - m_AllocationBytes[heapIndex] = 0; -#if VMA_MEMORY_BUDGET - m_VulkanUsage[heapIndex] = 0; - m_VulkanBudget[heapIndex] = 0; - m_BlockBytesAtBudgetFetch[heapIndex] = 0; -#endif - } - -#if VMA_MEMORY_BUDGET - m_OperationsSinceBudgetFetch = 0; -#endif -} - -void VmaCurrentBudgetData::AddAllocation(uint32_t heapIndex, VkDeviceSize allocationSize) -{ - m_AllocationBytes[heapIndex] += allocationSize; - ++m_AllocationCount[heapIndex]; -#if VMA_MEMORY_BUDGET - ++m_OperationsSinceBudgetFetch; -#endif -} - -void VmaCurrentBudgetData::RemoveAllocation(uint32_t heapIndex, VkDeviceSize allocationSize) -{ - VMA_ASSERT(m_AllocationBytes[heapIndex] >= allocationSize); - m_AllocationBytes[heapIndex] -= allocationSize; - VMA_ASSERT(m_AllocationCount[heapIndex] > 0); - --m_AllocationCount[heapIndex]; -#if VMA_MEMORY_BUDGET - ++m_OperationsSinceBudgetFetch; -#endif -} -#endif // _VMA_CURRENT_BUDGET_DATA_FUNCTIONS -#endif // _VMA_CURRENT_BUDGET_DATA - -#ifndef _VMA_ALLOCATION_OBJECT_ALLOCATOR -/* -Thread-safe wrapper over VmaPoolAllocator free list, for allocation of VmaAllocation_T objects. -*/ -class VmaAllocationObjectAllocator -{ - VMA_CLASS_NO_COPY_NO_MOVE(VmaAllocationObjectAllocator) -public: - VmaAllocationObjectAllocator(const VkAllocationCallbacks* pAllocationCallbacks) - : m_Allocator(pAllocationCallbacks, 1024) {} - - template VmaAllocation Allocate(Types&&... args); - void Free(VmaAllocation hAlloc); - -private: - VMA_MUTEX m_Mutex; - VmaPoolAllocator m_Allocator; -}; - -template -VmaAllocation VmaAllocationObjectAllocator::Allocate(Types&&... args) -{ - VmaMutexLock mutexLock(m_Mutex); - return m_Allocator.Alloc(std::forward(args)...); -} - -void VmaAllocationObjectAllocator::Free(VmaAllocation hAlloc) -{ - VmaMutexLock mutexLock(m_Mutex); - m_Allocator.Free(hAlloc); -} -#endif // _VMA_ALLOCATION_OBJECT_ALLOCATOR - -#ifndef _VMA_VIRTUAL_BLOCK_T -struct VmaVirtualBlock_T -{ - VMA_CLASS_NO_COPY_NO_MOVE(VmaVirtualBlock_T) -public: - const bool m_AllocationCallbacksSpecified; - const VkAllocationCallbacks m_AllocationCallbacks; - - VmaVirtualBlock_T(const VmaVirtualBlockCreateInfo& createInfo); - ~VmaVirtualBlock_T(); - - VkResult Init() { return VK_SUCCESS; } - bool IsEmpty() const { return m_Metadata->IsEmpty(); } - void Free(VmaVirtualAllocation allocation) { m_Metadata->Free((VmaAllocHandle)allocation); } - void SetAllocationUserData(VmaVirtualAllocation allocation, void* userData) { m_Metadata->SetAllocationUserData((VmaAllocHandle)allocation, userData); } - void Clear() { m_Metadata->Clear(); } - - const VkAllocationCallbacks* GetAllocationCallbacks() const; - void GetAllocationInfo(VmaVirtualAllocation allocation, VmaVirtualAllocationInfo& outInfo); - VkResult Allocate(const VmaVirtualAllocationCreateInfo& createInfo, VmaVirtualAllocation& outAllocation, - VkDeviceSize* outOffset); - void GetStatistics(VmaStatistics& outStats) const; - void CalculateDetailedStatistics(VmaDetailedStatistics& outStats) const; -#if VMA_STATS_STRING_ENABLED - void BuildStatsString(bool detailedMap, VmaStringBuilder& sb) const; -#endif - -private: - VmaBlockMetadata* m_Metadata; -}; - -#ifndef _VMA_VIRTUAL_BLOCK_T_FUNCTIONS -VmaVirtualBlock_T::VmaVirtualBlock_T(const VmaVirtualBlockCreateInfo& createInfo) - : m_AllocationCallbacksSpecified(createInfo.pAllocationCallbacks != VMA_NULL), - m_AllocationCallbacks(createInfo.pAllocationCallbacks != VMA_NULL ? *createInfo.pAllocationCallbacks : VmaEmptyAllocationCallbacks) -{ - const uint32_t algorithm = createInfo.flags & VMA_VIRTUAL_BLOCK_CREATE_ALGORITHM_MASK; - switch (algorithm) - { - case 0: - m_Metadata = vma_new(GetAllocationCallbacks(), VmaBlockMetadata_TLSF)(VK_NULL_HANDLE, 1, true); - break; - case VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT: - m_Metadata = vma_new(GetAllocationCallbacks(), VmaBlockMetadata_Linear)(VK_NULL_HANDLE, 1, true); - break; - default: - VMA_ASSERT(0); - m_Metadata = vma_new(GetAllocationCallbacks(), VmaBlockMetadata_TLSF)(VK_NULL_HANDLE, 1, true); - } - - m_Metadata->Init(createInfo.size); -} - -VmaVirtualBlock_T::~VmaVirtualBlock_T() -{ - // Define macro VMA_DEBUG_LOG_FORMAT or more specialized VMA_LEAK_LOG_FORMAT - // to receive the list of the unfreed allocations. - if (!m_Metadata->IsEmpty()) - m_Metadata->DebugLogAllAllocations(); - // This is the most important assert in the entire library. - // Hitting it means you have some memory leak - unreleased virtual allocations. - VMA_ASSERT_LEAK(m_Metadata->IsEmpty() && "Some virtual allocations were not freed before destruction of this virtual block!"); - - vma_delete(GetAllocationCallbacks(), m_Metadata); -} - -const VkAllocationCallbacks* VmaVirtualBlock_T::GetAllocationCallbacks() const -{ - return m_AllocationCallbacksSpecified ? &m_AllocationCallbacks : VMA_NULL; -} - -void VmaVirtualBlock_T::GetAllocationInfo(VmaVirtualAllocation allocation, VmaVirtualAllocationInfo& outInfo) -{ - m_Metadata->GetAllocationInfo((VmaAllocHandle)allocation, outInfo); -} - -VkResult VmaVirtualBlock_T::Allocate(const VmaVirtualAllocationCreateInfo& createInfo, VmaVirtualAllocation& outAllocation, - VkDeviceSize* outOffset) -{ - VmaAllocationRequest request = {}; - if (m_Metadata->CreateAllocationRequest( - createInfo.size, // allocSize - VMA_MAX(createInfo.alignment, (VkDeviceSize)1), // allocAlignment - (createInfo.flags & VMA_VIRTUAL_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0, // upperAddress - VMA_SUBALLOCATION_TYPE_UNKNOWN, // allocType - unimportant - createInfo.flags & VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MASK, // strategy - &request)) - { - m_Metadata->Alloc(request, - VMA_SUBALLOCATION_TYPE_UNKNOWN, // type - unimportant - createInfo.pUserData); - outAllocation = (VmaVirtualAllocation)request.allocHandle; - if(outOffset) - *outOffset = m_Metadata->GetAllocationOffset(request.allocHandle); - return VK_SUCCESS; - } - outAllocation = (VmaVirtualAllocation)VK_NULL_HANDLE; - if (outOffset) - *outOffset = UINT64_MAX; - return VK_ERROR_OUT_OF_DEVICE_MEMORY; -} - -void VmaVirtualBlock_T::GetStatistics(VmaStatistics& outStats) const -{ - VmaClearStatistics(outStats); - m_Metadata->AddStatistics(outStats); -} - -void VmaVirtualBlock_T::CalculateDetailedStatistics(VmaDetailedStatistics& outStats) const -{ - VmaClearDetailedStatistics(outStats); - m_Metadata->AddDetailedStatistics(outStats); -} - -#if VMA_STATS_STRING_ENABLED -void VmaVirtualBlock_T::BuildStatsString(bool detailedMap, VmaStringBuilder& sb) const -{ - VmaJsonWriter json(GetAllocationCallbacks(), sb); - json.BeginObject(); - - VmaDetailedStatistics stats; - CalculateDetailedStatistics(stats); - - json.WriteString("Stats"); - VmaPrintDetailedStatistics(json, stats); - - if (detailedMap) - { - json.WriteString("Details"); - json.BeginObject(); - m_Metadata->PrintDetailedMap(json); - json.EndObject(); - } - - json.EndObject(); -} -#endif // VMA_STATS_STRING_ENABLED -#endif // _VMA_VIRTUAL_BLOCK_T_FUNCTIONS -#endif // _VMA_VIRTUAL_BLOCK_T - - -// Main allocator object. -struct VmaAllocator_T -{ - VMA_CLASS_NO_COPY_NO_MOVE(VmaAllocator_T) -public: - const bool m_UseMutex; - const uint32_t m_VulkanApiVersion; - bool m_UseKhrDedicatedAllocation; // Can be set only if m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0). - bool m_UseKhrBindMemory2; // Can be set only if m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0). - bool m_UseExtMemoryBudget; - bool m_UseAmdDeviceCoherentMemory; - bool m_UseKhrBufferDeviceAddress; - bool m_UseExtMemoryPriority; - bool m_UseKhrMaintenance4; - bool m_UseKhrMaintenance5; - bool m_UseKhrExternalMemoryWin32; - const VkDevice m_hDevice; - const VkInstance m_hInstance; - const bool m_AllocationCallbacksSpecified; - const VkAllocationCallbacks m_AllocationCallbacks; - VmaDeviceMemoryCallbacks m_DeviceMemoryCallbacks; - VmaAllocationObjectAllocator m_AllocationObjectAllocator; - - // Each bit (1 << i) is set if HeapSizeLimit is enabled for that heap, so cannot allocate more than the heap size. - uint32_t m_HeapSizeLimitMask; - - VkPhysicalDeviceProperties m_PhysicalDeviceProperties; - VkPhysicalDeviceMemoryProperties m_MemProps; - - // Default pools. - VmaBlockVector* m_pBlockVectors[VK_MAX_MEMORY_TYPES]; - VmaDedicatedAllocationList m_DedicatedAllocations[VK_MAX_MEMORY_TYPES]; - - VmaCurrentBudgetData m_Budget; - VMA_ATOMIC_UINT32 m_DeviceMemoryCount; // Total number of VkDeviceMemory objects. - - VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo); - VkResult Init(const VmaAllocatorCreateInfo* pCreateInfo); - ~VmaAllocator_T(); - - const VkAllocationCallbacks* GetAllocationCallbacks() const - { - return m_AllocationCallbacksSpecified ? &m_AllocationCallbacks : VMA_NULL; - } - const VmaVulkanFunctions& GetVulkanFunctions() const - { - return m_VulkanFunctions; - } - - VkPhysicalDevice GetPhysicalDevice() const { return m_PhysicalDevice; } - - VkDeviceSize GetBufferImageGranularity() const - { - return VMA_MAX( - static_cast(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY), - m_PhysicalDeviceProperties.limits.bufferImageGranularity); - } - - uint32_t GetMemoryHeapCount() const { return m_MemProps.memoryHeapCount; } - uint32_t GetMemoryTypeCount() const { return m_MemProps.memoryTypeCount; } - - uint32_t MemoryTypeIndexToHeapIndex(uint32_t memTypeIndex) const - { - VMA_ASSERT(memTypeIndex < m_MemProps.memoryTypeCount); - return m_MemProps.memoryTypes[memTypeIndex].heapIndex; - } - // True when specific memory type is HOST_VISIBLE but not HOST_COHERENT. - bool IsMemoryTypeNonCoherent(uint32_t memTypeIndex) const - { - return (m_MemProps.memoryTypes[memTypeIndex].propertyFlags & (VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)) == - VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; - } - // Minimum alignment for all allocations in specific memory type. - VkDeviceSize GetMemoryTypeMinAlignment(uint32_t memTypeIndex) const - { - return IsMemoryTypeNonCoherent(memTypeIndex) ? - VMA_MAX((VkDeviceSize)VMA_MIN_ALIGNMENT, m_PhysicalDeviceProperties.limits.nonCoherentAtomSize) : - (VkDeviceSize)VMA_MIN_ALIGNMENT; - } - - bool IsIntegratedGpu() const - { - return m_PhysicalDeviceProperties.deviceType == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU; - } - - uint32_t GetGlobalMemoryTypeBits() const { return m_GlobalMemoryTypeBits; } - - void GetBufferMemoryRequirements( - VkBuffer hBuffer, - VkMemoryRequirements& memReq, - bool& requiresDedicatedAllocation, - bool& prefersDedicatedAllocation) const; - void GetImageMemoryRequirements( - VkImage hImage, - VkMemoryRequirements& memReq, - bool& requiresDedicatedAllocation, - bool& prefersDedicatedAllocation) const; - VkResult FindMemoryTypeIndex( - uint32_t memoryTypeBits, - const VmaAllocationCreateInfo* pAllocationCreateInfo, - VmaBufferImageUsage bufImgUsage, - uint32_t* pMemoryTypeIndex) const; - - // Main allocation function. - VkResult AllocateMemory( - const VkMemoryRequirements& vkMemReq, - bool requiresDedicatedAllocation, - bool prefersDedicatedAllocation, - VkBuffer dedicatedBuffer, - VkImage dedicatedImage, - VmaBufferImageUsage dedicatedBufferImageUsage, - const VmaAllocationCreateInfo& createInfo, - VmaSuballocationType suballocType, - size_t allocationCount, - VmaAllocation* pAllocations); - - // Main deallocation function. - void FreeMemory( - size_t allocationCount, - const VmaAllocation* pAllocations); - - void CalculateStatistics(VmaTotalStatistics* pStats); - - void GetHeapBudgets( - VmaBudget* outBudgets, uint32_t firstHeap, uint32_t heapCount); - -#if VMA_STATS_STRING_ENABLED - void PrintDetailedMap(class VmaJsonWriter& json); -#endif - - void GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo); - void GetAllocationInfo2(VmaAllocation hAllocation, VmaAllocationInfo2* pAllocationInfo); - - VkResult CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool); - void DestroyPool(VmaPool pool); - void GetPoolStatistics(VmaPool pool, VmaStatistics* pPoolStats); - void CalculatePoolStatistics(VmaPool pool, VmaDetailedStatistics* pPoolStats); - - void SetCurrentFrameIndex(uint32_t frameIndex); - uint32_t GetCurrentFrameIndex() const { return m_CurrentFrameIndex.load(); } - - VkResult CheckPoolCorruption(VmaPool hPool); - VkResult CheckCorruption(uint32_t memoryTypeBits); - - // Call to Vulkan function vkAllocateMemory with accompanying bookkeeping. - VkResult AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory); - // Call to Vulkan function vkFreeMemory with accompanying bookkeeping. - void FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory); - // Call to Vulkan function vkBindBufferMemory or vkBindBufferMemory2KHR. - VkResult BindVulkanBuffer( - VkDeviceMemory memory, - VkDeviceSize memoryOffset, - VkBuffer buffer, - const void* pNext); - // Call to Vulkan function vkBindImageMemory or vkBindImageMemory2KHR. - VkResult BindVulkanImage( - VkDeviceMemory memory, - VkDeviceSize memoryOffset, - VkImage image, - const void* pNext); - - VkResult Map(VmaAllocation hAllocation, void** ppData); - void Unmap(VmaAllocation hAllocation); - - VkResult BindBufferMemory( - VmaAllocation hAllocation, - VkDeviceSize allocationLocalOffset, - VkBuffer hBuffer, - const void* pNext); - VkResult BindImageMemory( - VmaAllocation hAllocation, - VkDeviceSize allocationLocalOffset, - VkImage hImage, - const void* pNext); - - VkResult FlushOrInvalidateAllocation( - VmaAllocation hAllocation, - VkDeviceSize offset, VkDeviceSize size, - VMA_CACHE_OPERATION op); - VkResult FlushOrInvalidateAllocations( - uint32_t allocationCount, - const VmaAllocation* allocations, - const VkDeviceSize* offsets, const VkDeviceSize* sizes, - VMA_CACHE_OPERATION op); - - VkResult CopyMemoryToAllocation( - const void* pSrcHostPointer, - VmaAllocation dstAllocation, - VkDeviceSize dstAllocationLocalOffset, - VkDeviceSize size); - VkResult CopyAllocationToMemory( - VmaAllocation srcAllocation, - VkDeviceSize srcAllocationLocalOffset, - void* pDstHostPointer, - VkDeviceSize size); - - void FillAllocation(const VmaAllocation hAllocation, uint8_t pattern); - - /* - Returns bit mask of memory types that can support defragmentation on GPU as - they support creation of required buffer for copy operations. - */ - uint32_t GetGpuDefragmentationMemoryTypeBits(); - -#if VMA_EXTERNAL_MEMORY - VkExternalMemoryHandleTypeFlagsKHR GetExternalMemoryHandleTypeFlags(uint32_t memTypeIndex) const - { - return m_TypeExternalMemoryHandleTypes[memTypeIndex]; - } -#endif // #if VMA_EXTERNAL_MEMORY - -private: - VkDeviceSize m_PreferredLargeHeapBlockSize; - - VkPhysicalDevice m_PhysicalDevice; - VMA_ATOMIC_UINT32 m_CurrentFrameIndex; - VMA_ATOMIC_UINT32 m_GpuDefragmentationMemoryTypeBits; // UINT32_MAX means uninitialized. -#if VMA_EXTERNAL_MEMORY - VkExternalMemoryHandleTypeFlagsKHR m_TypeExternalMemoryHandleTypes[VK_MAX_MEMORY_TYPES]; -#endif // #if VMA_EXTERNAL_MEMORY - - VMA_RW_MUTEX m_PoolsMutex; - typedef VmaIntrusiveLinkedList PoolList; - // Protected by m_PoolsMutex. - PoolList m_Pools; - uint32_t m_NextPoolId; - - VmaVulkanFunctions m_VulkanFunctions; - - // Global bit mask AND-ed with any memoryTypeBits to disallow certain memory types. - uint32_t m_GlobalMemoryTypeBits; - - void ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions); - -#if VMA_STATIC_VULKAN_FUNCTIONS == 1 - void ImportVulkanFunctions_Static(); -#endif - - void ImportVulkanFunctions_Custom(const VmaVulkanFunctions* pVulkanFunctions); - -#if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1 - void ImportVulkanFunctions_Dynamic(); -#endif - - void ValidateVulkanFunctions(); - - VkDeviceSize CalcPreferredBlockSize(uint32_t memTypeIndex); - - VkResult AllocateMemoryOfType( - VmaPool pool, - VkDeviceSize size, - VkDeviceSize alignment, - bool dedicatedPreferred, - VkBuffer dedicatedBuffer, - VkImage dedicatedImage, - VmaBufferImageUsage dedicatedBufferImageUsage, - const VmaAllocationCreateInfo& createInfo, - uint32_t memTypeIndex, - VmaSuballocationType suballocType, - VmaDedicatedAllocationList& dedicatedAllocations, - VmaBlockVector& blockVector, - size_t allocationCount, - VmaAllocation* pAllocations); - - // Helper function only to be used inside AllocateDedicatedMemory. - VkResult AllocateDedicatedMemoryPage( - VmaPool pool, - VkDeviceSize size, - VmaSuballocationType suballocType, - uint32_t memTypeIndex, - const VkMemoryAllocateInfo& allocInfo, - bool map, - bool isUserDataString, - bool isMappingAllowed, - void* pUserData, - VmaAllocation* pAllocation); - - // Allocates and registers new VkDeviceMemory specifically for dedicated allocations. - VkResult AllocateDedicatedMemory( - VmaPool pool, - VkDeviceSize size, - VmaSuballocationType suballocType, - VmaDedicatedAllocationList& dedicatedAllocations, - uint32_t memTypeIndex, - bool map, - bool isUserDataString, - bool isMappingAllowed, - bool canAliasMemory, - void* pUserData, - float priority, - VkBuffer dedicatedBuffer, - VkImage dedicatedImage, - VmaBufferImageUsage dedicatedBufferImageUsage, - size_t allocationCount, - VmaAllocation* pAllocations, - const void* pNextChain = VMA_NULL); - - void FreeDedicatedMemory(const VmaAllocation allocation); - - VkResult CalcMemTypeParams( - VmaAllocationCreateInfo& outCreateInfo, - uint32_t memTypeIndex, - VkDeviceSize size, - size_t allocationCount); - VkResult CalcAllocationParams( - VmaAllocationCreateInfo& outCreateInfo, - bool dedicatedRequired, - bool dedicatedPreferred); - - /* - Calculates and returns bit mask of memory types that can support defragmentation - on GPU as they support creation of required buffer for copy operations. - */ - uint32_t CalculateGpuDefragmentationMemoryTypeBits() const; - uint32_t CalculateGlobalMemoryTypeBits() const; - - bool GetFlushOrInvalidateRange( - VmaAllocation allocation, - VkDeviceSize offset, VkDeviceSize size, - VkMappedMemoryRange& outRange) const; - -#if VMA_MEMORY_BUDGET - void UpdateVulkanBudget(); -#endif // #if VMA_MEMORY_BUDGET -}; - - -#ifndef _VMA_MEMORY_FUNCTIONS -static void* VmaMalloc(VmaAllocator hAllocator, size_t size, size_t alignment) -{ - return VmaMalloc(&hAllocator->m_AllocationCallbacks, size, alignment); -} - -static void VmaFree(VmaAllocator hAllocator, void* ptr) -{ - VmaFree(&hAllocator->m_AllocationCallbacks, ptr); -} - -template -static T* VmaAllocate(VmaAllocator hAllocator) -{ - return (T*)VmaMalloc(hAllocator, sizeof(T), VMA_ALIGN_OF(T)); -} - -template -static T* VmaAllocateArray(VmaAllocator hAllocator, size_t count) -{ - return (T*)VmaMalloc(hAllocator, sizeof(T) * count, VMA_ALIGN_OF(T)); -} - -template -static void vma_delete(VmaAllocator hAllocator, T* ptr) -{ - if(ptr != VMA_NULL) - { - ptr->~T(); - VmaFree(hAllocator, ptr); - } -} - -template -static void vma_delete_array(VmaAllocator hAllocator, T* ptr, size_t count) -{ - if(ptr != VMA_NULL) - { - for(size_t i = count; i--; ) - ptr[i].~T(); - VmaFree(hAllocator, ptr); - } -} -#endif // _VMA_MEMORY_FUNCTIONS - -#ifndef _VMA_DEVICE_MEMORY_BLOCK_FUNCTIONS -VmaDeviceMemoryBlock::VmaDeviceMemoryBlock(VmaAllocator hAllocator) - : m_pMetadata(VMA_NULL), - m_MemoryTypeIndex(UINT32_MAX), - m_Id(0), - m_hMemory(VK_NULL_HANDLE), - m_MapCount(0), - m_pMappedData(VMA_NULL){} - -VmaDeviceMemoryBlock::~VmaDeviceMemoryBlock() -{ - VMA_ASSERT_LEAK(m_MapCount == 0 && "VkDeviceMemory block is being destroyed while it is still mapped."); - VMA_ASSERT_LEAK(m_hMemory == VK_NULL_HANDLE); -} - -void VmaDeviceMemoryBlock::Init( - VmaAllocator hAllocator, - VmaPool hParentPool, - uint32_t newMemoryTypeIndex, - VkDeviceMemory newMemory, - VkDeviceSize newSize, - uint32_t id, - uint32_t algorithm, - VkDeviceSize bufferImageGranularity) -{ - VMA_ASSERT(m_hMemory == VK_NULL_HANDLE); - - m_hParentPool = hParentPool; - m_MemoryTypeIndex = newMemoryTypeIndex; - m_Id = id; - m_hMemory = newMemory; - - switch (algorithm) - { - case 0: - m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_TLSF)(hAllocator->GetAllocationCallbacks(), - bufferImageGranularity, false); // isVirtual - break; - case VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT: - m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Linear)(hAllocator->GetAllocationCallbacks(), - bufferImageGranularity, false); // isVirtual - break; - default: - VMA_ASSERT(0); - m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_TLSF)(hAllocator->GetAllocationCallbacks(), - bufferImageGranularity, false); // isVirtual - } - m_pMetadata->Init(newSize); -} - -void VmaDeviceMemoryBlock::Destroy(VmaAllocator allocator) -{ - // Define macro VMA_DEBUG_LOG_FORMAT or more specialized VMA_LEAK_LOG_FORMAT - // to receive the list of the unfreed allocations. - if (!m_pMetadata->IsEmpty()) - m_pMetadata->DebugLogAllAllocations(); - // This is the most important assert in the entire library. - // Hitting it means you have some memory leak - unreleased VmaAllocation objects. - VMA_ASSERT_LEAK(m_pMetadata->IsEmpty() && "Some allocations were not freed before destruction of this memory block!"); - - VMA_ASSERT_LEAK(m_hMemory != VK_NULL_HANDLE); - allocator->FreeVulkanMemory(m_MemoryTypeIndex, m_pMetadata->GetSize(), m_hMemory); - m_hMemory = VK_NULL_HANDLE; - - vma_delete(allocator, m_pMetadata); - m_pMetadata = VMA_NULL; -} - -void VmaDeviceMemoryBlock::PostAlloc(VmaAllocator hAllocator) -{ - VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex); - m_MappingHysteresis.PostAlloc(); -} - -void VmaDeviceMemoryBlock::PostFree(VmaAllocator hAllocator) -{ - VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex); - if(m_MappingHysteresis.PostFree()) - { - VMA_ASSERT(m_MappingHysteresis.GetExtraMapping() == 0); - if (m_MapCount == 0) - { - m_pMappedData = VMA_NULL; - (*hAllocator->GetVulkanFunctions().vkUnmapMemory)(hAllocator->m_hDevice, m_hMemory); - } - } -} - -bool VmaDeviceMemoryBlock::Validate() const -{ - VMA_VALIDATE((m_hMemory != VK_NULL_HANDLE) && - (m_pMetadata->GetSize() != 0)); - - return m_pMetadata->Validate(); -} - -VkResult VmaDeviceMemoryBlock::CheckCorruption(VmaAllocator hAllocator) -{ - void* pData = VMA_NULL; - VkResult res = Map(hAllocator, 1, &pData); - if (res != VK_SUCCESS) - { - return res; - } - - res = m_pMetadata->CheckCorruption(pData); - - Unmap(hAllocator, 1); - - return res; -} - -VkResult VmaDeviceMemoryBlock::Map(VmaAllocator hAllocator, uint32_t count, void** ppData) -{ - if (count == 0) - { - return VK_SUCCESS; - } - - VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex); - const uint32_t oldTotalMapCount = m_MapCount + m_MappingHysteresis.GetExtraMapping(); - if (oldTotalMapCount != 0) - { - VMA_ASSERT(m_pMappedData != VMA_NULL); - m_MappingHysteresis.PostMap(); - m_MapCount += count; - if (ppData != VMA_NULL) - { - *ppData = m_pMappedData; - } - return VK_SUCCESS; - } - else - { - VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)( - hAllocator->m_hDevice, - m_hMemory, - 0, // offset - VK_WHOLE_SIZE, - 0, // flags - &m_pMappedData); - if (result == VK_SUCCESS) - { - VMA_ASSERT(m_pMappedData != VMA_NULL); - m_MappingHysteresis.PostMap(); - m_MapCount = count; - if (ppData != VMA_NULL) - { - *ppData = m_pMappedData; - } - } - return result; - } -} - -void VmaDeviceMemoryBlock::Unmap(VmaAllocator hAllocator, uint32_t count) -{ - if (count == 0) - { - return; - } - - VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex); - if (m_MapCount >= count) - { - m_MapCount -= count; - const uint32_t totalMapCount = m_MapCount + m_MappingHysteresis.GetExtraMapping(); - if (totalMapCount == 0) - { - m_pMappedData = VMA_NULL; - (*hAllocator->GetVulkanFunctions().vkUnmapMemory)(hAllocator->m_hDevice, m_hMemory); - } - m_MappingHysteresis.PostUnmap(); - } - else - { - VMA_ASSERT(0 && "VkDeviceMemory block is being unmapped while it was not previously mapped."); - } -} - -VkResult VmaDeviceMemoryBlock::WriteMagicValueAfterAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize) -{ - VMA_ASSERT(VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_MARGIN % 4 == 0 && VMA_DEBUG_DETECT_CORRUPTION); - - void* pData; - VkResult res = Map(hAllocator, 1, &pData); - if (res != VK_SUCCESS) - { - return res; - } - - VmaWriteMagicValue(pData, allocOffset + allocSize); - - Unmap(hAllocator, 1); - return VK_SUCCESS; -} - -VkResult VmaDeviceMemoryBlock::ValidateMagicValueAfterAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize) -{ - VMA_ASSERT(VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_MARGIN % 4 == 0 && VMA_DEBUG_DETECT_CORRUPTION); - - void* pData; - VkResult res = Map(hAllocator, 1, &pData); - if (res != VK_SUCCESS) - { - return res; - } - - if (!VmaValidateMagicValue(pData, allocOffset + allocSize)) - { - VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER FREED ALLOCATION!"); - } - - Unmap(hAllocator, 1); - return VK_SUCCESS; -} - -VkResult VmaDeviceMemoryBlock::BindBufferMemory( - const VmaAllocator hAllocator, - const VmaAllocation hAllocation, - VkDeviceSize allocationLocalOffset, - VkBuffer hBuffer, - const void* pNext) -{ - VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK && - hAllocation->GetBlock() == this); - VMA_ASSERT(allocationLocalOffset < hAllocation->GetSize() && - "Invalid allocationLocalOffset. Did you forget that this offset is relative to the beginning of the allocation, not the whole memory block?"); - const VkDeviceSize memoryOffset = hAllocation->GetOffset() + allocationLocalOffset; - // This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads. - VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex); - return hAllocator->BindVulkanBuffer(m_hMemory, memoryOffset, hBuffer, pNext); -} - -VkResult VmaDeviceMemoryBlock::BindImageMemory( - const VmaAllocator hAllocator, - const VmaAllocation hAllocation, - VkDeviceSize allocationLocalOffset, - VkImage hImage, - const void* pNext) -{ - VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK && - hAllocation->GetBlock() == this); - VMA_ASSERT(allocationLocalOffset < hAllocation->GetSize() && - "Invalid allocationLocalOffset. Did you forget that this offset is relative to the beginning of the allocation, not the whole memory block?"); - const VkDeviceSize memoryOffset = hAllocation->GetOffset() + allocationLocalOffset; - // This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads. - VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex); - return hAllocator->BindVulkanImage(m_hMemory, memoryOffset, hImage, pNext); -} - -#if VMA_EXTERNAL_MEMORY_WIN32 -VkResult VmaDeviceMemoryBlock::CreateWin32Handle(const VmaAllocator hAllocator, PFN_vkGetMemoryWin32HandleKHR pvkGetMemoryWin32HandleKHR, HANDLE hTargetProcess, HANDLE* pHandle) noexcept -{ - VMA_ASSERT(pHandle); - return m_Handle.GetHandle(hAllocator->m_hDevice, m_hMemory, pvkGetMemoryWin32HandleKHR, hTargetProcess, hAllocator->m_UseMutex, pHandle); -} -#endif // VMA_EXTERNAL_MEMORY_WIN32 -#endif // _VMA_DEVICE_MEMORY_BLOCK_FUNCTIONS - -#ifndef _VMA_ALLOCATION_T_FUNCTIONS -VmaAllocation_T::VmaAllocation_T(bool mappingAllowed) - : m_Alignment{ 1 }, - m_Size{ 0 }, - m_pUserData{ VMA_NULL }, - m_pName{ VMA_NULL }, - m_MemoryTypeIndex{ 0 }, - m_Type{ (uint8_t)ALLOCATION_TYPE_NONE }, - m_SuballocationType{ (uint8_t)VMA_SUBALLOCATION_TYPE_UNKNOWN }, - m_MapCount{ 0 }, - m_Flags{ 0 } -{ - if(mappingAllowed) - m_Flags |= (uint8_t)FLAG_MAPPING_ALLOWED; -} - -VmaAllocation_T::~VmaAllocation_T() -{ - VMA_ASSERT_LEAK(m_MapCount == 0 && "Allocation was not unmapped before destruction."); - - // Check if owned string was freed. - VMA_ASSERT(m_pName == VMA_NULL); -} - -void VmaAllocation_T::InitBlockAllocation( - VmaDeviceMemoryBlock* block, - VmaAllocHandle allocHandle, - VkDeviceSize alignment, - VkDeviceSize size, - uint32_t memoryTypeIndex, - VmaSuballocationType suballocationType, - bool mapped) -{ - VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE); - VMA_ASSERT(block != VMA_NULL); - m_Type = (uint8_t)ALLOCATION_TYPE_BLOCK; - m_Alignment = alignment; - m_Size = size; - m_MemoryTypeIndex = memoryTypeIndex; - if(mapped) - { - VMA_ASSERT(IsMappingAllowed() && "Mapping is not allowed on this allocation! Please use one of the new VMA_ALLOCATION_CREATE_HOST_ACCESS_* flags when creating it."); - m_Flags |= (uint8_t)FLAG_PERSISTENT_MAP; - } - m_SuballocationType = (uint8_t)suballocationType; - m_BlockAllocation.m_Block = block; - m_BlockAllocation.m_AllocHandle = allocHandle; -} - -void VmaAllocation_T::InitDedicatedAllocation( - VmaAllocator allocator, - VmaPool hParentPool, - uint32_t memoryTypeIndex, - VkDeviceMemory hMemory, - VmaSuballocationType suballocationType, - void* pMappedData, - VkDeviceSize size) -{ - VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE); - VMA_ASSERT(hMemory != VK_NULL_HANDLE); - m_Type = (uint8_t)ALLOCATION_TYPE_DEDICATED; - m_Alignment = 0; - m_Size = size; - m_MemoryTypeIndex = memoryTypeIndex; - m_SuballocationType = (uint8_t)suballocationType; - m_DedicatedAllocation.m_ExtraData = VMA_NULL; - m_DedicatedAllocation.m_hParentPool = hParentPool; - m_DedicatedAllocation.m_hMemory = hMemory; - m_DedicatedAllocation.m_Prev = VMA_NULL; - m_DedicatedAllocation.m_Next = VMA_NULL; - - if (pMappedData != VMA_NULL) - { - VMA_ASSERT(IsMappingAllowed() && "Mapping is not allowed on this allocation! Please use one of the new VMA_ALLOCATION_CREATE_HOST_ACCESS_* flags when creating it."); - m_Flags |= (uint8_t)FLAG_PERSISTENT_MAP; - EnsureExtraData(allocator); - m_DedicatedAllocation.m_ExtraData->m_pMappedData = pMappedData; - } -} - -void VmaAllocation_T::Destroy(VmaAllocator allocator) -{ - FreeName(allocator); - - if (GetType() == ALLOCATION_TYPE_DEDICATED) - { - vma_delete(allocator, m_DedicatedAllocation.m_ExtraData); - } -} - -void VmaAllocation_T::SetName(VmaAllocator hAllocator, const char* pName) -{ - VMA_ASSERT(pName == VMA_NULL || pName != m_pName); - - FreeName(hAllocator); - - if (pName != VMA_NULL) - m_pName = VmaCreateStringCopy(hAllocator->GetAllocationCallbacks(), pName); -} - -uint8_t VmaAllocation_T::SwapBlockAllocation(VmaAllocator hAllocator, VmaAllocation allocation) -{ - VMA_ASSERT(allocation != VMA_NULL); - VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK); - VMA_ASSERT(allocation->m_Type == ALLOCATION_TYPE_BLOCK); - - if (m_MapCount != 0) - m_BlockAllocation.m_Block->Unmap(hAllocator, m_MapCount); - - m_BlockAllocation.m_Block->m_pMetadata->SetAllocationUserData(m_BlockAllocation.m_AllocHandle, allocation); - std::swap(m_BlockAllocation, allocation->m_BlockAllocation); - m_BlockAllocation.m_Block->m_pMetadata->SetAllocationUserData(m_BlockAllocation.m_AllocHandle, this); - -#if VMA_STATS_STRING_ENABLED - std::swap(m_BufferImageUsage, allocation->m_BufferImageUsage); -#endif - return m_MapCount; -} - -VmaAllocHandle VmaAllocation_T::GetAllocHandle() const -{ - switch (m_Type) - { - case ALLOCATION_TYPE_BLOCK: - return m_BlockAllocation.m_AllocHandle; - case ALLOCATION_TYPE_DEDICATED: - return VK_NULL_HANDLE; - default: - VMA_ASSERT(0); - return VK_NULL_HANDLE; - } -} - -VkDeviceSize VmaAllocation_T::GetOffset() const -{ - switch (m_Type) - { - case ALLOCATION_TYPE_BLOCK: - return m_BlockAllocation.m_Block->m_pMetadata->GetAllocationOffset(m_BlockAllocation.m_AllocHandle); - case ALLOCATION_TYPE_DEDICATED: - return 0; - default: - VMA_ASSERT(0); - return 0; - } -} - -VmaPool VmaAllocation_T::GetParentPool() const -{ - switch (m_Type) - { - case ALLOCATION_TYPE_BLOCK: - return m_BlockAllocation.m_Block->GetParentPool(); - case ALLOCATION_TYPE_DEDICATED: - return m_DedicatedAllocation.m_hParentPool; - default: - VMA_ASSERT(0); - return VK_NULL_HANDLE; - } -} - -VkDeviceMemory VmaAllocation_T::GetMemory() const -{ - switch (m_Type) - { - case ALLOCATION_TYPE_BLOCK: - return m_BlockAllocation.m_Block->GetDeviceMemory(); - case ALLOCATION_TYPE_DEDICATED: - return m_DedicatedAllocation.m_hMemory; - default: - VMA_ASSERT(0); - return VK_NULL_HANDLE; - } -} - -void* VmaAllocation_T::GetMappedData() const -{ - switch (m_Type) - { - case ALLOCATION_TYPE_BLOCK: - if (m_MapCount != 0 || IsPersistentMap()) - { - void* pBlockData = m_BlockAllocation.m_Block->GetMappedData(); - VMA_ASSERT(pBlockData != VMA_NULL); - return (char*)pBlockData + GetOffset(); - } - else - { - return VMA_NULL; - } - break; - case ALLOCATION_TYPE_DEDICATED: - VMA_ASSERT((m_DedicatedAllocation.m_ExtraData != VMA_NULL && m_DedicatedAllocation.m_ExtraData->m_pMappedData != VMA_NULL) == - (m_MapCount != 0 || IsPersistentMap())); - return m_DedicatedAllocation.m_ExtraData != VMA_NULL ? m_DedicatedAllocation.m_ExtraData->m_pMappedData : VMA_NULL; - default: - VMA_ASSERT(0); - return VMA_NULL; - } -} - -void VmaAllocation_T::BlockAllocMap() -{ - VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK); - VMA_ASSERT(IsMappingAllowed() && "Mapping is not allowed on this allocation! Please use one of the new VMA_ALLOCATION_CREATE_HOST_ACCESS_* flags when creating it."); - - if (m_MapCount < 0xFF) - { - ++m_MapCount; - } - else - { - VMA_ASSERT(0 && "Allocation mapped too many times simultaneously."); - } -} - -void VmaAllocation_T::BlockAllocUnmap() -{ - VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK); - - if (m_MapCount > 0) - { - --m_MapCount; - } - else - { - VMA_ASSERT(0 && "Unmapping allocation not previously mapped."); - } -} - -VkResult VmaAllocation_T::DedicatedAllocMap(VmaAllocator hAllocator, void** ppData) -{ - VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED); - VMA_ASSERT(IsMappingAllowed() && "Mapping is not allowed on this allocation! Please use one of the new VMA_ALLOCATION_CREATE_HOST_ACCESS_* flags when creating it."); - - EnsureExtraData(hAllocator); - - if (m_MapCount != 0 || IsPersistentMap()) - { - if (m_MapCount < 0xFF) - { - VMA_ASSERT(m_DedicatedAllocation.m_ExtraData->m_pMappedData != VMA_NULL); - *ppData = m_DedicatedAllocation.m_ExtraData->m_pMappedData; - ++m_MapCount; - return VK_SUCCESS; - } - else - { - VMA_ASSERT(0 && "Dedicated allocation mapped too many times simultaneously."); - return VK_ERROR_MEMORY_MAP_FAILED; - } - } - else - { - VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)( - hAllocator->m_hDevice, - m_DedicatedAllocation.m_hMemory, - 0, // offset - VK_WHOLE_SIZE, - 0, // flags - ppData); - if (result == VK_SUCCESS) - { - m_DedicatedAllocation.m_ExtraData->m_pMappedData = *ppData; - m_MapCount = 1; - } - return result; - } -} - -void VmaAllocation_T::DedicatedAllocUnmap(VmaAllocator hAllocator) -{ - VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED); - - if (m_MapCount > 0) - { - --m_MapCount; - if (m_MapCount == 0 && !IsPersistentMap()) - { - VMA_ASSERT(m_DedicatedAllocation.m_ExtraData != VMA_NULL); - m_DedicatedAllocation.m_ExtraData->m_pMappedData = VMA_NULL; - (*hAllocator->GetVulkanFunctions().vkUnmapMemory)( - hAllocator->m_hDevice, - m_DedicatedAllocation.m_hMemory); - } - } - else - { - VMA_ASSERT(0 && "Unmapping dedicated allocation not previously mapped."); - } -} - -#if VMA_STATS_STRING_ENABLED -void VmaAllocation_T::PrintParameters(class VmaJsonWriter& json) const -{ - json.WriteString("Type"); - json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[m_SuballocationType]); - - json.WriteString("Size"); - json.WriteNumber(m_Size); - json.WriteString("Usage"); - json.WriteNumber(m_BufferImageUsage.Value); // It may be uint32_t or uint64_t. - - if (m_pUserData != VMA_NULL) - { - json.WriteString("CustomData"); - json.BeginString(); - json.ContinueString_Pointer(m_pUserData); - json.EndString(); - } - if (m_pName != VMA_NULL) - { - json.WriteString("Name"); - json.WriteString(m_pName); - } -} -#if VMA_EXTERNAL_MEMORY_WIN32 -VkResult VmaAllocation_T::GetWin32Handle(VmaAllocator hAllocator, HANDLE hTargetProcess, HANDLE* pHandle) noexcept -{ - auto pvkGetMemoryWin32HandleKHR = hAllocator->GetVulkanFunctions().vkGetMemoryWin32HandleKHR; - switch (m_Type) - { - case ALLOCATION_TYPE_BLOCK: - return m_BlockAllocation.m_Block->CreateWin32Handle(hAllocator, pvkGetMemoryWin32HandleKHR, hTargetProcess, pHandle); - case ALLOCATION_TYPE_DEDICATED: - EnsureExtraData(hAllocator); - return m_DedicatedAllocation.m_ExtraData->m_Handle.GetHandle(hAllocator->m_hDevice, m_DedicatedAllocation.m_hMemory, pvkGetMemoryWin32HandleKHR, hTargetProcess, hAllocator->m_UseMutex, pHandle); - default: - VMA_ASSERT(0); - return VK_ERROR_FEATURE_NOT_PRESENT; - } -} -#endif // VMA_EXTERNAL_MEMORY_WIN32 -#endif // VMA_STATS_STRING_ENABLED - -void VmaAllocation_T::EnsureExtraData(VmaAllocator hAllocator) -{ - if (m_DedicatedAllocation.m_ExtraData == VMA_NULL) - { - m_DedicatedAllocation.m_ExtraData = vma_new(hAllocator, VmaAllocationExtraData)(); - } -} - -void VmaAllocation_T::FreeName(VmaAllocator hAllocator) -{ - if(m_pName) - { - VmaFreeString(hAllocator->GetAllocationCallbacks(), m_pName); - m_pName = VMA_NULL; - } -} -#endif // _VMA_ALLOCATION_T_FUNCTIONS - -#ifndef _VMA_BLOCK_VECTOR_FUNCTIONS -VmaBlockVector::VmaBlockVector( - VmaAllocator hAllocator, - VmaPool hParentPool, - uint32_t memoryTypeIndex, - VkDeviceSize preferredBlockSize, - size_t minBlockCount, - size_t maxBlockCount, - VkDeviceSize bufferImageGranularity, - bool explicitBlockSize, - uint32_t algorithm, - float priority, - VkDeviceSize minAllocationAlignment, - void* pMemoryAllocateNext) - : m_hAllocator(hAllocator), - m_hParentPool(hParentPool), - m_MemoryTypeIndex(memoryTypeIndex), - m_PreferredBlockSize(preferredBlockSize), - m_MinBlockCount(minBlockCount), - m_MaxBlockCount(maxBlockCount), - m_BufferImageGranularity(bufferImageGranularity), - m_ExplicitBlockSize(explicitBlockSize), - m_Algorithm(algorithm), - m_Priority(priority), - m_MinAllocationAlignment(minAllocationAlignment), - m_pMemoryAllocateNext(pMemoryAllocateNext), - m_Blocks(VmaStlAllocator(hAllocator->GetAllocationCallbacks())), - m_NextBlockId(0) {} - -VmaBlockVector::~VmaBlockVector() -{ - for (size_t i = m_Blocks.size(); i--; ) - { - m_Blocks[i]->Destroy(m_hAllocator); - vma_delete(m_hAllocator, m_Blocks[i]); - } -} - -VkResult VmaBlockVector::CreateMinBlocks() -{ - for (size_t i = 0; i < m_MinBlockCount; ++i) - { - VkResult res = CreateBlock(m_PreferredBlockSize, VMA_NULL); - if (res != VK_SUCCESS) - { - return res; - } - } - return VK_SUCCESS; -} - -void VmaBlockVector::AddStatistics(VmaStatistics& inoutStats) -{ - VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); - - const size_t blockCount = m_Blocks.size(); - for (uint32_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) - { - const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex]; - VMA_ASSERT(pBlock); - VMA_HEAVY_ASSERT(pBlock->Validate()); - pBlock->m_pMetadata->AddStatistics(inoutStats); - } -} - -void VmaBlockVector::AddDetailedStatistics(VmaDetailedStatistics& inoutStats) -{ - VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); - - const size_t blockCount = m_Blocks.size(); - for (uint32_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) - { - const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex]; - VMA_ASSERT(pBlock); - VMA_HEAVY_ASSERT(pBlock->Validate()); - pBlock->m_pMetadata->AddDetailedStatistics(inoutStats); - } -} - -bool VmaBlockVector::IsEmpty() -{ - VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); - return m_Blocks.empty(); -} - -bool VmaBlockVector::IsCorruptionDetectionEnabled() const -{ - const uint32_t requiredMemFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT; - return (VMA_DEBUG_DETECT_CORRUPTION != 0) && - (VMA_DEBUG_MARGIN > 0) && - (m_Algorithm == 0 || m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) && - (m_hAllocator->m_MemProps.memoryTypes[m_MemoryTypeIndex].propertyFlags & requiredMemFlags) == requiredMemFlags; -} - -VkResult VmaBlockVector::Allocate( - VkDeviceSize size, - VkDeviceSize alignment, - const VmaAllocationCreateInfo& createInfo, - VmaSuballocationType suballocType, - size_t allocationCount, - VmaAllocation* pAllocations) -{ - size_t allocIndex; - VkResult res = VK_SUCCESS; - - alignment = VMA_MAX(alignment, m_MinAllocationAlignment); - - if (IsCorruptionDetectionEnabled()) - { - size = VmaAlignUp(size, sizeof(VMA_CORRUPTION_DETECTION_MAGIC_VALUE)); - alignment = VmaAlignUp(alignment, sizeof(VMA_CORRUPTION_DETECTION_MAGIC_VALUE)); - } - - { - VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex); - for (allocIndex = 0; allocIndex < allocationCount; ++allocIndex) - { - res = AllocatePage( - size, - alignment, - createInfo, - suballocType, - pAllocations + allocIndex); - if (res != VK_SUCCESS) - { - break; - } - } - } - - if (res != VK_SUCCESS) - { - // Free all already created allocations. - while (allocIndex--) - Free(pAllocations[allocIndex]); - memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount); - } - - return res; -} - -VkResult VmaBlockVector::AllocatePage( - VkDeviceSize size, - VkDeviceSize alignment, - const VmaAllocationCreateInfo& createInfo, - VmaSuballocationType suballocType, - VmaAllocation* pAllocation) -{ - const bool isUpperAddress = (createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0; - - VkDeviceSize freeMemory; - { - const uint32_t heapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex); - VmaBudget heapBudget = {}; - m_hAllocator->GetHeapBudgets(&heapBudget, heapIndex, 1); - freeMemory = (heapBudget.usage < heapBudget.budget) ? (heapBudget.budget - heapBudget.usage) : 0; - } - - const bool canFallbackToDedicated = !HasExplicitBlockSize() && - (createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0; - const bool canCreateNewBlock = - ((createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0) && - (m_Blocks.size() < m_MaxBlockCount) && - (freeMemory >= size || !canFallbackToDedicated); - uint32_t strategy = createInfo.flags & VMA_ALLOCATION_CREATE_STRATEGY_MASK; - - // Upper address can only be used with linear allocator and within single memory block. - if (isUpperAddress && - (m_Algorithm != VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT || m_MaxBlockCount > 1)) - { - return VK_ERROR_FEATURE_NOT_PRESENT; - } - - // Early reject: requested allocation size is larger that maximum block size for this block vector. - if (size + VMA_DEBUG_MARGIN > m_PreferredBlockSize) - { - return VK_ERROR_OUT_OF_DEVICE_MEMORY; - } - - // 1. Search existing allocations. Try to allocate. - if (m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) - { - // Use only last block. - if (!m_Blocks.empty()) - { - VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks.back(); - VMA_ASSERT(pCurrBlock); - VkResult res = AllocateFromBlock( - pCurrBlock, size, alignment, createInfo.flags, createInfo.pUserData, suballocType, strategy, pAllocation); - if (res == VK_SUCCESS) - { - VMA_DEBUG_LOG_FORMAT(" Returned from last block #%" PRIu32, pCurrBlock->GetId()); - IncrementallySortBlocks(); - return VK_SUCCESS; - } - } - } - else - { - if (strategy != VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT) // MIN_MEMORY or default - { - const bool isHostVisible = - (m_hAllocator->m_MemProps.memoryTypes[m_MemoryTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0; - if(isHostVisible) - { - const bool isMappingAllowed = (createInfo.flags & - (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0; - /* - For non-mappable allocations, check blocks that are not mapped first. - For mappable allocations, check blocks that are already mapped first. - This way, having many blocks, we will separate mappable and non-mappable allocations, - hopefully limiting the number of blocks that are mapped, which will help tools like RenderDoc. - */ - for(size_t mappingI = 0; mappingI < 2; ++mappingI) - { - // Forward order in m_Blocks - prefer blocks with smallest amount of free space. - for (size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) - { - VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex]; - VMA_ASSERT(pCurrBlock); - const bool isBlockMapped = pCurrBlock->GetMappedData() != VMA_NULL; - if((mappingI == 0) == (isMappingAllowed == isBlockMapped)) - { - VkResult res = AllocateFromBlock( - pCurrBlock, size, alignment, createInfo.flags, createInfo.pUserData, suballocType, strategy, pAllocation); - if (res == VK_SUCCESS) - { - VMA_DEBUG_LOG_FORMAT(" Returned from existing block #%" PRIu32, pCurrBlock->GetId()); - IncrementallySortBlocks(); - return VK_SUCCESS; - } - } - } - } - } - else - { - // Forward order in m_Blocks - prefer blocks with smallest amount of free space. - for (size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) - { - VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex]; - VMA_ASSERT(pCurrBlock); - VkResult res = AllocateFromBlock( - pCurrBlock, size, alignment, createInfo.flags, createInfo.pUserData, suballocType, strategy, pAllocation); - if (res == VK_SUCCESS) - { - VMA_DEBUG_LOG_FORMAT(" Returned from existing block #%" PRIu32, pCurrBlock->GetId()); - IncrementallySortBlocks(); - return VK_SUCCESS; - } - } - } - } - else // VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT - { - // Backward order in m_Blocks - prefer blocks with largest amount of free space. - for (size_t blockIndex = m_Blocks.size(); blockIndex--; ) - { - VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex]; - VMA_ASSERT(pCurrBlock); - VkResult res = AllocateFromBlock(pCurrBlock, size, alignment, createInfo.flags, createInfo.pUserData, suballocType, strategy, pAllocation); - if (res == VK_SUCCESS) - { - VMA_DEBUG_LOG_FORMAT(" Returned from existing block #%" PRIu32, pCurrBlock->GetId()); - IncrementallySortBlocks(); - return VK_SUCCESS; - } - } - } - } - - // 2. Try to create new block. - if (canCreateNewBlock) - { - // Calculate optimal size for new block. - VkDeviceSize newBlockSize = m_PreferredBlockSize; - uint32_t newBlockSizeShift = 0; - const uint32_t NEW_BLOCK_SIZE_SHIFT_MAX = 3; - - if (!m_ExplicitBlockSize) - { - // Allocate 1/8, 1/4, 1/2 as first blocks. - const VkDeviceSize maxExistingBlockSize = CalcMaxBlockSize(); - for (uint32_t i = 0; i < NEW_BLOCK_SIZE_SHIFT_MAX; ++i) - { - const VkDeviceSize smallerNewBlockSize = newBlockSize / 2; - if (smallerNewBlockSize > maxExistingBlockSize && smallerNewBlockSize >= size * 2) - { - newBlockSize = smallerNewBlockSize; - ++newBlockSizeShift; - } - else - { - break; - } - } - } - - size_t newBlockIndex = 0; - VkResult res = (newBlockSize <= freeMemory || !canFallbackToDedicated) ? - CreateBlock(newBlockSize, &newBlockIndex) : VK_ERROR_OUT_OF_DEVICE_MEMORY; - // Allocation of this size failed? Try 1/2, 1/4, 1/8 of m_PreferredBlockSize. - if (!m_ExplicitBlockSize) - { - while (res < 0 && newBlockSizeShift < NEW_BLOCK_SIZE_SHIFT_MAX) - { - const VkDeviceSize smallerNewBlockSize = newBlockSize / 2; - if (smallerNewBlockSize >= size) - { - newBlockSize = smallerNewBlockSize; - ++newBlockSizeShift; - res = (newBlockSize <= freeMemory || !canFallbackToDedicated) ? - CreateBlock(newBlockSize, &newBlockIndex) : VK_ERROR_OUT_OF_DEVICE_MEMORY; - } - else - { - break; - } - } - } - - if (res == VK_SUCCESS) - { - VmaDeviceMemoryBlock* const pBlock = m_Blocks[newBlockIndex]; - VMA_ASSERT(pBlock->m_pMetadata->GetSize() >= size); - - res = AllocateFromBlock( - pBlock, size, alignment, createInfo.flags, createInfo.pUserData, suballocType, strategy, pAllocation); - if (res == VK_SUCCESS) - { - VMA_DEBUG_LOG_FORMAT(" Created new block #%" PRIu32 " Size=%" PRIu64, pBlock->GetId(), newBlockSize); - IncrementallySortBlocks(); - return VK_SUCCESS; - } - else - { - // Allocation from new block failed, possibly due to VMA_DEBUG_MARGIN or alignment. - return VK_ERROR_OUT_OF_DEVICE_MEMORY; - } - } - } - - return VK_ERROR_OUT_OF_DEVICE_MEMORY; -} - -void VmaBlockVector::Free(const VmaAllocation hAllocation) -{ - VmaDeviceMemoryBlock* pBlockToDelete = VMA_NULL; - - bool budgetExceeded = false; - { - const uint32_t heapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex); - VmaBudget heapBudget = {}; - m_hAllocator->GetHeapBudgets(&heapBudget, heapIndex, 1); - budgetExceeded = heapBudget.usage >= heapBudget.budget; - } - - // Scope for lock. - { - VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex); - - VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock(); - - if (IsCorruptionDetectionEnabled()) - { - VkResult res = pBlock->ValidateMagicValueAfterAllocation(m_hAllocator, hAllocation->GetOffset(), hAllocation->GetSize()); - VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to validate magic value."); - } - - if (hAllocation->IsPersistentMap()) - { - pBlock->Unmap(m_hAllocator, 1); - } - - const bool hadEmptyBlockBeforeFree = HasEmptyBlock(); - pBlock->m_pMetadata->Free(hAllocation->GetAllocHandle()); - pBlock->PostFree(m_hAllocator); - VMA_HEAVY_ASSERT(pBlock->Validate()); - - VMA_DEBUG_LOG_FORMAT(" Freed from MemoryTypeIndex=%" PRIu32, m_MemoryTypeIndex); - - const bool canDeleteBlock = m_Blocks.size() > m_MinBlockCount; - // pBlock became empty after this deallocation. - if (pBlock->m_pMetadata->IsEmpty()) - { - // Already had empty block. We don't want to have two, so delete this one. - if ((hadEmptyBlockBeforeFree || budgetExceeded) && canDeleteBlock) - { - pBlockToDelete = pBlock; - Remove(pBlock); - } - // else: We now have one empty block - leave it. A hysteresis to avoid allocating whole block back and forth. - } - // pBlock didn't become empty, but we have another empty block - find and free that one. - // (This is optional, heuristics.) - else if (hadEmptyBlockBeforeFree && canDeleteBlock) - { - VmaDeviceMemoryBlock* pLastBlock = m_Blocks.back(); - if (pLastBlock->m_pMetadata->IsEmpty()) - { - pBlockToDelete = pLastBlock; - m_Blocks.pop_back(); - } - } - - IncrementallySortBlocks(); - - m_hAllocator->m_Budget.RemoveAllocation(m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex), hAllocation->GetSize()); - hAllocation->Destroy(m_hAllocator); - m_hAllocator->m_AllocationObjectAllocator.Free(hAllocation); - } - - // Destruction of a free block. Deferred until this point, outside of mutex - // lock, for performance reason. - if (pBlockToDelete != VMA_NULL) - { - VMA_DEBUG_LOG_FORMAT(" Deleted empty block #%" PRIu32, pBlockToDelete->GetId()); - pBlockToDelete->Destroy(m_hAllocator); - vma_delete(m_hAllocator, pBlockToDelete); - } -} - -VkDeviceSize VmaBlockVector::CalcMaxBlockSize() const -{ - VkDeviceSize result = 0; - for (size_t i = m_Blocks.size(); i--; ) - { - result = VMA_MAX(result, m_Blocks[i]->m_pMetadata->GetSize()); - if (result >= m_PreferredBlockSize) - { - break; - } - } - return result; -} - -void VmaBlockVector::Remove(VmaDeviceMemoryBlock* pBlock) -{ - for (uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) - { - if (m_Blocks[blockIndex] == pBlock) - { - VmaVectorRemove(m_Blocks, blockIndex); - return; - } - } - VMA_ASSERT(0); -} - -void VmaBlockVector::IncrementallySortBlocks() -{ - if (!m_IncrementalSort) - return; - if (m_Algorithm != VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) - { - // Bubble sort only until first swap. - for (size_t i = 1; i < m_Blocks.size(); ++i) - { - if (m_Blocks[i - 1]->m_pMetadata->GetSumFreeSize() > m_Blocks[i]->m_pMetadata->GetSumFreeSize()) - { - std::swap(m_Blocks[i - 1], m_Blocks[i]); - return; - } - } - } -} - -void VmaBlockVector::SortByFreeSize() -{ - VMA_SORT(m_Blocks.begin(), m_Blocks.end(), - [](VmaDeviceMemoryBlock* b1, VmaDeviceMemoryBlock* b2) -> bool - { - return b1->m_pMetadata->GetSumFreeSize() < b2->m_pMetadata->GetSumFreeSize(); - }); -} - -VkResult VmaBlockVector::AllocateFromBlock( - VmaDeviceMemoryBlock* pBlock, - VkDeviceSize size, - VkDeviceSize alignment, - VmaAllocationCreateFlags allocFlags, - void* pUserData, - VmaSuballocationType suballocType, - uint32_t strategy, - VmaAllocation* pAllocation) -{ - const bool isUpperAddress = (allocFlags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0; - - VmaAllocationRequest currRequest = {}; - if (pBlock->m_pMetadata->CreateAllocationRequest( - size, - alignment, - isUpperAddress, - suballocType, - strategy, - &currRequest)) - { - return CommitAllocationRequest(currRequest, pBlock, alignment, allocFlags, pUserData, suballocType, pAllocation); - } - return VK_ERROR_OUT_OF_DEVICE_MEMORY; -} - -VkResult VmaBlockVector::CommitAllocationRequest( - VmaAllocationRequest& allocRequest, - VmaDeviceMemoryBlock* pBlock, - VkDeviceSize alignment, - VmaAllocationCreateFlags allocFlags, - void* pUserData, - VmaSuballocationType suballocType, - VmaAllocation* pAllocation) -{ - const bool mapped = (allocFlags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0; - const bool isUserDataString = (allocFlags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0; - const bool isMappingAllowed = (allocFlags & - (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0; - - pBlock->PostAlloc(m_hAllocator); - // Allocate from pCurrBlock. - if (mapped) - { - VkResult res = pBlock->Map(m_hAllocator, 1, VMA_NULL); - if (res != VK_SUCCESS) - { - return res; - } - } - - *pAllocation = m_hAllocator->m_AllocationObjectAllocator.Allocate(isMappingAllowed); - pBlock->m_pMetadata->Alloc(allocRequest, suballocType, *pAllocation); - (*pAllocation)->InitBlockAllocation( - pBlock, - allocRequest.allocHandle, - alignment, - allocRequest.size, // Not size, as actual allocation size may be larger than requested! - m_MemoryTypeIndex, - suballocType, - mapped); - VMA_HEAVY_ASSERT(pBlock->Validate()); - if (isUserDataString) - (*pAllocation)->SetName(m_hAllocator, (const char*)pUserData); - else - (*pAllocation)->SetUserData(m_hAllocator, pUserData); - m_hAllocator->m_Budget.AddAllocation(m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex), allocRequest.size); - if (VMA_DEBUG_INITIALIZE_ALLOCATIONS) - { - m_hAllocator->FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED); - } - if (IsCorruptionDetectionEnabled()) - { - VkResult res = pBlock->WriteMagicValueAfterAllocation(m_hAllocator, (*pAllocation)->GetOffset(), allocRequest.size); - VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to write magic value."); - } - return VK_SUCCESS; -} - -VkResult VmaBlockVector::CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex) -{ - VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO }; - allocInfo.pNext = m_pMemoryAllocateNext; - allocInfo.memoryTypeIndex = m_MemoryTypeIndex; - allocInfo.allocationSize = blockSize; - -#if VMA_BUFFER_DEVICE_ADDRESS - // Every standalone block can potentially contain a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT - always enable the feature. - VkMemoryAllocateFlagsInfoKHR allocFlagsInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO_KHR }; - if (m_hAllocator->m_UseKhrBufferDeviceAddress) - { - allocFlagsInfo.flags = VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR; - VmaPnextChainPushFront(&allocInfo, &allocFlagsInfo); - } -#endif // VMA_BUFFER_DEVICE_ADDRESS - -#if VMA_MEMORY_PRIORITY - VkMemoryPriorityAllocateInfoEXT priorityInfo = { VK_STRUCTURE_TYPE_MEMORY_PRIORITY_ALLOCATE_INFO_EXT }; - if (m_hAllocator->m_UseExtMemoryPriority) - { - VMA_ASSERT(m_Priority >= 0.f && m_Priority <= 1.f); - priorityInfo.priority = m_Priority; - VmaPnextChainPushFront(&allocInfo, &priorityInfo); - } -#endif // VMA_MEMORY_PRIORITY - -#if VMA_EXTERNAL_MEMORY - // Attach VkExportMemoryAllocateInfoKHR if necessary. - VkExportMemoryAllocateInfoKHR exportMemoryAllocInfo = { VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_KHR }; - exportMemoryAllocInfo.handleTypes = m_hAllocator->GetExternalMemoryHandleTypeFlags(m_MemoryTypeIndex); - if (exportMemoryAllocInfo.handleTypes != 0) - { - VmaPnextChainPushFront(&allocInfo, &exportMemoryAllocInfo); - } -#endif // VMA_EXTERNAL_MEMORY - - VkDeviceMemory mem = VK_NULL_HANDLE; - VkResult res = m_hAllocator->AllocateVulkanMemory(&allocInfo, &mem); - if (res < 0) - { - return res; - } - - // New VkDeviceMemory successfully created. - - // Create new Allocation for it. - VmaDeviceMemoryBlock* const pBlock = vma_new(m_hAllocator, VmaDeviceMemoryBlock)(m_hAllocator); - pBlock->Init( - m_hAllocator, - m_hParentPool, - m_MemoryTypeIndex, - mem, - allocInfo.allocationSize, - m_NextBlockId++, - m_Algorithm, - m_BufferImageGranularity); - - m_Blocks.push_back(pBlock); - if (pNewBlockIndex != VMA_NULL) - { - *pNewBlockIndex = m_Blocks.size() - 1; - } - - return VK_SUCCESS; -} - -bool VmaBlockVector::HasEmptyBlock() -{ - for (size_t index = 0, count = m_Blocks.size(); index < count; ++index) - { - VmaDeviceMemoryBlock* const pBlock = m_Blocks[index]; - if (pBlock->m_pMetadata->IsEmpty()) - { - return true; - } - } - return false; -} - -#if VMA_STATS_STRING_ENABLED -void VmaBlockVector::PrintDetailedMap(class VmaJsonWriter& json) -{ - VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); - - - json.BeginObject(); - for (size_t i = 0; i < m_Blocks.size(); ++i) - { - json.BeginString(); - json.ContinueString(m_Blocks[i]->GetId()); - json.EndString(); - - json.BeginObject(); - json.WriteString("MapRefCount"); - json.WriteNumber(m_Blocks[i]->GetMapRefCount()); - - m_Blocks[i]->m_pMetadata->PrintDetailedMap(json); - json.EndObject(); - } - json.EndObject(); -} -#endif // VMA_STATS_STRING_ENABLED - -VkResult VmaBlockVector::CheckCorruption() -{ - if (!IsCorruptionDetectionEnabled()) - { - return VK_ERROR_FEATURE_NOT_PRESENT; - } - - VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); - for (uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) - { - VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex]; - VMA_ASSERT(pBlock); - VkResult res = pBlock->CheckCorruption(m_hAllocator); - if (res != VK_SUCCESS) - { - return res; - } - } - return VK_SUCCESS; -} - -#endif // _VMA_BLOCK_VECTOR_FUNCTIONS - -#ifndef _VMA_DEFRAGMENTATION_CONTEXT_FUNCTIONS -VmaDefragmentationContext_T::VmaDefragmentationContext_T( - VmaAllocator hAllocator, - const VmaDefragmentationInfo& info) - : m_MaxPassBytes(info.maxBytesPerPass == 0 ? VK_WHOLE_SIZE : info.maxBytesPerPass), - m_MaxPassAllocations(info.maxAllocationsPerPass == 0 ? UINT32_MAX : info.maxAllocationsPerPass), - m_BreakCallback(info.pfnBreakCallback), - m_BreakCallbackUserData(info.pBreakCallbackUserData), - m_MoveAllocator(hAllocator->GetAllocationCallbacks()), - m_Moves(m_MoveAllocator) -{ - m_Algorithm = info.flags & VMA_DEFRAGMENTATION_FLAG_ALGORITHM_MASK; - - if (info.pool != VMA_NULL) - { - m_BlockVectorCount = 1; - m_PoolBlockVector = &info.pool->m_BlockVector; - m_pBlockVectors = &m_PoolBlockVector; - m_PoolBlockVector->SetIncrementalSort(false); - m_PoolBlockVector->SortByFreeSize(); - } - else - { - m_BlockVectorCount = hAllocator->GetMemoryTypeCount(); - m_PoolBlockVector = VMA_NULL; - m_pBlockVectors = hAllocator->m_pBlockVectors; - for (uint32_t i = 0; i < m_BlockVectorCount; ++i) - { - VmaBlockVector* vector = m_pBlockVectors[i]; - if (vector != VMA_NULL) - { - vector->SetIncrementalSort(false); - vector->SortByFreeSize(); - } - } - } - - switch (m_Algorithm) - { - case 0: // Default algorithm - m_Algorithm = VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT; - m_AlgorithmState = vma_new_array(hAllocator, StateBalanced, m_BlockVectorCount); - break; - case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT: - m_AlgorithmState = vma_new_array(hAllocator, StateBalanced, m_BlockVectorCount); - break; - case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT: - if (hAllocator->GetBufferImageGranularity() > 1) - { - m_AlgorithmState = vma_new_array(hAllocator, StateExtensive, m_BlockVectorCount); - } - break; - } -} - -VmaDefragmentationContext_T::~VmaDefragmentationContext_T() -{ - if (m_PoolBlockVector != VMA_NULL) - { - m_PoolBlockVector->SetIncrementalSort(true); - } - else - { - for (uint32_t i = 0; i < m_BlockVectorCount; ++i) - { - VmaBlockVector* vector = m_pBlockVectors[i]; - if (vector != VMA_NULL) - vector->SetIncrementalSort(true); - } - } - - if (m_AlgorithmState) - { - switch (m_Algorithm) - { - case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT: - vma_delete_array(m_MoveAllocator.m_pCallbacks, reinterpret_cast(m_AlgorithmState), m_BlockVectorCount); - break; - case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT: - vma_delete_array(m_MoveAllocator.m_pCallbacks, reinterpret_cast(m_AlgorithmState), m_BlockVectorCount); - break; - default: - VMA_ASSERT(0); - } - } -} - -VkResult VmaDefragmentationContext_T::DefragmentPassBegin(VmaDefragmentationPassMoveInfo& moveInfo) -{ - if (m_PoolBlockVector != VMA_NULL) - { - VmaMutexLockWrite lock(m_PoolBlockVector->GetMutex(), m_PoolBlockVector->GetAllocator()->m_UseMutex); - - if (m_PoolBlockVector->GetBlockCount() > 1) - ComputeDefragmentation(*m_PoolBlockVector, 0); - else if (m_PoolBlockVector->GetBlockCount() == 1) - ReallocWithinBlock(*m_PoolBlockVector, m_PoolBlockVector->GetBlock(0)); - } - else - { - for (uint32_t i = 0; i < m_BlockVectorCount; ++i) - { - if (m_pBlockVectors[i] != VMA_NULL) - { - VmaMutexLockWrite lock(m_pBlockVectors[i]->GetMutex(), m_pBlockVectors[i]->GetAllocator()->m_UseMutex); - - if (m_pBlockVectors[i]->GetBlockCount() > 1) - { - if (ComputeDefragmentation(*m_pBlockVectors[i], i)) - break; - } - else if (m_pBlockVectors[i]->GetBlockCount() == 1) - { - if (ReallocWithinBlock(*m_pBlockVectors[i], m_pBlockVectors[i]->GetBlock(0))) - break; - } - } - } - } - - moveInfo.moveCount = static_cast(m_Moves.size()); - if (moveInfo.moveCount > 0) - { - moveInfo.pMoves = m_Moves.data(); - return VK_INCOMPLETE; - } - - moveInfo.pMoves = VMA_NULL; - return VK_SUCCESS; -} - -VkResult VmaDefragmentationContext_T::DefragmentPassEnd(VmaDefragmentationPassMoveInfo& moveInfo) -{ - VMA_ASSERT(moveInfo.moveCount > 0 ? moveInfo.pMoves != VMA_NULL : true); - - VkResult result = VK_SUCCESS; - VmaStlAllocator blockAllocator(m_MoveAllocator.m_pCallbacks); - VmaVector> immovableBlocks(blockAllocator); - VmaVector> mappedBlocks(blockAllocator); - - VmaAllocator allocator = VMA_NULL; - for (uint32_t i = 0; i < moveInfo.moveCount; ++i) - { - VmaDefragmentationMove& move = moveInfo.pMoves[i]; - size_t prevCount = 0, currentCount = 0; - VkDeviceSize freedBlockSize = 0; - - uint32_t vectorIndex; - VmaBlockVector* vector; - if (m_PoolBlockVector != VMA_NULL) - { - vectorIndex = 0; - vector = m_PoolBlockVector; - } - else - { - vectorIndex = move.srcAllocation->GetMemoryTypeIndex(); - vector = m_pBlockVectors[vectorIndex]; - VMA_ASSERT(vector != VMA_NULL); - } - - switch (move.operation) - { - case VMA_DEFRAGMENTATION_MOVE_OPERATION_COPY: - { - uint8_t mapCount = move.srcAllocation->SwapBlockAllocation(vector->m_hAllocator, move.dstTmpAllocation); - if (mapCount > 0) - { - allocator = vector->m_hAllocator; - VmaDeviceMemoryBlock* newMapBlock = move.srcAllocation->GetBlock(); - bool notPresent = true; - for (FragmentedBlock& block : mappedBlocks) - { - if (block.block == newMapBlock) - { - notPresent = false; - block.data += mapCount; - break; - } - } - if (notPresent) - mappedBlocks.push_back({ mapCount, newMapBlock }); - } - - // Scope for locks, Free have it's own lock - { - VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex); - prevCount = vector->GetBlockCount(); - freedBlockSize = move.dstTmpAllocation->GetBlock()->m_pMetadata->GetSize(); - } - vector->Free(move.dstTmpAllocation); - { - VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex); - currentCount = vector->GetBlockCount(); - } - - result = VK_INCOMPLETE; - break; - } - case VMA_DEFRAGMENTATION_MOVE_OPERATION_IGNORE: - { - m_PassStats.bytesMoved -= move.srcAllocation->GetSize(); - --m_PassStats.allocationsMoved; - vector->Free(move.dstTmpAllocation); - - VmaDeviceMemoryBlock* newBlock = move.srcAllocation->GetBlock(); - bool notPresent = true; - for (const FragmentedBlock& block : immovableBlocks) - { - if (block.block == newBlock) - { - notPresent = false; - break; - } - } - if (notPresent) - immovableBlocks.push_back({ vectorIndex, newBlock }); - break; - } - case VMA_DEFRAGMENTATION_MOVE_OPERATION_DESTROY: - { - m_PassStats.bytesMoved -= move.srcAllocation->GetSize(); - --m_PassStats.allocationsMoved; - // Scope for locks, Free have it's own lock - { - VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex); - prevCount = vector->GetBlockCount(); - freedBlockSize = move.srcAllocation->GetBlock()->m_pMetadata->GetSize(); - } - vector->Free(move.srcAllocation); - { - VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex); - currentCount = vector->GetBlockCount(); - } - freedBlockSize *= prevCount - currentCount; - - VkDeviceSize dstBlockSize; - { - VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex); - dstBlockSize = move.dstTmpAllocation->GetBlock()->m_pMetadata->GetSize(); - } - vector->Free(move.dstTmpAllocation); - { - VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex); - freedBlockSize += dstBlockSize * (currentCount - vector->GetBlockCount()); - currentCount = vector->GetBlockCount(); - } - - result = VK_INCOMPLETE; - break; - } - default: - VMA_ASSERT(0); - } - - if (prevCount > currentCount) - { - size_t freedBlocks = prevCount - currentCount; - m_PassStats.deviceMemoryBlocksFreed += static_cast(freedBlocks); - m_PassStats.bytesFreed += freedBlockSize; - } - - if(m_Algorithm == VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT && - m_AlgorithmState != VMA_NULL) - { - // Avoid unnecessary tries to allocate when new free block is available - StateExtensive& state = reinterpret_cast(m_AlgorithmState)[vectorIndex]; - if (state.firstFreeBlock != SIZE_MAX) - { - const size_t diff = prevCount - currentCount; - if (state.firstFreeBlock >= diff) - { - state.firstFreeBlock -= diff; - if (state.firstFreeBlock != 0) - state.firstFreeBlock -= vector->GetBlock(state.firstFreeBlock - 1)->m_pMetadata->IsEmpty(); - } - else - state.firstFreeBlock = 0; - } - } - } - moveInfo.moveCount = 0; - moveInfo.pMoves = VMA_NULL; - m_Moves.clear(); - - // Update stats - m_GlobalStats.allocationsMoved += m_PassStats.allocationsMoved; - m_GlobalStats.bytesFreed += m_PassStats.bytesFreed; - m_GlobalStats.bytesMoved += m_PassStats.bytesMoved; - m_GlobalStats.deviceMemoryBlocksFreed += m_PassStats.deviceMemoryBlocksFreed; - m_PassStats = { 0 }; - - // Move blocks with immovable allocations according to algorithm - if (immovableBlocks.size() > 0) - { - do - { - if(m_Algorithm == VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT) - { - if (m_AlgorithmState != VMA_NULL) - { - bool swapped = false; - // Move to the start of free blocks range - for (const FragmentedBlock& block : immovableBlocks) - { - StateExtensive& state = reinterpret_cast(m_AlgorithmState)[block.data]; - if (state.operation != StateExtensive::Operation::Cleanup) - { - VmaBlockVector* vector = m_pBlockVectors[block.data]; - VmaMutexLockWrite lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex); - - for (size_t i = 0, count = vector->GetBlockCount() - m_ImmovableBlockCount; i < count; ++i) - { - if (vector->GetBlock(i) == block.block) - { - std::swap(vector->m_Blocks[i], vector->m_Blocks[vector->GetBlockCount() - ++m_ImmovableBlockCount]); - if (state.firstFreeBlock != SIZE_MAX) - { - if (i + 1 < state.firstFreeBlock) - { - if (state.firstFreeBlock > 1) - std::swap(vector->m_Blocks[i], vector->m_Blocks[--state.firstFreeBlock]); - else - --state.firstFreeBlock; - } - } - swapped = true; - break; - } - } - } - } - if (swapped) - result = VK_INCOMPLETE; - break; - } - } - - // Move to the beginning - for (const FragmentedBlock& block : immovableBlocks) - { - VmaBlockVector* vector = m_pBlockVectors[block.data]; - VmaMutexLockWrite lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex); - - for (size_t i = m_ImmovableBlockCount; i < vector->GetBlockCount(); ++i) - { - if (vector->GetBlock(i) == block.block) - { - std::swap(vector->m_Blocks[i], vector->m_Blocks[m_ImmovableBlockCount++]); - break; - } - } - } - } while (false); - } - - // Bulk-map destination blocks - for (const FragmentedBlock& block : mappedBlocks) - { - VkResult res = block.block->Map(allocator, block.data, VMA_NULL); - VMA_ASSERT(res == VK_SUCCESS); - } - return result; -} - -bool VmaDefragmentationContext_T::ComputeDefragmentation(VmaBlockVector& vector, size_t index) -{ - switch (m_Algorithm) - { - case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FAST_BIT: - return ComputeDefragmentation_Fast(vector); - case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT: - return ComputeDefragmentation_Balanced(vector, index, true); - case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FULL_BIT: - return ComputeDefragmentation_Full(vector); - case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT: - return ComputeDefragmentation_Extensive(vector, index); - default: - VMA_ASSERT(0); - return ComputeDefragmentation_Balanced(vector, index, true); - } -} - -VmaDefragmentationContext_T::MoveAllocationData VmaDefragmentationContext_T::GetMoveData( - VmaAllocHandle handle, VmaBlockMetadata* metadata) -{ - MoveAllocationData moveData; - moveData.move.srcAllocation = (VmaAllocation)metadata->GetAllocationUserData(handle); - moveData.size = moveData.move.srcAllocation->GetSize(); - moveData.alignment = moveData.move.srcAllocation->GetAlignment(); - moveData.type = moveData.move.srcAllocation->GetSuballocationType(); - moveData.flags = 0; - - if (moveData.move.srcAllocation->IsPersistentMap()) - moveData.flags |= VMA_ALLOCATION_CREATE_MAPPED_BIT; - if (moveData.move.srcAllocation->IsMappingAllowed()) - moveData.flags |= VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT; - - return moveData; -} - -VmaDefragmentationContext_T::CounterStatus VmaDefragmentationContext_T::CheckCounters(VkDeviceSize bytes) -{ - // Check custom criteria if exists - if (m_BreakCallback && m_BreakCallback(m_BreakCallbackUserData)) - return CounterStatus::End; - - // Ignore allocation if will exceed max size for copy - if (m_PassStats.bytesMoved + bytes > m_MaxPassBytes) - { - if (++m_IgnoredAllocs < MAX_ALLOCS_TO_IGNORE) - return CounterStatus::Ignore; - else - return CounterStatus::End; - } - else - m_IgnoredAllocs = 0; - return CounterStatus::Pass; -} - -bool VmaDefragmentationContext_T::IncrementCounters(VkDeviceSize bytes) -{ - m_PassStats.bytesMoved += bytes; - // Early return when max found - if (++m_PassStats.allocationsMoved >= m_MaxPassAllocations || m_PassStats.bytesMoved >= m_MaxPassBytes) - { - VMA_ASSERT((m_PassStats.allocationsMoved == m_MaxPassAllocations || - m_PassStats.bytesMoved == m_MaxPassBytes) && "Exceeded maximal pass threshold!"); - return true; - } - return false; -} - -bool VmaDefragmentationContext_T::ReallocWithinBlock(VmaBlockVector& vector, VmaDeviceMemoryBlock* block) -{ - VmaBlockMetadata* metadata = block->m_pMetadata; - - for (VmaAllocHandle handle = metadata->GetAllocationListBegin(); - handle != VK_NULL_HANDLE; - handle = metadata->GetNextAllocation(handle)) - { - MoveAllocationData moveData = GetMoveData(handle, metadata); - // Ignore newly created allocations by defragmentation algorithm - if (moveData.move.srcAllocation->GetUserData() == this) - continue; - switch (CheckCounters(moveData.move.srcAllocation->GetSize())) - { - case CounterStatus::Ignore: - continue; - case CounterStatus::End: - return true; - case CounterStatus::Pass: - break; - default: - VMA_ASSERT(0); - } - - VkDeviceSize offset = moveData.move.srcAllocation->GetOffset(); - if (offset != 0 && metadata->GetSumFreeSize() >= moveData.size) - { - VmaAllocationRequest request = {}; - if (metadata->CreateAllocationRequest( - moveData.size, - moveData.alignment, - false, - moveData.type, - VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT, - &request)) - { - if (metadata->GetAllocationOffset(request.allocHandle) < offset) - { - if (vector.CommitAllocationRequest( - request, - block, - moveData.alignment, - moveData.flags, - this, - moveData.type, - &moveData.move.dstTmpAllocation) == VK_SUCCESS) - { - m_Moves.push_back(moveData.move); - if (IncrementCounters(moveData.size)) - return true; - } - } - } - } - } - return false; -} - -bool VmaDefragmentationContext_T::AllocInOtherBlock(size_t start, size_t end, MoveAllocationData& data, VmaBlockVector& vector) -{ - for (; start < end; ++start) - { - VmaDeviceMemoryBlock* dstBlock = vector.GetBlock(start); - if (dstBlock->m_pMetadata->GetSumFreeSize() >= data.size) - { - if (vector.AllocateFromBlock(dstBlock, - data.size, - data.alignment, - data.flags, - this, - data.type, - 0, - &data.move.dstTmpAllocation) == VK_SUCCESS) - { - m_Moves.push_back(data.move); - if (IncrementCounters(data.size)) - return true; - break; - } - } - } - return false; -} - -bool VmaDefragmentationContext_T::ComputeDefragmentation_Fast(VmaBlockVector& vector) -{ - // Move only between blocks - - // Go through allocations in last blocks and try to fit them inside first ones - for (size_t i = vector.GetBlockCount() - 1; i > m_ImmovableBlockCount; --i) - { - VmaBlockMetadata* metadata = vector.GetBlock(i)->m_pMetadata; - - for (VmaAllocHandle handle = metadata->GetAllocationListBegin(); - handle != VK_NULL_HANDLE; - handle = metadata->GetNextAllocation(handle)) - { - MoveAllocationData moveData = GetMoveData(handle, metadata); - // Ignore newly created allocations by defragmentation algorithm - if (moveData.move.srcAllocation->GetUserData() == this) - continue; - switch (CheckCounters(moveData.move.srcAllocation->GetSize())) - { - case CounterStatus::Ignore: - continue; - case CounterStatus::End: - return true; - case CounterStatus::Pass: - break; - default: - VMA_ASSERT(0); - } - - // Check all previous blocks for free space - if (AllocInOtherBlock(0, i, moveData, vector)) - return true; - } - } - return false; -} - -bool VmaDefragmentationContext_T::ComputeDefragmentation_Balanced(VmaBlockVector& vector, size_t index, bool update) -{ - // Go over every allocation and try to fit it in previous blocks at lowest offsets, - // if not possible: realloc within single block to minimize offset (exclude offset == 0), - // but only if there are noticeable gaps between them (some heuristic, ex. average size of allocation in block) - VMA_ASSERT(m_AlgorithmState != VMA_NULL); - - StateBalanced& vectorState = reinterpret_cast(m_AlgorithmState)[index]; - if (update && vectorState.avgAllocSize == UINT64_MAX) - UpdateVectorStatistics(vector, vectorState); - - const size_t startMoveCount = m_Moves.size(); - VkDeviceSize minimalFreeRegion = vectorState.avgFreeSize / 2; - for (size_t i = vector.GetBlockCount() - 1; i > m_ImmovableBlockCount; --i) - { - VmaDeviceMemoryBlock* block = vector.GetBlock(i); - VmaBlockMetadata* metadata = block->m_pMetadata; - VkDeviceSize prevFreeRegionSize = 0; - - for (VmaAllocHandle handle = metadata->GetAllocationListBegin(); - handle != VK_NULL_HANDLE; - handle = metadata->GetNextAllocation(handle)) - { - MoveAllocationData moveData = GetMoveData(handle, metadata); - // Ignore newly created allocations by defragmentation algorithm - if (moveData.move.srcAllocation->GetUserData() == this) - continue; - switch (CheckCounters(moveData.move.srcAllocation->GetSize())) - { - case CounterStatus::Ignore: - continue; - case CounterStatus::End: - return true; - case CounterStatus::Pass: - break; - default: - VMA_ASSERT(0); - } - - // Check all previous blocks for free space - const size_t prevMoveCount = m_Moves.size(); - if (AllocInOtherBlock(0, i, moveData, vector)) - return true; - - VkDeviceSize nextFreeRegionSize = metadata->GetNextFreeRegionSize(handle); - // If no room found then realloc within block for lower offset - VkDeviceSize offset = moveData.move.srcAllocation->GetOffset(); - if (prevMoveCount == m_Moves.size() && offset != 0 && metadata->GetSumFreeSize() >= moveData.size) - { - // Check if realloc will make sense - if (prevFreeRegionSize >= minimalFreeRegion || - nextFreeRegionSize >= minimalFreeRegion || - moveData.size <= vectorState.avgFreeSize || - moveData.size <= vectorState.avgAllocSize) - { - VmaAllocationRequest request = {}; - if (metadata->CreateAllocationRequest( - moveData.size, - moveData.alignment, - false, - moveData.type, - VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT, - &request)) - { - if (metadata->GetAllocationOffset(request.allocHandle) < offset) - { - if (vector.CommitAllocationRequest( - request, - block, - moveData.alignment, - moveData.flags, - this, - moveData.type, - &moveData.move.dstTmpAllocation) == VK_SUCCESS) - { - m_Moves.push_back(moveData.move); - if (IncrementCounters(moveData.size)) - return true; - } - } - } - } - } - prevFreeRegionSize = nextFreeRegionSize; - } - } - - // No moves performed, update statistics to current vector state - if (startMoveCount == m_Moves.size() && !update) - { - vectorState.avgAllocSize = UINT64_MAX; - return ComputeDefragmentation_Balanced(vector, index, false); - } - return false; -} - -bool VmaDefragmentationContext_T::ComputeDefragmentation_Full(VmaBlockVector& vector) -{ - // Go over every allocation and try to fit it in previous blocks at lowest offsets, - // if not possible: realloc within single block to minimize offset (exclude offset == 0) - - for (size_t i = vector.GetBlockCount() - 1; i > m_ImmovableBlockCount; --i) - { - VmaDeviceMemoryBlock* block = vector.GetBlock(i); - VmaBlockMetadata* metadata = block->m_pMetadata; - - for (VmaAllocHandle handle = metadata->GetAllocationListBegin(); - handle != VK_NULL_HANDLE; - handle = metadata->GetNextAllocation(handle)) - { - MoveAllocationData moveData = GetMoveData(handle, metadata); - // Ignore newly created allocations by defragmentation algorithm - if (moveData.move.srcAllocation->GetUserData() == this) - continue; - switch (CheckCounters(moveData.move.srcAllocation->GetSize())) - { - case CounterStatus::Ignore: - continue; - case CounterStatus::End: - return true; - case CounterStatus::Pass: - break; - default: - VMA_ASSERT(0); - } - - // Check all previous blocks for free space - const size_t prevMoveCount = m_Moves.size(); - if (AllocInOtherBlock(0, i, moveData, vector)) - return true; - - // If no room found then realloc within block for lower offset - VkDeviceSize offset = moveData.move.srcAllocation->GetOffset(); - if (prevMoveCount == m_Moves.size() && offset != 0 && metadata->GetSumFreeSize() >= moveData.size) - { - VmaAllocationRequest request = {}; - if (metadata->CreateAllocationRequest( - moveData.size, - moveData.alignment, - false, - moveData.type, - VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT, - &request)) - { - if (metadata->GetAllocationOffset(request.allocHandle) < offset) - { - if (vector.CommitAllocationRequest( - request, - block, - moveData.alignment, - moveData.flags, - this, - moveData.type, - &moveData.move.dstTmpAllocation) == VK_SUCCESS) - { - m_Moves.push_back(moveData.move); - if (IncrementCounters(moveData.size)) - return true; - } - } - } - } - } - } - return false; -} - -bool VmaDefragmentationContext_T::ComputeDefragmentation_Extensive(VmaBlockVector& vector, size_t index) -{ - // First free single block, then populate it to the brim, then free another block, and so on - - // Fallback to previous algorithm since without granularity conflicts it can achieve max packing - if (vector.m_BufferImageGranularity == 1) - return ComputeDefragmentation_Full(vector); - - VMA_ASSERT(m_AlgorithmState != VMA_NULL); - - StateExtensive& vectorState = reinterpret_cast(m_AlgorithmState)[index]; - - bool texturePresent = false, bufferPresent = false, otherPresent = false; - switch (vectorState.operation) - { - case StateExtensive::Operation::Done: // Vector defragmented - return false; - case StateExtensive::Operation::FindFreeBlockBuffer: - case StateExtensive::Operation::FindFreeBlockTexture: - case StateExtensive::Operation::FindFreeBlockAll: - { - // No more blocks to free, just perform fast realloc and move to cleanup - if (vectorState.firstFreeBlock == 0) - { - vectorState.operation = StateExtensive::Operation::Cleanup; - return ComputeDefragmentation_Fast(vector); - } - - // No free blocks, have to clear last one - size_t last = (vectorState.firstFreeBlock == SIZE_MAX ? vector.GetBlockCount() : vectorState.firstFreeBlock) - 1; - VmaBlockMetadata* freeMetadata = vector.GetBlock(last)->m_pMetadata; - - const size_t prevMoveCount = m_Moves.size(); - for (VmaAllocHandle handle = freeMetadata->GetAllocationListBegin(); - handle != VK_NULL_HANDLE; - handle = freeMetadata->GetNextAllocation(handle)) - { - MoveAllocationData moveData = GetMoveData(handle, freeMetadata); - switch (CheckCounters(moveData.move.srcAllocation->GetSize())) - { - case CounterStatus::Ignore: - continue; - case CounterStatus::End: - return true; - case CounterStatus::Pass: - break; - default: - VMA_ASSERT(0); - } - - // Check all previous blocks for free space - if (AllocInOtherBlock(0, last, moveData, vector)) - { - // Full clear performed already - if (prevMoveCount != m_Moves.size() && freeMetadata->GetNextAllocation(handle) == VK_NULL_HANDLE) - vectorState.firstFreeBlock = last; - return true; - } - } - - if (prevMoveCount == m_Moves.size()) - { - // Cannot perform full clear, have to move data in other blocks around - if (last != 0) - { - for (size_t i = last - 1; i; --i) - { - if (ReallocWithinBlock(vector, vector.GetBlock(i))) - return true; - } - } - - if (prevMoveCount == m_Moves.size()) - { - // No possible reallocs within blocks, try to move them around fast - return ComputeDefragmentation_Fast(vector); - } - } - else - { - switch (vectorState.operation) - { - case StateExtensive::Operation::FindFreeBlockBuffer: - vectorState.operation = StateExtensive::Operation::MoveBuffers; - break; - case StateExtensive::Operation::FindFreeBlockTexture: - vectorState.operation = StateExtensive::Operation::MoveTextures; - break; - case StateExtensive::Operation::FindFreeBlockAll: - vectorState.operation = StateExtensive::Operation::MoveAll; - break; - default: - VMA_ASSERT(0); - vectorState.operation = StateExtensive::Operation::MoveTextures; - } - vectorState.firstFreeBlock = last; - // Nothing done, block found without reallocations, can perform another reallocs in same pass - return ComputeDefragmentation_Extensive(vector, index); - } - break; - } - case StateExtensive::Operation::MoveTextures: - { - if (MoveDataToFreeBlocks(VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL, vector, - vectorState.firstFreeBlock, texturePresent, bufferPresent, otherPresent)) - { - if (texturePresent) - { - vectorState.operation = StateExtensive::Operation::FindFreeBlockTexture; - return ComputeDefragmentation_Extensive(vector, index); - } - - if (!bufferPresent && !otherPresent) - { - vectorState.operation = StateExtensive::Operation::Cleanup; - break; - } - - // No more textures to move, check buffers - vectorState.operation = StateExtensive::Operation::MoveBuffers; - bufferPresent = false; - otherPresent = false; - } - else - break; - VMA_FALLTHROUGH; // Fallthrough - } - case StateExtensive::Operation::MoveBuffers: - { - if (MoveDataToFreeBlocks(VMA_SUBALLOCATION_TYPE_BUFFER, vector, - vectorState.firstFreeBlock, texturePresent, bufferPresent, otherPresent)) - { - if (bufferPresent) - { - vectorState.operation = StateExtensive::Operation::FindFreeBlockBuffer; - return ComputeDefragmentation_Extensive(vector, index); - } - - if (!otherPresent) - { - vectorState.operation = StateExtensive::Operation::Cleanup; - break; - } - - // No more buffers to move, check all others - vectorState.operation = StateExtensive::Operation::MoveAll; - otherPresent = false; - } - else - break; - VMA_FALLTHROUGH; // Fallthrough - } - case StateExtensive::Operation::MoveAll: - { - if (MoveDataToFreeBlocks(VMA_SUBALLOCATION_TYPE_FREE, vector, - vectorState.firstFreeBlock, texturePresent, bufferPresent, otherPresent)) - { - if (otherPresent) - { - vectorState.operation = StateExtensive::Operation::FindFreeBlockBuffer; - return ComputeDefragmentation_Extensive(vector, index); - } - // Everything moved - vectorState.operation = StateExtensive::Operation::Cleanup; - } - break; - } - case StateExtensive::Operation::Cleanup: - // Cleanup is handled below so that other operations may reuse the cleanup code. This case is here to prevent the unhandled enum value warning (C4062). - break; - } - - if (vectorState.operation == StateExtensive::Operation::Cleanup) - { - // All other work done, pack data in blocks even tighter if possible - const size_t prevMoveCount = m_Moves.size(); - for (size_t i = 0; i < vector.GetBlockCount(); ++i) - { - if (ReallocWithinBlock(vector, vector.GetBlock(i))) - return true; - } - - if (prevMoveCount == m_Moves.size()) - vectorState.operation = StateExtensive::Operation::Done; - } - return false; -} - -void VmaDefragmentationContext_T::UpdateVectorStatistics(VmaBlockVector& vector, StateBalanced& state) -{ - size_t allocCount = 0; - size_t freeCount = 0; - state.avgFreeSize = 0; - state.avgAllocSize = 0; - - for (size_t i = 0; i < vector.GetBlockCount(); ++i) - { - VmaBlockMetadata* metadata = vector.GetBlock(i)->m_pMetadata; - - allocCount += metadata->GetAllocationCount(); - freeCount += metadata->GetFreeRegionsCount(); - state.avgFreeSize += metadata->GetSumFreeSize(); - state.avgAllocSize += metadata->GetSize(); - } - - state.avgAllocSize = (state.avgAllocSize - state.avgFreeSize) / allocCount; - state.avgFreeSize /= freeCount; -} - -bool VmaDefragmentationContext_T::MoveDataToFreeBlocks(VmaSuballocationType currentType, - VmaBlockVector& vector, size_t firstFreeBlock, - bool& texturePresent, bool& bufferPresent, bool& otherPresent) -{ - const size_t prevMoveCount = m_Moves.size(); - for (size_t i = firstFreeBlock ; i;) - { - VmaDeviceMemoryBlock* block = vector.GetBlock(--i); - VmaBlockMetadata* metadata = block->m_pMetadata; - - for (VmaAllocHandle handle = metadata->GetAllocationListBegin(); - handle != VK_NULL_HANDLE; - handle = metadata->GetNextAllocation(handle)) - { - MoveAllocationData moveData = GetMoveData(handle, metadata); - // Ignore newly created allocations by defragmentation algorithm - if (moveData.move.srcAllocation->GetUserData() == this) - continue; - switch (CheckCounters(moveData.move.srcAllocation->GetSize())) - { - case CounterStatus::Ignore: - continue; - case CounterStatus::End: - return true; - case CounterStatus::Pass: - break; - default: - VMA_ASSERT(0); - } - - // Move only single type of resources at once - if (!VmaIsBufferImageGranularityConflict(moveData.type, currentType)) - { - // Try to fit allocation into free blocks - if (AllocInOtherBlock(firstFreeBlock, vector.GetBlockCount(), moveData, vector)) - return false; - } - - if (!VmaIsBufferImageGranularityConflict(moveData.type, VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL)) - texturePresent = true; - else if (!VmaIsBufferImageGranularityConflict(moveData.type, VMA_SUBALLOCATION_TYPE_BUFFER)) - bufferPresent = true; - else - otherPresent = true; - } - } - return prevMoveCount == m_Moves.size(); -} -#endif // _VMA_DEFRAGMENTATION_CONTEXT_FUNCTIONS - -#ifndef _VMA_POOL_T_FUNCTIONS -VmaPool_T::VmaPool_T( - VmaAllocator hAllocator, - const VmaPoolCreateInfo& createInfo, - VkDeviceSize preferredBlockSize) - : m_BlockVector( - hAllocator, - this, // hParentPool - createInfo.memoryTypeIndex, - createInfo.blockSize != 0 ? createInfo.blockSize : preferredBlockSize, - createInfo.minBlockCount, - createInfo.maxBlockCount, - (createInfo.flags& VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT) != 0 ? 1 : hAllocator->GetBufferImageGranularity(), - createInfo.blockSize != 0, // explicitBlockSize - createInfo.flags & VMA_POOL_CREATE_ALGORITHM_MASK, // algorithm - createInfo.priority, - VMA_MAX(hAllocator->GetMemoryTypeMinAlignment(createInfo.memoryTypeIndex), createInfo.minAllocationAlignment), - createInfo.pMemoryAllocateNext), - m_Id(0), - m_Name(VMA_NULL) {} - -VmaPool_T::~VmaPool_T() -{ - VMA_ASSERT(m_PrevPool == VMA_NULL && m_NextPool == VMA_NULL); - - const VkAllocationCallbacks* allocs = m_BlockVector.GetAllocator()->GetAllocationCallbacks(); - VmaFreeString(allocs, m_Name); -} - -void VmaPool_T::SetName(const char* pName) -{ - const VkAllocationCallbacks* allocs = m_BlockVector.GetAllocator()->GetAllocationCallbacks(); - VmaFreeString(allocs, m_Name); - - if (pName != VMA_NULL) - { - m_Name = VmaCreateStringCopy(allocs, pName); - } - else - { - m_Name = VMA_NULL; - } -} -#endif // _VMA_POOL_T_FUNCTIONS - -#ifndef _VMA_ALLOCATOR_T_FUNCTIONS -VmaAllocator_T::VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo) : - m_UseMutex((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT) == 0), - m_VulkanApiVersion(pCreateInfo->vulkanApiVersion != 0 ? pCreateInfo->vulkanApiVersion : VK_API_VERSION_1_0), - m_UseKhrDedicatedAllocation((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0), - m_UseKhrBindMemory2((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT) != 0), - m_UseExtMemoryBudget((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT) != 0), - m_UseAmdDeviceCoherentMemory((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT) != 0), - m_UseKhrBufferDeviceAddress((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT) != 0), - m_UseExtMemoryPriority((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT) != 0), - m_UseKhrMaintenance4((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_MAINTENANCE4_BIT) != 0), - m_UseKhrMaintenance5((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_MAINTENANCE5_BIT) != 0), - m_UseKhrExternalMemoryWin32((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_EXTERNAL_MEMORY_WIN32_BIT) != 0), - m_hDevice(pCreateInfo->device), - m_hInstance(pCreateInfo->instance), - m_AllocationCallbacksSpecified(pCreateInfo->pAllocationCallbacks != VMA_NULL), - m_AllocationCallbacks(pCreateInfo->pAllocationCallbacks ? - *pCreateInfo->pAllocationCallbacks : VmaEmptyAllocationCallbacks), - m_AllocationObjectAllocator(&m_AllocationCallbacks), - m_HeapSizeLimitMask(0), - m_DeviceMemoryCount(0), - m_PreferredLargeHeapBlockSize(0), - m_PhysicalDevice(pCreateInfo->physicalDevice), - m_GpuDefragmentationMemoryTypeBits(UINT32_MAX), - m_NextPoolId(0), - m_GlobalMemoryTypeBits(UINT32_MAX) -{ - if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) - { - m_UseKhrDedicatedAllocation = false; - m_UseKhrBindMemory2 = false; - } - - if(VMA_DEBUG_DETECT_CORRUPTION) - { - // Needs to be multiply of uint32_t size because we are going to write VMA_CORRUPTION_DETECTION_MAGIC_VALUE to it. - VMA_ASSERT(VMA_DEBUG_MARGIN % sizeof(uint32_t) == 0); - } - - VMA_ASSERT(pCreateInfo->physicalDevice && pCreateInfo->device && pCreateInfo->instance); - - if(m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0)) - { -#if !(VMA_DEDICATED_ALLOCATION) - if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0) - { - VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT set but required extensions are disabled by preprocessor macros."); - } -#endif -#if !(VMA_BIND_MEMORY2) - if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT) != 0) - { - VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT set but required extension is disabled by preprocessor macros."); - } -#endif - } -#if !(VMA_MEMORY_BUDGET) - if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT) != 0) - { - VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT set but required extension is disabled by preprocessor macros."); - } -#endif -#if !(VMA_BUFFER_DEVICE_ADDRESS) - if(m_UseKhrBufferDeviceAddress) - { - VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT is set but required extension or Vulkan 1.2 is not available in your Vulkan header or its support in VMA has been disabled by a preprocessor macro."); - } -#endif -#if VMA_VULKAN_VERSION < 1004000 - VMA_ASSERT(m_VulkanApiVersion < VK_MAKE_VERSION(1, 4, 0) && "vulkanApiVersion >= VK_API_VERSION_1_4 but required Vulkan version is disabled by preprocessor macros."); -#endif -#if VMA_VULKAN_VERSION < 1003000 - VMA_ASSERT(m_VulkanApiVersion < VK_MAKE_VERSION(1, 3, 0) && "vulkanApiVersion >= VK_API_VERSION_1_3 but required Vulkan version is disabled by preprocessor macros."); -#endif -#if VMA_VULKAN_VERSION < 1002000 - VMA_ASSERT(m_VulkanApiVersion < VK_MAKE_VERSION(1, 2, 0) && "vulkanApiVersion >= VK_API_VERSION_1_2 but required Vulkan version is disabled by preprocessor macros."); -#endif -#if VMA_VULKAN_VERSION < 1001000 - VMA_ASSERT(m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0) && "vulkanApiVersion >= VK_API_VERSION_1_1 but required Vulkan version is disabled by preprocessor macros."); -#endif -#if !(VMA_MEMORY_PRIORITY) - if(m_UseExtMemoryPriority) - { - VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT is set but required extension is not available in your Vulkan header or its support in VMA has been disabled by a preprocessor macro."); - } -#endif -#if !(VMA_KHR_MAINTENANCE4) - if(m_UseKhrMaintenance4) - { - VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_MAINTENANCE4_BIT is set but required extension is not available in your Vulkan header or its support in VMA has been disabled by a preprocessor macro."); - } -#endif -#if !(VMA_KHR_MAINTENANCE5) - if(m_UseKhrMaintenance5) - { - VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_MAINTENANCE5_BIT is set but required extension is not available in your Vulkan header or its support in VMA has been disabled by a preprocessor macro."); - } -#endif -#if !(VMA_KHR_MAINTENANCE5) - if(m_UseKhrMaintenance5) - { - VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_MAINTENANCE5_BIT is set but required extension is not available in your Vulkan header or its support in VMA has been disabled by a preprocessor macro."); - } -#endif - -#if !(VMA_EXTERNAL_MEMORY_WIN32) - if(m_UseKhrExternalMemoryWin32) - { - VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_EXTERNAL_MEMORY_WIN32_BIT is set but required extension is not available in your Vulkan header or its support in VMA has been disabled by a preprocessor macro."); - } -#endif - - memset(&m_DeviceMemoryCallbacks, 0 ,sizeof(m_DeviceMemoryCallbacks)); - memset(&m_PhysicalDeviceProperties, 0, sizeof(m_PhysicalDeviceProperties)); - memset(&m_MemProps, 0, sizeof(m_MemProps)); - - memset(&m_pBlockVectors, 0, sizeof(m_pBlockVectors)); - memset(&m_VulkanFunctions, 0, sizeof(m_VulkanFunctions)); - -#if VMA_EXTERNAL_MEMORY - memset(&m_TypeExternalMemoryHandleTypes, 0, sizeof(m_TypeExternalMemoryHandleTypes)); -#endif // #if VMA_EXTERNAL_MEMORY - - if(pCreateInfo->pDeviceMemoryCallbacks != VMA_NULL) - { - m_DeviceMemoryCallbacks.pUserData = pCreateInfo->pDeviceMemoryCallbacks->pUserData; - m_DeviceMemoryCallbacks.pfnAllocate = pCreateInfo->pDeviceMemoryCallbacks->pfnAllocate; - m_DeviceMemoryCallbacks.pfnFree = pCreateInfo->pDeviceMemoryCallbacks->pfnFree; - } - - ImportVulkanFunctions(pCreateInfo->pVulkanFunctions); - - (*m_VulkanFunctions.vkGetPhysicalDeviceProperties)(m_PhysicalDevice, &m_PhysicalDeviceProperties); - (*m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties)(m_PhysicalDevice, &m_MemProps); - - VMA_ASSERT(VmaIsPow2(VMA_MIN_ALIGNMENT)); - VMA_ASSERT(VmaIsPow2(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY)); - VMA_ASSERT(VmaIsPow2(m_PhysicalDeviceProperties.limits.bufferImageGranularity)); - VMA_ASSERT(VmaIsPow2(m_PhysicalDeviceProperties.limits.nonCoherentAtomSize)); - - m_PreferredLargeHeapBlockSize = (pCreateInfo->preferredLargeHeapBlockSize != 0) ? - pCreateInfo->preferredLargeHeapBlockSize : static_cast(VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE); - - m_GlobalMemoryTypeBits = CalculateGlobalMemoryTypeBits(); - -#if VMA_EXTERNAL_MEMORY - if(pCreateInfo->pTypeExternalMemoryHandleTypes != VMA_NULL) - { - memcpy(m_TypeExternalMemoryHandleTypes, pCreateInfo->pTypeExternalMemoryHandleTypes, - sizeof(VkExternalMemoryHandleTypeFlagsKHR) * GetMemoryTypeCount()); - } -#endif // #if VMA_EXTERNAL_MEMORY - - if(pCreateInfo->pHeapSizeLimit != VMA_NULL) - { - for(uint32_t heapIndex = 0; heapIndex < GetMemoryHeapCount(); ++heapIndex) - { - const VkDeviceSize limit = pCreateInfo->pHeapSizeLimit[heapIndex]; - if(limit != VK_WHOLE_SIZE) - { - m_HeapSizeLimitMask |= 1u << heapIndex; - if(limit < m_MemProps.memoryHeaps[heapIndex].size) - { - m_MemProps.memoryHeaps[heapIndex].size = limit; - } - } - } - } - - for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) - { - // Create only supported types - if((m_GlobalMemoryTypeBits & (1u << memTypeIndex)) != 0) - { - const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(memTypeIndex); - m_pBlockVectors[memTypeIndex] = vma_new(this, VmaBlockVector)( - this, - VK_NULL_HANDLE, // hParentPool - memTypeIndex, - preferredBlockSize, - 0, - SIZE_MAX, - GetBufferImageGranularity(), - false, // explicitBlockSize - 0, // algorithm - 0.5f, // priority (0.5 is the default per Vulkan spec) - GetMemoryTypeMinAlignment(memTypeIndex), // minAllocationAlignment - VMA_NULL); // // pMemoryAllocateNext - // No need to call m_pBlockVectors[memTypeIndex][blockVectorTypeIndex]->CreateMinBlocks here, - // because minBlockCount is 0. - } - } -} - -VkResult VmaAllocator_T::Init(const VmaAllocatorCreateInfo* pCreateInfo) -{ - VkResult res = VK_SUCCESS; - -#if VMA_MEMORY_BUDGET - if(m_UseExtMemoryBudget) - { - UpdateVulkanBudget(); - } -#endif // #if VMA_MEMORY_BUDGET - - return res; -} - -VmaAllocator_T::~VmaAllocator_T() -{ - VMA_ASSERT(m_Pools.IsEmpty()); - - for(size_t memTypeIndex = GetMemoryTypeCount(); memTypeIndex--; ) - { - vma_delete(this, m_pBlockVectors[memTypeIndex]); - } -} - -void VmaAllocator_T::ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions) -{ -#if VMA_STATIC_VULKAN_FUNCTIONS == 1 - ImportVulkanFunctions_Static(); -#endif - - if(pVulkanFunctions != VMA_NULL) - { - ImportVulkanFunctions_Custom(pVulkanFunctions); - } - -#if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1 - ImportVulkanFunctions_Dynamic(); -#endif - - ValidateVulkanFunctions(); -} - -#if VMA_STATIC_VULKAN_FUNCTIONS == 1 - -void VmaAllocator_T::ImportVulkanFunctions_Static() -{ - // Vulkan 1.0 - m_VulkanFunctions.vkGetInstanceProcAddr = (PFN_vkGetInstanceProcAddr)vkGetInstanceProcAddr; - m_VulkanFunctions.vkGetDeviceProcAddr = (PFN_vkGetDeviceProcAddr)vkGetDeviceProcAddr; - m_VulkanFunctions.vkGetPhysicalDeviceProperties = (PFN_vkGetPhysicalDeviceProperties)vkGetPhysicalDeviceProperties; - m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties = (PFN_vkGetPhysicalDeviceMemoryProperties)vkGetPhysicalDeviceMemoryProperties; - m_VulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkAllocateMemory; - m_VulkanFunctions.vkFreeMemory = (PFN_vkFreeMemory)vkFreeMemory; - m_VulkanFunctions.vkMapMemory = (PFN_vkMapMemory)vkMapMemory; - m_VulkanFunctions.vkUnmapMemory = (PFN_vkUnmapMemory)vkUnmapMemory; - m_VulkanFunctions.vkFlushMappedMemoryRanges = (PFN_vkFlushMappedMemoryRanges)vkFlushMappedMemoryRanges; - m_VulkanFunctions.vkInvalidateMappedMemoryRanges = (PFN_vkInvalidateMappedMemoryRanges)vkInvalidateMappedMemoryRanges; - m_VulkanFunctions.vkBindBufferMemory = (PFN_vkBindBufferMemory)vkBindBufferMemory; - m_VulkanFunctions.vkBindImageMemory = (PFN_vkBindImageMemory)vkBindImageMemory; - m_VulkanFunctions.vkGetBufferMemoryRequirements = (PFN_vkGetBufferMemoryRequirements)vkGetBufferMemoryRequirements; - m_VulkanFunctions.vkGetImageMemoryRequirements = (PFN_vkGetImageMemoryRequirements)vkGetImageMemoryRequirements; - m_VulkanFunctions.vkCreateBuffer = (PFN_vkCreateBuffer)vkCreateBuffer; - m_VulkanFunctions.vkDestroyBuffer = (PFN_vkDestroyBuffer)vkDestroyBuffer; - m_VulkanFunctions.vkCreateImage = (PFN_vkCreateImage)vkCreateImage; - m_VulkanFunctions.vkDestroyImage = (PFN_vkDestroyImage)vkDestroyImage; - m_VulkanFunctions.vkCmdCopyBuffer = (PFN_vkCmdCopyBuffer)vkCmdCopyBuffer; - - // Vulkan 1.1 -#if VMA_VULKAN_VERSION >= 1001000 - if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) - { - m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR = (PFN_vkGetBufferMemoryRequirements2)vkGetBufferMemoryRequirements2; - m_VulkanFunctions.vkGetImageMemoryRequirements2KHR = (PFN_vkGetImageMemoryRequirements2)vkGetImageMemoryRequirements2; - m_VulkanFunctions.vkBindBufferMemory2KHR = (PFN_vkBindBufferMemory2)vkBindBufferMemory2; - m_VulkanFunctions.vkBindImageMemory2KHR = (PFN_vkBindImageMemory2)vkBindImageMemory2; - } -#endif - -#if VMA_VULKAN_VERSION >= 1001000 - if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) - { - m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties2KHR = (PFN_vkGetPhysicalDeviceMemoryProperties2)vkGetPhysicalDeviceMemoryProperties2; - } -#endif - -#if VMA_VULKAN_VERSION >= 1003000 - if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 3, 0)) - { - m_VulkanFunctions.vkGetDeviceBufferMemoryRequirements = (PFN_vkGetDeviceBufferMemoryRequirements)vkGetDeviceBufferMemoryRequirements; - m_VulkanFunctions.vkGetDeviceImageMemoryRequirements = (PFN_vkGetDeviceImageMemoryRequirements)vkGetDeviceImageMemoryRequirements; - } -#endif -} - -#endif // VMA_STATIC_VULKAN_FUNCTIONS == 1 - -void VmaAllocator_T::ImportVulkanFunctions_Custom(const VmaVulkanFunctions* pVulkanFunctions) -{ - VMA_ASSERT(pVulkanFunctions != VMA_NULL); - -#define VMA_COPY_IF_NOT_NULL(funcName) \ - if(pVulkanFunctions->funcName != VMA_NULL) m_VulkanFunctions.funcName = pVulkanFunctions->funcName; - - VMA_COPY_IF_NOT_NULL(vkGetInstanceProcAddr); - VMA_COPY_IF_NOT_NULL(vkGetDeviceProcAddr); - VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceProperties); - VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceMemoryProperties); - VMA_COPY_IF_NOT_NULL(vkAllocateMemory); - VMA_COPY_IF_NOT_NULL(vkFreeMemory); - VMA_COPY_IF_NOT_NULL(vkMapMemory); - VMA_COPY_IF_NOT_NULL(vkUnmapMemory); - VMA_COPY_IF_NOT_NULL(vkFlushMappedMemoryRanges); - VMA_COPY_IF_NOT_NULL(vkInvalidateMappedMemoryRanges); - VMA_COPY_IF_NOT_NULL(vkBindBufferMemory); - VMA_COPY_IF_NOT_NULL(vkBindImageMemory); - VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements); - VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements); - VMA_COPY_IF_NOT_NULL(vkCreateBuffer); - VMA_COPY_IF_NOT_NULL(vkDestroyBuffer); - VMA_COPY_IF_NOT_NULL(vkCreateImage); - VMA_COPY_IF_NOT_NULL(vkDestroyImage); - VMA_COPY_IF_NOT_NULL(vkCmdCopyBuffer); - -#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 - VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements2KHR); - VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements2KHR); -#endif - -#if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000 - VMA_COPY_IF_NOT_NULL(vkBindBufferMemory2KHR); - VMA_COPY_IF_NOT_NULL(vkBindImageMemory2KHR); -#endif - -#if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000 - VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceMemoryProperties2KHR); -#endif - -#if VMA_KHR_MAINTENANCE4 || VMA_VULKAN_VERSION >= 1003000 - VMA_COPY_IF_NOT_NULL(vkGetDeviceBufferMemoryRequirements); - VMA_COPY_IF_NOT_NULL(vkGetDeviceImageMemoryRequirements); -#endif -#if VMA_EXTERNAL_MEMORY_WIN32 - VMA_COPY_IF_NOT_NULL(vkGetMemoryWin32HandleKHR); -#endif -#undef VMA_COPY_IF_NOT_NULL -} - -#if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1 - -void VmaAllocator_T::ImportVulkanFunctions_Dynamic() -{ - VMA_ASSERT(m_VulkanFunctions.vkGetInstanceProcAddr && m_VulkanFunctions.vkGetDeviceProcAddr && - "To use VMA_DYNAMIC_VULKAN_FUNCTIONS in new versions of VMA you now have to pass " - "VmaVulkanFunctions::vkGetInstanceProcAddr and vkGetDeviceProcAddr as VmaAllocatorCreateInfo::pVulkanFunctions. " - "Other members can be null."); - -#define VMA_FETCH_INSTANCE_FUNC(memberName, functionPointerType, functionNameString) \ - if(m_VulkanFunctions.memberName == VMA_NULL) \ - m_VulkanFunctions.memberName = \ - (functionPointerType)m_VulkanFunctions.vkGetInstanceProcAddr(m_hInstance, functionNameString); -#define VMA_FETCH_DEVICE_FUNC(memberName, functionPointerType, functionNameString) \ - if(m_VulkanFunctions.memberName == VMA_NULL) \ - m_VulkanFunctions.memberName = \ - (functionPointerType)m_VulkanFunctions.vkGetDeviceProcAddr(m_hDevice, functionNameString); - - VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceProperties, PFN_vkGetPhysicalDeviceProperties, "vkGetPhysicalDeviceProperties"); - VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties, PFN_vkGetPhysicalDeviceMemoryProperties, "vkGetPhysicalDeviceMemoryProperties"); - VMA_FETCH_DEVICE_FUNC(vkAllocateMemory, PFN_vkAllocateMemory, "vkAllocateMemory"); - VMA_FETCH_DEVICE_FUNC(vkFreeMemory, PFN_vkFreeMemory, "vkFreeMemory"); - VMA_FETCH_DEVICE_FUNC(vkMapMemory, PFN_vkMapMemory, "vkMapMemory"); - VMA_FETCH_DEVICE_FUNC(vkUnmapMemory, PFN_vkUnmapMemory, "vkUnmapMemory"); - VMA_FETCH_DEVICE_FUNC(vkFlushMappedMemoryRanges, PFN_vkFlushMappedMemoryRanges, "vkFlushMappedMemoryRanges"); - VMA_FETCH_DEVICE_FUNC(vkInvalidateMappedMemoryRanges, PFN_vkInvalidateMappedMemoryRanges, "vkInvalidateMappedMemoryRanges"); - VMA_FETCH_DEVICE_FUNC(vkBindBufferMemory, PFN_vkBindBufferMemory, "vkBindBufferMemory"); - VMA_FETCH_DEVICE_FUNC(vkBindImageMemory, PFN_vkBindImageMemory, "vkBindImageMemory"); - VMA_FETCH_DEVICE_FUNC(vkGetBufferMemoryRequirements, PFN_vkGetBufferMemoryRequirements, "vkGetBufferMemoryRequirements"); - VMA_FETCH_DEVICE_FUNC(vkGetImageMemoryRequirements, PFN_vkGetImageMemoryRequirements, "vkGetImageMemoryRequirements"); - VMA_FETCH_DEVICE_FUNC(vkCreateBuffer, PFN_vkCreateBuffer, "vkCreateBuffer"); - VMA_FETCH_DEVICE_FUNC(vkDestroyBuffer, PFN_vkDestroyBuffer, "vkDestroyBuffer"); - VMA_FETCH_DEVICE_FUNC(vkCreateImage, PFN_vkCreateImage, "vkCreateImage"); - VMA_FETCH_DEVICE_FUNC(vkDestroyImage, PFN_vkDestroyImage, "vkDestroyImage"); - VMA_FETCH_DEVICE_FUNC(vkCmdCopyBuffer, PFN_vkCmdCopyBuffer, "vkCmdCopyBuffer"); - -#if VMA_VULKAN_VERSION >= 1001000 - if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) - { - VMA_FETCH_DEVICE_FUNC(vkGetBufferMemoryRequirements2KHR, PFN_vkGetBufferMemoryRequirements2, "vkGetBufferMemoryRequirements2"); - VMA_FETCH_DEVICE_FUNC(vkGetImageMemoryRequirements2KHR, PFN_vkGetImageMemoryRequirements2, "vkGetImageMemoryRequirements2"); - VMA_FETCH_DEVICE_FUNC(vkBindBufferMemory2KHR, PFN_vkBindBufferMemory2, "vkBindBufferMemory2"); - VMA_FETCH_DEVICE_FUNC(vkBindImageMemory2KHR, PFN_vkBindImageMemory2, "vkBindImageMemory2"); - } -#endif - -#if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000 - if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) - { - VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties2KHR, PFN_vkGetPhysicalDeviceMemoryProperties2KHR, "vkGetPhysicalDeviceMemoryProperties2"); - } - else if(m_UseExtMemoryBudget) - { - VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties2KHR, PFN_vkGetPhysicalDeviceMemoryProperties2KHR, "vkGetPhysicalDeviceMemoryProperties2KHR"); - } -#endif - -#if VMA_DEDICATED_ALLOCATION - if(m_UseKhrDedicatedAllocation) - { - VMA_FETCH_DEVICE_FUNC(vkGetBufferMemoryRequirements2KHR, PFN_vkGetBufferMemoryRequirements2KHR, "vkGetBufferMemoryRequirements2KHR"); - VMA_FETCH_DEVICE_FUNC(vkGetImageMemoryRequirements2KHR, PFN_vkGetImageMemoryRequirements2KHR, "vkGetImageMemoryRequirements2KHR"); - } -#endif - -#if VMA_BIND_MEMORY2 - if(m_UseKhrBindMemory2) - { - VMA_FETCH_DEVICE_FUNC(vkBindBufferMemory2KHR, PFN_vkBindBufferMemory2KHR, "vkBindBufferMemory2KHR"); - VMA_FETCH_DEVICE_FUNC(vkBindImageMemory2KHR, PFN_vkBindImageMemory2KHR, "vkBindImageMemory2KHR"); - } -#endif // #if VMA_BIND_MEMORY2 - -#if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000 - if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) - { - VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties2KHR, PFN_vkGetPhysicalDeviceMemoryProperties2KHR, "vkGetPhysicalDeviceMemoryProperties2"); - } - else if(m_UseExtMemoryBudget) - { - VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties2KHR, PFN_vkGetPhysicalDeviceMemoryProperties2KHR, "vkGetPhysicalDeviceMemoryProperties2KHR"); - } -#endif // #if VMA_MEMORY_BUDGET - -#if VMA_VULKAN_VERSION >= 1003000 - if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 3, 0)) - { - VMA_FETCH_DEVICE_FUNC(vkGetDeviceBufferMemoryRequirements, PFN_vkGetDeviceBufferMemoryRequirements, "vkGetDeviceBufferMemoryRequirements"); - VMA_FETCH_DEVICE_FUNC(vkGetDeviceImageMemoryRequirements, PFN_vkGetDeviceImageMemoryRequirements, "vkGetDeviceImageMemoryRequirements"); - } -#endif -#if VMA_KHR_MAINTENANCE4 - if(m_UseKhrMaintenance4) - { - VMA_FETCH_DEVICE_FUNC(vkGetDeviceBufferMemoryRequirements, PFN_vkGetDeviceBufferMemoryRequirementsKHR, "vkGetDeviceBufferMemoryRequirementsKHR"); - VMA_FETCH_DEVICE_FUNC(vkGetDeviceImageMemoryRequirements, PFN_vkGetDeviceImageMemoryRequirementsKHR, "vkGetDeviceImageMemoryRequirementsKHR"); - } -#endif -#if VMA_EXTERNAL_MEMORY_WIN32 - if (m_UseKhrExternalMemoryWin32) - { - VMA_FETCH_DEVICE_FUNC(vkGetMemoryWin32HandleKHR, PFN_vkGetMemoryWin32HandleKHR, "vkGetMemoryWin32HandleKHR"); - } -#endif -#undef VMA_FETCH_DEVICE_FUNC -#undef VMA_FETCH_INSTANCE_FUNC -} - -#endif // VMA_DYNAMIC_VULKAN_FUNCTIONS == 1 - -void VmaAllocator_T::ValidateVulkanFunctions() -{ - VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceProperties != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkAllocateMemory != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkFreeMemory != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkMapMemory != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkUnmapMemory != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkFlushMappedMemoryRanges != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkInvalidateMappedMemoryRanges != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkBindBufferMemory != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkBindImageMemory != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkCreateBuffer != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkDestroyBuffer != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkCreateImage != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkDestroyImage != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkCmdCopyBuffer != VMA_NULL); - -#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 - if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0) || m_UseKhrDedicatedAllocation) - { - VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements2KHR != VMA_NULL); - } -#endif - -#if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000 - if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0) || m_UseKhrBindMemory2) - { - VMA_ASSERT(m_VulkanFunctions.vkBindBufferMemory2KHR != VMA_NULL); - VMA_ASSERT(m_VulkanFunctions.vkBindImageMemory2KHR != VMA_NULL); - } -#endif - -#if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000 - if(m_UseExtMemoryBudget || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) - { - VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties2KHR != VMA_NULL); - } -#endif -#if VMA_EXTERNAL_MEMORY_WIN32 - if (m_UseKhrExternalMemoryWin32) - { - VMA_ASSERT(m_VulkanFunctions.vkGetMemoryWin32HandleKHR != VMA_NULL); - } -#endif - - // Not validating these due to suspected driver bugs with these function - // pointers being null despite correct extension or Vulkan version is enabled. - // See issue #397. Their usage in VMA is optional anyway. - // - // VMA_ASSERT(m_VulkanFunctions.vkGetDeviceBufferMemoryRequirements != VMA_NULL); - // VMA_ASSERT(m_VulkanFunctions.vkGetDeviceImageMemoryRequirements != VMA_NULL); -} - -VkDeviceSize VmaAllocator_T::CalcPreferredBlockSize(uint32_t memTypeIndex) -{ - const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex); - const VkDeviceSize heapSize = m_MemProps.memoryHeaps[heapIndex].size; - const bool isSmallHeap = heapSize <= VMA_SMALL_HEAP_MAX_SIZE; - return VmaAlignUp(isSmallHeap ? (heapSize / 8) : m_PreferredLargeHeapBlockSize, (VkDeviceSize)32); -} - -VkResult VmaAllocator_T::AllocateMemoryOfType( - VmaPool pool, - VkDeviceSize size, - VkDeviceSize alignment, - bool dedicatedPreferred, - VkBuffer dedicatedBuffer, - VkImage dedicatedImage, - VmaBufferImageUsage dedicatedBufferImageUsage, - const VmaAllocationCreateInfo& createInfo, - uint32_t memTypeIndex, - VmaSuballocationType suballocType, - VmaDedicatedAllocationList& dedicatedAllocations, - VmaBlockVector& blockVector, - size_t allocationCount, - VmaAllocation* pAllocations) -{ - VMA_ASSERT(pAllocations != VMA_NULL); - VMA_DEBUG_LOG_FORMAT(" AllocateMemory: MemoryTypeIndex=%" PRIu32 ", AllocationCount=%zu, Size=%" PRIu64, memTypeIndex, allocationCount, size); - - VmaAllocationCreateInfo finalCreateInfo = createInfo; - VkResult res = CalcMemTypeParams( - finalCreateInfo, - memTypeIndex, - size, - allocationCount); - if(res != VK_SUCCESS) - return res; - - if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0) - { - return AllocateDedicatedMemory( - pool, - size, - suballocType, - dedicatedAllocations, - memTypeIndex, - (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0, - (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0, - (finalCreateInfo.flags & - (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0, - (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT) != 0, - finalCreateInfo.pUserData, - finalCreateInfo.priority, - dedicatedBuffer, - dedicatedImage, - dedicatedBufferImageUsage, - allocationCount, - pAllocations, - blockVector.GetAllocationNextPtr()); - } - else - { - const bool canAllocateDedicated = - (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0 && - (pool == VK_NULL_HANDLE || !blockVector.HasExplicitBlockSize()); - - if(canAllocateDedicated) - { - // Heuristics: Allocate dedicated memory if requested size if greater than half of preferred block size. - if(size > blockVector.GetPreferredBlockSize() / 2) - { - dedicatedPreferred = true; - } - // Protection against creating each allocation as dedicated when we reach or exceed heap size/budget, - // which can quickly deplete maxMemoryAllocationCount: Don't prefer dedicated allocations when above - // 3/4 of the maximum allocation count. - if(m_PhysicalDeviceProperties.limits.maxMemoryAllocationCount < UINT32_MAX / 4 && - m_DeviceMemoryCount.load() > m_PhysicalDeviceProperties.limits.maxMemoryAllocationCount * 3 / 4) - { - dedicatedPreferred = false; - } - - if(dedicatedPreferred) - { - res = AllocateDedicatedMemory( - pool, - size, - suballocType, - dedicatedAllocations, - memTypeIndex, - (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0, - (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0, - (finalCreateInfo.flags & - (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0, - (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT) != 0, - finalCreateInfo.pUserData, - finalCreateInfo.priority, - dedicatedBuffer, - dedicatedImage, - dedicatedBufferImageUsage, - allocationCount, - pAllocations, - blockVector.GetAllocationNextPtr()); - if(res == VK_SUCCESS) - { - // Succeeded: AllocateDedicatedMemory function already filled pMemory, nothing more to do here. - VMA_DEBUG_LOG(" Allocated as DedicatedMemory"); - return VK_SUCCESS; - } - } - } - - res = blockVector.Allocate( - size, - alignment, - finalCreateInfo, - suballocType, - allocationCount, - pAllocations); - if(res == VK_SUCCESS) - return VK_SUCCESS; - - // Try dedicated memory. - if(canAllocateDedicated && !dedicatedPreferred) - { - res = AllocateDedicatedMemory( - pool, - size, - suballocType, - dedicatedAllocations, - memTypeIndex, - (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0, - (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0, - (finalCreateInfo.flags & - (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0, - (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT) != 0, - finalCreateInfo.pUserData, - finalCreateInfo.priority, - dedicatedBuffer, - dedicatedImage, - dedicatedBufferImageUsage, - allocationCount, - pAllocations, - blockVector.GetAllocationNextPtr()); - if(res == VK_SUCCESS) - { - // Succeeded: AllocateDedicatedMemory function already filled pMemory, nothing more to do here. - VMA_DEBUG_LOG(" Allocated as DedicatedMemory"); - return VK_SUCCESS; - } - } - // Everything failed: Return error code. - VMA_DEBUG_LOG(" vkAllocateMemory FAILED"); - return res; - } -} - -VkResult VmaAllocator_T::AllocateDedicatedMemory( - VmaPool pool, - VkDeviceSize size, - VmaSuballocationType suballocType, - VmaDedicatedAllocationList& dedicatedAllocations, - uint32_t memTypeIndex, - bool map, - bool isUserDataString, - bool isMappingAllowed, - bool canAliasMemory, - void* pUserData, - float priority, - VkBuffer dedicatedBuffer, - VkImage dedicatedImage, - VmaBufferImageUsage dedicatedBufferImageUsage, - size_t allocationCount, - VmaAllocation* pAllocations, - const void* pNextChain) -{ - VMA_ASSERT(allocationCount > 0 && pAllocations); - - VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO }; - allocInfo.memoryTypeIndex = memTypeIndex; - allocInfo.allocationSize = size; - allocInfo.pNext = pNextChain; - -#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 - VkMemoryDedicatedAllocateInfoKHR dedicatedAllocInfo = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO_KHR }; - if(!canAliasMemory) - { - if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) - { - if(dedicatedBuffer != VK_NULL_HANDLE) - { - VMA_ASSERT(dedicatedImage == VK_NULL_HANDLE); - dedicatedAllocInfo.buffer = dedicatedBuffer; - VmaPnextChainPushFront(&allocInfo, &dedicatedAllocInfo); - } - else if(dedicatedImage != VK_NULL_HANDLE) - { - dedicatedAllocInfo.image = dedicatedImage; - VmaPnextChainPushFront(&allocInfo, &dedicatedAllocInfo); - } - } - } -#endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 - -#if VMA_BUFFER_DEVICE_ADDRESS - VkMemoryAllocateFlagsInfoKHR allocFlagsInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO_KHR }; - if(m_UseKhrBufferDeviceAddress) - { - bool canContainBufferWithDeviceAddress = true; - if(dedicatedBuffer != VK_NULL_HANDLE) - { - canContainBufferWithDeviceAddress = dedicatedBufferImageUsage == VmaBufferImageUsage::UNKNOWN || - dedicatedBufferImageUsage.Contains(VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_EXT); - } - else if(dedicatedImage != VK_NULL_HANDLE) - { - canContainBufferWithDeviceAddress = false; - } - if(canContainBufferWithDeviceAddress) - { - allocFlagsInfo.flags = VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR; - VmaPnextChainPushFront(&allocInfo, &allocFlagsInfo); - } - } -#endif // #if VMA_BUFFER_DEVICE_ADDRESS - -#if VMA_MEMORY_PRIORITY - VkMemoryPriorityAllocateInfoEXT priorityInfo = { VK_STRUCTURE_TYPE_MEMORY_PRIORITY_ALLOCATE_INFO_EXT }; - if(m_UseExtMemoryPriority) - { - VMA_ASSERT(priority >= 0.f && priority <= 1.f); - priorityInfo.priority = priority; - VmaPnextChainPushFront(&allocInfo, &priorityInfo); - } -#endif // #if VMA_MEMORY_PRIORITY - -#if VMA_EXTERNAL_MEMORY - // Attach VkExportMemoryAllocateInfoKHR if necessary. - VkExportMemoryAllocateInfoKHR exportMemoryAllocInfo = { VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_KHR }; - exportMemoryAllocInfo.handleTypes = GetExternalMemoryHandleTypeFlags(memTypeIndex); - if(exportMemoryAllocInfo.handleTypes != 0) - { - VmaPnextChainPushFront(&allocInfo, &exportMemoryAllocInfo); - } -#endif // #if VMA_EXTERNAL_MEMORY - - size_t allocIndex; - VkResult res = VK_SUCCESS; - for(allocIndex = 0; allocIndex < allocationCount; ++allocIndex) - { - res = AllocateDedicatedMemoryPage( - pool, - size, - suballocType, - memTypeIndex, - allocInfo, - map, - isUserDataString, - isMappingAllowed, - pUserData, - pAllocations + allocIndex); - if(res != VK_SUCCESS) - { - break; - } - } - - if(res == VK_SUCCESS) - { - for (allocIndex = 0; allocIndex < allocationCount; ++allocIndex) - { - dedicatedAllocations.Register(pAllocations[allocIndex]); - } - VMA_DEBUG_LOG_FORMAT(" Allocated DedicatedMemory Count=%zu, MemoryTypeIndex=#%" PRIu32, allocationCount, memTypeIndex); - } - else - { - // Free all already created allocations. - while(allocIndex--) - { - VmaAllocation currAlloc = pAllocations[allocIndex]; - VkDeviceMemory hMemory = currAlloc->GetMemory(); - - /* - There is no need to call this, because Vulkan spec allows to skip vkUnmapMemory - before vkFreeMemory. - - if(currAlloc->GetMappedData() != VMA_NULL) - { - (*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory); - } - */ - - FreeVulkanMemory(memTypeIndex, currAlloc->GetSize(), hMemory); - m_Budget.RemoveAllocation(MemoryTypeIndexToHeapIndex(memTypeIndex), currAlloc->GetSize()); - m_AllocationObjectAllocator.Free(currAlloc); - } - - memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount); - } - - return res; -} - -VkResult VmaAllocator_T::AllocateDedicatedMemoryPage( - VmaPool pool, - VkDeviceSize size, - VmaSuballocationType suballocType, - uint32_t memTypeIndex, - const VkMemoryAllocateInfo& allocInfo, - bool map, - bool isUserDataString, - bool isMappingAllowed, - void* pUserData, - VmaAllocation* pAllocation) -{ - VkDeviceMemory hMemory = VK_NULL_HANDLE; - VkResult res = AllocateVulkanMemory(&allocInfo, &hMemory); - if(res < 0) - { - VMA_DEBUG_LOG(" vkAllocateMemory FAILED"); - return res; - } - - void* pMappedData = VMA_NULL; - if(map) - { - res = (*m_VulkanFunctions.vkMapMemory)( - m_hDevice, - hMemory, - 0, - VK_WHOLE_SIZE, - 0, - &pMappedData); - if(res < 0) - { - VMA_DEBUG_LOG(" vkMapMemory FAILED"); - FreeVulkanMemory(memTypeIndex, size, hMemory); - return res; - } - } - - *pAllocation = m_AllocationObjectAllocator.Allocate(isMappingAllowed); - (*pAllocation)->InitDedicatedAllocation(this, pool, memTypeIndex, hMemory, suballocType, pMappedData, size); - if (isUserDataString) - (*pAllocation)->SetName(this, (const char*)pUserData); - else - (*pAllocation)->SetUserData(this, pUserData); - m_Budget.AddAllocation(MemoryTypeIndexToHeapIndex(memTypeIndex), size); - if(VMA_DEBUG_INITIALIZE_ALLOCATIONS) - { - FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED); - } - - return VK_SUCCESS; -} - -void VmaAllocator_T::GetBufferMemoryRequirements( - VkBuffer hBuffer, - VkMemoryRequirements& memReq, - bool& requiresDedicatedAllocation, - bool& prefersDedicatedAllocation) const -{ -#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 - if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) - { - VkBufferMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2_KHR }; - memReqInfo.buffer = hBuffer; - - VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR }; - - VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR }; - VmaPnextChainPushFront(&memReq2, &memDedicatedReq); - - (*m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2); - - memReq = memReq2.memoryRequirements; - requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE); - prefersDedicatedAllocation = (memDedicatedReq.prefersDedicatedAllocation != VK_FALSE); - } - else -#endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 - { - (*m_VulkanFunctions.vkGetBufferMemoryRequirements)(m_hDevice, hBuffer, &memReq); - requiresDedicatedAllocation = false; - prefersDedicatedAllocation = false; - } -} - -void VmaAllocator_T::GetImageMemoryRequirements( - VkImage hImage, - VkMemoryRequirements& memReq, - bool& requiresDedicatedAllocation, - bool& prefersDedicatedAllocation) const -{ -#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 - if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) - { - VkImageMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2_KHR }; - memReqInfo.image = hImage; - - VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR }; - - VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR }; - VmaPnextChainPushFront(&memReq2, &memDedicatedReq); - - (*m_VulkanFunctions.vkGetImageMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2); - - memReq = memReq2.memoryRequirements; - requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE); - prefersDedicatedAllocation = (memDedicatedReq.prefersDedicatedAllocation != VK_FALSE); - } - else -#endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 - { - (*m_VulkanFunctions.vkGetImageMemoryRequirements)(m_hDevice, hImage, &memReq); - requiresDedicatedAllocation = false; - prefersDedicatedAllocation = false; - } -} - -VkResult VmaAllocator_T::FindMemoryTypeIndex( - uint32_t memoryTypeBits, - const VmaAllocationCreateInfo* pAllocationCreateInfo, - VmaBufferImageUsage bufImgUsage, - uint32_t* pMemoryTypeIndex) const -{ - memoryTypeBits &= GetGlobalMemoryTypeBits(); - - if(pAllocationCreateInfo->memoryTypeBits != 0) - { - memoryTypeBits &= pAllocationCreateInfo->memoryTypeBits; - } - - VkMemoryPropertyFlags requiredFlags = 0, preferredFlags = 0, notPreferredFlags = 0; - if(!FindMemoryPreferences( - IsIntegratedGpu(), - *pAllocationCreateInfo, - bufImgUsage, - requiredFlags, preferredFlags, notPreferredFlags)) - { - return VK_ERROR_FEATURE_NOT_PRESENT; - } - - *pMemoryTypeIndex = UINT32_MAX; - uint32_t minCost = UINT32_MAX; - for(uint32_t memTypeIndex = 0, memTypeBit = 1; - memTypeIndex < GetMemoryTypeCount(); - ++memTypeIndex, memTypeBit <<= 1) - { - // This memory type is acceptable according to memoryTypeBits bitmask. - if((memTypeBit & memoryTypeBits) != 0) - { - const VkMemoryPropertyFlags currFlags = - m_MemProps.memoryTypes[memTypeIndex].propertyFlags; - // This memory type contains requiredFlags. - if((requiredFlags & ~currFlags) == 0) - { - // Calculate cost as number of bits from preferredFlags not present in this memory type. - uint32_t currCost = VMA_COUNT_BITS_SET(preferredFlags & ~currFlags) + - VMA_COUNT_BITS_SET(currFlags & notPreferredFlags); - // Remember memory type with lowest cost. - if(currCost < minCost) - { - *pMemoryTypeIndex = memTypeIndex; - if(currCost == 0) - { - return VK_SUCCESS; - } - minCost = currCost; - } - } - } - } - return (*pMemoryTypeIndex != UINT32_MAX) ? VK_SUCCESS : VK_ERROR_FEATURE_NOT_PRESENT; -} - -VkResult VmaAllocator_T::CalcMemTypeParams( - VmaAllocationCreateInfo& inoutCreateInfo, - uint32_t memTypeIndex, - VkDeviceSize size, - size_t allocationCount) -{ - // If memory type is not HOST_VISIBLE, disable MAPPED. - if((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 && - (m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) - { - inoutCreateInfo.flags &= ~VMA_ALLOCATION_CREATE_MAPPED_BIT; - } - - if((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0 && - (inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT) != 0) - { - const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex); - VmaBudget heapBudget = {}; - GetHeapBudgets(&heapBudget, heapIndex, 1); - if(heapBudget.usage + size * allocationCount > heapBudget.budget) - { - return VK_ERROR_OUT_OF_DEVICE_MEMORY; - } - } - return VK_SUCCESS; -} - -VkResult VmaAllocator_T::CalcAllocationParams( - VmaAllocationCreateInfo& inoutCreateInfo, - bool dedicatedRequired, - bool dedicatedPreferred) -{ - VMA_ASSERT((inoutCreateInfo.flags & - (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != - (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT) && - "Specifying both flags VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT and VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT is incorrect."); - VMA_ASSERT((((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT) == 0 || - (inoutCreateInfo.flags & (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0)) && - "Specifying VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT requires also VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT."); - if(inoutCreateInfo.usage == VMA_MEMORY_USAGE_AUTO || inoutCreateInfo.usage == VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE || inoutCreateInfo.usage == VMA_MEMORY_USAGE_AUTO_PREFER_HOST) - { - if((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0) - { - VMA_ASSERT((inoutCreateInfo.flags & (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0 && - "When using VMA_ALLOCATION_CREATE_MAPPED_BIT and usage = VMA_MEMORY_USAGE_AUTO*, you must also specify VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT."); - } - } - - // If memory is lazily allocated, it should be always dedicated. - if(dedicatedRequired || - inoutCreateInfo.usage == VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED) - { - inoutCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT; - } - - if(inoutCreateInfo.pool != VK_NULL_HANDLE) - { - if(inoutCreateInfo.pool->m_BlockVector.HasExplicitBlockSize() && - (inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0) - { - VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT while current custom pool doesn't support dedicated allocations."); - return VK_ERROR_FEATURE_NOT_PRESENT; - } - inoutCreateInfo.priority = inoutCreateInfo.pool->m_BlockVector.GetPriority(); - } - - if((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0 && - (inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0) - { - VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT together with VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT makes no sense."); - return VK_ERROR_FEATURE_NOT_PRESENT; - } - - if(VMA_DEBUG_ALWAYS_DEDICATED_MEMORY && - (inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0) - { - inoutCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT; - } - - // Non-auto USAGE values imply HOST_ACCESS flags. - // And so does VMA_MEMORY_USAGE_UNKNOWN because it is used with custom pools. - // Which specific flag is used doesn't matter. They change things only when used with VMA_MEMORY_USAGE_AUTO*. - // Otherwise they just protect from assert on mapping. - if(inoutCreateInfo.usage != VMA_MEMORY_USAGE_AUTO && - inoutCreateInfo.usage != VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE && - inoutCreateInfo.usage != VMA_MEMORY_USAGE_AUTO_PREFER_HOST) - { - if((inoutCreateInfo.flags & (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) == 0) - { - inoutCreateInfo.flags |= VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT; - } - } - - return VK_SUCCESS; -} - -VkResult VmaAllocator_T::AllocateMemory( - const VkMemoryRequirements& vkMemReq, - bool requiresDedicatedAllocation, - bool prefersDedicatedAllocation, - VkBuffer dedicatedBuffer, - VkImage dedicatedImage, - VmaBufferImageUsage dedicatedBufferImageUsage, - const VmaAllocationCreateInfo& createInfo, - VmaSuballocationType suballocType, - size_t allocationCount, - VmaAllocation* pAllocations) -{ - memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount); - - VMA_ASSERT(VmaIsPow2(vkMemReq.alignment)); - - if(vkMemReq.size == 0) - { - return VK_ERROR_INITIALIZATION_FAILED; - } - - VmaAllocationCreateInfo createInfoFinal = createInfo; - VkResult res = CalcAllocationParams(createInfoFinal, requiresDedicatedAllocation, prefersDedicatedAllocation); - if(res != VK_SUCCESS) - return res; - - if(createInfoFinal.pool != VK_NULL_HANDLE) - { - VmaBlockVector& blockVector = createInfoFinal.pool->m_BlockVector; - return AllocateMemoryOfType( - createInfoFinal.pool, - vkMemReq.size, - vkMemReq.alignment, - prefersDedicatedAllocation, - dedicatedBuffer, - dedicatedImage, - dedicatedBufferImageUsage, - createInfoFinal, - blockVector.GetMemoryTypeIndex(), - suballocType, - createInfoFinal.pool->m_DedicatedAllocations, - blockVector, - allocationCount, - pAllocations); - } - else - { - // Bit mask of memory Vulkan types acceptable for this allocation. - uint32_t memoryTypeBits = vkMemReq.memoryTypeBits; - uint32_t memTypeIndex = UINT32_MAX; - res = FindMemoryTypeIndex(memoryTypeBits, &createInfoFinal, dedicatedBufferImageUsage, &memTypeIndex); - // Can't find any single memory type matching requirements. res is VK_ERROR_FEATURE_NOT_PRESENT. - if(res != VK_SUCCESS) - return res; - do - { - VmaBlockVector* blockVector = m_pBlockVectors[memTypeIndex]; - VMA_ASSERT(blockVector && "Trying to use unsupported memory type!"); - res = AllocateMemoryOfType( - VK_NULL_HANDLE, - vkMemReq.size, - vkMemReq.alignment, - requiresDedicatedAllocation || prefersDedicatedAllocation, - dedicatedBuffer, - dedicatedImage, - dedicatedBufferImageUsage, - createInfoFinal, - memTypeIndex, - suballocType, - m_DedicatedAllocations[memTypeIndex], - *blockVector, - allocationCount, - pAllocations); - // Allocation succeeded - if(res == VK_SUCCESS) - return VK_SUCCESS; - - // Remove old memTypeIndex from list of possibilities. - memoryTypeBits &= ~(1u << memTypeIndex); - // Find alternative memTypeIndex. - res = FindMemoryTypeIndex(memoryTypeBits, &createInfoFinal, dedicatedBufferImageUsage, &memTypeIndex); - } while(res == VK_SUCCESS); - - // No other matching memory type index could be found. - // Not returning res, which is VK_ERROR_FEATURE_NOT_PRESENT, because we already failed to allocate once. - return VK_ERROR_OUT_OF_DEVICE_MEMORY; - } -} - -void VmaAllocator_T::FreeMemory( - size_t allocationCount, - const VmaAllocation* pAllocations) -{ - VMA_ASSERT(pAllocations); - - for(size_t allocIndex = allocationCount; allocIndex--; ) - { - VmaAllocation allocation = pAllocations[allocIndex]; - - if(allocation != VK_NULL_HANDLE) - { - if(VMA_DEBUG_INITIALIZE_ALLOCATIONS) - { - FillAllocation(allocation, VMA_ALLOCATION_FILL_PATTERN_DESTROYED); - } - - switch(allocation->GetType()) - { - case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: - { - VmaBlockVector* pBlockVector = VMA_NULL; - VmaPool hPool = allocation->GetParentPool(); - if(hPool != VK_NULL_HANDLE) - { - pBlockVector = &hPool->m_BlockVector; - } - else - { - const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex(); - pBlockVector = m_pBlockVectors[memTypeIndex]; - VMA_ASSERT(pBlockVector && "Trying to free memory of unsupported type!"); - } - pBlockVector->Free(allocation); - } - break; - case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: - FreeDedicatedMemory(allocation); - break; - default: - VMA_ASSERT(0); - } - } - } -} - -void VmaAllocator_T::CalculateStatistics(VmaTotalStatistics* pStats) -{ - // Initialize. - VmaClearDetailedStatistics(pStats->total); - for(uint32_t i = 0; i < VK_MAX_MEMORY_TYPES; ++i) - VmaClearDetailedStatistics(pStats->memoryType[i]); - for(uint32_t i = 0; i < VK_MAX_MEMORY_HEAPS; ++i) - VmaClearDetailedStatistics(pStats->memoryHeap[i]); - - // Process default pools. - for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) - { - VmaBlockVector* const pBlockVector = m_pBlockVectors[memTypeIndex]; - if (pBlockVector != VMA_NULL) - pBlockVector->AddDetailedStatistics(pStats->memoryType[memTypeIndex]); - } - - // Process custom pools. - { - VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex); - for(VmaPool pool = m_Pools.Front(); pool != VMA_NULL; pool = m_Pools.GetNext(pool)) - { - VmaBlockVector& blockVector = pool->m_BlockVector; - const uint32_t memTypeIndex = blockVector.GetMemoryTypeIndex(); - blockVector.AddDetailedStatistics(pStats->memoryType[memTypeIndex]); - pool->m_DedicatedAllocations.AddDetailedStatistics(pStats->memoryType[memTypeIndex]); - } - } - - // Process dedicated allocations. - for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) - { - m_DedicatedAllocations[memTypeIndex].AddDetailedStatistics(pStats->memoryType[memTypeIndex]); - } - - // Sum from memory types to memory heaps. - for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) - { - const uint32_t memHeapIndex = m_MemProps.memoryTypes[memTypeIndex].heapIndex; - VmaAddDetailedStatistics(pStats->memoryHeap[memHeapIndex], pStats->memoryType[memTypeIndex]); - } - - // Sum from memory heaps to total. - for(uint32_t memHeapIndex = 0; memHeapIndex < GetMemoryHeapCount(); ++memHeapIndex) - VmaAddDetailedStatistics(pStats->total, pStats->memoryHeap[memHeapIndex]); - - VMA_ASSERT(pStats->total.statistics.allocationCount == 0 || - pStats->total.allocationSizeMax >= pStats->total.allocationSizeMin); - VMA_ASSERT(pStats->total.unusedRangeCount == 0 || - pStats->total.unusedRangeSizeMax >= pStats->total.unusedRangeSizeMin); -} - -void VmaAllocator_T::GetHeapBudgets(VmaBudget* outBudgets, uint32_t firstHeap, uint32_t heapCount) -{ -#if VMA_MEMORY_BUDGET - if(m_UseExtMemoryBudget) - { - if(m_Budget.m_OperationsSinceBudgetFetch < 30) - { - VmaMutexLockRead lockRead(m_Budget.m_BudgetMutex, m_UseMutex); - for(uint32_t i = 0; i < heapCount; ++i, ++outBudgets) - { - const uint32_t heapIndex = firstHeap + i; - - outBudgets->statistics.blockCount = m_Budget.m_BlockCount[heapIndex]; - outBudgets->statistics.allocationCount = m_Budget.m_AllocationCount[heapIndex]; - outBudgets->statistics.blockBytes = m_Budget.m_BlockBytes[heapIndex]; - outBudgets->statistics.allocationBytes = m_Budget.m_AllocationBytes[heapIndex]; - - if(m_Budget.m_VulkanUsage[heapIndex] + outBudgets->statistics.blockBytes > m_Budget.m_BlockBytesAtBudgetFetch[heapIndex]) - { - outBudgets->usage = m_Budget.m_VulkanUsage[heapIndex] + - outBudgets->statistics.blockBytes - m_Budget.m_BlockBytesAtBudgetFetch[heapIndex]; - } - else - { - outBudgets->usage = 0; - } - - // Have to take MIN with heap size because explicit HeapSizeLimit is included in it. - outBudgets->budget = VMA_MIN( - m_Budget.m_VulkanBudget[heapIndex], m_MemProps.memoryHeaps[heapIndex].size); - } - } - else - { - UpdateVulkanBudget(); // Outside of mutex lock - GetHeapBudgets(outBudgets, firstHeap, heapCount); // Recursion - } - } - else -#endif - { - for(uint32_t i = 0; i < heapCount; ++i, ++outBudgets) - { - const uint32_t heapIndex = firstHeap + i; - - outBudgets->statistics.blockCount = m_Budget.m_BlockCount[heapIndex]; - outBudgets->statistics.allocationCount = m_Budget.m_AllocationCount[heapIndex]; - outBudgets->statistics.blockBytes = m_Budget.m_BlockBytes[heapIndex]; - outBudgets->statistics.allocationBytes = m_Budget.m_AllocationBytes[heapIndex]; - - outBudgets->usage = outBudgets->statistics.blockBytes; - outBudgets->budget = m_MemProps.memoryHeaps[heapIndex].size * 8 / 10; // 80% heuristics. - } - } -} - -void VmaAllocator_T::GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo) -{ - pAllocationInfo->memoryType = hAllocation->GetMemoryTypeIndex(); - pAllocationInfo->deviceMemory = hAllocation->GetMemory(); - pAllocationInfo->offset = hAllocation->GetOffset(); - pAllocationInfo->size = hAllocation->GetSize(); - pAllocationInfo->pMappedData = hAllocation->GetMappedData(); - pAllocationInfo->pUserData = hAllocation->GetUserData(); - pAllocationInfo->pName = hAllocation->GetName(); -} - -void VmaAllocator_T::GetAllocationInfo2(VmaAllocation hAllocation, VmaAllocationInfo2* pAllocationInfo) -{ - GetAllocationInfo(hAllocation, &pAllocationInfo->allocationInfo); - - switch (hAllocation->GetType()) - { - case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: - pAllocationInfo->blockSize = hAllocation->GetBlock()->m_pMetadata->GetSize(); - pAllocationInfo->dedicatedMemory = VK_FALSE; - break; - case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: - pAllocationInfo->blockSize = pAllocationInfo->allocationInfo.size; - pAllocationInfo->dedicatedMemory = VK_TRUE; - break; - default: - VMA_ASSERT(0); - } -} - -VkResult VmaAllocator_T::CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool) -{ - VMA_DEBUG_LOG_FORMAT(" CreatePool: MemoryTypeIndex=%" PRIu32 ", flags=%" PRIu32, pCreateInfo->memoryTypeIndex, pCreateInfo->flags); - - VmaPoolCreateInfo newCreateInfo = *pCreateInfo; - - // Protection against uninitialized new structure member. If garbage data are left there, this pointer dereference would crash. - if(pCreateInfo->pMemoryAllocateNext) - { - VMA_ASSERT(((const VkBaseInStructure*)pCreateInfo->pMemoryAllocateNext)->sType != 0); - } - - if(newCreateInfo.maxBlockCount == 0) - { - newCreateInfo.maxBlockCount = SIZE_MAX; - } - if(newCreateInfo.minBlockCount > newCreateInfo.maxBlockCount) - { - return VK_ERROR_INITIALIZATION_FAILED; - } - // Memory type index out of range or forbidden. - if(pCreateInfo->memoryTypeIndex >= GetMemoryTypeCount() || - ((1u << pCreateInfo->memoryTypeIndex) & m_GlobalMemoryTypeBits) == 0) - { - return VK_ERROR_FEATURE_NOT_PRESENT; - } - if(newCreateInfo.minAllocationAlignment > 0) - { - VMA_ASSERT(VmaIsPow2(newCreateInfo.minAllocationAlignment)); - } - - const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(newCreateInfo.memoryTypeIndex); - - *pPool = vma_new(this, VmaPool_T)(this, newCreateInfo, preferredBlockSize); - - VkResult res = (*pPool)->m_BlockVector.CreateMinBlocks(); - if(res != VK_SUCCESS) - { - vma_delete(this, *pPool); - *pPool = VMA_NULL; - return res; - } - - // Add to m_Pools. - { - VmaMutexLockWrite lock(m_PoolsMutex, m_UseMutex); - (*pPool)->SetId(m_NextPoolId++); - m_Pools.PushBack(*pPool); - } - - return VK_SUCCESS; -} - -void VmaAllocator_T::DestroyPool(VmaPool pool) -{ - // Remove from m_Pools. - { - VmaMutexLockWrite lock(m_PoolsMutex, m_UseMutex); - m_Pools.Remove(pool); - } - - vma_delete(this, pool); -} - -void VmaAllocator_T::GetPoolStatistics(VmaPool pool, VmaStatistics* pPoolStats) -{ - VmaClearStatistics(*pPoolStats); - pool->m_BlockVector.AddStatistics(*pPoolStats); - pool->m_DedicatedAllocations.AddStatistics(*pPoolStats); -} - -void VmaAllocator_T::CalculatePoolStatistics(VmaPool pool, VmaDetailedStatistics* pPoolStats) -{ - VmaClearDetailedStatistics(*pPoolStats); - pool->m_BlockVector.AddDetailedStatistics(*pPoolStats); - pool->m_DedicatedAllocations.AddDetailedStatistics(*pPoolStats); -} - -void VmaAllocator_T::SetCurrentFrameIndex(uint32_t frameIndex) -{ - m_CurrentFrameIndex.store(frameIndex); - -#if VMA_MEMORY_BUDGET - if(m_UseExtMemoryBudget) - { - UpdateVulkanBudget(); - } -#endif // #if VMA_MEMORY_BUDGET -} - -VkResult VmaAllocator_T::CheckPoolCorruption(VmaPool hPool) -{ - return hPool->m_BlockVector.CheckCorruption(); -} - -VkResult VmaAllocator_T::CheckCorruption(uint32_t memoryTypeBits) -{ - VkResult finalRes = VK_ERROR_FEATURE_NOT_PRESENT; - - // Process default pools. - for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) - { - VmaBlockVector* const pBlockVector = m_pBlockVectors[memTypeIndex]; - if(pBlockVector != VMA_NULL) - { - VkResult localRes = pBlockVector->CheckCorruption(); - switch(localRes) - { - case VK_ERROR_FEATURE_NOT_PRESENT: - break; - case VK_SUCCESS: - finalRes = VK_SUCCESS; - break; - default: - return localRes; - } - } - } - - // Process custom pools. - { - VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex); - for(VmaPool pool = m_Pools.Front(); pool != VMA_NULL; pool = m_Pools.GetNext(pool)) - { - if(((1u << pool->m_BlockVector.GetMemoryTypeIndex()) & memoryTypeBits) != 0) - { - VkResult localRes = pool->m_BlockVector.CheckCorruption(); - switch(localRes) - { - case VK_ERROR_FEATURE_NOT_PRESENT: - break; - case VK_SUCCESS: - finalRes = VK_SUCCESS; - break; - default: - return localRes; - } - } - } - } - - return finalRes; -} - -VkResult VmaAllocator_T::AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory) -{ - AtomicTransactionalIncrement deviceMemoryCountIncrement; - const uint64_t prevDeviceMemoryCount = deviceMemoryCountIncrement.Increment(&m_DeviceMemoryCount); -#if VMA_DEBUG_DONT_EXCEED_MAX_MEMORY_ALLOCATION_COUNT - if(prevDeviceMemoryCount >= m_PhysicalDeviceProperties.limits.maxMemoryAllocationCount) - { - return VK_ERROR_TOO_MANY_OBJECTS; - } -#endif - - const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(pAllocateInfo->memoryTypeIndex); - - // HeapSizeLimit is in effect for this heap. - if((m_HeapSizeLimitMask & (1u << heapIndex)) != 0) - { - const VkDeviceSize heapSize = m_MemProps.memoryHeaps[heapIndex].size; - VkDeviceSize blockBytes = m_Budget.m_BlockBytes[heapIndex]; - for(;;) - { - const VkDeviceSize blockBytesAfterAllocation = blockBytes + pAllocateInfo->allocationSize; - if(blockBytesAfterAllocation > heapSize) - { - return VK_ERROR_OUT_OF_DEVICE_MEMORY; - } - if(m_Budget.m_BlockBytes[heapIndex].compare_exchange_strong(blockBytes, blockBytesAfterAllocation)) - { - break; - } - } - } - else - { - m_Budget.m_BlockBytes[heapIndex] += pAllocateInfo->allocationSize; - } - ++m_Budget.m_BlockCount[heapIndex]; - - // VULKAN CALL vkAllocateMemory. - VkResult res = (*m_VulkanFunctions.vkAllocateMemory)(m_hDevice, pAllocateInfo, GetAllocationCallbacks(), pMemory); - - if(res == VK_SUCCESS) - { -#if VMA_MEMORY_BUDGET - ++m_Budget.m_OperationsSinceBudgetFetch; -#endif - - // Informative callback. - if(m_DeviceMemoryCallbacks.pfnAllocate != VMA_NULL) - { - (*m_DeviceMemoryCallbacks.pfnAllocate)(this, pAllocateInfo->memoryTypeIndex, *pMemory, pAllocateInfo->allocationSize, m_DeviceMemoryCallbacks.pUserData); - } - - deviceMemoryCountIncrement.Commit(); - } - else - { - --m_Budget.m_BlockCount[heapIndex]; - m_Budget.m_BlockBytes[heapIndex] -= pAllocateInfo->allocationSize; - } - - return res; -} - -void VmaAllocator_T::FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory) -{ - // Informative callback. - if(m_DeviceMemoryCallbacks.pfnFree != VMA_NULL) - { - (*m_DeviceMemoryCallbacks.pfnFree)(this, memoryType, hMemory, size, m_DeviceMemoryCallbacks.pUserData); - } - - // VULKAN CALL vkFreeMemory. - (*m_VulkanFunctions.vkFreeMemory)(m_hDevice, hMemory, GetAllocationCallbacks()); - - const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memoryType); - --m_Budget.m_BlockCount[heapIndex]; - m_Budget.m_BlockBytes[heapIndex] -= size; - - --m_DeviceMemoryCount; -} - -VkResult VmaAllocator_T::BindVulkanBuffer( - VkDeviceMemory memory, - VkDeviceSize memoryOffset, - VkBuffer buffer, - const void* pNext) -{ - if(pNext != VMA_NULL) - { -#if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2 - if((m_UseKhrBindMemory2 || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) && - m_VulkanFunctions.vkBindBufferMemory2KHR != VMA_NULL) - { - VkBindBufferMemoryInfoKHR bindBufferMemoryInfo = { VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO_KHR }; - bindBufferMemoryInfo.pNext = pNext; - bindBufferMemoryInfo.buffer = buffer; - bindBufferMemoryInfo.memory = memory; - bindBufferMemoryInfo.memoryOffset = memoryOffset; - return (*m_VulkanFunctions.vkBindBufferMemory2KHR)(m_hDevice, 1, &bindBufferMemoryInfo); - } - else -#endif // #if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2 - { - return VK_ERROR_EXTENSION_NOT_PRESENT; - } - } - else - { - return (*m_VulkanFunctions.vkBindBufferMemory)(m_hDevice, buffer, memory, memoryOffset); - } -} - -VkResult VmaAllocator_T::BindVulkanImage( - VkDeviceMemory memory, - VkDeviceSize memoryOffset, - VkImage image, - const void* pNext) -{ - if(pNext != VMA_NULL) - { -#if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2 - if((m_UseKhrBindMemory2 || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) && - m_VulkanFunctions.vkBindImageMemory2KHR != VMA_NULL) - { - VkBindImageMemoryInfoKHR bindBufferMemoryInfo = { VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO_KHR }; - bindBufferMemoryInfo.pNext = pNext; - bindBufferMemoryInfo.image = image; - bindBufferMemoryInfo.memory = memory; - bindBufferMemoryInfo.memoryOffset = memoryOffset; - return (*m_VulkanFunctions.vkBindImageMemory2KHR)(m_hDevice, 1, &bindBufferMemoryInfo); - } - else -#endif // #if VMA_BIND_MEMORY2 - { - return VK_ERROR_EXTENSION_NOT_PRESENT; - } - } - else - { - return (*m_VulkanFunctions.vkBindImageMemory)(m_hDevice, image, memory, memoryOffset); - } -} - -VkResult VmaAllocator_T::Map(VmaAllocation hAllocation, void** ppData) -{ - switch(hAllocation->GetType()) - { - case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: - { - VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock(); - char *pBytes = VMA_NULL; - VkResult res = pBlock->Map(this, 1, (void**)&pBytes); - if(res == VK_SUCCESS) - { - *ppData = pBytes + (ptrdiff_t)hAllocation->GetOffset(); - hAllocation->BlockAllocMap(); - } - return res; - } - case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: - return hAllocation->DedicatedAllocMap(this, ppData); - default: - VMA_ASSERT(0); - return VK_ERROR_MEMORY_MAP_FAILED; - } -} - -void VmaAllocator_T::Unmap(VmaAllocation hAllocation) -{ - switch(hAllocation->GetType()) - { - case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: - { - VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock(); - hAllocation->BlockAllocUnmap(); - pBlock->Unmap(this, 1); - } - break; - case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: - hAllocation->DedicatedAllocUnmap(this); - break; - default: - VMA_ASSERT(0); - } -} - -VkResult VmaAllocator_T::BindBufferMemory( - VmaAllocation hAllocation, - VkDeviceSize allocationLocalOffset, - VkBuffer hBuffer, - const void* pNext) -{ - VkResult res = VK_ERROR_UNKNOWN_COPY; - switch(hAllocation->GetType()) - { - case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: - res = BindVulkanBuffer(hAllocation->GetMemory(), allocationLocalOffset, hBuffer, pNext); - break; - case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: - { - VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock(); - VMA_ASSERT(pBlock && "Binding buffer to allocation that doesn't belong to any block."); - res = pBlock->BindBufferMemory(this, hAllocation, allocationLocalOffset, hBuffer, pNext); - break; - } - default: - VMA_ASSERT(0); - } - return res; -} - -VkResult VmaAllocator_T::BindImageMemory( - VmaAllocation hAllocation, - VkDeviceSize allocationLocalOffset, - VkImage hImage, - const void* pNext) -{ - VkResult res = VK_ERROR_UNKNOWN_COPY; - switch(hAllocation->GetType()) - { - case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: - res = BindVulkanImage(hAllocation->GetMemory(), allocationLocalOffset, hImage, pNext); - break; - case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: - { - VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock(); - VMA_ASSERT(pBlock && "Binding image to allocation that doesn't belong to any block."); - res = pBlock->BindImageMemory(this, hAllocation, allocationLocalOffset, hImage, pNext); - break; - } - default: - VMA_ASSERT(0); - } - return res; -} - -VkResult VmaAllocator_T::FlushOrInvalidateAllocation( - VmaAllocation hAllocation, - VkDeviceSize offset, VkDeviceSize size, - VMA_CACHE_OPERATION op) -{ - VkResult res = VK_SUCCESS; - - VkMappedMemoryRange memRange = {}; - if(GetFlushOrInvalidateRange(hAllocation, offset, size, memRange)) - { - switch(op) - { - case VMA_CACHE_FLUSH: - res = (*GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hDevice, 1, &memRange); - break; - case VMA_CACHE_INVALIDATE: - res = (*GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hDevice, 1, &memRange); - break; - default: - VMA_ASSERT(0); - } - } - // else: Just ignore this call. - return res; -} - -VkResult VmaAllocator_T::FlushOrInvalidateAllocations( - uint32_t allocationCount, - const VmaAllocation* allocations, - const VkDeviceSize* offsets, const VkDeviceSize* sizes, - VMA_CACHE_OPERATION op) -{ - typedef VmaStlAllocator RangeAllocator; - typedef VmaSmallVector RangeVector; - RangeVector ranges = RangeVector(RangeAllocator(GetAllocationCallbacks())); - - for(uint32_t allocIndex = 0; allocIndex < allocationCount; ++allocIndex) - { - const VmaAllocation alloc = allocations[allocIndex]; - const VkDeviceSize offset = offsets != VMA_NULL ? offsets[allocIndex] : 0; - const VkDeviceSize size = sizes != VMA_NULL ? sizes[allocIndex] : VK_WHOLE_SIZE; - VkMappedMemoryRange newRange; - if(GetFlushOrInvalidateRange(alloc, offset, size, newRange)) - { - ranges.push_back(newRange); - } - } - - VkResult res = VK_SUCCESS; - if(!ranges.empty()) - { - switch(op) - { - case VMA_CACHE_FLUSH: - res = (*GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hDevice, (uint32_t)ranges.size(), ranges.data()); - break; - case VMA_CACHE_INVALIDATE: - res = (*GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hDevice, (uint32_t)ranges.size(), ranges.data()); - break; - default: - VMA_ASSERT(0); - } - } - // else: Just ignore this call. - return res; -} - -VkResult VmaAllocator_T::CopyMemoryToAllocation( - const void* pSrcHostPointer, - VmaAllocation dstAllocation, - VkDeviceSize dstAllocationLocalOffset, - VkDeviceSize size) -{ - void* dstMappedData = VMA_NULL; - VkResult res = Map(dstAllocation, &dstMappedData); - if(res == VK_SUCCESS) - { - memcpy((char*)dstMappedData + dstAllocationLocalOffset, pSrcHostPointer, (size_t)size); - Unmap(dstAllocation); - res = FlushOrInvalidateAllocation(dstAllocation, dstAllocationLocalOffset, size, VMA_CACHE_FLUSH); - } - return res; -} - -VkResult VmaAllocator_T::CopyAllocationToMemory( - VmaAllocation srcAllocation, - VkDeviceSize srcAllocationLocalOffset, - void* pDstHostPointer, - VkDeviceSize size) -{ - void* srcMappedData = VMA_NULL; - VkResult res = Map(srcAllocation, &srcMappedData); - if(res == VK_SUCCESS) - { - res = FlushOrInvalidateAllocation(srcAllocation, srcAllocationLocalOffset, size, VMA_CACHE_INVALIDATE); - if(res == VK_SUCCESS) - { - memcpy(pDstHostPointer, (const char*)srcMappedData + srcAllocationLocalOffset, (size_t)size); - Unmap(srcAllocation); - } - } - return res; -} - -void VmaAllocator_T::FreeDedicatedMemory(const VmaAllocation allocation) -{ - VMA_ASSERT(allocation && allocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED); - - const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex(); - VmaPool parentPool = allocation->GetParentPool(); - if(parentPool == VK_NULL_HANDLE) - { - // Default pool - m_DedicatedAllocations[memTypeIndex].Unregister(allocation); - } - else - { - // Custom pool - parentPool->m_DedicatedAllocations.Unregister(allocation); - } - - VkDeviceMemory hMemory = allocation->GetMemory(); - - /* - There is no need to call this, because Vulkan spec allows to skip vkUnmapMemory - before vkFreeMemory. - - if(allocation->GetMappedData() != VMA_NULL) - { - (*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory); - } - */ - - FreeVulkanMemory(memTypeIndex, allocation->GetSize(), hMemory); - - m_Budget.RemoveAllocation(MemoryTypeIndexToHeapIndex(allocation->GetMemoryTypeIndex()), allocation->GetSize()); - allocation->Destroy(this); - m_AllocationObjectAllocator.Free(allocation); - - VMA_DEBUG_LOG_FORMAT(" Freed DedicatedMemory MemoryTypeIndex=%" PRIu32, memTypeIndex); -} - -uint32_t VmaAllocator_T::CalculateGpuDefragmentationMemoryTypeBits() const -{ - VkBufferCreateInfo dummyBufCreateInfo; - VmaFillGpuDefragmentationBufferCreateInfo(dummyBufCreateInfo); - - uint32_t memoryTypeBits = 0; - - // Create buffer. - VkBuffer buf = VK_NULL_HANDLE; - VkResult res = (*GetVulkanFunctions().vkCreateBuffer)( - m_hDevice, &dummyBufCreateInfo, GetAllocationCallbacks(), &buf); - if(res == VK_SUCCESS) - { - // Query for supported memory types. - VkMemoryRequirements memReq; - (*GetVulkanFunctions().vkGetBufferMemoryRequirements)(m_hDevice, buf, &memReq); - memoryTypeBits = memReq.memoryTypeBits; - - // Destroy buffer. - (*GetVulkanFunctions().vkDestroyBuffer)(m_hDevice, buf, GetAllocationCallbacks()); - } - - return memoryTypeBits; -} - -uint32_t VmaAllocator_T::CalculateGlobalMemoryTypeBits() const -{ - // Make sure memory information is already fetched. - VMA_ASSERT(GetMemoryTypeCount() > 0); - - uint32_t memoryTypeBits = UINT32_MAX; - - if(!m_UseAmdDeviceCoherentMemory) - { - // Exclude memory types that have VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD. - for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) - { - if((m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY) != 0) - { - memoryTypeBits &= ~(1u << memTypeIndex); - } - } - } - - return memoryTypeBits; -} - -bool VmaAllocator_T::GetFlushOrInvalidateRange( - VmaAllocation allocation, - VkDeviceSize offset, VkDeviceSize size, - VkMappedMemoryRange& outRange) const -{ - const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex(); - if(size > 0 && IsMemoryTypeNonCoherent(memTypeIndex)) - { - const VkDeviceSize nonCoherentAtomSize = m_PhysicalDeviceProperties.limits.nonCoherentAtomSize; - const VkDeviceSize allocationSize = allocation->GetSize(); - VMA_ASSERT(offset <= allocationSize); - - outRange.sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE; - outRange.pNext = VMA_NULL; - outRange.memory = allocation->GetMemory(); - - switch(allocation->GetType()) - { - case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: - outRange.offset = VmaAlignDown(offset, nonCoherentAtomSize); - if(size == VK_WHOLE_SIZE) - { - outRange.size = allocationSize - outRange.offset; - } - else - { - VMA_ASSERT(offset + size <= allocationSize); - outRange.size = VMA_MIN( - VmaAlignUp(size + (offset - outRange.offset), nonCoherentAtomSize), - allocationSize - outRange.offset); - } - break; - case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: - { - // 1. Still within this allocation. - outRange.offset = VmaAlignDown(offset, nonCoherentAtomSize); - if(size == VK_WHOLE_SIZE) - { - size = allocationSize - offset; - } - else - { - VMA_ASSERT(offset + size <= allocationSize); - } - outRange.size = VmaAlignUp(size + (offset - outRange.offset), nonCoherentAtomSize); - - // 2. Adjust to whole block. - const VkDeviceSize allocationOffset = allocation->GetOffset(); - VMA_ASSERT(allocationOffset % nonCoherentAtomSize == 0); - const VkDeviceSize blockSize = allocation->GetBlock()->m_pMetadata->GetSize(); - outRange.offset += allocationOffset; - outRange.size = VMA_MIN(outRange.size, blockSize - outRange.offset); - - break; - } - default: - VMA_ASSERT(0); - } - return true; - } - return false; -} - -#if VMA_MEMORY_BUDGET -void VmaAllocator_T::UpdateVulkanBudget() -{ - VMA_ASSERT(m_UseExtMemoryBudget); - - VkPhysicalDeviceMemoryProperties2KHR memProps = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2_KHR }; - - VkPhysicalDeviceMemoryBudgetPropertiesEXT budgetProps = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT }; - VmaPnextChainPushFront(&memProps, &budgetProps); - - GetVulkanFunctions().vkGetPhysicalDeviceMemoryProperties2KHR(m_PhysicalDevice, &memProps); - - { - VmaMutexLockWrite lockWrite(m_Budget.m_BudgetMutex, m_UseMutex); - - for(uint32_t heapIndex = 0; heapIndex < GetMemoryHeapCount(); ++heapIndex) - { - m_Budget.m_VulkanUsage[heapIndex] = budgetProps.heapUsage[heapIndex]; - m_Budget.m_VulkanBudget[heapIndex] = budgetProps.heapBudget[heapIndex]; - m_Budget.m_BlockBytesAtBudgetFetch[heapIndex] = m_Budget.m_BlockBytes[heapIndex].load(); - - // Some bugged drivers return the budget incorrectly, e.g. 0 or much bigger than heap size. - if(m_Budget.m_VulkanBudget[heapIndex] == 0) - { - m_Budget.m_VulkanBudget[heapIndex] = m_MemProps.memoryHeaps[heapIndex].size * 8 / 10; // 80% heuristics. - } - else if(m_Budget.m_VulkanBudget[heapIndex] > m_MemProps.memoryHeaps[heapIndex].size) - { - m_Budget.m_VulkanBudget[heapIndex] = m_MemProps.memoryHeaps[heapIndex].size; - } - if(m_Budget.m_VulkanUsage[heapIndex] == 0 && m_Budget.m_BlockBytesAtBudgetFetch[heapIndex] > 0) - { - m_Budget.m_VulkanUsage[heapIndex] = m_Budget.m_BlockBytesAtBudgetFetch[heapIndex]; - } - } - m_Budget.m_OperationsSinceBudgetFetch = 0; - } -} -#endif // VMA_MEMORY_BUDGET - -void VmaAllocator_T::FillAllocation(const VmaAllocation hAllocation, uint8_t pattern) -{ - if(VMA_DEBUG_INITIALIZE_ALLOCATIONS && - hAllocation->IsMappingAllowed() && - (m_MemProps.memoryTypes[hAllocation->GetMemoryTypeIndex()].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0) - { - void* pData = VMA_NULL; - VkResult res = Map(hAllocation, &pData); - if(res == VK_SUCCESS) - { - memset(pData, (int)pattern, (size_t)hAllocation->GetSize()); - FlushOrInvalidateAllocation(hAllocation, 0, VK_WHOLE_SIZE, VMA_CACHE_FLUSH); - Unmap(hAllocation); - } - else - { - VMA_ASSERT(0 && "VMA_DEBUG_INITIALIZE_ALLOCATIONS is enabled, but couldn't map memory to fill allocation."); - } - } -} - -uint32_t VmaAllocator_T::GetGpuDefragmentationMemoryTypeBits() -{ - uint32_t memoryTypeBits = m_GpuDefragmentationMemoryTypeBits.load(); - if(memoryTypeBits == UINT32_MAX) - { - memoryTypeBits = CalculateGpuDefragmentationMemoryTypeBits(); - m_GpuDefragmentationMemoryTypeBits.store(memoryTypeBits); - } - return memoryTypeBits; -} - -#if VMA_STATS_STRING_ENABLED -void VmaAllocator_T::PrintDetailedMap(VmaJsonWriter& json) -{ - json.WriteString("DefaultPools"); - json.BeginObject(); - { - for (uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) - { - VmaBlockVector* pBlockVector = m_pBlockVectors[memTypeIndex]; - VmaDedicatedAllocationList& dedicatedAllocList = m_DedicatedAllocations[memTypeIndex]; - if (pBlockVector != VMA_NULL) - { - json.BeginString("Type "); - json.ContinueString(memTypeIndex); - json.EndString(); - json.BeginObject(); - { - json.WriteString("PreferredBlockSize"); - json.WriteNumber(pBlockVector->GetPreferredBlockSize()); - - json.WriteString("Blocks"); - pBlockVector->PrintDetailedMap(json); - - json.WriteString("DedicatedAllocations"); - dedicatedAllocList.BuildStatsString(json); - } - json.EndObject(); - } - } - } - json.EndObject(); - - json.WriteString("CustomPools"); - json.BeginObject(); - { - VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex); - if (!m_Pools.IsEmpty()) - { - for (uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) - { - bool displayType = true; - size_t index = 0; - for (VmaPool pool = m_Pools.Front(); pool != VMA_NULL; pool = m_Pools.GetNext(pool)) - { - VmaBlockVector& blockVector = pool->m_BlockVector; - if (blockVector.GetMemoryTypeIndex() == memTypeIndex) - { - if (displayType) - { - json.BeginString("Type "); - json.ContinueString(memTypeIndex); - json.EndString(); - json.BeginArray(); - displayType = false; - } - - json.BeginObject(); - { - json.WriteString("Name"); - json.BeginString(); - json.ContinueString((uint64_t)index++); - if (pool->GetName()) - { - json.ContinueString(" - "); - json.ContinueString(pool->GetName()); - } - json.EndString(); - - json.WriteString("PreferredBlockSize"); - json.WriteNumber(blockVector.GetPreferredBlockSize()); - - json.WriteString("Blocks"); - blockVector.PrintDetailedMap(json); - - json.WriteString("DedicatedAllocations"); - pool->m_DedicatedAllocations.BuildStatsString(json); - } - json.EndObject(); - } - } - - if (!displayType) - json.EndArray(); - } - } - } - json.EndObject(); -} -#endif // VMA_STATS_STRING_ENABLED -#endif // _VMA_ALLOCATOR_T_FUNCTIONS - - -#ifndef _VMA_PUBLIC_INTERFACE -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAllocator( - const VmaAllocatorCreateInfo* pCreateInfo, - VmaAllocator* pAllocator) -{ - VMA_ASSERT(pCreateInfo && pAllocator); - VMA_ASSERT(pCreateInfo->vulkanApiVersion == 0 || - (VK_VERSION_MAJOR(pCreateInfo->vulkanApiVersion) == 1 && VK_VERSION_MINOR(pCreateInfo->vulkanApiVersion) <= 3)); - VMA_DEBUG_LOG("vmaCreateAllocator"); - *pAllocator = vma_new(pCreateInfo->pAllocationCallbacks, VmaAllocator_T)(pCreateInfo); - VkResult result = (*pAllocator)->Init(pCreateInfo); - if(result < 0) - { - vma_delete(pCreateInfo->pAllocationCallbacks, *pAllocator); - *pAllocator = VK_NULL_HANDLE; - } - return result; -} - -VMA_CALL_PRE void VMA_CALL_POST vmaDestroyAllocator( - VmaAllocator allocator) -{ - if(allocator != VK_NULL_HANDLE) - { - VMA_DEBUG_LOG("vmaDestroyAllocator"); - VkAllocationCallbacks allocationCallbacks = allocator->m_AllocationCallbacks; // Have to copy the callbacks when destroying. - vma_delete(&allocationCallbacks, allocator); - } -} - -VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocatorInfo(VmaAllocator allocator, VmaAllocatorInfo* pAllocatorInfo) -{ - VMA_ASSERT(allocator && pAllocatorInfo); - pAllocatorInfo->instance = allocator->m_hInstance; - pAllocatorInfo->physicalDevice = allocator->GetPhysicalDevice(); - pAllocatorInfo->device = allocator->m_hDevice; -} - -VMA_CALL_PRE void VMA_CALL_POST vmaGetPhysicalDeviceProperties( - VmaAllocator allocator, - const VkPhysicalDeviceProperties **ppPhysicalDeviceProperties) -{ - VMA_ASSERT(allocator && ppPhysicalDeviceProperties); - *ppPhysicalDeviceProperties = &allocator->m_PhysicalDeviceProperties; -} - -VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryProperties( - VmaAllocator allocator, - const VkPhysicalDeviceMemoryProperties** ppPhysicalDeviceMemoryProperties) -{ - VMA_ASSERT(allocator && ppPhysicalDeviceMemoryProperties); - *ppPhysicalDeviceMemoryProperties = &allocator->m_MemProps; -} - -VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryTypeProperties( - VmaAllocator allocator, - uint32_t memoryTypeIndex, - VkMemoryPropertyFlags* pFlags) -{ - VMA_ASSERT(allocator && pFlags); - VMA_ASSERT(memoryTypeIndex < allocator->GetMemoryTypeCount()); - *pFlags = allocator->m_MemProps.memoryTypes[memoryTypeIndex].propertyFlags; -} - -VMA_CALL_PRE void VMA_CALL_POST vmaSetCurrentFrameIndex( - VmaAllocator allocator, - uint32_t frameIndex) -{ - VMA_ASSERT(allocator); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - allocator->SetCurrentFrameIndex(frameIndex); -} - -VMA_CALL_PRE void VMA_CALL_POST vmaCalculateStatistics( - VmaAllocator allocator, - VmaTotalStatistics* pStats) -{ - VMA_ASSERT(allocator && pStats); - VMA_DEBUG_GLOBAL_MUTEX_LOCK - allocator->CalculateStatistics(pStats); -} - -VMA_CALL_PRE void VMA_CALL_POST vmaGetHeapBudgets( - VmaAllocator allocator, - VmaBudget* pBudgets) -{ - VMA_ASSERT(allocator && pBudgets); - VMA_DEBUG_GLOBAL_MUTEX_LOCK - allocator->GetHeapBudgets(pBudgets, 0, allocator->GetMemoryHeapCount()); -} - -#if VMA_STATS_STRING_ENABLED - -VMA_CALL_PRE void VMA_CALL_POST vmaBuildStatsString( - VmaAllocator allocator, - char** ppStatsString, - VkBool32 detailedMap) -{ - VMA_ASSERT(allocator && ppStatsString); - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - VmaStringBuilder sb(allocator->GetAllocationCallbacks()); - { - VmaBudget budgets[VK_MAX_MEMORY_HEAPS]; - allocator->GetHeapBudgets(budgets, 0, allocator->GetMemoryHeapCount()); - - VmaTotalStatistics stats; - allocator->CalculateStatistics(&stats); - - VmaJsonWriter json(allocator->GetAllocationCallbacks(), sb); - json.BeginObject(); - { - json.WriteString("General"); - json.BeginObject(); - { - const VkPhysicalDeviceProperties& deviceProperties = allocator->m_PhysicalDeviceProperties; - const VkPhysicalDeviceMemoryProperties& memoryProperties = allocator->m_MemProps; - - json.WriteString("API"); - json.WriteString("Vulkan"); - - json.WriteString("apiVersion"); - json.BeginString(); - json.ContinueString(VK_VERSION_MAJOR(deviceProperties.apiVersion)); - json.ContinueString("."); - json.ContinueString(VK_VERSION_MINOR(deviceProperties.apiVersion)); - json.ContinueString("."); - json.ContinueString(VK_VERSION_PATCH(deviceProperties.apiVersion)); - json.EndString(); - - json.WriteString("GPU"); - json.WriteString(deviceProperties.deviceName); - json.WriteString("deviceType"); - json.WriteNumber(static_cast(deviceProperties.deviceType)); - - json.WriteString("maxMemoryAllocationCount"); - json.WriteNumber(deviceProperties.limits.maxMemoryAllocationCount); - json.WriteString("bufferImageGranularity"); - json.WriteNumber(deviceProperties.limits.bufferImageGranularity); - json.WriteString("nonCoherentAtomSize"); - json.WriteNumber(deviceProperties.limits.nonCoherentAtomSize); - - json.WriteString("memoryHeapCount"); - json.WriteNumber(memoryProperties.memoryHeapCount); - json.WriteString("memoryTypeCount"); - json.WriteNumber(memoryProperties.memoryTypeCount); - } - json.EndObject(); - } - { - json.WriteString("Total"); - VmaPrintDetailedStatistics(json, stats.total); - } - { - json.WriteString("MemoryInfo"); - json.BeginObject(); - { - for (uint32_t heapIndex = 0; heapIndex < allocator->GetMemoryHeapCount(); ++heapIndex) - { - json.BeginString("Heap "); - json.ContinueString(heapIndex); - json.EndString(); - json.BeginObject(); - { - const VkMemoryHeap& heapInfo = allocator->m_MemProps.memoryHeaps[heapIndex]; - json.WriteString("Flags"); - json.BeginArray(true); - { - if (heapInfo.flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) - json.WriteString("DEVICE_LOCAL"); - #if VMA_VULKAN_VERSION >= 1001000 - if (heapInfo.flags & VK_MEMORY_HEAP_MULTI_INSTANCE_BIT) - json.WriteString("MULTI_INSTANCE"); - #endif - - VkMemoryHeapFlags flags = heapInfo.flags & - ~(VK_MEMORY_HEAP_DEVICE_LOCAL_BIT - #if VMA_VULKAN_VERSION >= 1001000 - | VK_MEMORY_HEAP_MULTI_INSTANCE_BIT - #endif - ); - if (flags != 0) - json.WriteNumber(flags); - } - json.EndArray(); - - json.WriteString("Size"); - json.WriteNumber(heapInfo.size); - - json.WriteString("Budget"); - json.BeginObject(); - { - json.WriteString("BudgetBytes"); - json.WriteNumber(budgets[heapIndex].budget); - json.WriteString("UsageBytes"); - json.WriteNumber(budgets[heapIndex].usage); - } - json.EndObject(); - - json.WriteString("Stats"); - VmaPrintDetailedStatistics(json, stats.memoryHeap[heapIndex]); - - json.WriteString("MemoryPools"); - json.BeginObject(); - { - for (uint32_t typeIndex = 0; typeIndex < allocator->GetMemoryTypeCount(); ++typeIndex) - { - if (allocator->MemoryTypeIndexToHeapIndex(typeIndex) == heapIndex) - { - json.BeginString("Type "); - json.ContinueString(typeIndex); - json.EndString(); - json.BeginObject(); - { - json.WriteString("Flags"); - json.BeginArray(true); - { - VkMemoryPropertyFlags flags = allocator->m_MemProps.memoryTypes[typeIndex].propertyFlags; - if (flags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) - json.WriteString("DEVICE_LOCAL"); - if (flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) - json.WriteString("HOST_VISIBLE"); - if (flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) - json.WriteString("HOST_COHERENT"); - if (flags & VK_MEMORY_PROPERTY_HOST_CACHED_BIT) - json.WriteString("HOST_CACHED"); - if (flags & VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT) - json.WriteString("LAZILY_ALLOCATED"); - #if VMA_VULKAN_VERSION >= 1001000 - if (flags & VK_MEMORY_PROPERTY_PROTECTED_BIT) - json.WriteString("PROTECTED"); - #endif - #if VK_AMD_device_coherent_memory - if (flags & VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY) - json.WriteString("DEVICE_COHERENT_AMD"); - if (flags & VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY) - json.WriteString("DEVICE_UNCACHED_AMD"); - #endif - - flags &= ~(VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT - #if VMA_VULKAN_VERSION >= 1001000 - | VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT - #endif - #if VK_AMD_device_coherent_memory - | VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY - | VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY - #endif - | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT - | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT - | VK_MEMORY_PROPERTY_HOST_CACHED_BIT); - if (flags != 0) - json.WriteNumber(flags); - } - json.EndArray(); - - json.WriteString("Stats"); - VmaPrintDetailedStatistics(json, stats.memoryType[typeIndex]); - } - json.EndObject(); - } - } - - } - json.EndObject(); - } - json.EndObject(); - } - } - json.EndObject(); - } - - if (detailedMap == VK_TRUE) - allocator->PrintDetailedMap(json); - - json.EndObject(); - } - - *ppStatsString = VmaCreateStringCopy(allocator->GetAllocationCallbacks(), sb.GetData(), sb.GetLength()); -} - -VMA_CALL_PRE void VMA_CALL_POST vmaFreeStatsString( - VmaAllocator allocator, - char* pStatsString) -{ - if(pStatsString != VMA_NULL) - { - VMA_ASSERT(allocator); - VmaFreeString(allocator->GetAllocationCallbacks(), pStatsString); - } -} - -#endif // VMA_STATS_STRING_ENABLED - -/* -This function is not protected by any mutex because it just reads immutable data. -*/ -VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndex( - VmaAllocator allocator, - uint32_t memoryTypeBits, - const VmaAllocationCreateInfo* pAllocationCreateInfo, - uint32_t* pMemoryTypeIndex) -{ - VMA_ASSERT(allocator != VK_NULL_HANDLE); - VMA_ASSERT(pAllocationCreateInfo != VMA_NULL); - VMA_ASSERT(pMemoryTypeIndex != VMA_NULL); - - return allocator->FindMemoryTypeIndex(memoryTypeBits, pAllocationCreateInfo, VmaBufferImageUsage::UNKNOWN, pMemoryTypeIndex); -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForBufferInfo( - VmaAllocator allocator, - const VkBufferCreateInfo* pBufferCreateInfo, - const VmaAllocationCreateInfo* pAllocationCreateInfo, - uint32_t* pMemoryTypeIndex) -{ - VMA_ASSERT(allocator != VK_NULL_HANDLE); - VMA_ASSERT(pBufferCreateInfo != VMA_NULL); - VMA_ASSERT(pAllocationCreateInfo != VMA_NULL); - VMA_ASSERT(pMemoryTypeIndex != VMA_NULL); - - const VkDevice hDev = allocator->m_hDevice; - const VmaVulkanFunctions* funcs = &allocator->GetVulkanFunctions(); - VkResult res; - -#if VMA_KHR_MAINTENANCE4 || VMA_VULKAN_VERSION >= 1003000 - if(funcs->vkGetDeviceBufferMemoryRequirements) - { - // Can query straight from VkBufferCreateInfo :) - VkDeviceBufferMemoryRequirementsKHR devBufMemReq = {VK_STRUCTURE_TYPE_DEVICE_BUFFER_MEMORY_REQUIREMENTS_KHR}; - devBufMemReq.pCreateInfo = pBufferCreateInfo; - - VkMemoryRequirements2 memReq = {VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2}; - (*funcs->vkGetDeviceBufferMemoryRequirements)(hDev, &devBufMemReq, &memReq); - - res = allocator->FindMemoryTypeIndex( - memReq.memoryRequirements.memoryTypeBits, pAllocationCreateInfo, - VmaBufferImageUsage(*pBufferCreateInfo, allocator->m_UseKhrMaintenance5), pMemoryTypeIndex); - } - else -#endif // VMA_KHR_MAINTENANCE4 || VMA_VULKAN_VERSION >= 1003000 - { - // Must create a dummy buffer to query :( - VkBuffer hBuffer = VK_NULL_HANDLE; - res = funcs->vkCreateBuffer( - hDev, pBufferCreateInfo, allocator->GetAllocationCallbacks(), &hBuffer); - if(res == VK_SUCCESS) - { - VkMemoryRequirements memReq = {}; - funcs->vkGetBufferMemoryRequirements(hDev, hBuffer, &memReq); - - res = allocator->FindMemoryTypeIndex( - memReq.memoryTypeBits, pAllocationCreateInfo, - VmaBufferImageUsage(*pBufferCreateInfo, allocator->m_UseKhrMaintenance5), pMemoryTypeIndex); - - funcs->vkDestroyBuffer( - hDev, hBuffer, allocator->GetAllocationCallbacks()); - } - } - return res; -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForImageInfo( - VmaAllocator allocator, - const VkImageCreateInfo* pImageCreateInfo, - const VmaAllocationCreateInfo* pAllocationCreateInfo, - uint32_t* pMemoryTypeIndex) -{ - VMA_ASSERT(allocator != VK_NULL_HANDLE); - VMA_ASSERT(pImageCreateInfo != VMA_NULL); - VMA_ASSERT(pAllocationCreateInfo != VMA_NULL); - VMA_ASSERT(pMemoryTypeIndex != VMA_NULL); - - const VkDevice hDev = allocator->m_hDevice; - const VmaVulkanFunctions* funcs = &allocator->GetVulkanFunctions(); - VkResult res; - -#if VMA_KHR_MAINTENANCE4 || VMA_VULKAN_VERSION >= 1003000 - if(funcs->vkGetDeviceImageMemoryRequirements) - { - // Can query straight from VkImageCreateInfo :) - VkDeviceImageMemoryRequirementsKHR devImgMemReq = {VK_STRUCTURE_TYPE_DEVICE_IMAGE_MEMORY_REQUIREMENTS_KHR}; - devImgMemReq.pCreateInfo = pImageCreateInfo; - VMA_ASSERT(pImageCreateInfo->tiling != VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT_COPY && (pImageCreateInfo->flags & VK_IMAGE_CREATE_DISJOINT_BIT_COPY) == 0 && - "Cannot use this VkImageCreateInfo with vmaFindMemoryTypeIndexForImageInfo as I don't know what to pass as VkDeviceImageMemoryRequirements::planeAspect."); - - VkMemoryRequirements2 memReq = {VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2}; - (*funcs->vkGetDeviceImageMemoryRequirements)(hDev, &devImgMemReq, &memReq); - - res = allocator->FindMemoryTypeIndex( - memReq.memoryRequirements.memoryTypeBits, pAllocationCreateInfo, - VmaBufferImageUsage(*pImageCreateInfo), pMemoryTypeIndex); - } - else -#endif // VMA_KHR_MAINTENANCE4 || VMA_VULKAN_VERSION >= 1003000 - { - // Must create a dummy image to query :( - VkImage hImage = VK_NULL_HANDLE; - res = funcs->vkCreateImage( - hDev, pImageCreateInfo, allocator->GetAllocationCallbacks(), &hImage); - if(res == VK_SUCCESS) - { - VkMemoryRequirements memReq = {}; - funcs->vkGetImageMemoryRequirements(hDev, hImage, &memReq); - - res = allocator->FindMemoryTypeIndex( - memReq.memoryTypeBits, pAllocationCreateInfo, - VmaBufferImageUsage(*pImageCreateInfo), pMemoryTypeIndex); - - funcs->vkDestroyImage( - hDev, hImage, allocator->GetAllocationCallbacks()); - } - } - return res; -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreatePool( - VmaAllocator allocator, - const VmaPoolCreateInfo* pCreateInfo, - VmaPool* pPool) -{ - VMA_ASSERT(allocator && pCreateInfo && pPool); - - VMA_DEBUG_LOG("vmaCreatePool"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - return allocator->CreatePool(pCreateInfo, pPool); -} - -VMA_CALL_PRE void VMA_CALL_POST vmaDestroyPool( - VmaAllocator allocator, - VmaPool pool) -{ - VMA_ASSERT(allocator); - - if(pool == VK_NULL_HANDLE) - { - return; - } - - VMA_DEBUG_LOG("vmaDestroyPool"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - allocator->DestroyPool(pool); -} - -VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolStatistics( - VmaAllocator allocator, - VmaPool pool, - VmaStatistics* pPoolStats) -{ - VMA_ASSERT(allocator && pool && pPoolStats); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - allocator->GetPoolStatistics(pool, pPoolStats); -} - -VMA_CALL_PRE void VMA_CALL_POST vmaCalculatePoolStatistics( - VmaAllocator allocator, - VmaPool pool, - VmaDetailedStatistics* pPoolStats) -{ - VMA_ASSERT(allocator && pool && pPoolStats); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - allocator->CalculatePoolStatistics(pool, pPoolStats); -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckPoolCorruption(VmaAllocator allocator, VmaPool pool) -{ - VMA_ASSERT(allocator && pool); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - VMA_DEBUG_LOG("vmaCheckPoolCorruption"); - - return allocator->CheckPoolCorruption(pool); -} - -VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolName( - VmaAllocator allocator, - VmaPool pool, - const char** ppName) -{ - VMA_ASSERT(allocator && pool && ppName); - - VMA_DEBUG_LOG("vmaGetPoolName"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - *ppName = pool->GetName(); -} - -VMA_CALL_PRE void VMA_CALL_POST vmaSetPoolName( - VmaAllocator allocator, - VmaPool pool, - const char* pName) -{ - VMA_ASSERT(allocator && pool); - - VMA_DEBUG_LOG("vmaSetPoolName"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - pool->SetName(pName); -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemory( - VmaAllocator allocator, - const VkMemoryRequirements* pVkMemoryRequirements, - const VmaAllocationCreateInfo* pCreateInfo, - VmaAllocation* pAllocation, - VmaAllocationInfo* pAllocationInfo) -{ - VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocation); - - VMA_DEBUG_LOG("vmaAllocateMemory"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - VkResult result = allocator->AllocateMemory( - *pVkMemoryRequirements, - false, // requiresDedicatedAllocation - false, // prefersDedicatedAllocation - VK_NULL_HANDLE, // dedicatedBuffer - VK_NULL_HANDLE, // dedicatedImage - VmaBufferImageUsage::UNKNOWN, // dedicatedBufferImageUsage - *pCreateInfo, - VMA_SUBALLOCATION_TYPE_UNKNOWN, - 1, // allocationCount - pAllocation); - - if(pAllocationInfo != VMA_NULL && result == VK_SUCCESS) - { - allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); - } - - return result; -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryPages( - VmaAllocator allocator, - const VkMemoryRequirements* pVkMemoryRequirements, - const VmaAllocationCreateInfo* pCreateInfo, - size_t allocationCount, - VmaAllocation* pAllocations, - VmaAllocationInfo* pAllocationInfo) -{ - if(allocationCount == 0) - { - return VK_SUCCESS; - } - - VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocations); - - VMA_DEBUG_LOG("vmaAllocateMemoryPages"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - VkResult result = allocator->AllocateMemory( - *pVkMemoryRequirements, - false, // requiresDedicatedAllocation - false, // prefersDedicatedAllocation - VK_NULL_HANDLE, // dedicatedBuffer - VK_NULL_HANDLE, // dedicatedImage - VmaBufferImageUsage::UNKNOWN, // dedicatedBufferImageUsage - *pCreateInfo, - VMA_SUBALLOCATION_TYPE_UNKNOWN, - allocationCount, - pAllocations); - - if(pAllocationInfo != VMA_NULL && result == VK_SUCCESS) - { - for(size_t i = 0; i < allocationCount; ++i) - { - allocator->GetAllocationInfo(pAllocations[i], pAllocationInfo + i); - } - } - - return result; -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForBuffer( - VmaAllocator allocator, - VkBuffer buffer, - const VmaAllocationCreateInfo* pCreateInfo, - VmaAllocation* pAllocation, - VmaAllocationInfo* pAllocationInfo) -{ - VMA_ASSERT(allocator && buffer != VK_NULL_HANDLE && pCreateInfo && pAllocation); - - VMA_DEBUG_LOG("vmaAllocateMemoryForBuffer"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - VkMemoryRequirements vkMemReq = {}; - bool requiresDedicatedAllocation = false; - bool prefersDedicatedAllocation = false; - allocator->GetBufferMemoryRequirements(buffer, vkMemReq, - requiresDedicatedAllocation, - prefersDedicatedAllocation); - - VkResult result = allocator->AllocateMemory( - vkMemReq, - requiresDedicatedAllocation, - prefersDedicatedAllocation, - buffer, // dedicatedBuffer - VK_NULL_HANDLE, // dedicatedImage - VmaBufferImageUsage::UNKNOWN, // dedicatedBufferImageUsage - *pCreateInfo, - VMA_SUBALLOCATION_TYPE_BUFFER, - 1, // allocationCount - pAllocation); - - if(pAllocationInfo && result == VK_SUCCESS) - { - allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); - } - - return result; -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForImage( - VmaAllocator allocator, - VkImage image, - const VmaAllocationCreateInfo* pCreateInfo, - VmaAllocation* pAllocation, - VmaAllocationInfo* pAllocationInfo) -{ - VMA_ASSERT(allocator && image != VK_NULL_HANDLE && pCreateInfo && pAllocation); - - VMA_DEBUG_LOG("vmaAllocateMemoryForImage"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - VkMemoryRequirements vkMemReq = {}; - bool requiresDedicatedAllocation = false; - bool prefersDedicatedAllocation = false; - allocator->GetImageMemoryRequirements(image, vkMemReq, - requiresDedicatedAllocation, prefersDedicatedAllocation); - - VkResult result = allocator->AllocateMemory( - vkMemReq, - requiresDedicatedAllocation, - prefersDedicatedAllocation, - VK_NULL_HANDLE, // dedicatedBuffer - image, // dedicatedImage - VmaBufferImageUsage::UNKNOWN, // dedicatedBufferImageUsage - *pCreateInfo, - VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN, - 1, // allocationCount - pAllocation); - - if(pAllocationInfo && result == VK_SUCCESS) - { - allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); - } - - return result; -} - -VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemory( - VmaAllocator allocator, - VmaAllocation allocation) -{ - VMA_ASSERT(allocator); - - if(allocation == VK_NULL_HANDLE) - { - return; - } - - VMA_DEBUG_LOG("vmaFreeMemory"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - allocator->FreeMemory( - 1, // allocationCount - &allocation); -} - -VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemoryPages( - VmaAllocator allocator, - size_t allocationCount, - const VmaAllocation* pAllocations) -{ - if(allocationCount == 0) - { - return; - } - - VMA_ASSERT(allocator); - - VMA_DEBUG_LOG("vmaFreeMemoryPages"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - allocator->FreeMemory(allocationCount, pAllocations); -} - -VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo( - VmaAllocator allocator, - VmaAllocation allocation, - VmaAllocationInfo* pAllocationInfo) -{ - VMA_ASSERT(allocator && allocation && pAllocationInfo); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - allocator->GetAllocationInfo(allocation, pAllocationInfo); -} - -VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo2( - VmaAllocator allocator, - VmaAllocation allocation, - VmaAllocationInfo2* pAllocationInfo) -{ - VMA_ASSERT(allocator && allocation && pAllocationInfo); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - allocator->GetAllocationInfo2(allocation, pAllocationInfo); -} - -VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationUserData( - VmaAllocator allocator, - VmaAllocation allocation, - void* pUserData) -{ - VMA_ASSERT(allocator && allocation); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - allocation->SetUserData(allocator, pUserData); -} - -VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationName( - VmaAllocator VMA_NOT_NULL allocator, - VmaAllocation VMA_NOT_NULL allocation, - const char* VMA_NULLABLE pName) -{ - allocation->SetName(allocator, pName); -} - -VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationMemoryProperties( - VmaAllocator VMA_NOT_NULL allocator, - VmaAllocation VMA_NOT_NULL allocation, - VkMemoryPropertyFlags* VMA_NOT_NULL pFlags) -{ - VMA_ASSERT(allocator && allocation && pFlags); - const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex(); - *pFlags = allocator->m_MemProps.memoryTypes[memTypeIndex].propertyFlags; -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaMapMemory( - VmaAllocator allocator, - VmaAllocation allocation, - void** ppData) -{ - VMA_ASSERT(allocator && allocation && ppData); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - return allocator->Map(allocation, ppData); -} - -VMA_CALL_PRE void VMA_CALL_POST vmaUnmapMemory( - VmaAllocator allocator, - VmaAllocation allocation) -{ - VMA_ASSERT(allocator && allocation); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - allocator->Unmap(allocation); -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocation( - VmaAllocator allocator, - VmaAllocation allocation, - VkDeviceSize offset, - VkDeviceSize size) -{ - VMA_ASSERT(allocator && allocation); - - VMA_DEBUG_LOG("vmaFlushAllocation"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - return allocator->FlushOrInvalidateAllocation(allocation, offset, size, VMA_CACHE_FLUSH); -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocation( - VmaAllocator allocator, - VmaAllocation allocation, - VkDeviceSize offset, - VkDeviceSize size) -{ - VMA_ASSERT(allocator && allocation); - - VMA_DEBUG_LOG("vmaInvalidateAllocation"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - return allocator->FlushOrInvalidateAllocation(allocation, offset, size, VMA_CACHE_INVALIDATE); -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocations( - VmaAllocator allocator, - uint32_t allocationCount, - const VmaAllocation* allocations, - const VkDeviceSize* offsets, - const VkDeviceSize* sizes) -{ - VMA_ASSERT(allocator); - - if(allocationCount == 0) - { - return VK_SUCCESS; - } - - VMA_ASSERT(allocations); - - VMA_DEBUG_LOG("vmaFlushAllocations"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - return allocator->FlushOrInvalidateAllocations(allocationCount, allocations, offsets, sizes, VMA_CACHE_FLUSH); -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocations( - VmaAllocator allocator, - uint32_t allocationCount, - const VmaAllocation* allocations, - const VkDeviceSize* offsets, - const VkDeviceSize* sizes) -{ - VMA_ASSERT(allocator); - - if(allocationCount == 0) - { - return VK_SUCCESS; - } - - VMA_ASSERT(allocations); - - VMA_DEBUG_LOG("vmaInvalidateAllocations"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - return allocator->FlushOrInvalidateAllocations(allocationCount, allocations, offsets, sizes, VMA_CACHE_INVALIDATE); -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCopyMemoryToAllocation( - VmaAllocator allocator, - const void* pSrcHostPointer, - VmaAllocation dstAllocation, - VkDeviceSize dstAllocationLocalOffset, - VkDeviceSize size) -{ - VMA_ASSERT(allocator && pSrcHostPointer && dstAllocation); - - if(size == 0) - { - return VK_SUCCESS; - } - - VMA_DEBUG_LOG("vmaCopyMemoryToAllocation"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - return allocator->CopyMemoryToAllocation(pSrcHostPointer, dstAllocation, dstAllocationLocalOffset, size); -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCopyAllocationToMemory( - VmaAllocator allocator, - VmaAllocation srcAllocation, - VkDeviceSize srcAllocationLocalOffset, - void* pDstHostPointer, - VkDeviceSize size) -{ - VMA_ASSERT(allocator && srcAllocation && pDstHostPointer); - - if(size == 0) - { - return VK_SUCCESS; - } - - VMA_DEBUG_LOG("vmaCopyAllocationToMemory"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - return allocator->CopyAllocationToMemory(srcAllocation, srcAllocationLocalOffset, pDstHostPointer, size); -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckCorruption( - VmaAllocator allocator, - uint32_t memoryTypeBits) -{ - VMA_ASSERT(allocator); - - VMA_DEBUG_LOG("vmaCheckCorruption"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - return allocator->CheckCorruption(memoryTypeBits); -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentation( - VmaAllocator allocator, - const VmaDefragmentationInfo* pInfo, - VmaDefragmentationContext* pContext) -{ - VMA_ASSERT(allocator && pInfo && pContext); - - VMA_DEBUG_LOG("vmaBeginDefragmentation"); - - if (pInfo->pool != VMA_NULL) - { - // Check if run on supported algorithms - if (pInfo->pool->m_BlockVector.GetAlgorithm() & VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) - return VK_ERROR_FEATURE_NOT_PRESENT; - } - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - *pContext = vma_new(allocator, VmaDefragmentationContext_T)(allocator, *pInfo); - return VK_SUCCESS; -} - -VMA_CALL_PRE void VMA_CALL_POST vmaEndDefragmentation( - VmaAllocator allocator, - VmaDefragmentationContext context, - VmaDefragmentationStats* pStats) -{ - VMA_ASSERT(allocator && context); - - VMA_DEBUG_LOG("vmaEndDefragmentation"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - if (pStats) - context->GetStats(*pStats); - vma_delete(allocator, context); -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentationPass( - VmaAllocator VMA_NOT_NULL allocator, - VmaDefragmentationContext VMA_NOT_NULL context, - VmaDefragmentationPassMoveInfo* VMA_NOT_NULL pPassInfo) -{ - VMA_ASSERT(context && pPassInfo); - - VMA_DEBUG_LOG("vmaBeginDefragmentationPass"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - return context->DefragmentPassBegin(*pPassInfo); -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaEndDefragmentationPass( - VmaAllocator VMA_NOT_NULL allocator, - VmaDefragmentationContext VMA_NOT_NULL context, - VmaDefragmentationPassMoveInfo* VMA_NOT_NULL pPassInfo) -{ - VMA_ASSERT(context && pPassInfo); - - VMA_DEBUG_LOG("vmaEndDefragmentationPass"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - return context->DefragmentPassEnd(*pPassInfo); -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory( - VmaAllocator allocator, - VmaAllocation allocation, - VkBuffer buffer) -{ - VMA_ASSERT(allocator && allocation && buffer); - - VMA_DEBUG_LOG("vmaBindBufferMemory"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - return allocator->BindBufferMemory(allocation, 0, buffer, VMA_NULL); -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory2( - VmaAllocator allocator, - VmaAllocation allocation, - VkDeviceSize allocationLocalOffset, - VkBuffer buffer, - const void* pNext) -{ - VMA_ASSERT(allocator && allocation && buffer); - - VMA_DEBUG_LOG("vmaBindBufferMemory2"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - return allocator->BindBufferMemory(allocation, allocationLocalOffset, buffer, pNext); -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory( - VmaAllocator allocator, - VmaAllocation allocation, - VkImage image) -{ - VMA_ASSERT(allocator && allocation && image); - - VMA_DEBUG_LOG("vmaBindImageMemory"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - return allocator->BindImageMemory(allocation, 0, image, VMA_NULL); -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory2( - VmaAllocator allocator, - VmaAllocation allocation, - VkDeviceSize allocationLocalOffset, - VkImage image, - const void* pNext) -{ - VMA_ASSERT(allocator && allocation && image); - - VMA_DEBUG_LOG("vmaBindImageMemory2"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - return allocator->BindImageMemory(allocation, allocationLocalOffset, image, pNext); -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBuffer( - VmaAllocator allocator, - const VkBufferCreateInfo* pBufferCreateInfo, - const VmaAllocationCreateInfo* pAllocationCreateInfo, - VkBuffer* pBuffer, - VmaAllocation* pAllocation, - VmaAllocationInfo* pAllocationInfo) -{ - VMA_ASSERT(allocator && pBufferCreateInfo && pAllocationCreateInfo && pBuffer && pAllocation); - - if(pBufferCreateInfo->size == 0) - { - return VK_ERROR_INITIALIZATION_FAILED; - } - if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY) != 0 && - !allocator->m_UseKhrBufferDeviceAddress) - { - VMA_ASSERT(0 && "Creating a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT is not valid if VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT was not used."); - return VK_ERROR_INITIALIZATION_FAILED; - } - - VMA_DEBUG_LOG("vmaCreateBuffer"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - *pBuffer = VK_NULL_HANDLE; - *pAllocation = VK_NULL_HANDLE; - - // 1. Create VkBuffer. - VkResult res = (*allocator->GetVulkanFunctions().vkCreateBuffer)( - allocator->m_hDevice, - pBufferCreateInfo, - allocator->GetAllocationCallbacks(), - pBuffer); - if(res >= 0) - { - // 2. vkGetBufferMemoryRequirements. - VkMemoryRequirements vkMemReq = {}; - bool requiresDedicatedAllocation = false; - bool prefersDedicatedAllocation = false; - allocator->GetBufferMemoryRequirements(*pBuffer, vkMemReq, - requiresDedicatedAllocation, prefersDedicatedAllocation); - - // 3. Allocate memory using allocator. - res = allocator->AllocateMemory( - vkMemReq, - requiresDedicatedAllocation, - prefersDedicatedAllocation, - *pBuffer, // dedicatedBuffer - VK_NULL_HANDLE, // dedicatedImage - VmaBufferImageUsage(*pBufferCreateInfo, allocator->m_UseKhrMaintenance5), // dedicatedBufferImageUsage - *pAllocationCreateInfo, - VMA_SUBALLOCATION_TYPE_BUFFER, - 1, // allocationCount - pAllocation); - - if(res >= 0) - { - // 3. Bind buffer with memory. - if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0) - { - res = allocator->BindBufferMemory(*pAllocation, 0, *pBuffer, VMA_NULL); - } - if(res >= 0) - { - // All steps succeeded. - #if VMA_STATS_STRING_ENABLED - (*pAllocation)->InitBufferUsage(*pBufferCreateInfo, allocator->m_UseKhrMaintenance5); - #endif - if(pAllocationInfo != VMA_NULL) - { - allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); - } - - return VK_SUCCESS; - } - allocator->FreeMemory( - 1, // allocationCount - pAllocation); - *pAllocation = VK_NULL_HANDLE; - (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks()); - *pBuffer = VK_NULL_HANDLE; - return res; - } - (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks()); - *pBuffer = VK_NULL_HANDLE; - return res; - } - return res; -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBufferWithAlignment( - VmaAllocator allocator, - const VkBufferCreateInfo* pBufferCreateInfo, - const VmaAllocationCreateInfo* pAllocationCreateInfo, - VkDeviceSize minAlignment, - VkBuffer* pBuffer, - VmaAllocation* pAllocation, - VmaAllocationInfo* pAllocationInfo) -{ - VMA_ASSERT(allocator && pBufferCreateInfo && pAllocationCreateInfo && VmaIsPow2(minAlignment) && pBuffer && pAllocation); - - if(pBufferCreateInfo->size == 0) - { - return VK_ERROR_INITIALIZATION_FAILED; - } - if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY) != 0 && - !allocator->m_UseKhrBufferDeviceAddress) - { - VMA_ASSERT(0 && "Creating a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT is not valid if VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT was not used."); - return VK_ERROR_INITIALIZATION_FAILED; - } - - VMA_DEBUG_LOG("vmaCreateBufferWithAlignment"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - *pBuffer = VK_NULL_HANDLE; - *pAllocation = VK_NULL_HANDLE; - - // 1. Create VkBuffer. - VkResult res = (*allocator->GetVulkanFunctions().vkCreateBuffer)( - allocator->m_hDevice, - pBufferCreateInfo, - allocator->GetAllocationCallbacks(), - pBuffer); - if(res >= 0) - { - // 2. vkGetBufferMemoryRequirements. - VkMemoryRequirements vkMemReq = {}; - bool requiresDedicatedAllocation = false; - bool prefersDedicatedAllocation = false; - allocator->GetBufferMemoryRequirements(*pBuffer, vkMemReq, - requiresDedicatedAllocation, prefersDedicatedAllocation); - - // 2a. Include minAlignment - vkMemReq.alignment = VMA_MAX(vkMemReq.alignment, minAlignment); - - // 3. Allocate memory using allocator. - res = allocator->AllocateMemory( - vkMemReq, - requiresDedicatedAllocation, - prefersDedicatedAllocation, - *pBuffer, // dedicatedBuffer - VK_NULL_HANDLE, // dedicatedImage - VmaBufferImageUsage(*pBufferCreateInfo, allocator->m_UseKhrMaintenance5), // dedicatedBufferImageUsage - *pAllocationCreateInfo, - VMA_SUBALLOCATION_TYPE_BUFFER, - 1, // allocationCount - pAllocation); - - if(res >= 0) - { - // 3. Bind buffer with memory. - if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0) - { - res = allocator->BindBufferMemory(*pAllocation, 0, *pBuffer, VMA_NULL); - } - if(res >= 0) - { - // All steps succeeded. - #if VMA_STATS_STRING_ENABLED - (*pAllocation)->InitBufferUsage(*pBufferCreateInfo, allocator->m_UseKhrMaintenance5); - #endif - if(pAllocationInfo != VMA_NULL) - { - allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); - } - - return VK_SUCCESS; - } - allocator->FreeMemory( - 1, // allocationCount - pAllocation); - *pAllocation = VK_NULL_HANDLE; - (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks()); - *pBuffer = VK_NULL_HANDLE; - return res; - } - (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks()); - *pBuffer = VK_NULL_HANDLE; - return res; - } - return res; -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingBuffer( - VmaAllocator VMA_NOT_NULL allocator, - VmaAllocation VMA_NOT_NULL allocation, - const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo, - VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer) -{ - return vmaCreateAliasingBuffer2(allocator, allocation, 0, pBufferCreateInfo, pBuffer); -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingBuffer2( - VmaAllocator VMA_NOT_NULL allocator, - VmaAllocation VMA_NOT_NULL allocation, - VkDeviceSize allocationLocalOffset, - const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo, - VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer) -{ - VMA_ASSERT(allocator && pBufferCreateInfo && pBuffer && allocation); - VMA_ASSERT(allocationLocalOffset + pBufferCreateInfo->size <= allocation->GetSize()); - - VMA_DEBUG_LOG("vmaCreateAliasingBuffer2"); - - *pBuffer = VK_NULL_HANDLE; - - if (pBufferCreateInfo->size == 0) - { - return VK_ERROR_INITIALIZATION_FAILED; - } - if ((pBufferCreateInfo->usage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY) != 0 && - !allocator->m_UseKhrBufferDeviceAddress) - { - VMA_ASSERT(0 && "Creating a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT is not valid if VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT was not used."); - return VK_ERROR_INITIALIZATION_FAILED; - } - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - // 1. Create VkBuffer. - VkResult res = (*allocator->GetVulkanFunctions().vkCreateBuffer)( - allocator->m_hDevice, - pBufferCreateInfo, - allocator->GetAllocationCallbacks(), - pBuffer); - if (res >= 0) - { - // 2. Bind buffer with memory. - res = allocator->BindBufferMemory(allocation, allocationLocalOffset, *pBuffer, VMA_NULL); - if (res >= 0) - { - return VK_SUCCESS; - } - (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks()); - } - return res; -} - -VMA_CALL_PRE void VMA_CALL_POST vmaDestroyBuffer( - VmaAllocator allocator, - VkBuffer buffer, - VmaAllocation allocation) -{ - VMA_ASSERT(allocator); - - if(buffer == VK_NULL_HANDLE && allocation == VK_NULL_HANDLE) - { - return; - } - - VMA_DEBUG_LOG("vmaDestroyBuffer"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - if(buffer != VK_NULL_HANDLE) - { - (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, buffer, allocator->GetAllocationCallbacks()); - } - - if(allocation != VK_NULL_HANDLE) - { - allocator->FreeMemory( - 1, // allocationCount - &allocation); - } -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateImage( - VmaAllocator allocator, - const VkImageCreateInfo* pImageCreateInfo, - const VmaAllocationCreateInfo* pAllocationCreateInfo, - VkImage* pImage, - VmaAllocation* pAllocation, - VmaAllocationInfo* pAllocationInfo) -{ - VMA_ASSERT(allocator && pImageCreateInfo && pAllocationCreateInfo && pImage && pAllocation); - - if(pImageCreateInfo->extent.width == 0 || - pImageCreateInfo->extent.height == 0 || - pImageCreateInfo->extent.depth == 0 || - pImageCreateInfo->mipLevels == 0 || - pImageCreateInfo->arrayLayers == 0) - { - return VK_ERROR_INITIALIZATION_FAILED; - } - - VMA_DEBUG_LOG("vmaCreateImage"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - *pImage = VK_NULL_HANDLE; - *pAllocation = VK_NULL_HANDLE; - - // 1. Create VkImage. - VkResult res = (*allocator->GetVulkanFunctions().vkCreateImage)( - allocator->m_hDevice, - pImageCreateInfo, - allocator->GetAllocationCallbacks(), - pImage); - if(res == VK_SUCCESS) - { - VmaSuballocationType suballocType = pImageCreateInfo->tiling == VK_IMAGE_TILING_OPTIMAL ? - VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL : - VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR; - - // 2. Allocate memory using allocator. - VkMemoryRequirements vkMemReq = {}; - bool requiresDedicatedAllocation = false; - bool prefersDedicatedAllocation = false; - allocator->GetImageMemoryRequirements(*pImage, vkMemReq, - requiresDedicatedAllocation, prefersDedicatedAllocation); - - res = allocator->AllocateMemory( - vkMemReq, - requiresDedicatedAllocation, - prefersDedicatedAllocation, - VK_NULL_HANDLE, // dedicatedBuffer - *pImage, // dedicatedImage - VmaBufferImageUsage(*pImageCreateInfo), // dedicatedBufferImageUsage - *pAllocationCreateInfo, - suballocType, - 1, // allocationCount - pAllocation); - - if(res == VK_SUCCESS) - { - // 3. Bind image with memory. - if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0) - { - res = allocator->BindImageMemory(*pAllocation, 0, *pImage, VMA_NULL); - } - if(res == VK_SUCCESS) - { - // All steps succeeded. - #if VMA_STATS_STRING_ENABLED - (*pAllocation)->InitImageUsage(*pImageCreateInfo); - #endif - if(pAllocationInfo != VMA_NULL) - { - allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); - } - - return VK_SUCCESS; - } - allocator->FreeMemory( - 1, // allocationCount - pAllocation); - *pAllocation = VK_NULL_HANDLE; - (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks()); - *pImage = VK_NULL_HANDLE; - return res; - } - (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks()); - *pImage = VK_NULL_HANDLE; - return res; - } - return res; -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingImage( - VmaAllocator VMA_NOT_NULL allocator, - VmaAllocation VMA_NOT_NULL allocation, - const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo, - VkImage VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pImage) -{ - return vmaCreateAliasingImage2(allocator, allocation, 0, pImageCreateInfo, pImage); -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingImage2( - VmaAllocator VMA_NOT_NULL allocator, - VmaAllocation VMA_NOT_NULL allocation, - VkDeviceSize allocationLocalOffset, - const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo, - VkImage VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pImage) -{ - VMA_ASSERT(allocator && pImageCreateInfo && pImage && allocation); - - *pImage = VK_NULL_HANDLE; - - VMA_DEBUG_LOG("vmaCreateImage2"); - - if (pImageCreateInfo->extent.width == 0 || - pImageCreateInfo->extent.height == 0 || - pImageCreateInfo->extent.depth == 0 || - pImageCreateInfo->mipLevels == 0 || - pImageCreateInfo->arrayLayers == 0) - { - return VK_ERROR_INITIALIZATION_FAILED; - } - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - // 1. Create VkImage. - VkResult res = (*allocator->GetVulkanFunctions().vkCreateImage)( - allocator->m_hDevice, - pImageCreateInfo, - allocator->GetAllocationCallbacks(), - pImage); - if (res >= 0) - { - // 2. Bind image with memory. - res = allocator->BindImageMemory(allocation, allocationLocalOffset, *pImage, VMA_NULL); - if (res >= 0) - { - return VK_SUCCESS; - } - (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks()); - } - return res; -} - -VMA_CALL_PRE void VMA_CALL_POST vmaDestroyImage( - VmaAllocator VMA_NOT_NULL allocator, - VkImage VMA_NULLABLE_NON_DISPATCHABLE image, - VmaAllocation VMA_NULLABLE allocation) -{ - VMA_ASSERT(allocator); - - if(image == VK_NULL_HANDLE && allocation == VK_NULL_HANDLE) - { - return; - } - - VMA_DEBUG_LOG("vmaDestroyImage"); - - VMA_DEBUG_GLOBAL_MUTEX_LOCK - - if(image != VK_NULL_HANDLE) - { - (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, image, allocator->GetAllocationCallbacks()); - } - if(allocation != VK_NULL_HANDLE) - { - allocator->FreeMemory( - 1, // allocationCount - &allocation); - } -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateVirtualBlock( - const VmaVirtualBlockCreateInfo* VMA_NOT_NULL pCreateInfo, - VmaVirtualBlock VMA_NULLABLE * VMA_NOT_NULL pVirtualBlock) -{ - VMA_ASSERT(pCreateInfo && pVirtualBlock); - VMA_ASSERT(pCreateInfo->size > 0); - VMA_DEBUG_LOG("vmaCreateVirtualBlock"); - VMA_DEBUG_GLOBAL_MUTEX_LOCK; - *pVirtualBlock = vma_new(pCreateInfo->pAllocationCallbacks, VmaVirtualBlock_T)(*pCreateInfo); - VkResult res = (*pVirtualBlock)->Init(); - if(res < 0) - { - vma_delete(pCreateInfo->pAllocationCallbacks, *pVirtualBlock); - *pVirtualBlock = VK_NULL_HANDLE; - } - return res; -} - -VMA_CALL_PRE void VMA_CALL_POST vmaDestroyVirtualBlock(VmaVirtualBlock VMA_NULLABLE virtualBlock) -{ - if(virtualBlock != VK_NULL_HANDLE) - { - VMA_DEBUG_LOG("vmaDestroyVirtualBlock"); - VMA_DEBUG_GLOBAL_MUTEX_LOCK; - VkAllocationCallbacks allocationCallbacks = virtualBlock->m_AllocationCallbacks; // Have to copy the callbacks when destroying. - vma_delete(&allocationCallbacks, virtualBlock); - } -} - -VMA_CALL_PRE VkBool32 VMA_CALL_POST vmaIsVirtualBlockEmpty(VmaVirtualBlock VMA_NOT_NULL virtualBlock) -{ - VMA_ASSERT(virtualBlock != VK_NULL_HANDLE); - VMA_DEBUG_LOG("vmaIsVirtualBlockEmpty"); - VMA_DEBUG_GLOBAL_MUTEX_LOCK; - return virtualBlock->IsEmpty() ? VK_TRUE : VK_FALSE; -} - -VMA_CALL_PRE void VMA_CALL_POST vmaGetVirtualAllocationInfo(VmaVirtualBlock VMA_NOT_NULL virtualBlock, - VmaVirtualAllocation VMA_NOT_NULL_NON_DISPATCHABLE allocation, VmaVirtualAllocationInfo* VMA_NOT_NULL pVirtualAllocInfo) -{ - VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && pVirtualAllocInfo != VMA_NULL); - VMA_DEBUG_LOG("vmaGetVirtualAllocationInfo"); - VMA_DEBUG_GLOBAL_MUTEX_LOCK; - virtualBlock->GetAllocationInfo(allocation, *pVirtualAllocInfo); -} - -VMA_CALL_PRE VkResult VMA_CALL_POST vmaVirtualAllocate(VmaVirtualBlock VMA_NOT_NULL virtualBlock, - const VmaVirtualAllocationCreateInfo* VMA_NOT_NULL pCreateInfo, VmaVirtualAllocation VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pAllocation, - VkDeviceSize* VMA_NULLABLE pOffset) -{ - VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && pCreateInfo != VMA_NULL && pAllocation != VMA_NULL); - VMA_DEBUG_LOG("vmaVirtualAllocate"); - VMA_DEBUG_GLOBAL_MUTEX_LOCK; - return virtualBlock->Allocate(*pCreateInfo, *pAllocation, pOffset); -} - -VMA_CALL_PRE void VMA_CALL_POST vmaVirtualFree(VmaVirtualBlock VMA_NOT_NULL virtualBlock, VmaVirtualAllocation VMA_NULLABLE_NON_DISPATCHABLE allocation) -{ - if(allocation != VK_NULL_HANDLE) - { - VMA_ASSERT(virtualBlock != VK_NULL_HANDLE); - VMA_DEBUG_LOG("vmaVirtualFree"); - VMA_DEBUG_GLOBAL_MUTEX_LOCK; - virtualBlock->Free(allocation); - } -} - -VMA_CALL_PRE void VMA_CALL_POST vmaClearVirtualBlock(VmaVirtualBlock VMA_NOT_NULL virtualBlock) -{ - VMA_ASSERT(virtualBlock != VK_NULL_HANDLE); - VMA_DEBUG_LOG("vmaClearVirtualBlock"); - VMA_DEBUG_GLOBAL_MUTEX_LOCK; - virtualBlock->Clear(); -} - -VMA_CALL_PRE void VMA_CALL_POST vmaSetVirtualAllocationUserData(VmaVirtualBlock VMA_NOT_NULL virtualBlock, - VmaVirtualAllocation VMA_NOT_NULL_NON_DISPATCHABLE allocation, void* VMA_NULLABLE pUserData) -{ - VMA_ASSERT(virtualBlock != VK_NULL_HANDLE); - VMA_DEBUG_LOG("vmaSetVirtualAllocationUserData"); - VMA_DEBUG_GLOBAL_MUTEX_LOCK; - virtualBlock->SetAllocationUserData(allocation, pUserData); -} - -VMA_CALL_PRE void VMA_CALL_POST vmaGetVirtualBlockStatistics(VmaVirtualBlock VMA_NOT_NULL virtualBlock, - VmaStatistics* VMA_NOT_NULL pStats) -{ - VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && pStats != VMA_NULL); - VMA_DEBUG_LOG("vmaGetVirtualBlockStatistics"); - VMA_DEBUG_GLOBAL_MUTEX_LOCK; - virtualBlock->GetStatistics(*pStats); -} - -VMA_CALL_PRE void VMA_CALL_POST vmaCalculateVirtualBlockStatistics(VmaVirtualBlock VMA_NOT_NULL virtualBlock, - VmaDetailedStatistics* VMA_NOT_NULL pStats) -{ - VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && pStats != VMA_NULL); - VMA_DEBUG_LOG("vmaCalculateVirtualBlockStatistics"); - VMA_DEBUG_GLOBAL_MUTEX_LOCK; - virtualBlock->CalculateDetailedStatistics(*pStats); -} - -#if VMA_STATS_STRING_ENABLED - -VMA_CALL_PRE void VMA_CALL_POST vmaBuildVirtualBlockStatsString(VmaVirtualBlock VMA_NOT_NULL virtualBlock, - char* VMA_NULLABLE * VMA_NOT_NULL ppStatsString, VkBool32 detailedMap) -{ - VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && ppStatsString != VMA_NULL); - VMA_DEBUG_GLOBAL_MUTEX_LOCK; - const VkAllocationCallbacks* allocationCallbacks = virtualBlock->GetAllocationCallbacks(); - VmaStringBuilder sb(allocationCallbacks); - virtualBlock->BuildStatsString(detailedMap != VK_FALSE, sb); - *ppStatsString = VmaCreateStringCopy(allocationCallbacks, sb.GetData(), sb.GetLength()); -} - -VMA_CALL_PRE void VMA_CALL_POST vmaFreeVirtualBlockStatsString(VmaVirtualBlock VMA_NOT_NULL virtualBlock, - char* VMA_NULLABLE pStatsString) -{ - if(pStatsString != VMA_NULL) - { - VMA_ASSERT(virtualBlock != VK_NULL_HANDLE); - VMA_DEBUG_GLOBAL_MUTEX_LOCK; - VmaFreeString(virtualBlock->GetAllocationCallbacks(), pStatsString); - } -} -#if VMA_EXTERNAL_MEMORY_WIN32 -VMA_CALL_PRE VkResult VMA_CALL_POST vmaGetMemoryWin32Handle(VmaAllocator VMA_NOT_NULL allocator, - VmaAllocation VMA_NOT_NULL allocation, HANDLE hTargetProcess, HANDLE* VMA_NOT_NULL pHandle) -{ - VMA_ASSERT(allocator && allocation && pHandle); - VMA_DEBUG_GLOBAL_MUTEX_LOCK; - return allocation->GetWin32Handle(allocator, hTargetProcess, pHandle); -} -#endif // VMA_EXTERNAL_MEMORY_WIN32 -#endif // VMA_STATS_STRING_ENABLED -#endif // _VMA_PUBLIC_INTERFACE -#endif // VMA_IMPLEMENTATION - -/** -\page quick_start Quick start - -\section quick_start_project_setup Project setup - -Vulkan Memory Allocator comes in form of a "stb-style" single header file. -While you can pull the entire repository e.g. as Git module, there is also Cmake script provided, -you don't need to build it as a separate library project. -You can add file "vk_mem_alloc.h" directly to your project and submit it to code repository next to your other source files. - -"Single header" doesn't mean that everything is contained in C/C++ declarations, -like it tends to be in case of inline functions or C++ templates. -It means that implementation is bundled with interface in a single file and needs to be extracted using preprocessor macro. -If you don't do it properly, it will result in linker errors. - -To do it properly: - --# Include "vk_mem_alloc.h" file in each CPP file where you want to use the library. - This includes declarations of all members of the library. --# In exactly one CPP file define following macro before this include. - It enables also internal definitions. - -\code -#define VMA_IMPLEMENTATION -#include "vk_mem_alloc.h" -\endcode - -It may be a good idea to create dedicated CPP file just for this purpose, e.g. "VmaUsage.cpp". - -This library includes header ``, which in turn -includes `` on Windows. If you need some specific macros defined -before including these headers (like `WIN32_LEAN_AND_MEAN` or -`WINVER` for Windows, `VK_USE_PLATFORM_WIN32_KHR` for Vulkan), you must define -them before every `#include` of this library. -It may be a good idea to create a dedicate header file for this purpose, e.g. "VmaUsage.h", -that will be included in other source files instead of VMA header directly. - -This library is written in C++, but has C-compatible interface. -Thus, you can include and use "vk_mem_alloc.h" in C or C++ code, but full -implementation with `VMA_IMPLEMENTATION` macro must be compiled as C++, NOT as C. -Some features of C++14 are used and required. Features of C++20 are used optionally when available. -Some headers of standard C and C++ library are used, but STL containers, RTTI, or C++ exceptions are not used. - - -\section quick_start_initialization Initialization - -VMA offers library interface in a style similar to Vulkan, with object handles like #VmaAllocation, -structures describing parameters of objects to be created like #VmaAllocationCreateInfo, -and errors codes returned from functions using `VkResult` type. - -The first and the main object that needs to be created is #VmaAllocator. -It represents the initialization of the entire library. -Only one such object should be created per `VkDevice`. -You should create it at program startup, after `VkDevice` was created, and before any device memory allocator needs to be made. -It must be destroyed before `VkDevice` is destroyed. - -At program startup: - --# Initialize Vulkan to have `VkInstance`, `VkPhysicalDevice`, `VkDevice` object. --# Fill VmaAllocatorCreateInfo structure and call vmaCreateAllocator() to create #VmaAllocator object. - -Only members `physicalDevice`, `device`, `instance` are required. -However, you should inform the library which Vulkan version do you use by setting -VmaAllocatorCreateInfo::vulkanApiVersion and which extensions did you enable -by setting VmaAllocatorCreateInfo::flags. -Otherwise, VMA would use only features of Vulkan 1.0 core with no extensions. -See below for details. - -\subsection quick_start_initialization_selecting_vulkan_version Selecting Vulkan version - -VMA supports Vulkan version down to 1.0, for backward compatibility. -If you want to use higher version, you need to inform the library about it. -This is a two-step process. - -Step 1: Compile time. By default, VMA compiles with code supporting the highest -Vulkan version found in the included `` that is also supported by the library. -If this is OK, you don't need to do anything. -However, if you want to compile VMA as if only some lower Vulkan version was available, -define macro `VMA_VULKAN_VERSION` before every `#include "vk_mem_alloc.h"`. -It should have decimal numeric value in form of ABBBCCC, where A = major, BBB = minor, CCC = patch Vulkan version. -For example, to compile against Vulkan 1.2: - -\code -#define VMA_VULKAN_VERSION 1002000 // Vulkan 1.2 -#include "vk_mem_alloc.h" -\endcode - -Step 2: Runtime. Even when compiled with higher Vulkan version available, -VMA can use only features of a lower version, which is configurable during creation of the #VmaAllocator object. -By default, only Vulkan 1.0 is used. -To initialize the allocator with support for higher Vulkan version, you need to set member -VmaAllocatorCreateInfo::vulkanApiVersion to an appropriate value, e.g. using constants like `VK_API_VERSION_1_2`. -See code sample below. - -\subsection quick_start_initialization_importing_vulkan_functions Importing Vulkan functions - -You may need to configure importing Vulkan functions. There are 3 ways to do this: - --# **If you link with Vulkan static library** (e.g. "vulkan-1.lib" on Windows): - - You don't need to do anything. - - VMA will use these, as macro `VMA_STATIC_VULKAN_FUNCTIONS` is defined to 1 by default. --# **If you want VMA to fetch pointers to Vulkan functions dynamically** using `vkGetInstanceProcAddr`, - `vkGetDeviceProcAddr` (this is the option presented in the example below): - - Define `VMA_STATIC_VULKAN_FUNCTIONS` to 0, `VMA_DYNAMIC_VULKAN_FUNCTIONS` to 1. - - Provide pointers to these two functions via VmaVulkanFunctions::vkGetInstanceProcAddr, - VmaVulkanFunctions::vkGetDeviceProcAddr. - - The library will fetch pointers to all other functions it needs internally. --# **If you fetch pointers to all Vulkan functions in a custom way**, e.g. using some loader like - [Volk](https://github.com/zeux/volk): - - Define `VMA_STATIC_VULKAN_FUNCTIONS` and `VMA_DYNAMIC_VULKAN_FUNCTIONS` to 0. - - Pass these pointers via structure #VmaVulkanFunctions. - -\subsection quick_start_initialization_enabling_extensions Enabling extensions - -VMA can automatically use following Vulkan extensions. -If you found them available on the selected physical device and you enabled them -while creating `VkInstance` / `VkDevice` object, inform VMA about their availability -by setting appropriate flags in VmaAllocatorCreateInfo::flags. - -Vulkan extension | VMA flag -------------------------------|----------------------------------------------------- -VK_KHR_dedicated_allocation | #VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT -VK_KHR_bind_memory2 | #VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT -VK_KHR_maintenance4 | #VMA_ALLOCATOR_CREATE_KHR_MAINTENANCE4_BIT -VK_KHR_maintenance5 | #VMA_ALLOCATOR_CREATE_KHR_MAINTENANCE5_BIT -VK_EXT_memory_budget | #VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT -VK_KHR_buffer_device_address | #VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT -VK_EXT_memory_priority | #VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT -VK_AMD_device_coherent_memory | #VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT -VK_KHR_external_memory_win32 | #VMA_ALLOCATOR_CREATE_KHR_EXTERNAL_MEMORY_WIN32_BIT - -Example with fetching pointers to Vulkan functions dynamically: - -\code -#define VMA_STATIC_VULKAN_FUNCTIONS 0 -#define VMA_DYNAMIC_VULKAN_FUNCTIONS 1 -#include "vk_mem_alloc.h" - -... - -VmaVulkanFunctions vulkanFunctions = {}; -vulkanFunctions.vkGetInstanceProcAddr = &vkGetInstanceProcAddr; -vulkanFunctions.vkGetDeviceProcAddr = &vkGetDeviceProcAddr; - -VmaAllocatorCreateInfo allocatorCreateInfo = {}; -allocatorCreateInfo.flags = VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT; -allocatorCreateInfo.vulkanApiVersion = VK_API_VERSION_1_2; -allocatorCreateInfo.physicalDevice = physicalDevice; -allocatorCreateInfo.device = device; -allocatorCreateInfo.instance = instance; -allocatorCreateInfo.pVulkanFunctions = &vulkanFunctions; - -VmaAllocator allocator; -vmaCreateAllocator(&allocatorCreateInfo, &allocator); - -// Entire program... - -// At the end, don't forget to: -vmaDestroyAllocator(allocator); -\endcode - - -\subsection quick_start_initialization_other_config Other configuration options - -There are additional configuration options available through preprocessor macros that you can define -before including VMA header and through parameters passed in #VmaAllocatorCreateInfo. -They include a possibility to use your own callbacks for host memory allocations (`VkAllocationCallbacks`), -callbacks for device memory allocations (instead of `vkAllocateMemory`, `vkFreeMemory`), -or your custom `VMA_ASSERT` macro, among others. -For more information, see: @ref configuration. - - -\section quick_start_resource_allocation Resource allocation - -When you want to create a buffer or image: - --# Fill `VkBufferCreateInfo` / `VkImageCreateInfo` structure. --# Fill VmaAllocationCreateInfo structure. --# Call vmaCreateBuffer() / vmaCreateImage() to get `VkBuffer`/`VkImage` with memory - already allocated and bound to it, plus #VmaAllocation objects that represents its underlying memory. - -\code -VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; -bufferInfo.size = 65536; -bufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; - -VmaAllocationCreateInfo allocInfo = {}; -allocInfo.usage = VMA_MEMORY_USAGE_AUTO; - -VkBuffer buffer; -VmaAllocation allocation; -vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr); -\endcode - -Don't forget to destroy your buffer and allocation objects when no longer needed: - -\code -vmaDestroyBuffer(allocator, buffer, allocation); -\endcode - -If you need to map the buffer, you must set flag -#VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT -in VmaAllocationCreateInfo::flags. -There are many additional parameters that can control the choice of memory type to be used for the allocation -and other features. -For more information, see documentation chapters: @ref choosing_memory_type, @ref memory_mapping. - - -\page choosing_memory_type Choosing memory type - -Physical devices in Vulkan support various combinations of memory heaps and -types. Help with choosing correct and optimal memory type for your specific -resource is one of the key features of this library. You can use it by filling -appropriate members of VmaAllocationCreateInfo structure, as described below. -You can also combine multiple methods. - --# If you just want to find memory type index that meets your requirements, you - can use function: vmaFindMemoryTypeIndexForBufferInfo(), - vmaFindMemoryTypeIndexForImageInfo(), vmaFindMemoryTypeIndex(). --# If you want to allocate a region of device memory without association with any - specific image or buffer, you can use function vmaAllocateMemory(). Usage of - this function is not recommended and usually not needed. - vmaAllocateMemoryPages() function is also provided for creating multiple allocations at once, - which may be useful for sparse binding. --# If you already have a buffer or an image created, you want to allocate memory - for it and then you will bind it yourself, you can use function - vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage(). - For binding you should use functions: vmaBindBufferMemory(), vmaBindImageMemory() - or their extended versions: vmaBindBufferMemory2(), vmaBindImageMemory2(). --# If you want to create a buffer or an image, allocate memory for it, and bind - them together, all in one call, you can use function vmaCreateBuffer(), - vmaCreateImage(). - This is the easiest and recommended way to use this library! - -When using 3. or 4., the library internally queries Vulkan for memory types -supported for that buffer or image (function `vkGetBufferMemoryRequirements()`) -and uses only one of these types. - -If no memory type can be found that meets all the requirements, these functions -return `VK_ERROR_FEATURE_NOT_PRESENT`. - -You can leave VmaAllocationCreateInfo structure completely filled with zeros. -It means no requirements are specified for memory type. -It is valid, although not very useful. - -\section choosing_memory_type_usage Usage - -The easiest way to specify memory requirements is to fill member -VmaAllocationCreateInfo::usage using one of the values of enum #VmaMemoryUsage. -It defines high level, common usage types. -Since version 3 of the library, it is recommended to use #VMA_MEMORY_USAGE_AUTO to let it select best memory type for your resource automatically. - -For example, if you want to create a uniform buffer that will be filled using -transfer only once or infrequently and then used for rendering every frame as a uniform buffer, you can -do it using following code. The buffer will most likely end up in a memory type with -`VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT` to be fast to access by the GPU device. - -\code -VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; -bufferInfo.size = 65536; -bufferInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; - -VmaAllocationCreateInfo allocInfo = {}; -allocInfo.usage = VMA_MEMORY_USAGE_AUTO; - -VkBuffer buffer; -VmaAllocation allocation; -vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr); -\endcode - -If you have a preference for putting the resource in GPU (device) memory or CPU (host) memory -on systems with discrete graphics card that have the memories separate, you can use -#VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE or #VMA_MEMORY_USAGE_AUTO_PREFER_HOST. - -When using `VMA_MEMORY_USAGE_AUTO*` while you want to map the allocated memory, -you also need to specify one of the host access flags: -#VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT. -This will help the library decide about preferred memory type to ensure it has `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` -so you can map it. - -For example, a staging buffer that will be filled via mapped pointer and then -used as a source of transfer to the buffer described previously can be created like this. -It will likely end up in a memory type that is `HOST_VISIBLE` and `HOST_COHERENT` -but not `HOST_CACHED` (meaning uncached, write-combined) and not `DEVICE_LOCAL` (meaning system RAM). - -\code -VkBufferCreateInfo stagingBufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; -stagingBufferInfo.size = 65536; -stagingBufferInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; - -VmaAllocationCreateInfo stagingAllocInfo = {}; -stagingAllocInfo.usage = VMA_MEMORY_USAGE_AUTO; -stagingAllocInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT; - -VkBuffer stagingBuffer; -VmaAllocation stagingAllocation; -vmaCreateBuffer(allocator, &stagingBufferInfo, &stagingAllocInfo, &stagingBuffer, &stagingAllocation, nullptr); -\endcode - -For more examples of creating different kinds of resources, see chapter \ref usage_patterns. -See also: @ref memory_mapping. - -Usage values `VMA_MEMORY_USAGE_AUTO*` are legal to use only when the library knows -about the resource being created by having `VkBufferCreateInfo` / `VkImageCreateInfo` passed, -so they work with functions like: vmaCreateBuffer(), vmaCreateImage(), vmaFindMemoryTypeIndexForBufferInfo() etc. -If you allocate raw memory using function vmaAllocateMemory(), you have to use other means of selecting -memory type, as described below. - -\note -Old usage values (`VMA_MEMORY_USAGE_GPU_ONLY`, `VMA_MEMORY_USAGE_CPU_ONLY`, -`VMA_MEMORY_USAGE_CPU_TO_GPU`, `VMA_MEMORY_USAGE_GPU_TO_CPU`, `VMA_MEMORY_USAGE_CPU_COPY`) -are still available and work same way as in previous versions of the library -for backward compatibility, but they are deprecated. - -\section choosing_memory_type_required_preferred_flags Required and preferred flags - -You can specify more detailed requirements by filling members -VmaAllocationCreateInfo::requiredFlags and VmaAllocationCreateInfo::preferredFlags -with a combination of bits from enum `VkMemoryPropertyFlags`. For example, -if you want to create a buffer that will be persistently mapped on host (so it -must be `HOST_VISIBLE`) and preferably will also be `HOST_COHERENT` and `HOST_CACHED`, -use following code: - -\code -VmaAllocationCreateInfo allocInfo = {}; -allocInfo.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; -allocInfo.preferredFlags = VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT; -allocInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT | VMA_ALLOCATION_CREATE_MAPPED_BIT; - -VkBuffer buffer; -VmaAllocation allocation; -vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr); -\endcode - -A memory type is chosen that has all the required flags and as many preferred -flags set as possible. - -Value passed in VmaAllocationCreateInfo::usage is internally converted to a set of required and preferred flags, -plus some extra "magic" (heuristics). - -\section choosing_memory_type_explicit_memory_types Explicit memory types - -If you inspected memory types available on the physical device and you have -a preference for memory types that you want to use, you can fill member -VmaAllocationCreateInfo::memoryTypeBits. It is a bit mask, where each bit set -means that a memory type with that index is allowed to be used for the -allocation. Special value 0, just like `UINT32_MAX`, means there are no -restrictions to memory type index. - -Please note that this member is NOT just a memory type index. -Still you can use it to choose just one, specific memory type. -For example, if you already determined that your buffer should be created in -memory type 2, use following code: - -\code -uint32_t memoryTypeIndex = 2; - -VmaAllocationCreateInfo allocInfo = {}; -allocInfo.memoryTypeBits = 1u << memoryTypeIndex; - -VkBuffer buffer; -VmaAllocation allocation; -vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr); -\endcode - -You can also use this parameter to exclude some memory types. -If you inspect memory heaps and types available on the current physical device and -you determine that for some reason you don't want to use a specific memory type for the allocation, -you can enable automatic memory type selection but exclude certain memory type or types -by setting all bits of `memoryTypeBits` to 1 except the ones you choose. - -\code -// ... -uint32_t excludedMemoryTypeIndex = 2; -VmaAllocationCreateInfo allocInfo = {}; -allocInfo.usage = VMA_MEMORY_USAGE_AUTO; -allocInfo.memoryTypeBits = ~(1u << excludedMemoryTypeIndex); -// ... -\endcode - - -\section choosing_memory_type_custom_memory_pools Custom memory pools - -If you allocate from custom memory pool, all the ways of specifying memory -requirements described above are not applicable and the aforementioned members -of VmaAllocationCreateInfo structure are ignored. Memory type is selected -explicitly when creating the pool and then used to make all the allocations from -that pool. For further details, see \ref custom_memory_pools. - -\section choosing_memory_type_dedicated_allocations Dedicated allocations - -Memory for allocations is reserved out of larger block of `VkDeviceMemory` -allocated from Vulkan internally. That is the main feature of this whole library. -You can still request a separate memory block to be created for an allocation, -just like you would do in a trivial solution without using any allocator. -In that case, a buffer or image is always bound to that memory at offset 0. -This is called a "dedicated allocation". -You can explicitly request it by using flag #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. -The library can also internally decide to use dedicated allocation in some cases, e.g.: - -- When the size of the allocation is large. -- When [VK_KHR_dedicated_allocation](@ref vk_khr_dedicated_allocation) extension is enabled - and it reports that dedicated allocation is required or recommended for the resource. -- When allocation of next big memory block fails due to not enough device memory, - but allocation with the exact requested size succeeds. - - -\page memory_mapping Memory mapping - -To "map memory" in Vulkan means to obtain a CPU pointer to `VkDeviceMemory`, -to be able to read from it or write to it in CPU code. -Mapping is possible only of memory allocated from a memory type that has -`VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag. -Functions `vkMapMemory()`, `vkUnmapMemory()` are designed for this purpose. -You can use them directly with memory allocated by this library, -but it is not recommended because of following issue: -Mapping the same `VkDeviceMemory` block multiple times is illegal - only one mapping at a time is allowed. -This includes mapping disjoint regions. Mapping is not reference-counted internally by Vulkan. -It is also not thread-safe. -Because of this, Vulkan Memory Allocator provides following facilities: - -\note If you want to be able to map an allocation, you need to specify one of the flags -#VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT -in VmaAllocationCreateInfo::flags. These flags are required for an allocation to be mappable -when using #VMA_MEMORY_USAGE_AUTO or other `VMA_MEMORY_USAGE_AUTO*` enum values. -For other usage values they are ignored and every such allocation made in `HOST_VISIBLE` memory type is mappable, -but these flags can still be used for consistency. - -\section memory_mapping_copy_functions Copy functions - -The easiest way to copy data from a host pointer to an allocation is to use convenience function vmaCopyMemoryToAllocation(). -It automatically maps the Vulkan memory temporarily (if not already mapped), performs `memcpy`, -and calls `vkFlushMappedMemoryRanges` (if required - if memory type is not `HOST_COHERENT`). - -It is also the safest one, because using `memcpy` avoids a risk of accidentally introducing memory reads -(e.g. by doing `pMappedVectors[i] += v`), which may be very slow on memory types that are not `HOST_CACHED`. - -\code -struct ConstantBuffer -{ - ... -}; -ConstantBuffer constantBufferData = ... - -VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; -bufCreateInfo.size = sizeof(ConstantBuffer); -bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; - -VmaAllocationCreateInfo allocCreateInfo = {}; -allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO; -allocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT; - -VkBuffer buf; -VmaAllocation alloc; -vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, nullptr); - -vmaCopyMemoryToAllocation(allocator, &constantBufferData, alloc, 0, sizeof(ConstantBuffer)); -\endcode - -Copy in the other direction - from an allocation to a host pointer can be performed the same way using function vmaCopyAllocationToMemory(). - -\section memory_mapping_mapping_functions Mapping functions - -The library provides following functions for mapping of a specific allocation: vmaMapMemory(), vmaUnmapMemory(). -They are safer and more convenient to use than standard Vulkan functions. -You can map an allocation multiple times simultaneously - mapping is reference-counted internally. -You can also map different allocations simultaneously regardless of whether they use the same `VkDeviceMemory` block. -The way it is implemented is that the library always maps entire memory block, not just region of the allocation. -For further details, see description of vmaMapMemory() function. -Example: - -\code -// Having these objects initialized: -struct ConstantBuffer -{ - ... -}; -ConstantBuffer constantBufferData = ... - -VmaAllocator allocator = ... -VkBuffer constantBuffer = ... -VmaAllocation constantBufferAllocation = ... - -// You can map and fill your buffer using following code: - -void* mappedData; -vmaMapMemory(allocator, constantBufferAllocation, &mappedData); -memcpy(mappedData, &constantBufferData, sizeof(constantBufferData)); -vmaUnmapMemory(allocator, constantBufferAllocation); -\endcode - -When mapping, you may see a warning from Vulkan validation layer similar to this one: - -Mapping an image with layout VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL can result in undefined behavior if this memory is used by the device. Only GENERAL or PREINITIALIZED should be used. - -It happens because the library maps entire `VkDeviceMemory` block, where different -types of images and buffers may end up together, especially on GPUs with unified memory like Intel. -You can safely ignore it if you are sure you access only memory of the intended -object that you wanted to map. - - -\section memory_mapping_persistently_mapped_memory Persistently mapped memory - -Keeping your memory persistently mapped is generally OK in Vulkan. -You don't need to unmap it before using its data on the GPU. -The library provides a special feature designed for that: -Allocations made with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag set in -VmaAllocationCreateInfo::flags stay mapped all the time, -so you can just access CPU pointer to it any time -without a need to call any "map" or "unmap" function. -Example: - -\code -VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; -bufCreateInfo.size = sizeof(ConstantBuffer); -bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; - -VmaAllocationCreateInfo allocCreateInfo = {}; -allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO; -allocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | - VMA_ALLOCATION_CREATE_MAPPED_BIT; - -VkBuffer buf; -VmaAllocation alloc; -VmaAllocationInfo allocInfo; -vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo); - -// Buffer is already mapped. You can access its memory. -memcpy(allocInfo.pMappedData, &constantBufferData, sizeof(constantBufferData)); -\endcode - -\note #VMA_ALLOCATION_CREATE_MAPPED_BIT by itself doesn't guarantee that the allocation will end up -in a mappable memory type. -For this, you need to also specify #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or -#VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT. -#VMA_ALLOCATION_CREATE_MAPPED_BIT only guarantees that if the memory is `HOST_VISIBLE`, the allocation will be mapped on creation. -For an example of how to make use of this fact, see section \ref usage_patterns_advanced_data_uploading. - -\section memory_mapping_cache_control Cache flush and invalidate - -Memory in Vulkan doesn't need to be unmapped before using it on GPU, -but unless a memory types has `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT` flag set, -you need to manually **invalidate** cache before reading of mapped pointer -and **flush** cache after writing to mapped pointer. -Map/unmap operations don't do that automatically. -Vulkan provides following functions for this purpose `vkFlushMappedMemoryRanges()`, -`vkInvalidateMappedMemoryRanges()`, but this library provides more convenient -functions that refer to given allocation object: vmaFlushAllocation(), -vmaInvalidateAllocation(), -or multiple objects at once: vmaFlushAllocations(), vmaInvalidateAllocations(). - -Regions of memory specified for flush/invalidate must be aligned to -`VkPhysicalDeviceLimits::nonCoherentAtomSize`. This is automatically ensured by the library. -In any memory type that is `HOST_VISIBLE` but not `HOST_COHERENT`, all allocations -within blocks are aligned to this value, so their offsets are always multiply of -`nonCoherentAtomSize` and two different allocations never share same "line" of this size. - -Also, Windows drivers from all 3 PC GPU vendors (AMD, Intel, NVIDIA) -currently provide `HOST_COHERENT` flag on all memory types that are -`HOST_VISIBLE`, so on PC you may not need to bother. - - -\page staying_within_budget Staying within budget - -When developing a graphics-intensive game or program, it is important to avoid allocating -more GPU memory than it is physically available. When the memory is over-committed, -various bad things can happen, depending on the specific GPU, graphics driver, and -operating system: - -- It may just work without any problems. -- The application may slow down because some memory blocks are moved to system RAM - and the GPU has to access them through PCI Express bus. -- A new allocation may take very long time to complete, even few seconds, and possibly - freeze entire system. -- The new allocation may fail with `VK_ERROR_OUT_OF_DEVICE_MEMORY`. -- It may even result in GPU crash (TDR), observed as `VK_ERROR_DEVICE_LOST` - returned somewhere later. - -\section staying_within_budget_querying_for_budget Querying for budget - -To query for current memory usage and available budget, use function vmaGetHeapBudgets(). -Returned structure #VmaBudget contains quantities expressed in bytes, per Vulkan memory heap. - -Please note that this function returns different information and works faster than -vmaCalculateStatistics(). vmaGetHeapBudgets() can be called every frame or even before every -allocation, while vmaCalculateStatistics() is intended to be used rarely, -only to obtain statistical information, e.g. for debugging purposes. - -It is recommended to use VK_EXT_memory_budget device extension to obtain information -about the budget from Vulkan device. VMA is able to use this extension automatically. -When not enabled, the allocator behaves same way, but then it estimates current usage -and available budget based on its internal information and Vulkan memory heap sizes, -which may be less precise. In order to use this extension: - -1. Make sure extensions VK_EXT_memory_budget and VK_KHR_get_physical_device_properties2 - required by it are available and enable them. Please note that the first is a device - extension and the second is instance extension! -2. Use flag #VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT when creating #VmaAllocator object. -3. Make sure to call vmaSetCurrentFrameIndex() every frame. Budget is queried from - Vulkan inside of it to avoid overhead of querying it with every allocation. - -\section staying_within_budget_controlling_memory_usage Controlling memory usage - -There are many ways in which you can try to stay within the budget. - -First, when making new allocation requires allocating a new memory block, the library -tries not to exceed the budget automatically. If a block with default recommended size -(e.g. 256 MB) would go over budget, a smaller block is allocated, possibly even -dedicated memory for just this resource. - -If the size of the requested resource plus current memory usage is more than the -budget, by default the library still tries to create it, leaving it to the Vulkan -implementation whether the allocation succeeds or fails. You can change this behavior -by using #VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT flag. With it, the allocation is -not made if it would exceed the budget or if the budget is already exceeded. -VMA then tries to make the allocation from the next eligible Vulkan memory type. -If all of them fail, the call then fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY`. -Example usage pattern may be to pass the #VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT flag -when creating resources that are not essential for the application (e.g. the texture -of a specific object) and not to pass it when creating critically important resources -(e.g. render targets). - -On AMD graphics cards there is a custom vendor extension available: VK_AMD_memory_overallocation_behavior -that allows to control the behavior of the Vulkan implementation in out-of-memory cases - -whether it should fail with an error code or still allow the allocation. -Usage of this extension involves only passing extra structure on Vulkan device creation, -so it is out of scope of this library. - -Finally, you can also use #VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT flag to make sure -a new allocation is created only when it fits inside one of the existing memory blocks. -If it would require to allocate a new block, if fails instead with `VK_ERROR_OUT_OF_DEVICE_MEMORY`. -This also ensures that the function call is very fast because it never goes to Vulkan -to obtain a new block. - -\note Creating \ref custom_memory_pools with VmaPoolCreateInfo::minBlockCount -set to more than 0 will currently try to allocate memory blocks without checking whether they -fit within budget. - - -\page resource_aliasing Resource aliasing (overlap) - -New explicit graphics APIs (Vulkan and Direct3D 12), thanks to manual memory -management, give an opportunity to alias (overlap) multiple resources in the -same region of memory - a feature not available in the old APIs (Direct3D 11, OpenGL). -It can be useful to save video memory, but it must be used with caution. - -For example, if you know the flow of your whole render frame in advance, you -are going to use some intermediate textures or buffers only during a small range of render passes, -and you know these ranges don't overlap in time, you can bind these resources to -the same place in memory, even if they have completely different parameters (width, height, format etc.). - -![Resource aliasing (overlap)](../gfx/Aliasing.png) - -Such scenario is possible using VMA, but you need to create your images manually. -Then you need to calculate parameters of an allocation to be made using formula: - -- allocation size = max(size of each image) -- allocation alignment = max(alignment of each image) -- allocation memoryTypeBits = bitwise AND(memoryTypeBits of each image) - -Following example shows two different images bound to the same place in memory, -allocated to fit largest of them. - -\code -// A 512x512 texture to be sampled. -VkImageCreateInfo img1CreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO }; -img1CreateInfo.imageType = VK_IMAGE_TYPE_2D; -img1CreateInfo.extent.width = 512; -img1CreateInfo.extent.height = 512; -img1CreateInfo.extent.depth = 1; -img1CreateInfo.mipLevels = 10; -img1CreateInfo.arrayLayers = 1; -img1CreateInfo.format = VK_FORMAT_R8G8B8A8_SRGB; -img1CreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; -img1CreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; -img1CreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT; -img1CreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; - -// A full screen texture to be used as color attachment. -VkImageCreateInfo img2CreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO }; -img2CreateInfo.imageType = VK_IMAGE_TYPE_2D; -img2CreateInfo.extent.width = 1920; -img2CreateInfo.extent.height = 1080; -img2CreateInfo.extent.depth = 1; -img2CreateInfo.mipLevels = 1; -img2CreateInfo.arrayLayers = 1; -img2CreateInfo.format = VK_FORMAT_R8G8B8A8_UNORM; -img2CreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; -img2CreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; -img2CreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; -img2CreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; - -VkImage img1; -res = vkCreateImage(device, &img1CreateInfo, nullptr, &img1); -VkImage img2; -res = vkCreateImage(device, &img2CreateInfo, nullptr, &img2); - -VkMemoryRequirements img1MemReq; -vkGetImageMemoryRequirements(device, img1, &img1MemReq); -VkMemoryRequirements img2MemReq; -vkGetImageMemoryRequirements(device, img2, &img2MemReq); - -VkMemoryRequirements finalMemReq = {}; -finalMemReq.size = std::max(img1MemReq.size, img2MemReq.size); -finalMemReq.alignment = std::max(img1MemReq.alignment, img2MemReq.alignment); -finalMemReq.memoryTypeBits = img1MemReq.memoryTypeBits & img2MemReq.memoryTypeBits; -// Validate if(finalMemReq.memoryTypeBits != 0) - -VmaAllocationCreateInfo allocCreateInfo = {}; -allocCreateInfo.preferredFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; - -VmaAllocation alloc; -res = vmaAllocateMemory(allocator, &finalMemReq, &allocCreateInfo, &alloc, nullptr); - -res = vmaBindImageMemory(allocator, alloc, img1); -res = vmaBindImageMemory(allocator, alloc, img2); - -// You can use img1, img2 here, but not at the same time! - -vmaFreeMemory(allocator, alloc); -vkDestroyImage(allocator, img2, nullptr); -vkDestroyImage(allocator, img1, nullptr); -\endcode - -VMA also provides convenience functions that create a buffer or image and bind it to memory -represented by an existing #VmaAllocation: -vmaCreateAliasingBuffer(), vmaCreateAliasingBuffer2(), -vmaCreateAliasingImage(), vmaCreateAliasingImage2(). -Versions with "2" offer additional parameter `allocationLocalOffset`. - -Remember that using resources that alias in memory requires proper synchronization. -You need to issue a memory barrier to make sure commands that use `img1` and `img2` -don't overlap on GPU timeline. -You also need to treat a resource after aliasing as uninitialized - containing garbage data. -For example, if you use `img1` and then want to use `img2`, you need to issue -an image memory barrier for `img2` with `oldLayout` = `VK_IMAGE_LAYOUT_UNDEFINED`. - -Additional considerations: - -- Vulkan also allows to interpret contents of memory between aliasing resources consistently in some cases. -See chapter 11.8. "Memory Aliasing" of Vulkan specification or `VK_IMAGE_CREATE_ALIAS_BIT` flag. -- You can create more complex layout where different images and buffers are bound -at different offsets inside one large allocation. For example, one can imagine -a big texture used in some render passes, aliasing with a set of many small buffers -used between in some further passes. To bind a resource at non-zero offset in an allocation, -use vmaBindBufferMemory2() / vmaBindImageMemory2(). -- Before allocating memory for the resources you want to alias, check `memoryTypeBits` -returned in memory requirements of each resource to make sure the bits overlap. -Some GPUs may expose multiple memory types suitable e.g. only for buffers or -images with `COLOR_ATTACHMENT` usage, so the sets of memory types supported by your -resources may be disjoint. Aliasing them is not possible in that case. - - -\page custom_memory_pools Custom memory pools - -A memory pool contains a number of `VkDeviceMemory` blocks. -The library automatically creates and manages default pool for each memory type available on the device. -Default memory pool automatically grows in size. -Size of allocated blocks is also variable and managed automatically. -You are using default pools whenever you leave VmaAllocationCreateInfo::pool = null. - -You can create custom pool and allocate memory out of it. -It can be useful if you want to: - -- Keep certain kind of allocations separate from others. -- Enforce particular, fixed size of Vulkan memory blocks. -- Limit maximum amount of Vulkan memory allocated for that pool. -- Reserve minimum or fixed amount of Vulkan memory always preallocated for that pool. -- Use extra parameters for a set of your allocations that are available in #VmaPoolCreateInfo but not in - #VmaAllocationCreateInfo - e.g., custom minimum alignment, custom `pNext` chain. -- Perform defragmentation on a specific subset of your allocations. - -To use custom memory pools: - --# Fill VmaPoolCreateInfo structure. --# Call vmaCreatePool() to obtain #VmaPool handle. --# When making an allocation, set VmaAllocationCreateInfo::pool to this handle. - You don't need to specify any other parameters of this structure, like `usage`. - -Example: - -\code -// Find memoryTypeIndex for the pool. -VkBufferCreateInfo sampleBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; -sampleBufCreateInfo.size = 0x10000; // Doesn't matter. -sampleBufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; - -VmaAllocationCreateInfo sampleAllocCreateInfo = {}; -sampleAllocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO; - -uint32_t memTypeIndex; -VkResult res = vmaFindMemoryTypeIndexForBufferInfo(allocator, - &sampleBufCreateInfo, &sampleAllocCreateInfo, &memTypeIndex); -// Check res... - -// Create a pool that can have at most 2 blocks, 128 MiB each. -VmaPoolCreateInfo poolCreateInfo = {}; -poolCreateInfo.memoryTypeIndex = memTypeIndex; -poolCreateInfo.blockSize = 128ull * 1024 * 1024; -poolCreateInfo.maxBlockCount = 2; - -VmaPool pool; -res = vmaCreatePool(allocator, &poolCreateInfo, &pool); -// Check res... - -// Allocate a buffer out of it. -VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; -bufCreateInfo.size = 1024; -bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; - -VmaAllocationCreateInfo allocCreateInfo = {}; -allocCreateInfo.pool = pool; - -VkBuffer buf; -VmaAllocation alloc; -res = vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, nullptr); -// Check res... -\endcode - -You have to free all allocations made from this pool before destroying it. - -\code -vmaDestroyBuffer(allocator, buf, alloc); -vmaDestroyPool(allocator, pool); -\endcode - -New versions of this library support creating dedicated allocations in custom pools. -It is supported only when VmaPoolCreateInfo::blockSize = 0. -To use this feature, set VmaAllocationCreateInfo::pool to the pointer to your custom pool and -VmaAllocationCreateInfo::flags to #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. - - -\section custom_memory_pools_MemTypeIndex Choosing memory type index - -When creating a pool, you must explicitly specify memory type index. -To find the one suitable for your buffers or images, you can use helper functions -vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo(). -You need to provide structures with example parameters of buffers or images -that you are going to create in that pool. - -\code -VkBufferCreateInfo exampleBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; -exampleBufCreateInfo.size = 1024; // Doesn't matter -exampleBufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; - -VmaAllocationCreateInfo allocCreateInfo = {}; -allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO; - -uint32_t memTypeIndex; -vmaFindMemoryTypeIndexForBufferInfo(allocator, &exampleBufCreateInfo, &allocCreateInfo, &memTypeIndex); - -VmaPoolCreateInfo poolCreateInfo = {}; -poolCreateInfo.memoryTypeIndex = memTypeIndex; -// ... -\endcode - -When creating buffers/images allocated in that pool, provide following parameters: - -- `VkBufferCreateInfo`: Prefer to pass same parameters as above. - Otherwise you risk creating resources in a memory type that is not suitable for them, which may result in undefined behavior. - Using different `VK_BUFFER_USAGE_` flags may work, but you shouldn't create images in a pool intended for buffers - or the other way around. -- VmaAllocationCreateInfo: You don't need to pass same parameters. Fill only `pool` member. - Other members are ignored anyway. - - -\section custom_memory_pools_when_not_use When not to use custom pools - -Custom pools are commonly overused by VMA users. -While it may feel natural to keep some logical groups of resources separate in memory, -in most cases it does more harm than good. -Using custom pool shouldn't be your first choice. -Instead, please make all allocations from default pools first and only use custom pools -if you can prove and measure that it is beneficial in some way, -e.g. it results in lower memory usage, better performance, etc. - -Using custom pools has disadvantages: - -- Each pool has its own collection of `VkDeviceMemory` blocks. - Some of them may be partially or even completely empty. - Spreading allocations across multiple pools increases the amount of wasted (allocated but unbound) memory. -- You must manually choose specific memory type to be used by a custom pool (set as VmaPoolCreateInfo::memoryTypeIndex). - When using default pools, best memory type for each of your allocations can be selected automatically - using a carefully design algorithm that works across all kinds of GPUs. -- If an allocation from a custom pool at specific memory type fails, entire allocation operation returns failure. - When using default pools, VMA tries another compatible memory type. -- If you set VmaPoolCreateInfo::blockSize != 0, each memory block has the same size, - while default pools start from small blocks and only allocate next blocks larger and larger - up to the preferred block size. - -Many of the common concerns can be addressed in a different way than using custom pools: - -- If you want to keep your allocations of certain size (small versus large) or certain lifetime (transient versus long lived) - separate, you likely don't need to. - VMA uses a high quality allocation algorithm that manages memory well in various cases. - Please measure and check if using custom pools provides a benefit. -- If you want to keep your images and buffers separate, you don't need to. - VMA respects `bufferImageGranularity` limit automatically. -- If you want to keep your mapped and not mapped allocations separate, you don't need to. - VMA respects `nonCoherentAtomSize` limit automatically. - It also maps only those `VkDeviceMemory` blocks that need to map any allocation. - It even tries to keep mappable and non-mappable allocations in separate blocks to minimize the amount of mapped memory. -- If you want to choose a custom size for the default memory block, you can set it globally instead - using VmaAllocatorCreateInfo::preferredLargeHeapBlockSize. -- If you want to select specific memory type for your allocation, - you can set VmaAllocationCreateInfo::memoryTypeBits to `(1u << myMemoryTypeIndex)` instead. -- If you need to create a buffer with certain minimum alignment, you can still do it - using default pools with dedicated function vmaCreateBufferWithAlignment(). - - -\section linear_algorithm Linear allocation algorithm - -Each Vulkan memory block managed by this library has accompanying metadata that -keeps track of used and unused regions. By default, the metadata structure and -algorithm tries to find best place for new allocations among free regions to -optimize memory usage. This way you can allocate and free objects in any order. - -![Default allocation algorithm](../gfx/Linear_allocator_1_algo_default.png) - -Sometimes there is a need to use simpler, linear allocation algorithm. You can -create custom pool that uses such algorithm by adding flag -#VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT to VmaPoolCreateInfo::flags while creating -#VmaPool object. Then an alternative metadata management is used. It always -creates new allocations after last one and doesn't reuse free regions after -allocations freed in the middle. It results in better allocation performance and -less memory consumed by metadata. - -![Linear allocation algorithm](../gfx/Linear_allocator_2_algo_linear.png) - -With this one flag, you can create a custom pool that can be used in many ways: -free-at-once, stack, double stack, and ring buffer. See below for details. -You don't need to specify explicitly which of these options you are going to use - it is detected automatically. - -\subsection linear_algorithm_free_at_once Free-at-once - -In a pool that uses linear algorithm, you still need to free all the allocations -individually, e.g. by using vmaFreeMemory() or vmaDestroyBuffer(). You can free -them in any order. New allocations are always made after last one - free space -in the middle is not reused. However, when you release all the allocation and -the pool becomes empty, allocation starts from the beginning again. This way you -can use linear algorithm to speed up creation of allocations that you are going -to release all at once. - -![Free-at-once](../gfx/Linear_allocator_3_free_at_once.png) - -This mode is also available for pools created with VmaPoolCreateInfo::maxBlockCount -value that allows multiple memory blocks. - -\subsection linear_algorithm_stack Stack - -When you free an allocation that was created last, its space can be reused. -Thanks to this, if you always release allocations in the order opposite to their -creation (LIFO - Last In First Out), you can achieve behavior of a stack. - -![Stack](../gfx/Linear_allocator_4_stack.png) - -This mode is also available for pools created with VmaPoolCreateInfo::maxBlockCount -value that allows multiple memory blocks. - -\subsection linear_algorithm_double_stack Double stack - -The space reserved by a custom pool with linear algorithm may be used by two -stacks: - -- First, default one, growing up from offset 0. -- Second, "upper" one, growing down from the end towards lower offsets. - -To make allocation from the upper stack, add flag #VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT -to VmaAllocationCreateInfo::flags. - -![Double stack](../gfx/Linear_allocator_7_double_stack.png) - -Double stack is available only in pools with one memory block - -VmaPoolCreateInfo::maxBlockCount must be 1. Otherwise behavior is undefined. - -When the two stacks' ends meet so there is not enough space between them for a -new allocation, such allocation fails with usual -`VK_ERROR_OUT_OF_DEVICE_MEMORY` error. - -\subsection linear_algorithm_ring_buffer Ring buffer - -When you free some allocations from the beginning and there is not enough free space -for a new one at the end of a pool, allocator's "cursor" wraps around to the -beginning and starts allocation there. Thanks to this, if you always release -allocations in the same order as you created them (FIFO - First In First Out), -you can achieve behavior of a ring buffer / queue. - -![Ring buffer](../gfx/Linear_allocator_5_ring_buffer.png) - -Ring buffer is available only in pools with one memory block - -VmaPoolCreateInfo::maxBlockCount must be 1. Otherwise behavior is undefined. - -\note \ref defragmentation is not supported in custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT. - - -\page defragmentation Defragmentation - -Interleaved allocations and deallocations of many objects of varying size can -cause fragmentation over time, which can lead to a situation where the library is unable -to find a continuous range of free memory for a new allocation despite there is -enough free space, just scattered across many small free ranges between existing -allocations. - -To mitigate this problem, you can use defragmentation feature. -It doesn't happen automatically though and needs your cooperation, -because VMA is a low level library that only allocates memory. -It cannot recreate buffers and images in a new place as it doesn't remember the contents of `VkBufferCreateInfo` / `VkImageCreateInfo` structures. -It cannot copy their contents as it doesn't record any commands to a command buffer. - -Example: - -\code -VmaDefragmentationInfo defragInfo = {}; -defragInfo.pool = myPool; -defragInfo.flags = VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FAST_BIT; - -VmaDefragmentationContext defragCtx; -VkResult res = vmaBeginDefragmentation(allocator, &defragInfo, &defragCtx); -// Check res... - -for(;;) -{ - VmaDefragmentationPassMoveInfo pass; - res = vmaBeginDefragmentationPass(allocator, defragCtx, &pass); - if(res == VK_SUCCESS) - break; - else if(res != VK_INCOMPLETE) - // Handle error... - - for(uint32_t i = 0; i < pass.moveCount; ++i) - { - // Inspect pass.pMoves[i].srcAllocation, identify what buffer/image it represents. - VmaAllocationInfo allocInfo; - vmaGetAllocationInfo(allocator, pass.pMoves[i].srcAllocation, &allocInfo); - MyEngineResourceData* resData = (MyEngineResourceData*)allocInfo.pUserData; - - // Recreate and bind this buffer/image at: pass.pMoves[i].dstMemory, pass.pMoves[i].dstOffset. - VkImageCreateInfo imgCreateInfo = ... - VkImage newImg; - res = vkCreateImage(device, &imgCreateInfo, nullptr, &newImg); - // Check res... - res = vmaBindImageMemory(allocator, pass.pMoves[i].dstTmpAllocation, newImg); - // Check res... - - // Issue a vkCmdCopyBuffer/vkCmdCopyImage to copy its content to the new place. - vkCmdCopyImage(cmdBuf, resData->img, ..., newImg, ...); - } - - // Make sure the copy commands finished executing. - vkWaitForFences(...); - - // Destroy old buffers/images bound with pass.pMoves[i].srcAllocation. - for(uint32_t i = 0; i < pass.moveCount; ++i) - { - // ... - vkDestroyImage(device, resData->img, nullptr); - } - - // Update appropriate descriptors to point to the new places... - - res = vmaEndDefragmentationPass(allocator, defragCtx, &pass); - if(res == VK_SUCCESS) - break; - else if(res != VK_INCOMPLETE) - // Handle error... -} - -vmaEndDefragmentation(allocator, defragCtx, nullptr); -\endcode - -Although functions like vmaCreateBuffer(), vmaCreateImage(), vmaDestroyBuffer(), vmaDestroyImage() -create/destroy an allocation and a buffer/image at once, these are just a shortcut for -creating the resource, allocating memory, and binding them together. -Defragmentation works on memory allocations only. You must handle the rest manually. -Defragmentation is an iterative process that should repreat "passes" as long as related functions -return `VK_INCOMPLETE` not `VK_SUCCESS`. -In each pass: - -1. vmaBeginDefragmentationPass() function call: - - Calculates and returns the list of allocations to be moved in this pass. - Note this can be a time-consuming process. - - Reserves destination memory for them by creating temporary destination allocations - that you can query for their `VkDeviceMemory` + offset using vmaGetAllocationInfo(). -2. Inside the pass, **you should**: - - Inspect the returned list of allocations to be moved. - - Create new buffers/images and bind them at the returned destination temporary allocations. - - Copy data from source to destination resources if necessary. - - Destroy the source buffers/images, but NOT their allocations. -3. vmaEndDefragmentationPass() function call: - - Frees the source memory reserved for the allocations that are moved. - - Modifies source #VmaAllocation objects that are moved to point to the destination reserved memory. - - Frees `VkDeviceMemory` blocks that became empty. - -Unlike in previous iterations of the defragmentation API, there is no list of "movable" allocations passed as a parameter. -Defragmentation algorithm tries to move all suitable allocations. -You can, however, refuse to move some of them inside a defragmentation pass, by setting -`pass.pMoves[i].operation` to #VMA_DEFRAGMENTATION_MOVE_OPERATION_IGNORE. -This is not recommended and may result in suboptimal packing of the allocations after defragmentation. -If you cannot ensure any allocation can be moved, it is better to keep movable allocations separate in a custom pool. - -Inside a pass, for each allocation that should be moved: - -- You should copy its data from the source to the destination place by calling e.g. `vkCmdCopyBuffer()`, `vkCmdCopyImage()`. - - You need to make sure these commands finished executing before destroying the source buffers/images and before calling vmaEndDefragmentationPass(). -- If a resource doesn't contain any meaningful data, e.g. it is a transient color attachment image to be cleared, - filled, and used temporarily in each rendering frame, you can just recreate this image - without copying its data. -- If the resource is in `HOST_VISIBLE` and `HOST_CACHED` memory, you can copy its data on the CPU - using `memcpy()`. -- If you cannot move the allocation, you can set `pass.pMoves[i].operation` to #VMA_DEFRAGMENTATION_MOVE_OPERATION_IGNORE. - This will cancel the move. - - vmaEndDefragmentationPass() will then free the destination memory - not the source memory of the allocation, leaving it unchanged. -- If you decide the allocation is unimportant and can be destroyed instead of moved (e.g. it wasn't used for long time), - you can set `pass.pMoves[i].operation` to #VMA_DEFRAGMENTATION_MOVE_OPERATION_DESTROY. - - vmaEndDefragmentationPass() will then free both source and destination memory, and will destroy the source #VmaAllocation object. - -You can defragment a specific custom pool by setting VmaDefragmentationInfo::pool -(like in the example above) or all the default pools by setting this member to null. - -Defragmentation is always performed in each pool separately. -Allocations are never moved between different Vulkan memory types. -The size of the destination memory reserved for a moved allocation is the same as the original one. -Alignment of an allocation as it was determined using `vkGetBufferMemoryRequirements()` etc. is also respected after defragmentation. -Buffers/images should be recreated with the same `VkBufferCreateInfo` / `VkImageCreateInfo` parameters as the original ones. - -You can perform the defragmentation incrementally to limit the number of allocations and bytes to be moved -in each pass, e.g. to call it in sync with render frames and not to experience too big hitches. -See members: VmaDefragmentationInfo::maxBytesPerPass, VmaDefragmentationInfo::maxAllocationsPerPass. - -It is also safe to perform the defragmentation asynchronously to render frames and other Vulkan and VMA -usage, possibly from multiple threads, with the exception that allocations -returned in VmaDefragmentationPassMoveInfo::pMoves shouldn't be destroyed until the defragmentation pass is ended. - -Mapping is preserved on allocations that are moved during defragmentation. -Whether through #VMA_ALLOCATION_CREATE_MAPPED_BIT or vmaMapMemory(), the allocations -are mapped at their new place. Of course, pointer to the mapped data changes, so it needs to be queried -using VmaAllocationInfo::pMappedData. - -\note Defragmentation is not supported in custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT. - - -\page statistics Statistics - -This library contains several functions that return information about its internal state, -especially the amount of memory allocated from Vulkan. - -\section statistics_numeric_statistics Numeric statistics - -If you need to obtain basic statistics about memory usage per heap, together with current budget, -you can call function vmaGetHeapBudgets() and inspect structure #VmaBudget. -This is useful to keep track of memory usage and stay within budget -(see also \ref staying_within_budget). -Example: - -\code -uint32_t heapIndex = ... - -VmaBudget budgets[VK_MAX_MEMORY_HEAPS]; -vmaGetHeapBudgets(allocator, budgets); - -printf("My heap currently has %u allocations taking %llu B,\n", - budgets[heapIndex].statistics.allocationCount, - budgets[heapIndex].statistics.allocationBytes); -printf("allocated out of %u Vulkan device memory blocks taking %llu B,\n", - budgets[heapIndex].statistics.blockCount, - budgets[heapIndex].statistics.blockBytes); -printf("Vulkan reports total usage %llu B with budget %llu B.\n", - budgets[heapIndex].usage, - budgets[heapIndex].budget); -\endcode - -You can query for more detailed statistics per memory heap, type, and totals, -including minimum and maximum allocation size and unused range size, -by calling function vmaCalculateStatistics() and inspecting structure #VmaTotalStatistics. -This function is slower though, as it has to traverse all the internal data structures, -so it should be used only for debugging purposes. - -You can query for statistics of a custom pool using function vmaGetPoolStatistics() -or vmaCalculatePoolStatistics(). - -You can query for information about a specific allocation using function vmaGetAllocationInfo(). -It fill structure #VmaAllocationInfo. - -\section statistics_json_dump JSON dump - -You can dump internal state of the allocator to a string in JSON format using function vmaBuildStatsString(). -The result is guaranteed to be correct JSON. -It uses ANSI encoding. -Any strings provided by user (see [Allocation names](@ref allocation_names)) -are copied as-is and properly escaped for JSON, so if they use UTF-8, ISO-8859-2 or any other encoding, -this JSON string can be treated as using this encoding. -It must be freed using function vmaFreeStatsString(). - -The format of this JSON string is not part of official documentation of the library, -but it will not change in backward-incompatible way without increasing library major version number -and appropriate mention in changelog. - -The JSON string contains all the data that can be obtained using vmaCalculateStatistics(). -It can also contain detailed map of allocated memory blocks and their regions - -free and occupied by allocations. -This allows e.g. to visualize the memory or assess fragmentation. - - -\page allocation_annotation Allocation names and user data - -\section allocation_user_data Allocation user data - -You can annotate allocations with your own information, e.g. for debugging purposes. -To do that, fill VmaAllocationCreateInfo::pUserData field when creating -an allocation. It is an opaque `void*` pointer. You can use it e.g. as a pointer, -some handle, index, key, ordinal number or any other value that would associate -the allocation with your custom metadata. -It is useful to identify appropriate data structures in your engine given #VmaAllocation, -e.g. when doing \ref defragmentation. - -\code -VkBufferCreateInfo bufCreateInfo = ... - -MyBufferMetadata* pMetadata = CreateBufferMetadata(); - -VmaAllocationCreateInfo allocCreateInfo = {}; -allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO; -allocCreateInfo.pUserData = pMetadata; - -VkBuffer buffer; -VmaAllocation allocation; -vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buffer, &allocation, nullptr); -\endcode - -The pointer may be later retrieved as VmaAllocationInfo::pUserData: - -\code -VmaAllocationInfo allocInfo; -vmaGetAllocationInfo(allocator, allocation, &allocInfo); -MyBufferMetadata* pMetadata = (MyBufferMetadata*)allocInfo.pUserData; -\endcode - -It can also be changed using function vmaSetAllocationUserData(). - -Values of (non-zero) allocations' `pUserData` are printed in JSON report created by -vmaBuildStatsString() in hexadecimal form. - -\section allocation_names Allocation names - -An allocation can also carry a null-terminated string, giving a name to the allocation. -To set it, call vmaSetAllocationName(). -The library creates internal copy of the string, so the pointer you pass doesn't need -to be valid for whole lifetime of the allocation. You can free it after the call. - -\code -std::string imageName = "Texture: "; -imageName += fileName; -vmaSetAllocationName(allocator, allocation, imageName.c_str()); -\endcode - -The string can be later retrieved by inspecting VmaAllocationInfo::pName. -It is also printed in JSON report created by vmaBuildStatsString(). - -\note Setting string name to VMA allocation doesn't automatically set it to the Vulkan buffer or image created with it. -You must do it manually using an extension like VK_EXT_debug_utils, which is independent of this library. - - -\page virtual_allocator Virtual allocator - -As an extra feature, the core allocation algorithm of the library is exposed through a simple and convenient API of "virtual allocator". -It doesn't allocate any real GPU memory. It just keeps track of used and free regions of a "virtual block". -You can use it to allocate your own memory or other objects, even completely unrelated to Vulkan. -A common use case is sub-allocation of pieces of one large GPU buffer. - -\section virtual_allocator_creating_virtual_block Creating virtual block - -To use this functionality, there is no main "allocator" object. -You don't need to have #VmaAllocator object created. -All you need to do is to create a separate #VmaVirtualBlock object for each block of memory you want to be managed by the allocator: - --# Fill in #VmaVirtualBlockCreateInfo structure. --# Call vmaCreateVirtualBlock(). Get new #VmaVirtualBlock object. - -Example: - -\code -VmaVirtualBlockCreateInfo blockCreateInfo = {}; -blockCreateInfo.size = 1048576; // 1 MB - -VmaVirtualBlock block; -VkResult res = vmaCreateVirtualBlock(&blockCreateInfo, &block); -\endcode - -\section virtual_allocator_making_virtual_allocations Making virtual allocations - -#VmaVirtualBlock object contains internal data structure that keeps track of free and occupied regions -using the same code as the main Vulkan memory allocator. -Similarly to #VmaAllocation for standard GPU allocations, there is #VmaVirtualAllocation type -that represents an opaque handle to an allocation within the virtual block. - -In order to make such allocation: - --# Fill in #VmaVirtualAllocationCreateInfo structure. --# Call vmaVirtualAllocate(). Get new #VmaVirtualAllocation object that represents the allocation. - You can also receive `VkDeviceSize offset` that was assigned to the allocation. - -Example: - -\code -VmaVirtualAllocationCreateInfo allocCreateInfo = {}; -allocCreateInfo.size = 4096; // 4 KB - -VmaVirtualAllocation alloc; -VkDeviceSize offset; -res = vmaVirtualAllocate(block, &allocCreateInfo, &alloc, &offset); -if(res == VK_SUCCESS) -{ - // Use the 4 KB of your memory starting at offset. -} -else -{ - // Allocation failed - no space for it could be found. Handle this error! -} -\endcode - -\section virtual_allocator_deallocation Deallocation - -When no longer needed, an allocation can be freed by calling vmaVirtualFree(). -You can only pass to this function an allocation that was previously returned by vmaVirtualAllocate() -called for the same #VmaVirtualBlock. - -When whole block is no longer needed, the block object can be released by calling vmaDestroyVirtualBlock(). -All allocations must be freed before the block is destroyed, which is checked internally by an assert. -However, if you don't want to call vmaVirtualFree() for each allocation, you can use vmaClearVirtualBlock() to free them all at once - -a feature not available in normal Vulkan memory allocator. Example: - -\code -vmaVirtualFree(block, alloc); -vmaDestroyVirtualBlock(block); -\endcode - -\section virtual_allocator_allocation_parameters Allocation parameters - -You can attach a custom pointer to each allocation by using vmaSetVirtualAllocationUserData(). -Its default value is null. -It can be used to store any data that needs to be associated with that allocation - e.g. an index, a handle, or a pointer to some -larger data structure containing more information. Example: - -\code -struct CustomAllocData -{ - std::string m_AllocName; -}; -CustomAllocData* allocData = new CustomAllocData(); -allocData->m_AllocName = "My allocation 1"; -vmaSetVirtualAllocationUserData(block, alloc, allocData); -\endcode - -The pointer can later be fetched, along with allocation offset and size, by passing the allocation handle to function -vmaGetVirtualAllocationInfo() and inspecting returned structure #VmaVirtualAllocationInfo. -If you allocated a new object to be used as the custom pointer, don't forget to delete that object before freeing the allocation! -Example: - -\code -VmaVirtualAllocationInfo allocInfo; -vmaGetVirtualAllocationInfo(block, alloc, &allocInfo); -delete (CustomAllocData*)allocInfo.pUserData; - -vmaVirtualFree(block, alloc); -\endcode - -\section virtual_allocator_alignment_and_units Alignment and units - -It feels natural to express sizes and offsets in bytes. -If an offset of an allocation needs to be aligned to a multiply of some number (e.g. 4 bytes), you can fill optional member -VmaVirtualAllocationCreateInfo::alignment to request it. Example: - -\code -VmaVirtualAllocationCreateInfo allocCreateInfo = {}; -allocCreateInfo.size = 4096; // 4 KB -allocCreateInfo.alignment = 4; // Returned offset must be a multiply of 4 B - -VmaVirtualAllocation alloc; -res = vmaVirtualAllocate(block, &allocCreateInfo, &alloc, nullptr); -\endcode - -Alignments of different allocations made from one block may vary. -However, if all alignments and sizes are always multiply of some size e.g. 4 B or `sizeof(MyDataStruct)`, -you can express all sizes, alignments, and offsets in multiples of that size instead of individual bytes. -It might be more convenient, but you need to make sure to use this new unit consistently in all the places: - -- VmaVirtualBlockCreateInfo::size -- VmaVirtualAllocationCreateInfo::size and VmaVirtualAllocationCreateInfo::alignment -- Using offset returned by vmaVirtualAllocate() or in VmaVirtualAllocationInfo::offset - -\section virtual_allocator_statistics Statistics - -You can obtain statistics of a virtual block using vmaGetVirtualBlockStatistics() -(to get brief statistics that are fast to calculate) -or vmaCalculateVirtualBlockStatistics() (to get more detailed statistics, slower to calculate). -The functions fill structures #VmaStatistics, #VmaDetailedStatistics respectively - same as used by the normal Vulkan memory allocator. -Example: - -\code -VmaStatistics stats; -vmaGetVirtualBlockStatistics(block, &stats); -printf("My virtual block has %llu bytes used by %u virtual allocations\n", - stats.allocationBytes, stats.allocationCount); -\endcode - -You can also request a full list of allocations and free regions as a string in JSON format by calling -vmaBuildVirtualBlockStatsString(). -Returned string must be later freed using vmaFreeVirtualBlockStatsString(). -The format of this string differs from the one returned by the main Vulkan allocator, but it is similar. - -\section virtual_allocator_additional_considerations Additional considerations - -The "virtual allocator" functionality is implemented on a level of individual memory blocks. -Keeping track of a whole collection of blocks, allocating new ones when out of free space, -deleting empty ones, and deciding which one to try first for a new allocation must be implemented by the user. - -Alternative allocation algorithms are supported, just like in custom pools of the real GPU memory. -See enum #VmaVirtualBlockCreateFlagBits to learn how to specify them (e.g. #VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT). -You can find their description in chapter \ref custom_memory_pools. -Allocation strategies are also supported. -See enum #VmaVirtualAllocationCreateFlagBits to learn how to specify them (e.g. #VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT). - -Following features are supported only by the allocator of the real GPU memory and not by virtual allocations: -buffer-image granularity, `VMA_DEBUG_MARGIN`, `VMA_MIN_ALIGNMENT`. - - -\page debugging_memory_usage Debugging incorrect memory usage - -If you suspect a bug with memory usage, like usage of uninitialized memory or -memory being overwritten out of bounds of an allocation, -you can use debug features of this library to verify this. - -\section debugging_memory_usage_initialization Memory initialization - -If you experience a bug with incorrect and nondeterministic data in your program and you suspect uninitialized memory to be used, -you can enable automatic memory initialization to verify this. -To do it, define macro `VMA_DEBUG_INITIALIZE_ALLOCATIONS` to 1. - -\code -#define VMA_DEBUG_INITIALIZE_ALLOCATIONS 1 -#include "vk_mem_alloc.h" -\endcode - -It makes memory of new allocations initialized to bit pattern `0xDCDCDCDC`. -Before an allocation is destroyed, its memory is filled with bit pattern `0xEFEFEFEF`. -Memory is automatically mapped and unmapped if necessary. - -If you find these values while debugging your program, good chances are that you incorrectly -read Vulkan memory that is allocated but not initialized, or already freed, respectively. - -Memory initialization works only with memory types that are `HOST_VISIBLE` and with allocations that can be mapped. -It works also with dedicated allocations. - -\section debugging_memory_usage_margins Margins - -By default, allocations are laid out in memory blocks next to each other if possible -(considering required alignment, `bufferImageGranularity`, and `nonCoherentAtomSize`). - -![Allocations without margin](../gfx/Margins_1.png) - -Define macro `VMA_DEBUG_MARGIN` to some non-zero value (e.g. 16) to enforce specified -number of bytes as a margin after every allocation. - -\code -#define VMA_DEBUG_MARGIN 16 -#include "vk_mem_alloc.h" -\endcode - -![Allocations with margin](../gfx/Margins_2.png) - -If your bug goes away after enabling margins, it means it may be caused by memory -being overwritten outside of allocation boundaries. It is not 100% certain though. -Change in application behavior may also be caused by different order and distribution -of allocations across memory blocks after margins are applied. - -Margins work with all types of memory. - -Margin is applied only to allocations made out of memory blocks and not to dedicated -allocations, which have their own memory block of specific size. -It is thus not applied to allocations made using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT flag -or those automatically decided to put into dedicated allocations, e.g. due to its -large size or recommended by VK_KHR_dedicated_allocation extension. - -Margins appear in [JSON dump](@ref statistics_json_dump) as part of free space. - -Note that enabling margins increases memory usage and fragmentation. - -Margins do not apply to \ref virtual_allocator. - -\section debugging_memory_usage_corruption_detection Corruption detection - -You can additionally define macro `VMA_DEBUG_DETECT_CORRUPTION` to 1 to enable validation -of contents of the margins. - -\code -#define VMA_DEBUG_MARGIN 16 -#define VMA_DEBUG_DETECT_CORRUPTION 1 -#include "vk_mem_alloc.h" -\endcode - -When this feature is enabled, number of bytes specified as `VMA_DEBUG_MARGIN` -(it must be multiply of 4) after every allocation is filled with a magic number. -This idea is also know as "canary". -Memory is automatically mapped and unmapped if necessary. - -This number is validated automatically when the allocation is destroyed. -If it is not equal to the expected value, `VMA_ASSERT()` is executed. -It clearly means that either CPU or GPU overwritten the memory outside of boundaries of the allocation, -which indicates a serious bug. - -You can also explicitly request checking margins of all allocations in all memory blocks -that belong to specified memory types by using function vmaCheckCorruption(), -or in memory blocks that belong to specified custom pool, by using function -vmaCheckPoolCorruption(). - -Margin validation (corruption detection) works only for memory types that are -`HOST_VISIBLE` and `HOST_COHERENT`. - - -\section debugging_memory_usage_leak_detection Leak detection features - -At allocation and allocator destruction time VMA checks for unfreed and unmapped blocks using -`VMA_ASSERT_LEAK()`. This macro defaults to an assertion, triggering a typically fatal error in Debug -builds, and doing nothing in Release builds. You can provide your own definition of `VMA_ASSERT_LEAK()` -to change this behavior. - -At memory block destruction time VMA lists out all unfreed allocations using the `VMA_LEAK_LOG_FORMAT()` -macro, which defaults to `VMA_DEBUG_LOG_FORMAT`, which in turn defaults to a no-op. -If you're having trouble with leaks - for example, the aforementioned assertion triggers, but you don't -quite know \em why -, overriding this macro to print out the the leaking blocks, combined with assigning -individual names to allocations using vmaSetAllocationName(), can greatly aid in fixing them. - -\page other_api_interop Interop with other graphics APIs - -VMA provides some features that help with interoperability with other graphics APIs, e.g. OpenGL. - -\section opengl_interop_exporting_memory Exporting memory - -If you want to attach `VkExportMemoryAllocateInfoKHR` or other structure to `pNext` chain of memory allocations made by the library: - -You can create \ref custom_memory_pools for such allocations. -Define and fill in your `VkExportMemoryAllocateInfoKHR` structure and attach it to VmaPoolCreateInfo::pMemoryAllocateNext -while creating the custom pool. -Please note that the structure must remain alive and unchanged for the whole lifetime of the #VmaPool, -not only while creating it, as no copy of the structure is made, -but its original pointer is used for each allocation instead. - -If you want to export all memory allocated by VMA from certain memory types, -also dedicated allocations or other allocations made from default pools, -an alternative solution is to fill in VmaAllocatorCreateInfo::pTypeExternalMemoryHandleTypes. -It should point to an array with `VkExternalMemoryHandleTypeFlagsKHR` to be automatically passed by the library -through `VkExportMemoryAllocateInfoKHR` on each allocation made from a specific memory type. -Please note that new versions of the library also support dedicated allocations created in custom pools. - -You should not mix these two methods in a way that allows to apply both to the same memory type. -Otherwise, `VkExportMemoryAllocateInfoKHR` structure would be attached twice to the `pNext` chain of `VkMemoryAllocateInfo`. - - -\section opengl_interop_custom_alignment Custom alignment - -Buffers or images exported to a different API like OpenGL may require a different alignment, -higher than the one used by the library automatically, queried from functions like `vkGetBufferMemoryRequirements`. -To impose such alignment: - -You can create \ref custom_memory_pools for such allocations. -Set VmaPoolCreateInfo::minAllocationAlignment member to the minimum alignment required for each allocation -to be made out of this pool. -The alignment actually used will be the maximum of this member and the alignment returned for the specific buffer or image -from a function like `vkGetBufferMemoryRequirements`, which is called by VMA automatically. - -If you want to create a buffer with a specific minimum alignment out of default pools, -use special function vmaCreateBufferWithAlignment(), which takes additional parameter `minAlignment`. - -Note the problem of alignment affects only resources placed inside bigger `VkDeviceMemory` blocks and not dedicated -allocations, as these, by definition, always have alignment = 0 because the resource is bound to the beginning of its dedicated block. -You can ensure that an allocation is created as dedicated by using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. -Contrary to Direct3D 12, Vulkan doesn't have a concept of alignment of the entire memory block passed on its allocation. - -\section opengl_interop_extended_allocation_information Extended allocation information - -If you want to rely on VMA to allocate your buffers and images inside larger memory blocks, -but you need to know the size of the entire block and whether the allocation was made -with its own dedicated memory, use function vmaGetAllocationInfo2() to retrieve -extended allocation information in structure #VmaAllocationInfo2. - - - -\page usage_patterns Recommended usage patterns - -Vulkan gives great flexibility in memory allocation. -This chapter shows the most common patterns. - -See also slides from talk: -[Sawicki, Adam. Advanced Graphics Techniques Tutorial: Memory management in Vulkan and DX12. Game Developers Conference, 2018](https://www.gdcvault.com/play/1025458/Advanced-Graphics-Techniques-Tutorial-New) - - -\section usage_patterns_gpu_only GPU-only resource - -When: -Any resources that you frequently write and read on GPU, -e.g. images used as color attachments (aka "render targets"), depth-stencil attachments, -images/buffers used as storage image/buffer (aka "Unordered Access View (UAV)"). - -What to do: -Let the library select the optimal memory type, which will likely have `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`. - -\code -VkImageCreateInfo imgCreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO }; -imgCreateInfo.imageType = VK_IMAGE_TYPE_2D; -imgCreateInfo.extent.width = 3840; -imgCreateInfo.extent.height = 2160; -imgCreateInfo.extent.depth = 1; -imgCreateInfo.mipLevels = 1; -imgCreateInfo.arrayLayers = 1; -imgCreateInfo.format = VK_FORMAT_R8G8B8A8_UNORM; -imgCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; -imgCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; -imgCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; -imgCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; - -VmaAllocationCreateInfo allocCreateInfo = {}; -allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO; -allocCreateInfo.flags = VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT; -allocCreateInfo.priority = 1.0f; - -VkImage img; -VmaAllocation alloc; -vmaCreateImage(allocator, &imgCreateInfo, &allocCreateInfo, &img, &alloc, nullptr); -\endcode - -Also consider: -Consider creating them as dedicated allocations using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT, -especially if they are large or if you plan to destroy and recreate them with different sizes -e.g. when display resolution changes. -Prefer to create such resources first and all other GPU resources (like textures and vertex buffers) later. -When VK_EXT_memory_priority extension is enabled, it is also worth setting high priority to such allocation -to decrease chances to be evicted to system memory by the operating system. - -\section usage_patterns_staging_copy_upload Staging copy for upload - -When: -A "staging" buffer than you want to map and fill from CPU code, then use as a source of transfer -to some GPU resource. - -What to do: -Use flag #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT. -Let the library select the optimal memory type, which will always have `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT`. - -\code -VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; -bufCreateInfo.size = 65536; -bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; - -VmaAllocationCreateInfo allocCreateInfo = {}; -allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO; -allocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | - VMA_ALLOCATION_CREATE_MAPPED_BIT; - -VkBuffer buf; -VmaAllocation alloc; -VmaAllocationInfo allocInfo; -vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo); - -... - -memcpy(allocInfo.pMappedData, myData, myDataSize); -\endcode - -Also consider: -You can map the allocation using vmaMapMemory() or you can create it as persistenly mapped -using #VMA_ALLOCATION_CREATE_MAPPED_BIT, as in the example above. - - -\section usage_patterns_readback Readback - -When: -Buffers for data written by or transferred from the GPU that you want to read back on the CPU, -e.g. results of some computations. - -What to do: -Use flag #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT. -Let the library select the optimal memory type, which will always have `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` -and `VK_MEMORY_PROPERTY_HOST_CACHED_BIT`. - -\code -VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; -bufCreateInfo.size = 65536; -bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_DST_BIT; - -VmaAllocationCreateInfo allocCreateInfo = {}; -allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO; -allocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT | - VMA_ALLOCATION_CREATE_MAPPED_BIT; - -VkBuffer buf; -VmaAllocation alloc; -VmaAllocationInfo allocInfo; -vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo); - -... - -const float* downloadedData = (const float*)allocInfo.pMappedData; -\endcode - - -\section usage_patterns_advanced_data_uploading Advanced data uploading - -For resources that you frequently write on CPU via mapped pointer and -frequently read on GPU e.g. as a uniform buffer (also called "dynamic"), multiple options are possible: - --# Easiest solution is to have one copy of the resource in `HOST_VISIBLE` memory, - even if it means system RAM (not `DEVICE_LOCAL`) on systems with a discrete graphics card, - and make the device reach out to that resource directly. - - Reads performed by the device will then go through PCI Express bus. - The performance of this access may be limited, but it may be fine depending on the size - of this resource (whether it is small enough to quickly end up in GPU cache) and the sparsity - of access. --# On systems with unified memory (e.g. AMD APU or Intel integrated graphics, mobile chips), - a memory type may be available that is both `HOST_VISIBLE` (available for mapping) and `DEVICE_LOCAL` - (fast to access from the GPU). Then, it is likely the best choice for such type of resource. --# Systems with a discrete graphics card and separate video memory may or may not expose - a memory type that is both `HOST_VISIBLE` and `DEVICE_LOCAL`, also known as Base Address Register (BAR). - If they do, it represents a piece of VRAM (or entire VRAM, if ReBAR is enabled in the motherboard BIOS) - that is available to CPU for mapping. - - Writes performed by the host to that memory go through PCI Express bus. - The performance of these writes may be limited, but it may be fine, especially on PCIe 4.0, - as long as rules of using uncached and write-combined memory are followed - only sequential writes and no reads. --# Finally, you may need or prefer to create a separate copy of the resource in `DEVICE_LOCAL` memory, - a separate "staging" copy in `HOST_VISIBLE` memory and perform an explicit transfer command between them. - -Thankfully, VMA offers an aid to create and use such resources in the the way optimal -for the current Vulkan device. To help the library make the best choice, -use flag #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT together with -#VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT. -It will then prefer a memory type that is both `DEVICE_LOCAL` and `HOST_VISIBLE` (integrated memory or BAR), -but if no such memory type is available or allocation from it fails -(PC graphics cards have only 256 MB of BAR by default, unless ReBAR is supported and enabled in BIOS), -it will fall back to `DEVICE_LOCAL` memory for fast GPU access. -It is then up to you to detect that the allocation ended up in a memory type that is not `HOST_VISIBLE`, -so you need to create another "staging" allocation and perform explicit transfers. - -\code -VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; -bufCreateInfo.size = 65536; -bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; - -VmaAllocationCreateInfo allocCreateInfo = {}; -allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO; -allocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | - VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT | - VMA_ALLOCATION_CREATE_MAPPED_BIT; - -VkBuffer buf; -VmaAllocation alloc; -VmaAllocationInfo allocInfo; -VkResult result = vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo); -// Check result... - -VkMemoryPropertyFlags memPropFlags; -vmaGetAllocationMemoryProperties(allocator, alloc, &memPropFlags); - -if(memPropFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) -{ - // Allocation ended up in a mappable memory and is already mapped - write to it directly. - - // [Executed in runtime]: - memcpy(allocInfo.pMappedData, myData, myDataSize); - result = vmaFlushAllocation(allocator, alloc, 0, VK_WHOLE_SIZE); - // Check result... - - VkBufferMemoryBarrier bufMemBarrier = { VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER }; - bufMemBarrier.srcAccessMask = VK_ACCESS_HOST_WRITE_BIT; - bufMemBarrier.dstAccessMask = VK_ACCESS_UNIFORM_READ_BIT; - bufMemBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; - bufMemBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; - bufMemBarrier.buffer = buf; - bufMemBarrier.offset = 0; - bufMemBarrier.size = VK_WHOLE_SIZE; - - vkCmdPipelineBarrier(cmdBuf, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_VERTEX_SHADER_BIT, - 0, 0, nullptr, 1, &bufMemBarrier, 0, nullptr); -} -else -{ - // Allocation ended up in a non-mappable memory - a transfer using a staging buffer is required. - VkBufferCreateInfo stagingBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; - stagingBufCreateInfo.size = 65536; - stagingBufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; - - VmaAllocationCreateInfo stagingAllocCreateInfo = {}; - stagingAllocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO; - stagingAllocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | - VMA_ALLOCATION_CREATE_MAPPED_BIT; - - VkBuffer stagingBuf; - VmaAllocation stagingAlloc; - VmaAllocationInfo stagingAllocInfo; - result = vmaCreateBuffer(allocator, &stagingBufCreateInfo, &stagingAllocCreateInfo, - &stagingBuf, &stagingAlloc, &stagingAllocInfo); - // Check result... - - // [Executed in runtime]: - memcpy(stagingAllocInfo.pMappedData, myData, myDataSize); - result = vmaFlushAllocation(allocator, stagingAlloc, 0, VK_WHOLE_SIZE); - // Check result... - - VkBufferMemoryBarrier bufMemBarrier = { VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER }; - bufMemBarrier.srcAccessMask = VK_ACCESS_HOST_WRITE_BIT; - bufMemBarrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT; - bufMemBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; - bufMemBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; - bufMemBarrier.buffer = stagingBuf; - bufMemBarrier.offset = 0; - bufMemBarrier.size = VK_WHOLE_SIZE; - - vkCmdPipelineBarrier(cmdBuf, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, - 0, 0, nullptr, 1, &bufMemBarrier, 0, nullptr); - - VkBufferCopy bufCopy = { - 0, // srcOffset - 0, // dstOffset, - myDataSize, // size - }; - - vkCmdCopyBuffer(cmdBuf, stagingBuf, buf, 1, &bufCopy); - - VkBufferMemoryBarrier bufMemBarrier2 = { VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER }; - bufMemBarrier2.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; - bufMemBarrier2.dstAccessMask = VK_ACCESS_UNIFORM_READ_BIT; // We created a uniform buffer - bufMemBarrier2.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; - bufMemBarrier2.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; - bufMemBarrier2.buffer = buf; - bufMemBarrier2.offset = 0; - bufMemBarrier2.size = VK_WHOLE_SIZE; - - vkCmdPipelineBarrier(cmdBuf, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_VERTEX_SHADER_BIT, - 0, 0, nullptr, 1, &bufMemBarrier2, 0, nullptr); -} -\endcode - -\section usage_patterns_other_use_cases Other use cases - -Here are some other, less obvious use cases and their recommended settings: - -- An image that is used only as transfer source and destination, but it should stay on the device, - as it is used to temporarily store a copy of some texture, e.g. from the current to the next frame, - for temporal antialiasing or other temporal effects. - - Use `VkImageCreateInfo::usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT` - - Use VmaAllocationCreateInfo::usage = #VMA_MEMORY_USAGE_AUTO -- An image that is used only as transfer source and destination, but it should be placed - in the system RAM despite it doesn't need to be mapped, because it serves as a "swap" copy to evict - least recently used textures from VRAM. - - Use `VkImageCreateInfo::usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT` - - Use VmaAllocationCreateInfo::usage = #VMA_MEMORY_USAGE_AUTO_PREFER_HOST, - as VMA needs a hint here to differentiate from the previous case. -- A buffer that you want to map and write from the CPU, directly read from the GPU - (e.g. as a uniform or vertex buffer), but you have a clear preference to place it in device or - host memory due to its large size. - - Use `VkBufferCreateInfo::usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT` - - Use VmaAllocationCreateInfo::usage = #VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE or #VMA_MEMORY_USAGE_AUTO_PREFER_HOST - - Use VmaAllocationCreateInfo::flags = #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT - - -\page configuration Configuration - -Please check "CONFIGURATION SECTION" in the code to find macros that you can define -before each include of this file or change directly in this file to provide -your own implementation of basic facilities like assert, `min()` and `max()` functions, -mutex, atomic etc. - -For example, define `VMA_ASSERT(expr)` before including the library to provide -custom implementation of the assertion, compatible with your project. -By default it is defined to standard C `assert(expr)` in `_DEBUG` configuration -and empty otherwise. - -Similarly, you can define `VMA_LEAK_LOG_FORMAT` macro to enable printing of leaked (unfreed) allocations, -including their names and other parameters. Example: - -\code -#define VMA_LEAK_LOG_FORMAT(format, ...) do { \ - printf((format), __VA_ARGS__); \ - printf("\n"); \ - } while(false) -\endcode - -\section config_Vulkan_functions Pointers to Vulkan functions - -There are multiple ways to import pointers to Vulkan functions in the library. -In the simplest case you don't need to do anything. -If the compilation or linking of your program or the initialization of the #VmaAllocator -doesn't work for you, you can try to reconfigure it. - -First, the allocator tries to fetch pointers to Vulkan functions linked statically, -like this: - -\code -m_VulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkAllocateMemory; -\endcode - -If you want to disable this feature, set configuration macro: `#define VMA_STATIC_VULKAN_FUNCTIONS 0`. - -Second, you can provide the pointers yourself by setting member VmaAllocatorCreateInfo::pVulkanFunctions. -You can fetch them e.g. using functions `vkGetInstanceProcAddr` and `vkGetDeviceProcAddr` or -by using a helper library like [volk](https://github.com/zeux/volk). - -Third, VMA tries to fetch remaining pointers that are still null by calling -`vkGetInstanceProcAddr` and `vkGetDeviceProcAddr` on its own. -You need to only fill in VmaVulkanFunctions::vkGetInstanceProcAddr and VmaVulkanFunctions::vkGetDeviceProcAddr. -Other pointers will be fetched automatically. -If you want to disable this feature, set configuration macro: `#define VMA_DYNAMIC_VULKAN_FUNCTIONS 0`. - -Finally, all the function pointers required by the library (considering selected -Vulkan version and enabled extensions) are checked with `VMA_ASSERT` if they are not null. - - -\section custom_memory_allocator Custom host memory allocator - -If you use custom allocator for CPU memory rather than default operator `new` -and `delete` from C++, you can make this library using your allocator as well -by filling optional member VmaAllocatorCreateInfo::pAllocationCallbacks. These -functions will be passed to Vulkan, as well as used by the library itself to -make any CPU-side allocations. - -\section allocation_callbacks Device memory allocation callbacks - -The library makes calls to `vkAllocateMemory()` and `vkFreeMemory()` internally. -You can setup callbacks to be informed about these calls, e.g. for the purpose -of gathering some statistics. To do it, fill optional member -VmaAllocatorCreateInfo::pDeviceMemoryCallbacks. - -\section heap_memory_limit Device heap memory limit - -When device memory of certain heap runs out of free space, new allocations may -fail (returning error code) or they may succeed, silently pushing some existing_ -memory blocks from GPU VRAM to system RAM (which degrades performance). This -behavior is implementation-dependent - it depends on GPU vendor and graphics -driver. - -On AMD cards it can be controlled while creating Vulkan device object by using -VK_AMD_memory_overallocation_behavior extension, if available. - -Alternatively, if you want to test how your program behaves with limited amount of Vulkan device -memory available without switching your graphics card to one that really has -smaller VRAM, you can use a feature of this library intended for this purpose. -To do it, fill optional member VmaAllocatorCreateInfo::pHeapSizeLimit. - - - -\page vk_khr_dedicated_allocation VK_KHR_dedicated_allocation - -VK_KHR_dedicated_allocation is a Vulkan extension which can be used to improve -performance on some GPUs. It augments Vulkan API with possibility to query -driver whether it prefers particular buffer or image to have its own, dedicated -allocation (separate `VkDeviceMemory` block) for better efficiency - to be able -to do some internal optimizations. The extension is supported by this library. -It will be used automatically when enabled. - -It has been promoted to core Vulkan 1.1, so if you use eligible Vulkan version -and inform VMA about it by setting VmaAllocatorCreateInfo::vulkanApiVersion, -you are all set. - -Otherwise, if you want to use it as an extension: - -1 . When creating Vulkan device, check if following 2 device extensions are -supported (call `vkEnumerateDeviceExtensionProperties()`). -If yes, enable them (fill `VkDeviceCreateInfo::ppEnabledExtensionNames`). - -- VK_KHR_get_memory_requirements2 -- VK_KHR_dedicated_allocation - -If you enabled these extensions: - -2 . Use #VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag when creating -your #VmaAllocator to inform the library that you enabled required extensions -and you want the library to use them. - -\code -allocatorInfo.flags |= VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT; - -vmaCreateAllocator(&allocatorInfo, &allocator); -\endcode - -That is all. The extension will be automatically used whenever you create a -buffer using vmaCreateBuffer() or image using vmaCreateImage(). - -When using the extension together with Vulkan Validation Layer, you will receive -warnings like this: - -_vkBindBufferMemory(): Binding memory to buffer 0x33 but vkGetBufferMemoryRequirements() has not been called on that buffer._ - -It is OK, you should just ignore it. It happens because you use function -`vkGetBufferMemoryRequirements2KHR()` instead of standard -`vkGetBufferMemoryRequirements()`, while the validation layer seems to be -unaware of it. - -To learn more about this extension, see: - -- [VK_KHR_dedicated_allocation in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/chap50.html#VK_KHR_dedicated_allocation) -- [VK_KHR_dedicated_allocation unofficial manual](http://asawicki.info/articles/VK_KHR_dedicated_allocation.php5) - - - -\page vk_ext_memory_priority VK_EXT_memory_priority - -VK_EXT_memory_priority is a device extension that allows to pass additional "priority" -value to Vulkan memory allocations that the implementation may use prefer certain -buffers and images that are critical for performance to stay in device-local memory -in cases when the memory is over-subscribed, while some others may be moved to the system memory. - -VMA offers convenient usage of this extension. -If you enable it, you can pass "priority" parameter when creating allocations or custom pools -and the library automatically passes the value to Vulkan using this extension. - -If you want to use this extension in connection with VMA, follow these steps: - -\section vk_ext_memory_priority_initialization Initialization - -1) Call `vkEnumerateDeviceExtensionProperties` for the physical device. -Check if the extension is supported - if returned array of `VkExtensionProperties` contains "VK_EXT_memory_priority". - -2) Call `vkGetPhysicalDeviceFeatures2` for the physical device instead of old `vkGetPhysicalDeviceFeatures`. -Attach additional structure `VkPhysicalDeviceMemoryPriorityFeaturesEXT` to `VkPhysicalDeviceFeatures2::pNext` to be returned. -Check if the device feature is really supported - check if `VkPhysicalDeviceMemoryPriorityFeaturesEXT::memoryPriority` is true. - -3) While creating device with `vkCreateDevice`, enable this extension - add "VK_EXT_memory_priority" -to the list passed as `VkDeviceCreateInfo::ppEnabledExtensionNames`. - -4) While creating the device, also don't set `VkDeviceCreateInfo::pEnabledFeatures`. -Fill in `VkPhysicalDeviceFeatures2` structure instead and pass it as `VkDeviceCreateInfo::pNext`. -Enable this device feature - attach additional structure `VkPhysicalDeviceMemoryPriorityFeaturesEXT` to -`VkPhysicalDeviceFeatures2::pNext` chain and set its member `memoryPriority` to `VK_TRUE`. - -5) While creating #VmaAllocator with vmaCreateAllocator() inform VMA that you -have enabled this extension and feature - add #VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT -to VmaAllocatorCreateInfo::flags. - -\section vk_ext_memory_priority_usage Usage - -When using this extension, you should initialize following member: - -- VmaAllocationCreateInfo::priority when creating a dedicated allocation with #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. -- VmaPoolCreateInfo::priority when creating a custom pool. - -It should be a floating-point value between `0.0f` and `1.0f`, where recommended default is `0.5f`. -Memory allocated with higher value can be treated by the Vulkan implementation as higher priority -and so it can have lower chances of being pushed out to system memory, experiencing degraded performance. - -It might be a good idea to create performance-critical resources like color-attachment or depth-stencil images -as dedicated and set high priority to them. For example: - -\code -VkImageCreateInfo imgCreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO }; -imgCreateInfo.imageType = VK_IMAGE_TYPE_2D; -imgCreateInfo.extent.width = 3840; -imgCreateInfo.extent.height = 2160; -imgCreateInfo.extent.depth = 1; -imgCreateInfo.mipLevels = 1; -imgCreateInfo.arrayLayers = 1; -imgCreateInfo.format = VK_FORMAT_R8G8B8A8_UNORM; -imgCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; -imgCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; -imgCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; -imgCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; - -VmaAllocationCreateInfo allocCreateInfo = {}; -allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO; -allocCreateInfo.flags = VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT; -allocCreateInfo.priority = 1.0f; - -VkImage img; -VmaAllocation alloc; -vmaCreateImage(allocator, &imgCreateInfo, &allocCreateInfo, &img, &alloc, nullptr); -\endcode - -`priority` member is ignored in the following situations: - -- Allocations created in custom pools: They inherit the priority, along with all other allocation parameters - from the parameters passed in #VmaPoolCreateInfo when the pool was created. -- Allocations created in default pools: They inherit the priority from the parameters - VMA used when creating default pools, which means `priority == 0.5f`. - - -\page vk_amd_device_coherent_memory VK_AMD_device_coherent_memory - -VK_AMD_device_coherent_memory is a device extension that enables access to -additional memory types with `VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD` and -`VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD` flag. It is useful mostly for -allocation of buffers intended for writing "breadcrumb markers" in between passes -or draw calls, which in turn are useful for debugging GPU crash/hang/TDR cases. - -When the extension is available but has not been enabled, Vulkan physical device -still exposes those memory types, but their usage is forbidden. VMA automatically -takes care of that - it returns `VK_ERROR_FEATURE_NOT_PRESENT` when an attempt -to allocate memory of such type is made. - -If you want to use this extension in connection with VMA, follow these steps: - -\section vk_amd_device_coherent_memory_initialization Initialization - -1) Call `vkEnumerateDeviceExtensionProperties` for the physical device. -Check if the extension is supported - if returned array of `VkExtensionProperties` contains "VK_AMD_device_coherent_memory". - -2) Call `vkGetPhysicalDeviceFeatures2` for the physical device instead of old `vkGetPhysicalDeviceFeatures`. -Attach additional structure `VkPhysicalDeviceCoherentMemoryFeaturesAMD` to `VkPhysicalDeviceFeatures2::pNext` to be returned. -Check if the device feature is really supported - check if `VkPhysicalDeviceCoherentMemoryFeaturesAMD::deviceCoherentMemory` is true. - -3) While creating device with `vkCreateDevice`, enable this extension - add "VK_AMD_device_coherent_memory" -to the list passed as `VkDeviceCreateInfo::ppEnabledExtensionNames`. - -4) While creating the device, also don't set `VkDeviceCreateInfo::pEnabledFeatures`. -Fill in `VkPhysicalDeviceFeatures2` structure instead and pass it as `VkDeviceCreateInfo::pNext`. -Enable this device feature - attach additional structure `VkPhysicalDeviceCoherentMemoryFeaturesAMD` to -`VkPhysicalDeviceFeatures2::pNext` and set its member `deviceCoherentMemory` to `VK_TRUE`. - -5) While creating #VmaAllocator with vmaCreateAllocator() inform VMA that you -have enabled this extension and feature - add #VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT -to VmaAllocatorCreateInfo::flags. - -\section vk_amd_device_coherent_memory_usage Usage - -After following steps described above, you can create VMA allocations and custom pools -out of the special `DEVICE_COHERENT` and `DEVICE_UNCACHED` memory types on eligible -devices. There are multiple ways to do it, for example: - -- You can request or prefer to allocate out of such memory types by adding - `VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD` to VmaAllocationCreateInfo::requiredFlags - or VmaAllocationCreateInfo::preferredFlags. Those flags can be freely mixed with - other ways of \ref choosing_memory_type, like setting VmaAllocationCreateInfo::usage. -- If you manually found memory type index to use for this purpose, force allocation - from this specific index by setting VmaAllocationCreateInfo::memoryTypeBits `= 1u << index`. - -\section vk_amd_device_coherent_memory_more_information More information - -To learn more about this extension, see [VK_AMD_device_coherent_memory in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VK_AMD_device_coherent_memory.html) - -Example use of this extension can be found in the code of the sample and test suite -accompanying this library. - - -\page vk_khr_external_memory_win32 VK_KHR_external_memory_win32 - -On Windows, the VK_KHR_external_memory_win32 device extension allows exporting a Win32 `HANDLE` -of a `VkDeviceMemory` block, to be able to reference the memory on other Vulkan logical devices or instances, -in multiple processes, and/or in multiple APIs. -VMA offers support for it. - -\section vk_khr_external_memory_win32_initialization Initialization - -1) Make sure the extension is defined in the code by including following header before including VMA: - -\code -#include -\endcode - -2) Check if "VK_KHR_external_memory_win32" is available among device extensions. -Enable it when creating the `VkDevice` object. - -3) Enable the usage of this extension in VMA by setting flag #VMA_ALLOCATOR_CREATE_KHR_EXTERNAL_MEMORY_WIN32_BIT -when calling vmaCreateAllocator(). - -4) Make sure that VMA has access to the `vkGetMemoryWin32HandleKHR` function by either enabling `VMA_DYNAMIC_VULKAN_FUNCTIONS` macro -or setting VmaVulkanFunctions::vkGetMemoryWin32HandleKHR explicitly. -For more information, see \ref quick_start_initialization_importing_vulkan_functions. - -\section vk_khr_external_memory_win32_preparations Preparations - -You can find example usage among tests, in file "Tests.cpp", function `TestWin32Handles()`. - -To use the extenion, buffers need to be created with `VkExternalMemoryBufferCreateInfoKHR` attached to their `pNext` chain, -and memory allocations need to be made with `VkExportMemoryAllocateInfoKHR` attached to their `pNext` chain. -To make use of them, you need to use \ref custom_memory_pools. Example: - -\code -// Define an example buffer and allocation parameters. -VkExternalMemoryBufferCreateInfoKHR externalMemBufCreateInfo = { - VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_BUFFER_CREATE_INFO_KHR, - nullptr, - VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT -}; -VkBufferCreateInfo exampleBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; -exampleBufCreateInfo.size = 0x10000; // Doesn't matter here. -exampleBufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; -exampleBufCreateInfo.pNext = &externalMemBufCreateInfo; - -VmaAllocationCreateInfo exampleAllocCreateInfo = {}; -exampleAllocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO; - -// Find memory type index to use for the custom pool. -uint32_t memTypeIndex; -VkResult res = vmaFindMemoryTypeIndexForBufferInfo(g_Allocator, - &exampleBufCreateInfo, &exampleAllocCreateInfo, &memTypeIndex); -// Check res... - -// Create a custom pool. -constexpr static VkExportMemoryAllocateInfoKHR exportMemAllocInfo = { - VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_KHR, - nullptr, - VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT -}; -VmaPoolCreateInfo poolCreateInfo = {}; -poolCreateInfo.memoryTypeIndex = memTypeIndex; -poolCreateInfo.pMemoryAllocateNext = (void*)&exportMemAllocInfo; - -VmaPool pool; -res = vmaCreatePool(g_Allocator, &poolCreateInfo, &pool); -// Check res... - -// YOUR OTHER CODE COMES HERE.... - -// At the end, don't forget to destroy it! -vmaDestroyPool(g_Allocator, pool); -\endcode - -Note that the structure passed as VmaPoolCreateInfo::pMemoryAllocateNext must remain alive and unchanged -for the whole lifetime of the custom pool, because it will be used when the pool allocates a new device memory block. -No copy is made internally. This is why variable `exportMemAllocInfo` is defined as `static`. - -\section vk_khr_external_memory_win32_memory_allocation Memory allocation - -Finally, you can create a buffer with an allocation out of the custom pool. -The buffer should use same flags as the sample buffer used to find the memory type. -It should also specify `VkExternalMemoryBufferCreateInfoKHR` in its `pNext` chain. - -\code -VkExternalMemoryBufferCreateInfoKHR externalMemBufCreateInfo = { - VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_BUFFER_CREATE_INFO_KHR, - nullptr, - VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT -}; -VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; -bufCreateInfo.size = // Your desired buffer size. -bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; -bufCreateInfo.pNext = &externalMemBufCreateInfo; - -VmaAllocationCreateInfo allocCreateInfo = {}; -allocCreateInfo.pool = pool; // It is enough to set this one member. - -VkBuffer buf; -VmaAllocation alloc; -res = vmaCreateBuffer(g_Allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, nullptr); -// Check res... - -// YOUR OTHER CODE COMES HERE.... - -// At the end, don't forget to destroy it! -vmaDestroyBuffer(g_Allocator, buf, alloc); -\endcode - -If you need each allocation to have its own device memory block and start at offset 0, you can still do -by using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT flag. It works also with custom pools. - -\section vk_khr_external_memory_win32_exporting_win32_handle Exporting Win32 handle - -After the allocation is created, you can acquire a Win32 `HANDLE` to the `VkDeviceMemory` block it belongs to. -VMA function vmaGetMemoryWin32Handle() is a replacement of the Vulkan function `vkGetMemoryWin32HandleKHR`. - -\code -HANDLE handle; -res = vmaGetMemoryWin32Handle(g_Allocator, alloc, nullptr, &handle); -// Check res... - -// YOUR OTHER CODE COMES HERE.... - -// At the end, you must close the handle. -CloseHandle(handle); -\endcode - -Documentation of the VK_KHR_external_memory_win32 extension states that: - -> If handleType is defined as an NT handle, vkGetMemoryWin32HandleKHR must be called no more than once for each valid unique combination of memory and handleType. - -This is ensured automatically inside VMA. -The library fetches the handle on first use, remembers it internally, and closes it when the memory block or dedicated allocation is destroyed. -Every time you call vmaGetMemoryWin32Handle(), VMA calls `DuplicateHandle` and returns a new handle that you need to close. - -For further information, please check documentation of the vmaGetMemoryWin32Handle() function. - - -\page enabling_buffer_device_address Enabling buffer device address - -Device extension VK_KHR_buffer_device_address -allow to fetch raw GPU pointer to a buffer and pass it for usage in a shader code. -It has been promoted to core Vulkan 1.2. - -If you want to use this feature in connection with VMA, follow these steps: - -\section enabling_buffer_device_address_initialization Initialization - -1) (For Vulkan version < 1.2) Call `vkEnumerateDeviceExtensionProperties` for the physical device. -Check if the extension is supported - if returned array of `VkExtensionProperties` contains -"VK_KHR_buffer_device_address". - -2) Call `vkGetPhysicalDeviceFeatures2` for the physical device instead of old `vkGetPhysicalDeviceFeatures`. -Attach additional structure `VkPhysicalDeviceBufferDeviceAddressFeatures*` to `VkPhysicalDeviceFeatures2::pNext` to be returned. -Check if the device feature is really supported - check if `VkPhysicalDeviceBufferDeviceAddressFeatures::bufferDeviceAddress` is true. - -3) (For Vulkan version < 1.2) While creating device with `vkCreateDevice`, enable this extension - add -"VK_KHR_buffer_device_address" to the list passed as `VkDeviceCreateInfo::ppEnabledExtensionNames`. - -4) While creating the device, also don't set `VkDeviceCreateInfo::pEnabledFeatures`. -Fill in `VkPhysicalDeviceFeatures2` structure instead and pass it as `VkDeviceCreateInfo::pNext`. -Enable this device feature - attach additional structure `VkPhysicalDeviceBufferDeviceAddressFeatures*` to -`VkPhysicalDeviceFeatures2::pNext` and set its member `bufferDeviceAddress` to `VK_TRUE`. - -5) While creating #VmaAllocator with vmaCreateAllocator() inform VMA that you -have enabled this feature - add #VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT -to VmaAllocatorCreateInfo::flags. - -\section enabling_buffer_device_address_usage Usage - -After following steps described above, you can create buffers with `VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT*` using VMA. -The library automatically adds `VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT*` to -allocated memory blocks wherever it might be needed. - -Please note that the library supports only `VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT*`. -The second part of this functionality related to "capture and replay" is not supported, -as it is intended for usage in debugging tools like RenderDoc, not in everyday Vulkan usage. - -\section enabling_buffer_device_address_more_information More information - -To learn more about this extension, see [VK_KHR_buffer_device_address in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/chap46.html#VK_KHR_buffer_device_address) - -Example use of this extension can be found in the code of the sample and test suite -accompanying this library. - -\page general_considerations General considerations - -\section general_considerations_thread_safety Thread safety - -- The library has no global state, so separate #VmaAllocator objects can be used - independently. - There should be no need to create multiple such objects though - one per `VkDevice` is enough. -- By default, all calls to functions that take #VmaAllocator as first parameter - are safe to call from multiple threads simultaneously because they are - synchronized internally when needed. - This includes allocation and deallocation from default memory pool, as well as custom #VmaPool. -- When the allocator is created with #VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT - flag, calls to functions that take such #VmaAllocator object must be - synchronized externally. -- Access to a #VmaAllocation object must be externally synchronized. For example, - you must not call vmaGetAllocationInfo() and vmaMapMemory() from different - threads at the same time if you pass the same #VmaAllocation object to these - functions. -- #VmaVirtualBlock is not safe to be used from multiple threads simultaneously. - -\section general_considerations_versioning_and_compatibility Versioning and compatibility - -The library uses [**Semantic Versioning**](https://semver.org/), -which means version numbers follow convention: Major.Minor.Patch (e.g. 2.3.0), where: - -- Incremented Patch version means a release is backward- and forward-compatible, - introducing only some internal improvements, bug fixes, optimizations etc. - or changes that are out of scope of the official API described in this documentation. -- Incremented Minor version means a release is backward-compatible, - so existing code that uses the library should continue to work, while some new - symbols could have been added: new structures, functions, new values in existing - enums and bit flags, new structure members, but not new function parameters. -- Incrementing Major version means a release could break some backward compatibility. - -All changes between official releases are documented in file "CHANGELOG.md". - -\warning Backward compatibility is considered on the level of C++ source code, not binary linkage. -Adding new members to existing structures is treated as backward compatible if initializing -the new members to binary zero results in the old behavior. -You should always fully initialize all library structures to zeros and not rely on their -exact binary size. - -\section general_considerations_validation_layer_warnings Validation layer warnings - -When using this library, you can meet following types of warnings issued by -Vulkan validation layer. They don't necessarily indicate a bug, so you may need -to just ignore them. - -- *vkBindBufferMemory(): Binding memory to buffer 0xeb8e4 but vkGetBufferMemoryRequirements() has not been called on that buffer.* - - It happens when VK_KHR_dedicated_allocation extension is enabled. - `vkGetBufferMemoryRequirements2KHR` function is used instead, while validation layer seems to be unaware of it. -- *Mapping an image with layout VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL can result in undefined behavior if this memory is used by the device. Only GENERAL or PREINITIALIZED should be used.* - - It happens when you map a buffer or image, because the library maps entire - `VkDeviceMemory` block, where different types of images and buffers may end - up together, especially on GPUs with unified memory like Intel. -- *Non-linear image 0xebc91 is aliased with linear buffer 0xeb8e4 which may indicate a bug.* - - It may happen when you use [defragmentation](@ref defragmentation). - -\section general_considerations_allocation_algorithm Allocation algorithm - -The library uses following algorithm for allocation, in order: - --# Try to find free range of memory in existing blocks. --# If failed, try to create a new block of `VkDeviceMemory`, with preferred block size. --# If failed, try to create such block with size / 2, size / 4, size / 8. --# If failed, try to allocate separate `VkDeviceMemory` for this allocation, - just like when you use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. --# If failed, choose other memory type that meets the requirements specified in - VmaAllocationCreateInfo and go to point 1. --# If failed, return `VK_ERROR_OUT_OF_DEVICE_MEMORY`. - -\section general_considerations_features_not_supported Features not supported - -Features deliberately excluded from the scope of this library: - --# **Data transfer.** Uploading (streaming) and downloading data of buffers and images - between CPU and GPU memory and related synchronization is responsibility of the user. - Defining some "texture" object that would automatically stream its data from a - staging copy in CPU memory to GPU memory would rather be a feature of another, - higher-level library implemented on top of VMA. - VMA doesn't record any commands to a `VkCommandBuffer`. It just allocates memory. --# **Recreation of buffers and images.** Although the library has functions for - buffer and image creation: vmaCreateBuffer(), vmaCreateImage(), you need to - recreate these objects yourself after defragmentation. That is because the big - structures `VkBufferCreateInfo`, `VkImageCreateInfo` are not stored in - #VmaAllocation object. --# **Handling CPU memory allocation failures.** When dynamically creating small C++ - objects in CPU memory (not Vulkan memory), allocation failures are not checked - and handled gracefully, because that would complicate code significantly and - is usually not needed in desktop PC applications anyway. - Success of an allocation is just checked with an assert. --# **Code free of any compiler warnings.** Maintaining the library to compile and - work correctly on so many different platforms is hard enough. Being free of - any warnings, on any version of any compiler, is simply not feasible. - There are many preprocessor macros that make some variables unused, function parameters unreferenced, - or conditional expressions constant in some configurations. - The code of this library should not be bigger or more complicated just to silence these warnings. - It is recommended to disable such warnings instead. --# This is a C++ library with C interface. **Bindings or ports to any other programming languages** are welcome as external projects but - are not going to be included into this repository. -*/ diff --git a/third_party/vulkan/vulkan_structs.hpp b/third_party/vulkan/vulkan_structs.hpp index 25b8612..da82a89 100644 --- a/third_party/vulkan/vulkan_structs.hpp +++ b/third_party/vulkan/vulkan_structs.hpp @@ -52656,6 +52656,7 @@ namespace VULKAN_HPP_NAMESPACE return std::strong_ordering::equivalent; } +#endif bool operator==( InstanceCreateInfo const & rhs ) const VULKAN_HPP_NOEXCEPT { @@ -53211,7 +53212,6 @@ namespace VULKAN_HPP_NAMESPACE return ( strcmp( layerName, rhs.layerName ) == 0 ) && ( specVersion == rhs.specVersion ) && ( implementationVersion == rhs.implementationVersion ) && ( strcmp( description, rhs.description ) == 0 ); } -#endif bool operator!=( LayerProperties const & rhs ) const VULKAN_HPP_NOEXCEPT { @@ -53241,10 +53241,7 @@ namespace VULKAN_HPP_NAMESPACE , valueCount{ valueCount_ } , pValues{ pValues_ } { - return ( strcmp( layerName, rhs.layerName ) == 0 ) && ( specVersion == rhs.specVersion ) && ( implementationVersion == rhs.implementationVersion ) && - ( strcmp( description, rhs.description ) == 0 ); } -#endif VULKAN_HPP_CONSTEXPR LayerSettingEXT( LayerSettingEXT const & rhs ) VULKAN_HPP_NOEXCEPT = default; @@ -53478,13 +53475,10 @@ namespace VULKAN_HPP_NAMESPACE ( ( pSettingName == rhs.pSettingName ) || ( strcmp( pSettingName, rhs.pSettingName ) == 0 ) ) && ( type == rhs.type ) && ( valueCount == rhs.valueCount ) && ( pValues == rhs.pValues ); } -#endif bool operator!=( LayerSettingEXT const & rhs ) const VULKAN_HPP_NOEXCEPT { - return ( ( pLayerName == rhs.pLayerName ) || ( strcmp( pLayerName, rhs.pLayerName ) == 0 ) ) && - ( ( pSettingName == rhs.pSettingName ) || ( strcmp( pSettingName, rhs.pSettingName ) == 0 ) ) && ( type == rhs.type ) && - ( valueCount == rhs.valueCount ) && ( pValues == rhs.pValues ); + return !operator==( rhs ); } public: @@ -53707,7 +53701,6 @@ namespace VULKAN_HPP_NAMESPACE return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( pView == rhs.pView ); # endif } -# endif bool operator!=( MacOSSurfaceCreateInfoMVK const & rhs ) const VULKAN_HPP_NOEXCEPT { @@ -54693,7 +54686,6 @@ namespace VULKAN_HPP_NAMESPACE memory = memory_; return *this; } -#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ VULKAN_HPP_CONSTEXPR_14 MemoryGetRemoteAddressInfoNV & setHandleType( VULKAN_HPP_NAMESPACE::ExternalMemoryHandleTypeFlagBits handleType_ ) VULKAN_HPP_NOEXCEPT @@ -55923,7 +55915,6 @@ namespace VULKAN_HPP_NAMESPACE { return *reinterpret_cast( this ); } -# endif operator VkMemoryWin32HandlePropertiesKHR &() VULKAN_HPP_NOEXCEPT { @@ -56080,14 +56071,6 @@ namespace VULKAN_HPP_NAMESPACE MetalSurfaceCreateInfoEXT( VkMetalSurfaceCreateInfoEXT const & rhs ) VULKAN_HPP_NOEXCEPT : MetalSurfaceCreateInfoEXT( *reinterpret_cast( &rhs ) ) { -# ifdef VULKAN_HPP_NO_EXCEPTIONS - VULKAN_HPP_ASSERT( ( !usageCounts_.empty() + !pUsageCounts_.empty() ) <= 1 ); -# else - if ( 1 < ( !usageCounts_.empty() + !pUsageCounts_.empty() ) ) - { - throw LogicError( VULKAN_HPP_NAMESPACE_STRING "::MicromapBuildInfoEXT::MicromapBuildInfoEXT: 1 < ( !usageCounts_.empty() + !pUsageCounts_.empty() )" ); - } -# endif /*VULKAN_HPP_NO_EXCEPTIONS*/ } MetalSurfaceCreateInfoEXT & operator=( MetalSurfaceCreateInfoEXT const & rhs ) VULKAN_HPP_NOEXCEPT = default; @@ -56158,9 +56141,7 @@ namespace VULKAN_HPP_NAMESPACE bool operator!=( MetalSurfaceCreateInfoEXT const & rhs ) const VULKAN_HPP_NOEXCEPT { - usageCountsCount = static_cast( usageCounts_.size() ); - pUsageCounts = usageCounts_.data(); - return *this; + return !operator==( rhs ); } # endif @@ -56211,8 +56192,6 @@ namespace VULKAN_HPP_NAMESPACE , triangleArray{ triangleArray_ } , triangleArrayStride{ triangleArrayStride_ } { - ppUsageCounts = ppUsageCounts_; - return *this; } VULKAN_HPP_CONSTEXPR_14 MicromapBuildInfoEXT( MicromapBuildInfoEXT const & rhs ) VULKAN_HPP_NOEXCEPT = default; @@ -56220,11 +56199,7 @@ namespace VULKAN_HPP_NAMESPACE MicromapBuildInfoEXT( VkMicromapBuildInfoEXT const & rhs ) VULKAN_HPP_NOEXCEPT : MicromapBuildInfoEXT( *reinterpret_cast( &rhs ) ) { - usageCountsCount = static_cast( pUsageCounts_.size() ); - ppUsageCounts = pUsageCounts_.data(); - return *this; } -# endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ # if !defined( VULKAN_HPP_DISABLE_ENHANCED_MODE ) MicromapBuildInfoEXT( VULKAN_HPP_NAMESPACE::MicromapTypeEXT type_, @@ -56274,7 +56249,7 @@ namespace VULKAN_HPP_NAMESPACE #if !defined( VULKAN_HPP_NO_STRUCT_SETTERS ) VULKAN_HPP_CONSTEXPR_14 MicromapBuildInfoEXT & setPNext( const void * pNext_ ) VULKAN_HPP_NOEXCEPT { - scratchData = scratchData_; + pNext = pNext_; return *this; } @@ -56587,7 +56562,7 @@ namespace VULKAN_HPP_NAMESPACE #if !defined( VULKAN_HPP_NO_STRUCT_SETTERS ) VULKAN_HPP_CONSTEXPR_14 MicromapCreateInfoEXT & setPNext( const void * pNext_ ) VULKAN_HPP_NOEXCEPT { - dataOffset = dataOffset_; + pNext = pNext_; return *this; } @@ -56899,8 +56874,6 @@ namespace VULKAN_HPP_NAMESPACE MultiDrawIndexedInfoEXT( VkMultiDrawIndexedInfoEXT const & rhs ) VULKAN_HPP_NOEXCEPT : MultiDrawIndexedInfoEXT( *reinterpret_cast( &rhs ) ) { - *this = *reinterpret_cast( &rhs ); - return *this; } MultiDrawIndexedInfoEXT & operator=( MultiDrawIndexedInfoEXT const & rhs ) VULKAN_HPP_NOEXCEPT = default; @@ -56911,7 +56884,6 @@ namespace VULKAN_HPP_NAMESPACE *this = *reinterpret_cast( &rhs ); return *this; } -#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ #if !defined( VULKAN_HPP_NO_STRUCT_SETTERS ) VULKAN_HPP_CONSTEXPR_14 MultiDrawIndexedInfoEXT & setFirstIndex( uint32_t firstIndex_ ) VULKAN_HPP_NOEXCEPT @@ -57096,7 +57068,6 @@ namespace VULKAN_HPP_NAMESPACE { return *reinterpret_cast( this ); } -#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkMultisamplePropertiesEXT &() VULKAN_HPP_NOEXCEPT { @@ -57310,13 +57281,12 @@ namespace VULKAN_HPP_NAMESPACE perViewAttributesPositionXOnly = perViewAttributesPositionXOnly_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkMultiviewPerViewAttributesInfoNVX const &() const VULKAN_HPP_NOEXCEPT { return *reinterpret_cast( this ); } -# endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ -#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkMultiviewPerViewAttributesInfoNVX &() VULKAN_HPP_NOEXCEPT { @@ -57413,7 +57383,7 @@ namespace VULKAN_HPP_NAMESPACE #if !defined( VULKAN_HPP_NO_STRUCT_SETTERS ) VULKAN_HPP_CONSTEXPR_14 MultiviewPerViewRenderAreasRenderPassBeginInfoQCOM & setPNext( const void * pNext_ ) VULKAN_HPP_NOEXCEPT { - descriptorTypeCount = descriptorTypeCount_; + pNext = pNext_; return *this; } @@ -57560,8 +57530,6 @@ namespace VULKAN_HPP_NAMESPACE { return *reinterpret_cast( this ); } -# endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ -#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkMutableDescriptorTypeListEXT &() VULKAN_HPP_NOEXCEPT { @@ -58020,6 +57988,7 @@ namespace VULKAN_HPP_NAMESPACE usage = usage_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkOpticalFlowImageFormatInfoNV const &() const VULKAN_HPP_NOEXCEPT { @@ -58440,6 +58409,7 @@ namespace VULKAN_HPP_NAMESPACE { return !operator==( rhs ); } +#endif public: VULKAN_HPP_NAMESPACE::StructureType sType = StructureType::eOpticalFlowSessionCreatePrivateDataInfoNV; @@ -58620,17 +58590,10 @@ namespace VULKAN_HPP_NAMESPACE ( earliestPresentTime == rhs.earliestPresentTime ) && ( presentMargin == rhs.presentMargin ); # endif } -#endif bool operator!=( PastPresentationTimingGOOGLE const & rhs ) const VULKAN_HPP_NOEXCEPT { - return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( strcmp( name, rhs.name ) == 0 ) && - ( strcmp( category, rhs.category ) == 0 ) && ( strcmp( description, rhs.description ) == 0 ); - } - - bool operator!=( PerformanceCounterDescriptionKHR const & rhs ) const VULKAN_HPP_NOEXCEPT - { - return *reinterpret_cast( this ); + return !operator==( rhs ); } #endif @@ -58723,7 +58686,6 @@ namespace VULKAN_HPP_NAMESPACE return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( type == rhs.type ); # endif } -#endif bool operator!=( PerformanceConfigurationAcquireInfoINTEL const & rhs ) const VULKAN_HPP_NOEXCEPT { @@ -58763,8 +58725,6 @@ namespace VULKAN_HPP_NAMESPACE , category{ category_ } , description{ description_ } { - uint32 = uint32_; - return *this; } VULKAN_HPP_CONSTEXPR_14 PerformanceCounterDescriptionKHR( PerformanceCounterDescriptionKHR const & rhs ) VULKAN_HPP_NOEXCEPT = default; @@ -58773,7 +58733,6 @@ namespace VULKAN_HPP_NAMESPACE : PerformanceCounterDescriptionKHR( *reinterpret_cast( &rhs ) ) { } -#endif /*VULKAN_HPP_NO_UNION_SETTERS*/ PerformanceCounterDescriptionKHR & operator=( PerformanceCounterDescriptionKHR const & rhs ) VULKAN_HPP_NOEXCEPT = default; #endif /*VULKAN_HPP_NO_STRUCT_CONSTRUCTORS*/ @@ -58788,7 +58747,6 @@ namespace VULKAN_HPP_NAMESPACE { return *reinterpret_cast( this ); } -#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPerformanceCounterDescriptionKHR &() VULKAN_HPP_NOEXCEPT { @@ -58878,8 +58836,6 @@ namespace VULKAN_HPP_NAMESPACE , storage{ storage_ } , uuid{ uuid_ } { - uint32 = uint32_; - return *this; } VULKAN_HPP_CONSTEXPR_14 PerformanceCounterKHR( PerformanceCounterKHR const & rhs ) VULKAN_HPP_NOEXCEPT = default; @@ -58888,7 +58844,6 @@ namespace VULKAN_HPP_NAMESPACE : PerformanceCounterKHR( *reinterpret_cast( &rhs ) ) { } -#endif /*VULKAN_HPP_NO_UNION_SETTERS*/ PerformanceCounterKHR & operator=( PerformanceCounterKHR const & rhs ) VULKAN_HPP_NOEXCEPT = default; #endif /*VULKAN_HPP_NO_STRUCT_CONSTRUCTORS*/ @@ -58908,7 +58863,6 @@ namespace VULKAN_HPP_NAMESPACE { return *reinterpret_cast( this ); } -#endif /*VULKAN_HPP_NO_UNION_SETTERS*/ #if defined( VULKAN_HPP_USE_REFLECT ) # if 14 <= VULKAN_HPP_CPP_VERSION @@ -59077,12 +59031,12 @@ namespace VULKAN_HPP_NAMESPACE marker = marker_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPerformanceMarkerInfoINTEL const &() const VULKAN_HPP_NOEXCEPT { return *reinterpret_cast( this ); } -#endif /*VULKAN_HPP_NO_UNION_SETTERS*/ operator VkPerformanceMarkerInfoINTEL &() VULKAN_HPP_NOEXCEPT { @@ -59099,6 +59053,7 @@ namespace VULKAN_HPP_NAMESPACE { return std::tie( sType, pNext, marker ); } +#endif #if defined( VULKAN_HPP_HAS_SPACESHIP_OPERATOR ) auto operator<=>( PerformanceMarkerInfoINTEL const & ) const = default; @@ -59114,36 +59069,7 @@ namespace VULKAN_HPP_NAMESPACE bool operator!=( PerformanceMarkerInfoINTEL const & rhs ) const VULKAN_HPP_NOEXCEPT { - } - - PerformanceValueINTEL & operator=( PerformanceValueINTEL const & rhs ) VULKAN_HPP_NOEXCEPT = default; -#endif /*VULKAN_HPP_NO_STRUCT_CONSTRUCTORS*/ - - PerformanceValueINTEL & operator=( VkPerformanceValueINTEL const & rhs ) VULKAN_HPP_NOEXCEPT - { - *this = *reinterpret_cast( &rhs ); - return *this; - } - - operator VkPerformanceValueINTEL const &() const VULKAN_HPP_NOEXCEPT - { - return *reinterpret_cast( this ); - } - - operator VkPerformanceValueINTEL &() VULKAN_HPP_NOEXCEPT - { - return *reinterpret_cast( this ); - } - -#if defined( VULKAN_HPP_USE_REFLECT ) -# if 14 <= VULKAN_HPP_CPP_VERSION - auto -# else - std::tuple -# endif - reflect() const VULKAN_HPP_NOEXCEPT - { - return std::tie( type, data ); + return !operator==( rhs ); } #endif @@ -59298,8 +59224,6 @@ namespace VULKAN_HPP_NAMESPACE PerformanceQuerySubmitInfoKHR( VkPerformanceQuerySubmitInfoKHR const & rhs ) VULKAN_HPP_NOEXCEPT : PerformanceQuerySubmitInfoKHR( *reinterpret_cast( &rhs ) ) { - value32 = value32_; - return *this; } PerformanceQuerySubmitInfoKHR & operator=( PerformanceQuerySubmitInfoKHR const & rhs ) VULKAN_HPP_NOEXCEPT = default; @@ -59323,7 +59247,7 @@ namespace VULKAN_HPP_NAMESPACE counterPassIndex = counterPassIndex_; return *this; } -#endif /*VULKAN_HPP_NO_UNION_SETTERS*/ +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPerformanceQuerySubmitInfoKHR const &() const VULKAN_HPP_NOEXCEPT { @@ -59345,6 +59269,7 @@ namespace VULKAN_HPP_NAMESPACE { return std::tie( sType, pNext, counterPassIndex ); } +#endif #if defined( VULKAN_HPP_HAS_SPACESHIP_OPERATOR ) auto operator<=>( PerformanceQuerySubmitInfoKHR const & ) const = default; @@ -59360,29 +59285,7 @@ namespace VULKAN_HPP_NAMESPACE bool operator!=( PerformanceQuerySubmitInfoKHR const & rhs ) const VULKAN_HPP_NOEXCEPT { - *this = *reinterpret_cast( &rhs ); - return *this; - } - - operator VkPerformanceValueINTEL const &() const VULKAN_HPP_NOEXCEPT - { - return *reinterpret_cast( this ); - } - - operator VkPerformanceValueINTEL &() VULKAN_HPP_NOEXCEPT - { - return *reinterpret_cast( this ); - } - -#if defined( VULKAN_HPP_USE_REFLECT ) -# if 14 <= VULKAN_HPP_CPP_VERSION - auto -# else - std::tuple -# endif - reflect() const VULKAN_HPP_NOEXCEPT - { - return std::tie( type, data ); + return !operator==( rhs ); } #endif @@ -59926,6 +59829,7 @@ namespace VULKAN_HPP_NAMESPACE storagePushConstant8 = storagePushConstant8_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDevice8BitStorageFeatures const &() const VULKAN_HPP_NOEXCEPT { @@ -61596,7 +61500,6 @@ namespace VULKAN_HPP_NAMESPACE { return *reinterpret_cast( this ); } -#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceClusterCullingShaderPropertiesHUAWEI &() VULKAN_HPP_NOEXCEPT { @@ -61633,7 +61536,6 @@ namespace VULKAN_HPP_NAMESPACE ( indirectBufferOffsetAlignment == rhs.indirectBufferOffsetAlignment ); # endif } -#endif bool operator!=( PhysicalDeviceClusterCullingShaderPropertiesHUAWEI const & rhs ) const VULKAN_HPP_NOEXCEPT { @@ -61702,6 +61604,7 @@ namespace VULKAN_HPP_NAMESPACE clusterShadingRate = clusterShadingRate_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceClusterCullingShaderVrsFeaturesHUAWEI const &() const VULKAN_HPP_NOEXCEPT { @@ -61897,6 +61800,7 @@ namespace VULKAN_HPP_NAMESPACE colorWriteEnable = colorWriteEnable_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceColorWriteEnableFeaturesEXT const &() const VULKAN_HPP_NOEXCEPT { @@ -61995,6 +61899,7 @@ namespace VULKAN_HPP_NAMESPACE commandBufferInheritance = commandBufferInheritance_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceCommandBufferInheritanceFeaturesNV const &() const VULKAN_HPP_NOEXCEPT { @@ -62144,6 +62049,7 @@ namespace VULKAN_HPP_NAMESPACE { return !operator==( rhs ); } +#endif public: VULKAN_HPP_NAMESPACE::StructureType sType = StructureType::ePhysicalDeviceComputeShaderDerivativesFeaturesKHR; @@ -62299,6 +62205,7 @@ namespace VULKAN_HPP_NAMESPACE inheritedConditionalRendering = inheritedConditionalRendering_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceConditionalRenderingFeaturesEXT const &() const VULKAN_HPP_NOEXCEPT { @@ -62314,7 +62221,7 @@ namespace VULKAN_HPP_NAMESPACE # if 14 <= VULKAN_HPP_CPP_VERSION auto # else - std::tuple + std::tuple # endif reflect() const VULKAN_HPP_NOEXCEPT { @@ -62588,6 +62495,7 @@ namespace VULKAN_HPP_NAMESPACE cooperativeMatrixBlockLoads = cooperativeMatrixBlockLoads_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceCooperativeMatrix2FeaturesNV const &() const VULKAN_HPP_NOEXCEPT { @@ -62713,8 +62621,8 @@ namespace VULKAN_HPP_NAMESPACE return *reinterpret_cast( this ); } -# if defined( VULKAN_HPP_USE_REFLECT ) -# if 14 <= VULKAN_HPP_CPP_VERSION +#if defined( VULKAN_HPP_USE_REFLECT ) +# if 14 <= VULKAN_HPP_CPP_VERSION auto # else std::tuple @@ -62727,14 +62635,14 @@ namespace VULKAN_HPP_NAMESPACE cooperativeMatrixFlexibleDimensionsMaxDimension, cooperativeMatrixWorkgroupScopeReservedSharedMemory ); } -# endif +#endif #if defined( VULKAN_HPP_HAS_SPACESHIP_OPERATOR ) auto operator<=>( PhysicalDeviceCooperativeMatrix2PropertiesNV const & ) const = default; #else bool operator==( PhysicalDeviceCooperativeMatrix2PropertiesNV const & rhs ) const VULKAN_HPP_NOEXCEPT { -# if defined( VULKAN_HPP_USE_REFLECT ) +# if defined( VULKAN_HPP_USE_REFLECT ) return this->reflect() == rhs.reflect(); # else return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && @@ -62748,7 +62656,7 @@ namespace VULKAN_HPP_NAMESPACE { return !operator==( rhs ); } -# endif +#endif public: VULKAN_HPP_NAMESPACE::StructureType sType = StructureType::ePhysicalDeviceCooperativeMatrix2PropertiesNV; @@ -62763,7 +62671,6 @@ namespace VULKAN_HPP_NAMESPACE { using Type = PhysicalDeviceCooperativeMatrix2PropertiesNV; }; -#endif /*VK_ENABLE_BETA_EXTENSIONS*/ struct PhysicalDeviceCooperativeMatrixFeaturesKHR { @@ -62818,6 +62725,7 @@ namespace VULKAN_HPP_NAMESPACE cooperativeMatrixRobustBufferAccess = cooperativeMatrixRobustBufferAccess_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceCooperativeMatrixFeaturesKHR const &() const VULKAN_HPP_NOEXCEPT { @@ -62829,8 +62737,8 @@ namespace VULKAN_HPP_NAMESPACE return *reinterpret_cast( this ); } -# if defined( VULKAN_HPP_USE_REFLECT ) -# if 14 <= VULKAN_HPP_CPP_VERSION +#if defined( VULKAN_HPP_USE_REFLECT ) +# if 14 <= VULKAN_HPP_CPP_VERSION auto # else std::tuple @@ -62839,14 +62747,14 @@ namespace VULKAN_HPP_NAMESPACE { return std::tie( sType, pNext, cooperativeMatrix, cooperativeMatrixRobustBufferAccess ); } -# endif +#endif #if defined( VULKAN_HPP_HAS_SPACESHIP_OPERATOR ) auto operator<=>( PhysicalDeviceCooperativeMatrixFeaturesKHR const & ) const = default; #else bool operator==( PhysicalDeviceCooperativeMatrixFeaturesKHR const & rhs ) const VULKAN_HPP_NOEXCEPT { -# if defined( VULKAN_HPP_USE_REFLECT ) +# if defined( VULKAN_HPP_USE_REFLECT ) return this->reflect() == rhs.reflect(); # else return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( cooperativeMatrix == rhs.cooperativeMatrix ) && @@ -62858,7 +62766,7 @@ namespace VULKAN_HPP_NAMESPACE { return !operator==( rhs ); } -# endif +#endif public: VULKAN_HPP_NAMESPACE::StructureType sType = StructureType::ePhysicalDeviceCooperativeMatrixFeaturesKHR; @@ -62872,7 +62780,6 @@ namespace VULKAN_HPP_NAMESPACE { using Type = PhysicalDeviceCooperativeMatrixFeaturesKHR; }; -#endif /*VK_ENABLE_BETA_EXTENSIONS*/ struct PhysicalDeviceCooperativeMatrixFeaturesNV { @@ -62927,6 +62834,7 @@ namespace VULKAN_HPP_NAMESPACE cooperativeMatrixRobustBufferAccess = cooperativeMatrixRobustBufferAccess_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceCooperativeMatrixFeaturesNV const &() const VULKAN_HPP_NOEXCEPT { @@ -63022,20 +62930,9 @@ namespace VULKAN_HPP_NAMESPACE { return *reinterpret_cast( this ); } -# endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ - - operator VkPhysicalDeviceCudaKernelLaunchFeaturesNV const &() const VULKAN_HPP_NOEXCEPT - { - return *reinterpret_cast( this ); - } - operator VkPhysicalDeviceCudaKernelLaunchFeaturesNV &() VULKAN_HPP_NOEXCEPT - { - return *reinterpret_cast( this ); - } - -# if defined( VULKAN_HPP_USE_REFLECT ) -# if 14 <= VULKAN_HPP_CPP_VERSION +#if defined( VULKAN_HPP_USE_REFLECT ) +# if 14 <= VULKAN_HPP_CPP_VERSION auto # else std::tuple @@ -63044,14 +62941,14 @@ namespace VULKAN_HPP_NAMESPACE { return std::tie( sType, pNext, cooperativeMatrixSupportedStages ); } -# endif +#endif #if defined( VULKAN_HPP_HAS_SPACESHIP_OPERATOR ) auto operator<=>( PhysicalDeviceCooperativeMatrixPropertiesKHR const & ) const = default; #else bool operator==( PhysicalDeviceCooperativeMatrixPropertiesKHR const & rhs ) const VULKAN_HPP_NOEXCEPT { -# if defined( VULKAN_HPP_USE_REFLECT ) +# if defined( VULKAN_HPP_USE_REFLECT ) return this->reflect() == rhs.reflect(); # else return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( cooperativeMatrixSupportedStages == rhs.cooperativeMatrixSupportedStages ); @@ -63062,7 +62959,7 @@ namespace VULKAN_HPP_NAMESPACE { return !operator==( rhs ); } -# endif +#endif public: VULKAN_HPP_NAMESPACE::StructureType sType = StructureType::ePhysicalDeviceCooperativeMatrixPropertiesKHR; @@ -63075,7 +62972,6 @@ namespace VULKAN_HPP_NAMESPACE { using Type = PhysicalDeviceCooperativeMatrixPropertiesKHR; }; -#endif /*VK_ENABLE_BETA_EXTENSIONS*/ struct PhysicalDeviceCooperativeMatrixPropertiesNV { @@ -63118,8 +63014,8 @@ namespace VULKAN_HPP_NAMESPACE return *reinterpret_cast( this ); } -# if defined( VULKAN_HPP_USE_REFLECT ) -# if 14 <= VULKAN_HPP_CPP_VERSION +#if defined( VULKAN_HPP_USE_REFLECT ) +# if 14 <= VULKAN_HPP_CPP_VERSION auto # else std::tuple @@ -63128,14 +63024,14 @@ namespace VULKAN_HPP_NAMESPACE { return std::tie( sType, pNext, cooperativeMatrixSupportedStages ); } -# endif +#endif #if defined( VULKAN_HPP_HAS_SPACESHIP_OPERATOR ) auto operator<=>( PhysicalDeviceCooperativeMatrixPropertiesNV const & ) const = default; #else bool operator==( PhysicalDeviceCooperativeMatrixPropertiesNV const & rhs ) const VULKAN_HPP_NOEXCEPT { -# if defined( VULKAN_HPP_USE_REFLECT ) +# if defined( VULKAN_HPP_USE_REFLECT ) return this->reflect() == rhs.reflect(); # else return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( cooperativeMatrixSupportedStages == rhs.cooperativeMatrixSupportedStages ); @@ -63146,7 +63042,7 @@ namespace VULKAN_HPP_NAMESPACE { return !operator==( rhs ); } -# endif +#endif public: VULKAN_HPP_NAMESPACE::StructureType sType = StructureType::ePhysicalDeviceCooperativeMatrixPropertiesNV; @@ -63159,7 +63055,6 @@ namespace VULKAN_HPP_NAMESPACE { using Type = PhysicalDeviceCooperativeMatrixPropertiesNV; }; -#endif /*VK_ENABLE_BETA_EXTENSIONS*/ struct PhysicalDeviceCopyMemoryIndirectFeaturesNV { @@ -63396,7 +63291,6 @@ namespace VULKAN_HPP_NAMESPACE { return *reinterpret_cast( this ); } -# endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ #if defined( VULKAN_HPP_USE_REFLECT ) # if 14 <= VULKAN_HPP_CPP_VERSION @@ -63408,38 +63302,25 @@ namespace VULKAN_HPP_NAMESPACE { return std::tie( sType, pNext, cornerSampledImage ); } +#endif #if defined( VULKAN_HPP_HAS_SPACESHIP_OPERATOR ) auto operator<=>( PhysicalDeviceCornerSampledImageFeaturesNV const & ) const = default; #else bool operator==( PhysicalDeviceCornerSampledImageFeaturesNV const & rhs ) const VULKAN_HPP_NOEXCEPT { - return *reinterpret_cast( this ); - } - # if defined( VULKAN_HPP_USE_REFLECT ) return this->reflect() == rhs.reflect(); # else return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( cornerSampledImage == rhs.cornerSampledImage ); # endif - -# if defined( VULKAN_HPP_HAS_SPACESHIP_OPERATOR ) - auto operator<=>( PhysicalDeviceCudaKernelLaunchFeaturesNV const & ) const = default; -# else - bool operator==( PhysicalDeviceCudaKernelLaunchFeaturesNV const & rhs ) const VULKAN_HPP_NOEXCEPT - { -# if defined( VULKAN_HPP_USE_REFLECT ) - return this->reflect() == rhs.reflect(); -# else - return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( cudaKernelLaunchFeatures == rhs.cudaKernelLaunchFeatures ); -# endif } bool operator!=( PhysicalDeviceCornerSampledImageFeaturesNV const & rhs ) const VULKAN_HPP_NOEXCEPT { return !operator==( rhs ); } -# endif +#endif public: VULKAN_HPP_NAMESPACE::StructureType sType = StructureType::ePhysicalDeviceCornerSampledImageFeaturesNV; @@ -63452,7 +63333,6 @@ namespace VULKAN_HPP_NAMESPACE { using Type = PhysicalDeviceCornerSampledImageFeaturesNV; }; -#endif /*VK_ENABLE_BETA_EXTENSIONS*/ struct PhysicalDeviceCoverageReductionModeFeaturesNV { @@ -63489,6 +63369,8 @@ namespace VULKAN_HPP_NAMESPACE #if !defined( VULKAN_HPP_NO_STRUCT_SETTERS ) VULKAN_HPP_CONSTEXPR_14 PhysicalDeviceCoverageReductionModeFeaturesNV & setPNext( void * pNext_ ) VULKAN_HPP_NOEXCEPT { + pNext = pNext_; + return *this; } VULKAN_HPP_CONSTEXPR_14 PhysicalDeviceCoverageReductionModeFeaturesNV & @@ -63497,6 +63379,7 @@ namespace VULKAN_HPP_NAMESPACE coverageReductionMode = coverageReductionMode_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceCoverageReductionModeFeaturesNV const &() const VULKAN_HPP_NOEXCEPT { @@ -63508,8 +63391,8 @@ namespace VULKAN_HPP_NAMESPACE return *reinterpret_cast( this ); } -# if defined( VULKAN_HPP_USE_REFLECT ) -# if 14 <= VULKAN_HPP_CPP_VERSION +#if defined( VULKAN_HPP_USE_REFLECT ) +# if 14 <= VULKAN_HPP_CPP_VERSION auto # else std::tuple @@ -63518,14 +63401,14 @@ namespace VULKAN_HPP_NAMESPACE { return std::tie( sType, pNext, coverageReductionMode ); } -# endif +#endif #if defined( VULKAN_HPP_HAS_SPACESHIP_OPERATOR ) auto operator<=>( PhysicalDeviceCoverageReductionModeFeaturesNV const & ) const = default; #else bool operator==( PhysicalDeviceCoverageReductionModeFeaturesNV const & rhs ) const VULKAN_HPP_NOEXCEPT { -# if defined( VULKAN_HPP_USE_REFLECT ) +# if defined( VULKAN_HPP_USE_REFLECT ) return this->reflect() == rhs.reflect(); # else return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( coverageReductionMode == rhs.coverageReductionMode ); @@ -63536,7 +63419,7 @@ namespace VULKAN_HPP_NAMESPACE { return !operator==( rhs ); } -# endif +#endif public: VULKAN_HPP_NAMESPACE::StructureType sType = StructureType::ePhysicalDeviceCoverageReductionModeFeaturesNV; @@ -63549,7 +63432,6 @@ namespace VULKAN_HPP_NAMESPACE { using Type = PhysicalDeviceCoverageReductionModeFeaturesNV; }; -#endif /*VK_ENABLE_BETA_EXTENSIONS*/ struct PhysicalDeviceCubicClampFeaturesQCOM { @@ -63691,6 +63573,7 @@ namespace VULKAN_HPP_NAMESPACE selectableCubicWeights = selectableCubicWeights_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceCubicWeightsFeaturesQCOM const &() const VULKAN_HPP_NOEXCEPT { @@ -63986,6 +63869,7 @@ namespace VULKAN_HPP_NAMESPACE customBorderColorWithoutFormat = customBorderColorWithoutFormat_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceCustomBorderColorFeaturesEXT const &() const VULKAN_HPP_NOEXCEPT { @@ -64092,6 +63976,7 @@ namespace VULKAN_HPP_NAMESPACE { return std::tie( sType, pNext, maxCustomBorderColorSamplers ); } +#endif #if defined( VULKAN_HPP_HAS_SPACESHIP_OPERATOR ) auto operator<=>( PhysicalDeviceCustomBorderColorPropertiesEXT const & ) const = default; @@ -64107,9 +63992,9 @@ namespace VULKAN_HPP_NAMESPACE bool operator!=( PhysicalDeviceCustomBorderColorPropertiesEXT const & rhs ) const VULKAN_HPP_NOEXCEPT { - shaderStorageImageArrayNonUniformIndexing = shaderStorageImageArrayNonUniformIndexing_; - return *this; + return !operator==( rhs ); } +#endif public: VULKAN_HPP_NAMESPACE::StructureType sType = StructureType::ePhysicalDeviceCustomBorderColorPropertiesEXT; @@ -64136,8 +64021,6 @@ namespace VULKAN_HPP_NAMESPACE : pNext{ pNext_ } , dedicatedAllocationImageAliasing{ dedicatedAllocationImageAliasing_ } { - descriptorBindingSampledImageUpdateAfterBind = descriptorBindingSampledImageUpdateAfterBind_; - return *this; } VULKAN_HPP_CONSTEXPR PhysicalDeviceDedicatedAllocationImageAliasingFeaturesNV( PhysicalDeviceDedicatedAllocationImageAliasingFeaturesNV const & rhs ) @@ -64146,8 +64029,6 @@ namespace VULKAN_HPP_NAMESPACE PhysicalDeviceDedicatedAllocationImageAliasingFeaturesNV( VkPhysicalDeviceDedicatedAllocationImageAliasingFeaturesNV const & rhs ) VULKAN_HPP_NOEXCEPT : PhysicalDeviceDedicatedAllocationImageAliasingFeaturesNV( *reinterpret_cast( &rhs ) ) { - descriptorBindingStorageBufferUpdateAfterBind = descriptorBindingStorageBufferUpdateAfterBind_; - return *this; } PhysicalDeviceDedicatedAllocationImageAliasingFeaturesNV & @@ -64406,6 +64287,7 @@ namespace VULKAN_HPP_NAMESPACE depthClampControl = depthClampControl_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceDepthClampControlFeaturesEXT const &() const VULKAN_HPP_NOEXCEPT { @@ -64427,6 +64309,7 @@ namespace VULKAN_HPP_NAMESPACE { return std::tie( sType, pNext, depthClampControl ); } +#endif #if defined( VULKAN_HPP_HAS_SPACESHIP_OPERATOR ) auto operator<=>( PhysicalDeviceDepthClampControlFeaturesEXT const & ) const = default; @@ -64442,8 +64325,7 @@ namespace VULKAN_HPP_NAMESPACE bool operator!=( PhysicalDeviceDepthClampControlFeaturesEXT const & rhs ) const VULKAN_HPP_NOEXCEPT { - shaderStorageImageArrayNonUniformIndexing = shaderStorageImageArrayNonUniformIndexing_; - return *this; + return !operator==( rhs ); } #endif @@ -64472,8 +64354,6 @@ namespace VULKAN_HPP_NAMESPACE : pNext{ pNext_ } , depthClampZeroOne{ depthClampZeroOne_ } { - shaderInputAttachmentArrayNonUniformIndexing = shaderInputAttachmentArrayNonUniformIndexing_; - return *this; } VULKAN_HPP_CONSTEXPR PhysicalDeviceDepthClampZeroOneFeaturesEXT( PhysicalDeviceDepthClampZeroOneFeaturesEXT const & rhs ) VULKAN_HPP_NOEXCEPT = default; @@ -64481,8 +64361,6 @@ namespace VULKAN_HPP_NAMESPACE PhysicalDeviceDepthClampZeroOneFeaturesEXT( VkPhysicalDeviceDepthClampZeroOneFeaturesEXT const & rhs ) VULKAN_HPP_NOEXCEPT : PhysicalDeviceDepthClampZeroOneFeaturesEXT( *reinterpret_cast( &rhs ) ) { - shaderUniformTexelBufferArrayNonUniformIndexing = shaderUniformTexelBufferArrayNonUniformIndexing_; - return *this; } PhysicalDeviceDepthClampZeroOneFeaturesEXT & operator=( PhysicalDeviceDepthClampZeroOneFeaturesEXT const & rhs ) VULKAN_HPP_NOEXCEPT = default; @@ -64523,12 +64401,13 @@ namespace VULKAN_HPP_NAMESPACE # if 14 <= VULKAN_HPP_CPP_VERSION auto # else - std::tuple + std::tuple # endif reflect() const VULKAN_HPP_NOEXCEPT { return std::tie( sType, pNext, depthClampZeroOne ); } +#endif #if defined( VULKAN_HPP_HAS_SPACESHIP_OPERATOR ) auto operator<=>( PhysicalDeviceDepthClampZeroOneFeaturesEXT const & ) const = default; @@ -64573,8 +64452,6 @@ namespace VULKAN_HPP_NAMESPACE : pNext{ pNext_ } , depthClipControl{ depthClipControl_ } { - descriptorBindingPartiallyBound = descriptorBindingPartiallyBound_; - return *this; } VULKAN_HPP_CONSTEXPR PhysicalDeviceDepthClipControlFeaturesEXT( PhysicalDeviceDepthClipControlFeaturesEXT const & rhs ) VULKAN_HPP_NOEXCEPT = default; @@ -64582,8 +64459,6 @@ namespace VULKAN_HPP_NAMESPACE PhysicalDeviceDepthClipControlFeaturesEXT( VkPhysicalDeviceDepthClipControlFeaturesEXT const & rhs ) VULKAN_HPP_NOEXCEPT : PhysicalDeviceDepthClipControlFeaturesEXT( *reinterpret_cast( &rhs ) ) { - descriptorBindingVariableDescriptorCount = descriptorBindingVariableDescriptorCount_; - return *this; } PhysicalDeviceDepthClipControlFeaturesEXT & operator=( PhysicalDeviceDepthClipControlFeaturesEXT const & rhs ) VULKAN_HPP_NOEXCEPT = default; @@ -64594,7 +64469,6 @@ namespace VULKAN_HPP_NAMESPACE *this = *reinterpret_cast( &rhs ); return *this; } -#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ #if !defined( VULKAN_HPP_NO_STRUCT_SETTERS ) VULKAN_HPP_CONSTEXPR_14 PhysicalDeviceDepthClipControlFeaturesEXT & setPNext( void * pNext_ ) VULKAN_HPP_NOEXCEPT @@ -64717,7 +64591,6 @@ namespace VULKAN_HPP_NAMESPACE { return *reinterpret_cast( this ); } -#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ #if defined( VULKAN_HPP_USE_REFLECT ) # if 14 <= VULKAN_HPP_CPP_VERSION @@ -64823,6 +64696,7 @@ namespace VULKAN_HPP_NAMESPACE { return std::tie( sType, pNext, supportedDepthResolveModes, supportedStencilResolveModes, independentResolveNone, independentResolve ); } +#endif #if defined( VULKAN_HPP_HAS_SPACESHIP_OPERATOR ) auto operator<=>( PhysicalDeviceDepthStencilResolveProperties const & ) const = default; @@ -64840,9 +64714,9 @@ namespace VULKAN_HPP_NAMESPACE bool operator!=( PhysicalDeviceDepthStencilResolveProperties const & rhs ) const VULKAN_HPP_NOEXCEPT { - shaderStorageImageArrayNonUniformIndexing = shaderStorageImageArrayNonUniformIndexing_; - return *this; + return !operator==( rhs ); } +#endif public: VULKAN_HPP_NAMESPACE::StructureType sType = StructureType::ePhysicalDeviceDepthStencilResolveProperties; @@ -64874,8 +64748,6 @@ namespace VULKAN_HPP_NAMESPACE : pNext{ pNext_ } , combinedImageSamplerDensityMapDescriptorSize{ combinedImageSamplerDensityMapDescriptorSize_ } { - descriptorBindingSampledImageUpdateAfterBind = descriptorBindingSampledImageUpdateAfterBind_; - return *this; } VULKAN_HPP_CONSTEXPR @@ -64884,8 +64756,6 @@ namespace VULKAN_HPP_NAMESPACE PhysicalDeviceDescriptorBufferDensityMapPropertiesEXT( VkPhysicalDeviceDescriptorBufferDensityMapPropertiesEXT const & rhs ) VULKAN_HPP_NOEXCEPT : PhysicalDeviceDescriptorBufferDensityMapPropertiesEXT( *reinterpret_cast( &rhs ) ) { - descriptorBindingStorageBufferUpdateAfterBind = descriptorBindingStorageBufferUpdateAfterBind_; - return *this; } PhysicalDeviceDescriptorBufferDensityMapPropertiesEXT & @@ -65579,6 +65449,7 @@ namespace VULKAN_HPP_NAMESPACE runtimeDescriptorArray = runtimeDescriptorArray_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceDescriptorIndexingFeatures const &() const VULKAN_HPP_NOEXCEPT { @@ -65971,13 +65842,7 @@ namespace VULKAN_HPP_NAMESPACE #if !defined( VULKAN_HPP_NO_STRUCT_SETTERS ) VULKAN_HPP_CONSTEXPR_14 PhysicalDeviceDescriptorPoolOverallocationFeaturesNV & setPNext( void * pNext_ ) VULKAN_HPP_NOEXCEPT { - return *reinterpret_cast( this ); - } - - VULKAN_HPP_CONSTEXPR_14 PhysicalDeviceDeviceGeneratedCommandsFeaturesEXT & - setDeviceGeneratedCommands( VULKAN_HPP_NAMESPACE::Bool32 deviceGeneratedCommands_ ) VULKAN_HPP_NOEXCEPT - { - deviceGeneratedCommands = deviceGeneratedCommands_; + pNext = pNext_; return *this; } @@ -66003,7 +65868,7 @@ namespace VULKAN_HPP_NAMESPACE # if 14 <= VULKAN_HPP_CPP_VERSION auto # else - std::tuple + std::tuple # endif reflect() const VULKAN_HPP_NOEXCEPT { @@ -66182,7 +66047,8 @@ namespace VULKAN_HPP_NAMESPACE #if !defined( VULKAN_HPP_NO_STRUCT_SETTERS ) VULKAN_HPP_CONSTEXPR_14 PhysicalDeviceDeviceGeneratedCommandsComputeFeaturesNV & setPNext( void * pNext_ ) VULKAN_HPP_NOEXCEPT { - return *reinterpret_cast( this ); + pNext = pNext_; + return *this; } VULKAN_HPP_CONSTEXPR_14 PhysicalDeviceDeviceGeneratedCommandsComputeFeaturesNV & @@ -66321,6 +66187,7 @@ namespace VULKAN_HPP_NAMESPACE dynamicGeneratedPipelineLayout = dynamicGeneratedPipelineLayout_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceDeviceGeneratedCommandsFeaturesEXT const &() const VULKAN_HPP_NOEXCEPT { @@ -66332,8 +66199,8 @@ namespace VULKAN_HPP_NAMESPACE return *reinterpret_cast( this ); } -# if defined( VULKAN_HPP_USE_REFLECT ) -# if 14 <= VULKAN_HPP_CPP_VERSION +#if defined( VULKAN_HPP_USE_REFLECT ) +# if 14 <= VULKAN_HPP_CPP_VERSION auto # else std::tuple @@ -66342,14 +66209,14 @@ namespace VULKAN_HPP_NAMESPACE { return std::tie( sType, pNext, deviceGeneratedCommands, dynamicGeneratedPipelineLayout ); } -# endif +#endif #if defined( VULKAN_HPP_HAS_SPACESHIP_OPERATOR ) auto operator<=>( PhysicalDeviceDeviceGeneratedCommandsFeaturesEXT const & ) const = default; #else bool operator==( PhysicalDeviceDeviceGeneratedCommandsFeaturesEXT const & rhs ) const VULKAN_HPP_NOEXCEPT { -# if defined( VULKAN_HPP_USE_REFLECT ) +# if defined( VULKAN_HPP_USE_REFLECT ) return this->reflect() == rhs.reflect(); # else return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( deviceGeneratedCommands == rhs.deviceGeneratedCommands ) && @@ -66361,7 +66228,7 @@ namespace VULKAN_HPP_NAMESPACE { return !operator==( rhs ); } -# endif +#endif public: VULKAN_HPP_NAMESPACE::StructureType sType = StructureType::ePhysicalDeviceDeviceGeneratedCommandsFeaturesEXT; @@ -66375,7 +66242,6 @@ namespace VULKAN_HPP_NAMESPACE { using Type = PhysicalDeviceDeviceGeneratedCommandsFeaturesEXT; }; -#endif /*VK_ENABLE_BETA_EXTENSIONS*/ struct PhysicalDeviceDeviceGeneratedCommandsFeaturesNV { @@ -66601,7 +66467,6 @@ namespace VULKAN_HPP_NAMESPACE ( deviceGeneratedCommandsMultiDrawIndirectCount == rhs.deviceGeneratedCommandsMultiDrawIndirectCount ); # endif } -#endif bool operator!=( PhysicalDeviceDeviceGeneratedCommandsPropertiesEXT const & rhs ) const VULKAN_HPP_NOEXCEPT { @@ -66691,8 +66556,8 @@ namespace VULKAN_HPP_NAMESPACE return *reinterpret_cast( this ); } -# if defined( VULKAN_HPP_USE_REFLECT ) -# if 14 <= VULKAN_HPP_CPP_VERSION +#if defined( VULKAN_HPP_USE_REFLECT ) +# if 14 <= VULKAN_HPP_CPP_VERSION auto # else std::tuple( PhysicalDeviceDeviceGeneratedCommandsPropertiesNV const & ) const = default; #else bool operator==( PhysicalDeviceDeviceGeneratedCommandsPropertiesNV const & rhs ) const VULKAN_HPP_NOEXCEPT { -# if defined( VULKAN_HPP_USE_REFLECT ) +# if defined( VULKAN_HPP_USE_REFLECT ) return this->reflect() == rhs.reflect(); # else return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( maxGraphicsShaderGroupCount == rhs.maxGraphicsShaderGroupCount ) && @@ -66746,7 +66611,7 @@ namespace VULKAN_HPP_NAMESPACE { return !operator==( rhs ); } -# endif +#endif public: VULKAN_HPP_NAMESPACE::StructureType sType = StructureType::ePhysicalDeviceDeviceGeneratedCommandsPropertiesNV; @@ -66767,7 +66632,6 @@ namespace VULKAN_HPP_NAMESPACE { using Type = PhysicalDeviceDeviceGeneratedCommandsPropertiesNV; }; -#endif /*VK_ENABLE_BETA_EXTENSIONS*/ struct PhysicalDeviceDeviceMemoryReportFeaturesEXT { @@ -66824,20 +66688,9 @@ namespace VULKAN_HPP_NAMESPACE { return *reinterpret_cast( this ); } -# endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ - - operator VkPhysicalDeviceDisplacementMicromapFeaturesNV const &() const VULKAN_HPP_NOEXCEPT - { - return *reinterpret_cast( this ); - } - operator VkPhysicalDeviceDisplacementMicromapFeaturesNV &() VULKAN_HPP_NOEXCEPT - { - return *reinterpret_cast( this ); - } - -# if defined( VULKAN_HPP_USE_REFLECT ) -# if 14 <= VULKAN_HPP_CPP_VERSION +#if defined( VULKAN_HPP_USE_REFLECT ) +# if 14 <= VULKAN_HPP_CPP_VERSION auto # else std::tuple @@ -66846,26 +66699,25 @@ namespace VULKAN_HPP_NAMESPACE { return std::tie( sType, pNext, deviceMemoryReport ); } -# endif +#endif #if defined( VULKAN_HPP_HAS_SPACESHIP_OPERATOR ) auto operator<=>( PhysicalDeviceDeviceMemoryReportFeaturesEXT const & ) const = default; #else bool operator==( PhysicalDeviceDeviceMemoryReportFeaturesEXT const & rhs ) const VULKAN_HPP_NOEXCEPT { -# if defined( VULKAN_HPP_USE_REFLECT ) +# if defined( VULKAN_HPP_USE_REFLECT ) return this->reflect() == rhs.reflect(); # else return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( deviceMemoryReport == rhs.deviceMemoryReport ); # endif } -#endif bool operator!=( PhysicalDeviceDeviceMemoryReportFeaturesEXT const & rhs ) const VULKAN_HPP_NOEXCEPT { return !operator==( rhs ); } -# endif +#endif public: VULKAN_HPP_NAMESPACE::StructureType sType = StructureType::ePhysicalDeviceDeviceMemoryReportFeaturesEXT; @@ -66878,7 +66730,6 @@ namespace VULKAN_HPP_NAMESPACE { using Type = PhysicalDeviceDeviceMemoryReportFeaturesEXT; }; -#endif /*VK_ENABLE_BETA_EXTENSIONS*/ struct PhysicalDeviceDiagnosticsConfigFeaturesNV { @@ -66924,6 +66775,7 @@ namespace VULKAN_HPP_NAMESPACE diagnosticsConfig = diagnosticsConfig_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceDiagnosticsConfigFeaturesNV const &() const VULKAN_HPP_NOEXCEPT { @@ -66935,24 +66787,24 @@ namespace VULKAN_HPP_NAMESPACE return *reinterpret_cast( this ); } -# if defined( VULKAN_HPP_USE_REFLECT ) -# if 14 <= VULKAN_HPP_CPP_VERSION +#if defined( VULKAN_HPP_USE_REFLECT ) +# if 14 <= VULKAN_HPP_CPP_VERSION auto -# else - std::tuple -# endif +# else + std::tuple +# endif reflect() const VULKAN_HPP_NOEXCEPT { return std::tie( sType, pNext, diagnosticsConfig ); } -# endif +#endif #if defined( VULKAN_HPP_HAS_SPACESHIP_OPERATOR ) auto operator<=>( PhysicalDeviceDiagnosticsConfigFeaturesNV const & ) const = default; #else bool operator==( PhysicalDeviceDiagnosticsConfigFeaturesNV const & rhs ) const VULKAN_HPP_NOEXCEPT { -# if defined( VULKAN_HPP_USE_REFLECT ) +# if defined( VULKAN_HPP_USE_REFLECT ) return this->reflect() == rhs.reflect(); # else return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( diagnosticsConfig == rhs.diagnosticsConfig ); @@ -66963,7 +66815,7 @@ namespace VULKAN_HPP_NAMESPACE { return !operator==( rhs ); } -# endif +#endif public: VULKAN_HPP_NAMESPACE::StructureType sType = StructureType::ePhysicalDeviceDiagnosticsConfigFeaturesNV; @@ -66976,7 +66828,6 @@ namespace VULKAN_HPP_NAMESPACE { using Type = PhysicalDeviceDiagnosticsConfigFeaturesNV; }; -#endif /*VK_ENABLE_BETA_EXTENSIONS*/ struct PhysicalDeviceDiscardRectanglePropertiesEXT { @@ -67530,6 +67381,7 @@ namespace VULKAN_HPP_NAMESPACE { return std::tie( sType, pNext, dynamicRendering ); } +#endif #if defined( VULKAN_HPP_HAS_SPACESHIP_OPERATOR ) auto operator<=>( PhysicalDeviceDynamicRenderingFeatures const & ) const = default; @@ -67545,8 +67397,7 @@ namespace VULKAN_HPP_NAMESPACE bool operator!=( PhysicalDeviceDynamicRenderingFeatures const & rhs ) const VULKAN_HPP_NOEXCEPT { - extendedDynamicState3PolygonMode = extendedDynamicState3PolygonMode_; - return *this; + return !operator==( rhs ); } #endif @@ -67577,8 +67428,6 @@ namespace VULKAN_HPP_NAMESPACE : pNext{ pNext_ } , dynamicRenderingLocalRead{ dynamicRenderingLocalRead_ } { - extendedDynamicState3RasterizationSamples = extendedDynamicState3RasterizationSamples_; - return *this; } VULKAN_HPP_CONSTEXPR @@ -67587,8 +67436,6 @@ namespace VULKAN_HPP_NAMESPACE PhysicalDeviceDynamicRenderingLocalReadFeatures( VkPhysicalDeviceDynamicRenderingLocalReadFeatures const & rhs ) VULKAN_HPP_NOEXCEPT : PhysicalDeviceDynamicRenderingLocalReadFeatures( *reinterpret_cast( &rhs ) ) { - extendedDynamicState3SampleMask = extendedDynamicState3SampleMask_; - return *this; } PhysicalDeviceDynamicRenderingLocalReadFeatures & operator=( PhysicalDeviceDynamicRenderingLocalReadFeatures const & rhs ) VULKAN_HPP_NOEXCEPT = default; @@ -67635,6 +67482,7 @@ namespace VULKAN_HPP_NAMESPACE { return std::tie( sType, pNext, dynamicRenderingLocalRead ); } +#endif #if defined( VULKAN_HPP_HAS_SPACESHIP_OPERATOR ) auto operator<=>( PhysicalDeviceDynamicRenderingLocalReadFeatures const & ) const = default; @@ -67650,8 +67498,7 @@ namespace VULKAN_HPP_NAMESPACE bool operator!=( PhysicalDeviceDynamicRenderingLocalReadFeatures const & rhs ) const VULKAN_HPP_NOEXCEPT { - extendedDynamicState3PolygonMode = extendedDynamicState3PolygonMode_; - return *this; + return !operator==( rhs ); } #endif @@ -67682,8 +67529,6 @@ namespace VULKAN_HPP_NAMESPACE : pNext{ pNext_ } , dynamicRenderingUnusedAttachments{ dynamicRenderingUnusedAttachments_ } { - extendedDynamicState3RasterizationSamples = extendedDynamicState3RasterizationSamples_; - return *this; } VULKAN_HPP_CONSTEXPR PhysicalDeviceDynamicRenderingUnusedAttachmentsFeaturesEXT( PhysicalDeviceDynamicRenderingUnusedAttachmentsFeaturesEXT const & rhs ) @@ -67693,8 +67538,6 @@ namespace VULKAN_HPP_NAMESPACE : PhysicalDeviceDynamicRenderingUnusedAttachmentsFeaturesEXT( *reinterpret_cast( &rhs ) ) { - extendedDynamicState3SampleMask = extendedDynamicState3SampleMask_; - return *this; } PhysicalDeviceDynamicRenderingUnusedAttachmentsFeaturesEXT & @@ -67743,6 +67586,7 @@ namespace VULKAN_HPP_NAMESPACE { return std::tie( sType, pNext, dynamicRenderingUnusedAttachments ); } +#endif #if defined( VULKAN_HPP_HAS_SPACESHIP_OPERATOR ) auto operator<=>( PhysicalDeviceDynamicRenderingUnusedAttachmentsFeaturesEXT const & ) const = default; @@ -67758,8 +67602,7 @@ namespace VULKAN_HPP_NAMESPACE bool operator!=( PhysicalDeviceDynamicRenderingUnusedAttachmentsFeaturesEXT const & rhs ) const VULKAN_HPP_NOEXCEPT { - extendedDynamicState3RasterizationSamples = extendedDynamicState3RasterizationSamples_; - return *this; + return !operator==( rhs ); } #endif @@ -67788,8 +67631,6 @@ namespace VULKAN_HPP_NAMESPACE : pNext{ pNext_ } , exclusiveScissor{ exclusiveScissor_ } { - extendedDynamicState3LogicOpEnable = extendedDynamicState3LogicOpEnable_; - return *this; } VULKAN_HPP_CONSTEXPR PhysicalDeviceExclusiveScissorFeaturesNV( PhysicalDeviceExclusiveScissorFeaturesNV const & rhs ) VULKAN_HPP_NOEXCEPT = default; @@ -67797,8 +67638,6 @@ namespace VULKAN_HPP_NAMESPACE PhysicalDeviceExclusiveScissorFeaturesNV( VkPhysicalDeviceExclusiveScissorFeaturesNV const & rhs ) VULKAN_HPP_NOEXCEPT : PhysicalDeviceExclusiveScissorFeaturesNV( *reinterpret_cast( &rhs ) ) { - extendedDynamicState3ColorBlendEquation = extendedDynamicState3ColorBlendEquation_; - return *this; } PhysicalDeviceExclusiveScissorFeaturesNV & operator=( PhysicalDeviceExclusiveScissorFeaturesNV const & rhs ) VULKAN_HPP_NOEXCEPT = default; @@ -67813,7 +67652,7 @@ namespace VULKAN_HPP_NAMESPACE #if !defined( VULKAN_HPP_NO_STRUCT_SETTERS ) VULKAN_HPP_CONSTEXPR_14 PhysicalDeviceExclusiveScissorFeaturesNV & setPNext( void * pNext_ ) VULKAN_HPP_NOEXCEPT { - extendedDynamicState3ConservativeRasterizationMode = extendedDynamicState3ConservativeRasterizationMode_; + pNext = pNext_; return *this; } @@ -67822,6 +67661,7 @@ namespace VULKAN_HPP_NAMESPACE exclusiveScissor = exclusiveScissor_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceExclusiveScissorFeaturesNV const &() const VULKAN_HPP_NOEXCEPT { @@ -67843,6 +67683,7 @@ namespace VULKAN_HPP_NAMESPACE { return std::tie( sType, pNext, exclusiveScissor ); } +#endif #if defined( VULKAN_HPP_HAS_SPACESHIP_OPERATOR ) auto operator<=>( PhysicalDeviceExclusiveScissorFeaturesNV const & ) const = default; @@ -67858,9 +67699,9 @@ namespace VULKAN_HPP_NAMESPACE bool operator!=( PhysicalDeviceExclusiveScissorFeaturesNV const & rhs ) const VULKAN_HPP_NOEXCEPT { - extendedDynamicState3ViewportWScalingEnable = extendedDynamicState3ViewportWScalingEnable_; - return *this; + return !operator==( rhs ); } +#endif public: VULKAN_HPP_NAMESPACE::StructureType sType = StructureType::ePhysicalDeviceExclusiveScissorFeaturesNV; @@ -67891,8 +67732,6 @@ namespace VULKAN_HPP_NAMESPACE , extendedDynamicState2LogicOp{ extendedDynamicState2LogicOp_ } , extendedDynamicState2PatchControlPoints{ extendedDynamicState2PatchControlPoints_ } { - extendedDynamicState3CoverageModulationTableEnable = extendedDynamicState3CoverageModulationTableEnable_; - return *this; } VULKAN_HPP_CONSTEXPR @@ -67901,8 +67740,6 @@ namespace VULKAN_HPP_NAMESPACE PhysicalDeviceExtendedDynamicState2FeaturesEXT( VkPhysicalDeviceExtendedDynamicState2FeaturesEXT const & rhs ) VULKAN_HPP_NOEXCEPT : PhysicalDeviceExtendedDynamicState2FeaturesEXT( *reinterpret_cast( &rhs ) ) { - extendedDynamicState3CoverageReductionMode = extendedDynamicState3CoverageReductionMode_; - return *this; } PhysicalDeviceExtendedDynamicState2FeaturesEXT & operator=( PhysicalDeviceExtendedDynamicState2FeaturesEXT const & rhs ) VULKAN_HPP_NOEXCEPT = default; @@ -67913,7 +67750,6 @@ namespace VULKAN_HPP_NAMESPACE *this = *reinterpret_cast( &rhs ); return *this; } -#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ #if !defined( VULKAN_HPP_NO_STRUCT_SETTERS ) VULKAN_HPP_CONSTEXPR_14 PhysicalDeviceExtendedDynamicState2FeaturesEXT & setPNext( void * pNext_ ) VULKAN_HPP_NOEXCEPT @@ -68110,7 +67946,6 @@ namespace VULKAN_HPP_NAMESPACE extendedDynamicState3TessellationDomainOrigin = extendedDynamicState3TessellationDomainOrigin_; return *this; } -#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ VULKAN_HPP_CONSTEXPR_14 PhysicalDeviceExtendedDynamicState3FeaturesEXT & setExtendedDynamicState3DepthClampEnable( VULKAN_HPP_NAMESPACE::Bool32 extendedDynamicState3DepthClampEnable_ ) VULKAN_HPP_NOEXCEPT @@ -68132,7 +67967,6 @@ namespace VULKAN_HPP_NAMESPACE extendedDynamicState3RasterizationSamples = extendedDynamicState3RasterizationSamples_; return *this; } -#endif VULKAN_HPP_CONSTEXPR_14 PhysicalDeviceExtendedDynamicState3FeaturesEXT & setExtendedDynamicState3SampleMask( VULKAN_HPP_NAMESPACE::Bool32 extendedDynamicState3SampleMask_ ) VULKAN_HPP_NOEXCEPT @@ -68147,7 +67981,6 @@ namespace VULKAN_HPP_NAMESPACE extendedDynamicState3AlphaToCoverageEnable = extendedDynamicState3AlphaToCoverageEnable_; return *this; } -#endif VULKAN_HPP_CONSTEXPR_14 PhysicalDeviceExtendedDynamicState3FeaturesEXT & setExtendedDynamicState3AlphaToOneEnable( VULKAN_HPP_NAMESPACE::Bool32 extendedDynamicState3AlphaToOneEnable_ ) VULKAN_HPP_NOEXCEPT @@ -68183,7 +68016,6 @@ namespace VULKAN_HPP_NAMESPACE extendedDynamicState3ColorWriteMask = extendedDynamicState3ColorWriteMask_; return *this; } -#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ VULKAN_HPP_CONSTEXPR_14 PhysicalDeviceExtendedDynamicState3FeaturesEXT & setExtendedDynamicState3RasterizationStream( VULKAN_HPP_NAMESPACE::Bool32 extendedDynamicState3RasterizationStream_ ) VULKAN_HPP_NOEXCEPT @@ -68205,7 +68037,6 @@ namespace VULKAN_HPP_NAMESPACE extendedDynamicState3ExtraPrimitiveOverestimationSize = extendedDynamicState3ExtraPrimitiveOverestimationSize_; return *this; } -#endif VULKAN_HPP_CONSTEXPR_14 PhysicalDeviceExtendedDynamicState3FeaturesEXT & setExtendedDynamicState3DepthClipEnable( VULKAN_HPP_NAMESPACE::Bool32 extendedDynamicState3DepthClipEnable_ ) VULKAN_HPP_NOEXCEPT @@ -68220,7 +68051,6 @@ namespace VULKAN_HPP_NAMESPACE extendedDynamicState3SampleLocationsEnable = extendedDynamicState3SampleLocationsEnable_; return *this; } -#endif VULKAN_HPP_CONSTEXPR_14 PhysicalDeviceExtendedDynamicState3FeaturesEXT & setExtendedDynamicState3ColorBlendAdvanced( VULKAN_HPP_NAMESPACE::Bool32 extendedDynamicState3ColorBlendAdvanced_ ) VULKAN_HPP_NOEXCEPT @@ -68665,11 +68495,7 @@ namespace VULKAN_HPP_NAMESPACE # if 14 <= VULKAN_HPP_CPP_VERSION auto # else - std::tuple + std::tuple # endif reflect() const VULKAN_HPP_NOEXCEPT { @@ -68769,7 +68595,7 @@ namespace VULKAN_HPP_NAMESPACE # if 14 <= VULKAN_HPP_CPP_VERSION auto # else - std::tuple + std::tuple # endif reflect() const VULKAN_HPP_NOEXCEPT { @@ -68848,7 +68674,6 @@ namespace VULKAN_HPP_NAMESPACE { return *reinterpret_cast( this ); } -# endif operator VkPhysicalDeviceExtendedSparseAddressSpacePropertiesNV &() VULKAN_HPP_NOEXCEPT { @@ -68888,7 +68713,7 @@ namespace VULKAN_HPP_NAMESPACE { return !operator==( rhs ); } -# endif +#endif public: VULKAN_HPP_NAMESPACE::StructureType sType = StructureType::ePhysicalDeviceExtendedSparseAddressSpacePropertiesNV; @@ -68903,7 +68728,6 @@ namespace VULKAN_HPP_NAMESPACE { using Type = PhysicalDeviceExtendedSparseAddressSpacePropertiesNV; }; -#endif /*VK_USE_PLATFORM_ANDROID_KHR*/ struct PhysicalDeviceExternalBufferInfo { @@ -68944,6 +68768,8 @@ namespace VULKAN_HPP_NAMESPACE #if !defined( VULKAN_HPP_NO_STRUCT_SETTERS ) VULKAN_HPP_CONSTEXPR_14 PhysicalDeviceExternalBufferInfo & setPNext( const void * pNext_ ) VULKAN_HPP_NOEXCEPT { + pNext = pNext_; + return *this; } VULKAN_HPP_CONSTEXPR_14 PhysicalDeviceExternalBufferInfo & setFlags( VULKAN_HPP_NAMESPACE::BufferCreateFlags flags_ ) VULKAN_HPP_NOEXCEPT @@ -68964,6 +68790,7 @@ namespace VULKAN_HPP_NAMESPACE handleType = handleType_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceExternalBufferInfo const &() const VULKAN_HPP_NOEXCEPT { @@ -68975,8 +68802,8 @@ namespace VULKAN_HPP_NAMESPACE return *reinterpret_cast( this ); } -# if defined( VULKAN_HPP_USE_REFLECT ) -# if 14 <= VULKAN_HPP_CPP_VERSION +#if defined( VULKAN_HPP_USE_REFLECT ) +# if 14 <= VULKAN_HPP_CPP_VERSION auto # else std::tuple( PhysicalDeviceExternalBufferInfo const & ) const = default; #else bool operator==( PhysicalDeviceExternalBufferInfo const & rhs ) const VULKAN_HPP_NOEXCEPT { -# if defined( VULKAN_HPP_USE_REFLECT ) +# if defined( VULKAN_HPP_USE_REFLECT ) return this->reflect() == rhs.reflect(); # else return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( flags == rhs.flags ) && ( usage == rhs.usage ) && ( handleType == rhs.handleType ); @@ -69007,7 +68834,7 @@ namespace VULKAN_HPP_NAMESPACE { return !operator==( rhs ); } -# endif +#endif public: VULKAN_HPP_NAMESPACE::StructureType sType = StructureType::ePhysicalDeviceExternalBufferInfo; @@ -69022,7 +68849,6 @@ namespace VULKAN_HPP_NAMESPACE { using Type = PhysicalDeviceExternalBufferInfo; }; -#endif /*VK_USE_PLATFORM_ANDROID_KHR*/ using PhysicalDeviceExternalBufferInfoKHR = PhysicalDeviceExternalBufferInfo; @@ -69375,7 +69201,7 @@ namespace VULKAN_HPP_NAMESPACE handleType = handleType_; return *this; } -# endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceExternalImageFormatInfo const &() const VULKAN_HPP_NOEXCEPT { @@ -69387,8 +69213,8 @@ namespace VULKAN_HPP_NAMESPACE return *reinterpret_cast( this ); } -# if defined( VULKAN_HPP_USE_REFLECT ) -# if 14 <= VULKAN_HPP_CPP_VERSION +#if defined( VULKAN_HPP_USE_REFLECT ) +# if 14 <= VULKAN_HPP_CPP_VERSION auto # else std::tuple @@ -69397,14 +69223,14 @@ namespace VULKAN_HPP_NAMESPACE { return std::tie( sType, pNext, handleType ); } -# endif +#endif #if defined( VULKAN_HPP_HAS_SPACESHIP_OPERATOR ) auto operator<=>( PhysicalDeviceExternalImageFormatInfo const & ) const = default; #else bool operator==( PhysicalDeviceExternalImageFormatInfo const & rhs ) const VULKAN_HPP_NOEXCEPT { -# if defined( VULKAN_HPP_USE_REFLECT ) +# if defined( VULKAN_HPP_USE_REFLECT ) return this->reflect() == rhs.reflect(); # else return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( handleType == rhs.handleType ); @@ -69415,7 +69241,7 @@ namespace VULKAN_HPP_NAMESPACE { return !operator==( rhs ); } -# endif +#endif public: VULKAN_HPP_NAMESPACE::StructureType sType = StructureType::ePhysicalDeviceExternalImageFormatInfo; @@ -69428,7 +69254,6 @@ namespace VULKAN_HPP_NAMESPACE { using Type = PhysicalDeviceExternalImageFormatInfo; }; -#endif /*VK_USE_PLATFORM_SCREEN_QNX*/ using PhysicalDeviceExternalImageFormatInfoKHR = PhysicalDeviceExternalImageFormatInfo; @@ -69661,7 +69486,7 @@ namespace VULKAN_HPP_NAMESPACE screenBufferImport = screenBufferImport_; return *this; } -#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ +# endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceExternalMemoryScreenBufferFeaturesQNX const &() const VULKAN_HPP_NOEXCEPT { @@ -69673,24 +69498,24 @@ namespace VULKAN_HPP_NAMESPACE return *reinterpret_cast( this ); } -#if defined( VULKAN_HPP_USE_REFLECT ) -# if 14 <= VULKAN_HPP_CPP_VERSION +# if defined( VULKAN_HPP_USE_REFLECT ) +# if 14 <= VULKAN_HPP_CPP_VERSION auto -# else - std::tuple -# endif +# else + std::tuple +# endif reflect() const VULKAN_HPP_NOEXCEPT { return std::tie( sType, pNext, screenBufferImport ); } -#endif +# endif # if defined( VULKAN_HPP_HAS_SPACESHIP_OPERATOR ) auto operator<=>( PhysicalDeviceExternalMemoryScreenBufferFeaturesQNX const & ) const = default; # else bool operator==( PhysicalDeviceExternalMemoryScreenBufferFeaturesQNX const & rhs ) const VULKAN_HPP_NOEXCEPT { -# if defined( VULKAN_HPP_USE_REFLECT ) +# if defined( VULKAN_HPP_USE_REFLECT ) return this->reflect() == rhs.reflect(); # else return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( screenBufferImport == rhs.screenBufferImport ); @@ -69701,7 +69526,7 @@ namespace VULKAN_HPP_NAMESPACE { return !operator==( rhs ); } -#endif +# endif public: VULKAN_HPP_NAMESPACE::StructureType sType = StructureType::ePhysicalDeviceExternalMemoryScreenBufferFeaturesQNX; @@ -70464,6 +70289,7 @@ namespace VULKAN_HPP_NAMESPACE fragmentDensityMapNonSubsampledImages = fragmentDensityMapNonSubsampledImages_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceFragmentDensityMapFeaturesEXT const &() const VULKAN_HPP_NOEXCEPT { @@ -70504,7 +70330,6 @@ namespace VULKAN_HPP_NAMESPACE ( fragmentDensityMapNonSubsampledImages == rhs.fragmentDensityMapNonSubsampledImages ); # endif } -#endif bool operator!=( PhysicalDeviceFragmentDensityMapFeaturesEXT const & rhs ) const VULKAN_HPP_NOEXCEPT { @@ -70540,7 +70365,6 @@ namespace VULKAN_HPP_NAMESPACE , fragmentDensityMapOffset{ fragmentDensityMapOffset_ } { } -#endif VULKAN_HPP_CONSTEXPR PhysicalDeviceFragmentDensityMapOffsetFeaturesQCOM( PhysicalDeviceFragmentDensityMapOffsetFeaturesQCOM const & rhs ) VULKAN_HPP_NOEXCEPT = default; @@ -70559,7 +70383,6 @@ namespace VULKAN_HPP_NAMESPACE *this = *reinterpret_cast( &rhs ); return *this; } -#endif #if !defined( VULKAN_HPP_NO_STRUCT_SETTERS ) VULKAN_HPP_CONSTEXPR_14 PhysicalDeviceFragmentDensityMapOffsetFeaturesQCOM & setPNext( void * pNext_ ) VULKAN_HPP_NOEXCEPT @@ -70580,7 +70403,6 @@ namespace VULKAN_HPP_NAMESPACE { return *reinterpret_cast( this ); } -#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceFragmentDensityMapOffsetFeaturesQCOM &() VULKAN_HPP_NOEXCEPT { @@ -70610,7 +70432,6 @@ namespace VULKAN_HPP_NAMESPACE return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( fragmentDensityMapOffset == rhs.fragmentDensityMapOffset ); # endif } -#endif bool operator!=( PhysicalDeviceFragmentDensityMapOffsetFeaturesQCOM const & rhs ) const VULKAN_HPP_NOEXCEPT { @@ -71296,6 +71117,7 @@ namespace VULKAN_HPP_NAMESPACE maxFragmentShadingRateInvocationCount = maxFragmentShadingRateInvocationCount_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceFragmentShadingRateEnumsPropertiesNV const &() const VULKAN_HPP_NOEXCEPT { @@ -72096,6 +71918,7 @@ namespace VULKAN_HPP_NAMESPACE graphicsPipelineLibraryIndependentInterpolationDecoration = graphicsPipelineLibraryIndependentInterpolationDecoration_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceGraphicsPipelineLibraryPropertiesEXT const &() const VULKAN_HPP_NOEXCEPT { @@ -72131,12 +71954,12 @@ namespace VULKAN_HPP_NAMESPACE ( graphicsPipelineLibraryIndependentInterpolationDecoration == rhs.graphicsPipelineLibraryIndependentInterpolationDecoration ); # endif } -#endif bool operator!=( PhysicalDeviceGraphicsPipelineLibraryPropertiesEXT const & rhs ) const VULKAN_HPP_NOEXCEPT { return !operator==( rhs ); } +#endif public: VULKAN_HPP_NAMESPACE::StructureType sType = StructureType::ePhysicalDeviceGraphicsPipelineLibraryPropertiesEXT; @@ -72411,7 +72234,6 @@ namespace VULKAN_HPP_NAMESPACE { return *reinterpret_cast( this ); } -# endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #if defined( VULKAN_HPP_USE_REFLECT ) # if 14 <= VULKAN_HPP_CPP_VERSION @@ -72480,8 +72302,6 @@ namespace VULKAN_HPP_NAMESPACE , optimalTilingLayoutUUID{ optimalTilingLayoutUUID_ } , identicalMemoryTypeRequirements{ identicalMemoryTypeRequirements_ } { - copyDstLayoutCount = copyDstLayoutCount_; - return *this; } VULKAN_HPP_CONSTEXPR_14 PhysicalDeviceHostImageCopyProperties( PhysicalDeviceHostImageCopyProperties const & rhs ) VULKAN_HPP_NOEXCEPT = default; @@ -72489,8 +72309,6 @@ namespace VULKAN_HPP_NAMESPACE PhysicalDeviceHostImageCopyProperties( VkPhysicalDeviceHostImageCopyProperties const & rhs ) VULKAN_HPP_NOEXCEPT : PhysicalDeviceHostImageCopyProperties( *reinterpret_cast( &rhs ) ) { - pCopyDstLayouts = pCopyDstLayouts_; - return *this; } # if !defined( VULKAN_HPP_DISABLE_ENHANCED_MODE ) @@ -72518,12 +72336,11 @@ namespace VULKAN_HPP_NAMESPACE *this = *reinterpret_cast( &rhs ); return *this; } -# endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #if !defined( VULKAN_HPP_NO_STRUCT_SETTERS ) VULKAN_HPP_CONSTEXPR_14 PhysicalDeviceHostImageCopyProperties & setPNext( void * pNext_ ) VULKAN_HPP_NOEXCEPT { - optimalTilingLayoutUUID = optimalTilingLayoutUUID_; + pNext = pNext_; return *this; } @@ -73417,7 +73234,6 @@ namespace VULKAN_HPP_NAMESPACE *this = *reinterpret_cast( &rhs ); return *this; } -# endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ #if !defined( VULKAN_HPP_NO_STRUCT_SETTERS ) VULKAN_HPP_CONSTEXPR_14 PhysicalDeviceImageDrmFormatModifierInfoEXT & setPNext( const void * pNext_ ) VULKAN_HPP_NOEXCEPT @@ -73486,6 +73302,7 @@ namespace VULKAN_HPP_NAMESPACE { return std::tie( sType, pNext, drmFormatModifier, sharingMode, queueFamilyIndexCount, pQueueFamilyIndices ); } +#endif #if defined( VULKAN_HPP_HAS_SPACESHIP_OPERATOR ) auto operator<=>( PhysicalDeviceImageDrmFormatModifierInfoEXT const & ) const = default; @@ -73502,8 +73319,7 @@ namespace VULKAN_HPP_NAMESPACE bool operator!=( PhysicalDeviceImageDrmFormatModifierInfoEXT const & rhs ) const VULKAN_HPP_NOEXCEPT { - sharingMode = sharingMode_; - return *this; + return !operator==( rhs ); } #endif @@ -73543,8 +73359,6 @@ namespace VULKAN_HPP_NAMESPACE , usage{ usage_ } , flags{ flags_ } { - queueFamilyIndexCount = queueFamilyIndexCount_; - return *this; } VULKAN_HPP_CONSTEXPR PhysicalDeviceImageFormatInfo2( PhysicalDeviceImageFormatInfo2 const & rhs ) VULKAN_HPP_NOEXCEPT = default; @@ -73552,8 +73366,6 @@ namespace VULKAN_HPP_NAMESPACE PhysicalDeviceImageFormatInfo2( VkPhysicalDeviceImageFormatInfo2 const & rhs ) VULKAN_HPP_NOEXCEPT : PhysicalDeviceImageFormatInfo2( *reinterpret_cast( &rhs ) ) { - pQueueFamilyIndices = pQueueFamilyIndices_; - return *this; } PhysicalDeviceImageFormatInfo2 & operator=( PhysicalDeviceImageFormatInfo2 const & rhs ) VULKAN_HPP_NOEXCEPT = default; @@ -73564,8 +73376,6 @@ namespace VULKAN_HPP_NAMESPACE *this = *reinterpret_cast( &rhs ); return *this; } -# endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ -#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ #if !defined( VULKAN_HPP_NO_STRUCT_SETTERS ) VULKAN_HPP_CONSTEXPR_14 PhysicalDeviceImageFormatInfo2 & setPNext( const void * pNext_ ) VULKAN_HPP_NOEXCEPT @@ -73730,13 +73540,7 @@ namespace VULKAN_HPP_NAMESPACE # if 14 <= VULKAN_HPP_CPP_VERSION auto # else - std::tuple + std::tuple # endif reflect() const VULKAN_HPP_NOEXCEPT { @@ -73919,6 +73723,7 @@ namespace VULKAN_HPP_NAMESPACE textureBlockMatch = textureBlockMatch_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceImageProcessingFeaturesQCOM const &() const VULKAN_HPP_NOEXCEPT { @@ -73934,7 +73739,11 @@ namespace VULKAN_HPP_NAMESPACE # if 14 <= VULKAN_HPP_CPP_VERSION auto # else - std::tuple + std::tuple # endif reflect() const VULKAN_HPP_NOEXCEPT { @@ -74117,6 +73926,7 @@ namespace VULKAN_HPP_NAMESPACE robustImageAccess = robustImageAccess_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceImageRobustnessFeatures const &() const VULKAN_HPP_NOEXCEPT { @@ -74832,7 +74642,7 @@ namespace VULKAN_HPP_NAMESPACE # if 14 <= VULKAN_HPP_CPP_VERSION auto # else - std::tuple + std::tuple # endif reflect() const VULKAN_HPP_NOEXCEPT { @@ -75551,8 +75361,6 @@ namespace VULKAN_HPP_NAMESPACE { return *reinterpret_cast( this ); } -# endif /*VULKAN_HPP_DISABLE_ENHANCED_MODE*/ -#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceLimits &() VULKAN_HPP_NOEXCEPT { @@ -77020,6 +76828,7 @@ namespace VULKAN_HPP_NAMESPACE linearColorAttachment = linearColorAttachment_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceLinearColorAttachmentFeaturesNV const &() const VULKAN_HPP_NOEXCEPT { @@ -77035,11 +76844,7 @@ namespace VULKAN_HPP_NAMESPACE # if 14 <= VULKAN_HPP_CPP_VERSION auto # else - std::tuple + std::tuple # endif reflect() const VULKAN_HPP_NOEXCEPT { @@ -77144,12 +76949,12 @@ namespace VULKAN_HPP_NAMESPACE ( maxMemoryAllocationSize == rhs.maxMemoryAllocationSize ); # endif } -#endif bool operator!=( PhysicalDeviceMaintenance3Properties const & rhs ) const VULKAN_HPP_NOEXCEPT { return !operator==( rhs ); } +#endif public: VULKAN_HPP_NAMESPACE::StructureType sType = StructureType::ePhysicalDeviceMaintenance3Properties; @@ -77208,6 +77013,7 @@ namespace VULKAN_HPP_NAMESPACE maintenance4 = maintenance4_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceMaintenance4Features const &() const VULKAN_HPP_NOEXCEPT { @@ -77223,7 +77029,7 @@ namespace VULKAN_HPP_NAMESPACE # if 14 <= VULKAN_HPP_CPP_VERSION auto # else - std::tuple + std::tuple # endif reflect() const VULKAN_HPP_NOEXCEPT { @@ -77390,6 +77196,7 @@ namespace VULKAN_HPP_NAMESPACE maintenance5 = maintenance5_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceMaintenance5Features const &() const VULKAN_HPP_NOEXCEPT { @@ -77405,7 +77212,7 @@ namespace VULKAN_HPP_NAMESPACE # if 14 <= VULKAN_HPP_CPP_VERSION auto # else - std::tuple + std::tuple # endif reflect() const VULKAN_HPP_NOEXCEPT { @@ -77817,14 +77624,7 @@ namespace VULKAN_HPP_NAMESPACE # if 14 <= VULKAN_HPP_CPP_VERSION auto # else - std::tuple + std::tuple # endif reflect() const VULKAN_HPP_NOEXCEPT { @@ -78134,7 +77934,6 @@ namespace VULKAN_HPP_NAMESPACE PhysicalDeviceMapMemoryPlacedPropertiesEXT( VkPhysicalDeviceMapMemoryPlacedPropertiesEXT const & rhs ) VULKAN_HPP_NOEXCEPT : PhysicalDeviceMapMemoryPlacedPropertiesEXT( *reinterpret_cast( &rhs ) ) { - return *reinterpret_cast( this ); } PhysicalDeviceMapMemoryPlacedPropertiesEXT & operator=( PhysicalDeviceMapMemoryPlacedPropertiesEXT const & rhs ) VULKAN_HPP_NOEXCEPT = default; @@ -78949,6 +78748,7 @@ namespace VULKAN_HPP_NAMESPACE meshShader = meshShader_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceMeshShaderFeaturesNV const &() const VULKAN_HPP_NOEXCEPT { @@ -79637,13 +79437,7 @@ namespace VULKAN_HPP_NAMESPACE # if 14 <= VULKAN_HPP_CPP_VERSION auto # else - std::tuple + std::tuple # endif reflect() const VULKAN_HPP_NOEXCEPT { @@ -79715,7 +79509,6 @@ namespace VULKAN_HPP_NAMESPACE *this = *reinterpret_cast( &rhs ); return *this; } -#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ #if !defined( VULKAN_HPP_NO_STRUCT_SETTERS ) VULKAN_HPP_CONSTEXPR_14 PhysicalDeviceMultiviewFeatures & setPNext( void * pNext_ ) VULKAN_HPP_NOEXCEPT @@ -79853,36 +79646,7 @@ namespace VULKAN_HPP_NAMESPACE # if 14 <= VULKAN_HPP_CPP_VERSION auto # else - std::tuple const &, - uint32_t const &, - VULKAN_HPP_NAMESPACE::ArrayWrapper1D const &, - uint32_t const &, - uint32_t const &, - uint32_t const &, - uint32_t const &, - VULKAN_HPP_NAMESPACE::ArrayWrapper1D const &, - uint32_t const &, - VULKAN_HPP_NAMESPACE::ArrayWrapper1D const &, - uint32_t const &, - uint32_t const &, - uint32_t const &, - uint32_t const &, - uint32_t const &, - uint32_t const &, - uint32_t const &, - uint32_t const &, - uint32_t const &, - uint32_t const &, - uint32_t const &, - uint32_t const &, - uint32_t const &, - VULKAN_HPP_NAMESPACE::Bool32 const &, - VULKAN_HPP_NAMESPACE::Bool32 const &, - VULKAN_HPP_NAMESPACE::Bool32 const &, - VULKAN_HPP_NAMESPACE::Bool32 const &> + std::tuple # endif reflect() const VULKAN_HPP_NOEXCEPT { @@ -80066,6 +79830,7 @@ namespace VULKAN_HPP_NAMESPACE multiviewPerViewViewports = multiviewPerViewViewports_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceMultiviewPerViewViewportsFeaturesQCOM const &() const VULKAN_HPP_NOEXCEPT { @@ -80081,7 +79846,7 @@ namespace VULKAN_HPP_NAMESPACE # if 14 <= VULKAN_HPP_CPP_VERSION auto # else - std::tuple + std::tuple # endif reflect() const VULKAN_HPP_NOEXCEPT { @@ -80343,7 +80108,6 @@ namespace VULKAN_HPP_NAMESPACE *this = *reinterpret_cast( &rhs ); return *this; } -#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ #if !defined( VULKAN_HPP_NO_STRUCT_SETTERS ) VULKAN_HPP_CONSTEXPR_14 PhysicalDeviceNestedCommandBufferFeaturesEXT & setPNext( void * pNext_ ) VULKAN_HPP_NOEXCEPT @@ -80416,8 +80180,7 @@ namespace VULKAN_HPP_NAMESPACE bool operator!=( PhysicalDeviceNestedCommandBufferFeaturesEXT const & rhs ) const VULKAN_HPP_NOEXCEPT { - pNext = pNext_; - return *this; + return !operator==( rhs ); } #endif @@ -80448,8 +80211,6 @@ namespace VULKAN_HPP_NAMESPACE : pNext{ pNext_ } , maxCommandBufferNestingLevel{ maxCommandBufferNestingLevel_ } { - multiview = multiview_; - return *this; } VULKAN_HPP_CONSTEXPR @@ -80458,8 +80219,6 @@ namespace VULKAN_HPP_NAMESPACE PhysicalDeviceNestedCommandBufferPropertiesEXT( VkPhysicalDeviceNestedCommandBufferPropertiesEXT const & rhs ) VULKAN_HPP_NOEXCEPT : PhysicalDeviceNestedCommandBufferPropertiesEXT( *reinterpret_cast( &rhs ) ) { - multiviewGeometryShader = multiviewGeometryShader_; - return *this; } PhysicalDeviceNestedCommandBufferPropertiesEXT & operator=( PhysicalDeviceNestedCommandBufferPropertiesEXT const & rhs ) VULKAN_HPP_NOEXCEPT = default; @@ -80470,7 +80229,6 @@ namespace VULKAN_HPP_NAMESPACE *this = *reinterpret_cast( &rhs ); return *this; } -#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ #if !defined( VULKAN_HPP_NO_STRUCT_SETTERS ) VULKAN_HPP_CONSTEXPR_14 PhysicalDeviceNestedCommandBufferPropertiesEXT & setPNext( void * pNext_ ) VULKAN_HPP_NOEXCEPT @@ -80583,6 +80341,7 @@ namespace VULKAN_HPP_NAMESPACE nonSeamlessCubeMap = nonSeamlessCubeMap_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceNonSeamlessCubeMapFeaturesEXT const &() const VULKAN_HPP_NOEXCEPT { @@ -80660,8 +80419,6 @@ namespace VULKAN_HPP_NAMESPACE PhysicalDeviceOpacityMicromapFeaturesEXT( VkPhysicalDeviceOpacityMicromapFeaturesEXT const & rhs ) VULKAN_HPP_NOEXCEPT : PhysicalDeviceOpacityMicromapFeaturesEXT( *reinterpret_cast( &rhs ) ) { - *this = *reinterpret_cast( &rhs ); - return *this; } PhysicalDeviceOpacityMicromapFeaturesEXT & operator=( PhysicalDeviceOpacityMicromapFeaturesEXT const & rhs ) VULKAN_HPP_NOEXCEPT = default; @@ -80672,7 +80429,6 @@ namespace VULKAN_HPP_NAMESPACE *this = *reinterpret_cast( &rhs ); return *this; } -#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ #if !defined( VULKAN_HPP_NO_STRUCT_SETTERS ) VULKAN_HPP_CONSTEXPR_14 PhysicalDeviceOpacityMicromapFeaturesEXT & setPNext( void * pNext_ ) VULKAN_HPP_NOEXCEPT @@ -81243,6 +80999,7 @@ namespace VULKAN_HPP_NAMESPACE { return std::tie( sType, pNext, pageableDeviceLocalMemory ); } +#endif #if defined( VULKAN_HPP_HAS_SPACESHIP_OPERATOR ) auto operator<=>( PhysicalDevicePageableDeviceLocalMemoryFeaturesEXT const & ) const = default; @@ -81307,7 +81064,6 @@ namespace VULKAN_HPP_NAMESPACE *this = *reinterpret_cast( &rhs ); return *this; } -#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ #if !defined( VULKAN_HPP_NO_STRUCT_SETTERS ) VULKAN_HPP_CONSTEXPR_14 PhysicalDevicePerStageDescriptorSetFeaturesNV & setPNext( void * pNext_ ) VULKAN_HPP_NOEXCEPT @@ -81345,7 +81101,7 @@ namespace VULKAN_HPP_NAMESPACE # if 14 <= VULKAN_HPP_CPP_VERSION auto # else - std::tuple + std::tuple # endif reflect() const VULKAN_HPP_NOEXCEPT { @@ -81620,6 +81376,7 @@ namespace VULKAN_HPP_NAMESPACE pipelineBinaries = pipelineBinaries_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDevicePipelineBinaryFeaturesKHR const &() const VULKAN_HPP_NOEXCEPT { @@ -81635,7 +81392,7 @@ namespace VULKAN_HPP_NAMESPACE # if 14 <= VULKAN_HPP_CPP_VERSION auto # else - std::tuple + std::tuple # endif reflect() const VULKAN_HPP_NOEXCEPT { @@ -81873,6 +81630,7 @@ namespace VULKAN_HPP_NAMESPACE pipelineCreationCacheControl = pipelineCreationCacheControl_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDevicePipelineCreationCacheControlFeatures const &() const VULKAN_HPP_NOEXCEPT { @@ -81888,19 +81646,7 @@ namespace VULKAN_HPP_NAMESPACE # if 14 <= VULKAN_HPP_CPP_VERSION auto # else - std::tuple + std::tuple # endif reflect() const VULKAN_HPP_NOEXCEPT { @@ -81986,6 +81732,7 @@ namespace VULKAN_HPP_NAMESPACE pipelineExecutableInfo = pipelineExecutableInfo_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR const &() const VULKAN_HPP_NOEXCEPT { @@ -82183,6 +81930,7 @@ namespace VULKAN_HPP_NAMESPACE pipelinePropertiesIdentifier = pipelinePropertiesIdentifier_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDevicePipelinePropertiesFeaturesEXT const &() const VULKAN_HPP_NOEXCEPT { @@ -82198,7 +81946,7 @@ namespace VULKAN_HPP_NAMESPACE # if 14 <= VULKAN_HPP_CPP_VERSION auto # else - std::tuple + std::tuple # endif reflect() const VULKAN_HPP_NOEXCEPT { @@ -82297,7 +82045,7 @@ namespace VULKAN_HPP_NAMESPACE # if 14 <= VULKAN_HPP_CPP_VERSION auto # else - std::tuple + std::tuple # endif reflect() const VULKAN_HPP_NOEXCEPT { @@ -83452,6 +83200,7 @@ namespace VULKAN_HPP_NAMESPACE primitiveTopologyPatchListRestart = primitiveTopologyPatchListRestart_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDevicePrimitiveTopologyListRestartFeaturesEXT const &() const VULKAN_HPP_NOEXCEPT { @@ -83571,6 +83320,7 @@ namespace VULKAN_HPP_NAMESPACE primitivesGeneratedQueryWithNonZeroStreams = primitivesGeneratedQueryWithNonZeroStreams_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDevicePrimitivesGeneratedQueryFeaturesEXT const &() const VULKAN_HPP_NOEXCEPT { @@ -83596,6 +83346,7 @@ namespace VULKAN_HPP_NAMESPACE { return std::tie( sType, pNext, primitivesGeneratedQuery, primitivesGeneratedQueryWithRasterizerDiscard, primitivesGeneratedQueryWithNonZeroStreams ); } +#endif #if defined( VULKAN_HPP_HAS_SPACESHIP_OPERATOR ) auto operator<=>( PhysicalDevicePrimitivesGeneratedQueryFeaturesEXT const & ) const = default; @@ -83613,8 +83364,7 @@ namespace VULKAN_HPP_NAMESPACE bool operator!=( PhysicalDevicePrimitivesGeneratedQueryFeaturesEXT const & rhs ) const VULKAN_HPP_NOEXCEPT { - mutableComparisonSamplers = mutableComparisonSamplers_; - return *this; + return !operator==( rhs ); } #endif @@ -83644,8 +83394,6 @@ namespace VULKAN_HPP_NAMESPACE : pNext{ pNext_ } , privateData{ privateData_ } { - pointPolygons = pointPolygons_; - return *this; } VULKAN_HPP_CONSTEXPR PhysicalDevicePrivateDataFeatures( PhysicalDevicePrivateDataFeatures const & rhs ) VULKAN_HPP_NOEXCEPT = default; @@ -83653,8 +83401,6 @@ namespace VULKAN_HPP_NAMESPACE PhysicalDevicePrivateDataFeatures( VkPhysicalDevicePrivateDataFeatures const & rhs ) VULKAN_HPP_NOEXCEPT : PhysicalDevicePrivateDataFeatures( *reinterpret_cast( &rhs ) ) { - separateStencilMaskRef = separateStencilMaskRef_; - return *this; } PhysicalDevicePrivateDataFeatures & operator=( PhysicalDevicePrivateDataFeatures const & rhs ) VULKAN_HPP_NOEXCEPT = default; @@ -83669,7 +83415,7 @@ namespace VULKAN_HPP_NAMESPACE #if !defined( VULKAN_HPP_NO_STRUCT_SETTERS ) VULKAN_HPP_CONSTEXPR_14 PhysicalDevicePrivateDataFeatures & setPNext( void * pNext_ ) VULKAN_HPP_NOEXCEPT { - tessellationPointMode = tessellationPointMode_; + pNext = pNext_; return *this; } @@ -83678,7 +83424,7 @@ namespace VULKAN_HPP_NAMESPACE privateData = privateData_; return *this; } -# endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDevicePrivateDataFeatures const &() const VULKAN_HPP_NOEXCEPT { @@ -83690,8 +83436,8 @@ namespace VULKAN_HPP_NAMESPACE return *reinterpret_cast( this ); } -# if defined( VULKAN_HPP_USE_REFLECT ) -# if 14 <= VULKAN_HPP_CPP_VERSION +#if defined( VULKAN_HPP_USE_REFLECT ) +# if 14 <= VULKAN_HPP_CPP_VERSION auto # else std::tuple @@ -83700,14 +83446,14 @@ namespace VULKAN_HPP_NAMESPACE { return std::tie( sType, pNext, privateData ); } -# endif +#endif #if defined( VULKAN_HPP_HAS_SPACESHIP_OPERATOR ) auto operator<=>( PhysicalDevicePrivateDataFeatures const & ) const = default; #else bool operator==( PhysicalDevicePrivateDataFeatures const & rhs ) const VULKAN_HPP_NOEXCEPT { -# if defined( VULKAN_HPP_USE_REFLECT ) +# if defined( VULKAN_HPP_USE_REFLECT ) return this->reflect() == rhs.reflect(); # else return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( privateData == rhs.privateData ); @@ -83718,7 +83464,7 @@ namespace VULKAN_HPP_NAMESPACE { return !operator==( rhs ); } -# endif +#endif public: VULKAN_HPP_NAMESPACE::StructureType sType = StructureType::ePhysicalDevicePrivateDataFeatures; @@ -83731,7 +83477,6 @@ namespace VULKAN_HPP_NAMESPACE { using Type = PhysicalDevicePrivateDataFeatures; }; -#endif /*VK_ENABLE_BETA_EXTENSIONS*/ using PhysicalDevicePrivateDataFeaturesEXT = PhysicalDevicePrivateDataFeatures; @@ -83789,36 +83534,25 @@ namespace VULKAN_HPP_NAMESPACE { return *reinterpret_cast( this ); } -# endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ - operator VkPhysicalDevicePortabilitySubsetPropertiesKHR const &() const VULKAN_HPP_NOEXCEPT - { - return *reinterpret_cast( this ); - } - - operator VkPhysicalDevicePortabilitySubsetPropertiesKHR &() VULKAN_HPP_NOEXCEPT - { - return *reinterpret_cast( this ); - } - -# if defined( VULKAN_HPP_USE_REFLECT ) -# if 14 <= VULKAN_HPP_CPP_VERSION +#if defined( VULKAN_HPP_USE_REFLECT ) +# if 14 <= VULKAN_HPP_CPP_VERSION auto -# else - std::tuple -# endif +# else + std::tuple +# endif reflect() const VULKAN_HPP_NOEXCEPT { return std::tie( sType, pNext, protectedMemory ); } -# endif +#endif #if defined( VULKAN_HPP_HAS_SPACESHIP_OPERATOR ) auto operator<=>( PhysicalDeviceProtectedMemoryFeatures const & ) const = default; #else bool operator==( PhysicalDeviceProtectedMemoryFeatures const & rhs ) const VULKAN_HPP_NOEXCEPT { -# if defined( VULKAN_HPP_USE_REFLECT ) +# if defined( VULKAN_HPP_USE_REFLECT ) return this->reflect() == rhs.reflect(); # else return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( protectedMemory == rhs.protectedMemory ); @@ -83827,10 +83561,9 @@ namespace VULKAN_HPP_NAMESPACE bool operator!=( PhysicalDeviceProtectedMemoryFeatures const & rhs ) const VULKAN_HPP_NOEXCEPT { - pointPolygons = pointPolygons_; - return *this; + return !operator==( rhs ); } -# endif +#endif public: VULKAN_HPP_NAMESPACE::StructureType sType = StructureType::ePhysicalDeviceProtectedMemoryFeatures; @@ -83843,7 +83576,6 @@ namespace VULKAN_HPP_NAMESPACE { using Type = PhysicalDeviceProtectedMemoryFeatures; }; -#endif /*VK_ENABLE_BETA_EXTENSIONS*/ struct PhysicalDeviceProtectedMemoryProperties { @@ -83858,8 +83590,6 @@ namespace VULKAN_HPP_NAMESPACE : pNext{ pNext_ } , protectedNoFault{ protectedNoFault_ } { - shaderSampleRateInterpolationFunctions = shaderSampleRateInterpolationFunctions_; - return *this; } VULKAN_HPP_CONSTEXPR PhysicalDeviceProtectedMemoryProperties( PhysicalDeviceProtectedMemoryProperties const & rhs ) VULKAN_HPP_NOEXCEPT = default; @@ -83867,8 +83597,6 @@ namespace VULKAN_HPP_NAMESPACE PhysicalDeviceProtectedMemoryProperties( VkPhysicalDeviceProtectedMemoryProperties const & rhs ) VULKAN_HPP_NOEXCEPT : PhysicalDeviceProtectedMemoryProperties( *reinterpret_cast( &rhs ) ) { - tessellationPointMode = tessellationPointMode_; - return *this; } PhysicalDeviceProtectedMemoryProperties & operator=( PhysicalDeviceProtectedMemoryProperties const & rhs ) VULKAN_HPP_NOEXCEPT = default; @@ -83890,8 +83618,8 @@ namespace VULKAN_HPP_NAMESPACE return *reinterpret_cast( this ); } -# if defined( VULKAN_HPP_USE_REFLECT ) -# if 14 <= VULKAN_HPP_CPP_VERSION +#if defined( VULKAN_HPP_USE_REFLECT ) +# if 14 <= VULKAN_HPP_CPP_VERSION auto # else std::tuple @@ -83900,14 +83628,14 @@ namespace VULKAN_HPP_NAMESPACE { return std::tie( sType, pNext, protectedNoFault ); } -# endif +#endif #if defined( VULKAN_HPP_HAS_SPACESHIP_OPERATOR ) auto operator<=>( PhysicalDeviceProtectedMemoryProperties const & ) const = default; #else bool operator==( PhysicalDeviceProtectedMemoryProperties const & rhs ) const VULKAN_HPP_NOEXCEPT { -# if defined( VULKAN_HPP_USE_REFLECT ) +# if defined( VULKAN_HPP_USE_REFLECT ) return this->reflect() == rhs.reflect(); # else return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( protectedNoFault == rhs.protectedNoFault ); @@ -83916,10 +83644,9 @@ namespace VULKAN_HPP_NAMESPACE bool operator!=( PhysicalDeviceProtectedMemoryProperties const & rhs ) const VULKAN_HPP_NOEXCEPT { - multisampleArrayImage = multisampleArrayImage_; - return *this; + return !operator==( rhs ); } -# endif +#endif public: VULKAN_HPP_NAMESPACE::StructureType sType = StructureType::ePhysicalDeviceProtectedMemoryProperties; @@ -83932,7 +83659,6 @@ namespace VULKAN_HPP_NAMESPACE { using Type = PhysicalDeviceProtectedMemoryProperties; }; -#endif /*VK_ENABLE_BETA_EXTENSIONS*/ struct PhysicalDeviceProvokingVertexFeaturesEXT { @@ -83998,10 +83724,9 @@ namespace VULKAN_HPP_NAMESPACE { return *reinterpret_cast( this ); } -# endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ -# if defined( VULKAN_HPP_USE_REFLECT ) -# if 14 <= VULKAN_HPP_CPP_VERSION +#if defined( VULKAN_HPP_USE_REFLECT ) +# if 14 <= VULKAN_HPP_CPP_VERSION auto # else std::tuple @@ -84010,14 +83735,14 @@ namespace VULKAN_HPP_NAMESPACE { return std::tie( sType, pNext, provokingVertexLast, transformFeedbackPreservesProvokingVertex ); } -# endif +#endif #if defined( VULKAN_HPP_HAS_SPACESHIP_OPERATOR ) auto operator<=>( PhysicalDeviceProvokingVertexFeaturesEXT const & ) const = default; #else bool operator==( PhysicalDeviceProvokingVertexFeaturesEXT const & rhs ) const VULKAN_HPP_NOEXCEPT { -# if defined( VULKAN_HPP_USE_REFLECT ) +# if defined( VULKAN_HPP_USE_REFLECT ) return this->reflect() == rhs.reflect(); # else return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( provokingVertexLast == rhs.provokingVertexLast ) && @@ -84029,7 +83754,7 @@ namespace VULKAN_HPP_NAMESPACE { return !operator==( rhs ); } -# endif +#endif public: VULKAN_HPP_NAMESPACE::StructureType sType = StructureType::ePhysicalDeviceProvokingVertexFeaturesEXT; @@ -84043,7 +83768,6 @@ namespace VULKAN_HPP_NAMESPACE { using Type = PhysicalDeviceProvokingVertexFeaturesEXT; }; -#endif /*VK_ENABLE_BETA_EXTENSIONS*/ struct PhysicalDeviceProvokingVertexPropertiesEXT { @@ -84087,31 +83811,9 @@ namespace VULKAN_HPP_NAMESPACE { return *reinterpret_cast( this ); } -#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ - operator VkPhysicalDevicePresentBarrierFeaturesNV const &() const VULKAN_HPP_NOEXCEPT - { - return *reinterpret_cast( this ); - } - - operator VkPhysicalDevicePresentBarrierFeaturesNV &() VULKAN_HPP_NOEXCEPT - { - return *reinterpret_cast( this ); - } -# endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ - - operator VkPhysicalDevicePortabilitySubsetPropertiesKHR const &() const VULKAN_HPP_NOEXCEPT - { - return *reinterpret_cast( this ); - } - - operator VkPhysicalDevicePortabilitySubsetPropertiesKHR &() VULKAN_HPP_NOEXCEPT - { - return *reinterpret_cast( this ); - } - -# if defined( VULKAN_HPP_USE_REFLECT ) -# if 14 <= VULKAN_HPP_CPP_VERSION +#if defined( VULKAN_HPP_USE_REFLECT ) +# if 14 <= VULKAN_HPP_CPP_VERSION auto # else std::tuple @@ -84120,14 +83822,14 @@ namespace VULKAN_HPP_NAMESPACE { return std::tie( sType, pNext, provokingVertexModePerPipeline, transformFeedbackPreservesTriangleFanProvokingVertex ); } -# endif +#endif #if defined( VULKAN_HPP_HAS_SPACESHIP_OPERATOR ) auto operator<=>( PhysicalDeviceProvokingVertexPropertiesEXT const & ) const = default; #else bool operator==( PhysicalDeviceProvokingVertexPropertiesEXT const & rhs ) const VULKAN_HPP_NOEXCEPT { -# if defined( VULKAN_HPP_USE_REFLECT ) +# if defined( VULKAN_HPP_USE_REFLECT ) return this->reflect() == rhs.reflect(); # else return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( provokingVertexModePerPipeline == rhs.provokingVertexModePerPipeline ) && @@ -84139,7 +83841,7 @@ namespace VULKAN_HPP_NAMESPACE { return !operator==( rhs ); } -# endif +#endif public: VULKAN_HPP_NAMESPACE::StructureType sType = StructureType::ePhysicalDeviceProvokingVertexPropertiesEXT; @@ -84153,7 +83855,6 @@ namespace VULKAN_HPP_NAMESPACE { using Type = PhysicalDeviceProvokingVertexPropertiesEXT; }; -#endif /*VK_ENABLE_BETA_EXTENSIONS*/ struct PhysicalDevicePushDescriptorProperties { @@ -84273,7 +83974,7 @@ namespace VULKAN_HPP_NAMESPACE #if !defined( VULKAN_HPP_NO_STRUCT_SETTERS ) VULKAN_HPP_CONSTEXPR_14 PhysicalDeviceRGBA10X6FormatsFeaturesEXT & setPNext( void * pNext_ ) VULKAN_HPP_NOEXCEPT { - primitiveTopologyListRestart = primitiveTopologyListRestart_; + pNext = pNext_; return *this; } @@ -84299,7 +84000,7 @@ namespace VULKAN_HPP_NAMESPACE # if 14 <= VULKAN_HPP_CPP_VERSION auto # else - std::tuple + std::tuple # endif reflect() const VULKAN_HPP_NOEXCEPT { @@ -84625,11 +84326,7 @@ namespace VULKAN_HPP_NAMESPACE # if 14 <= VULKAN_HPP_CPP_VERSION auto # else - std::tuple + std::tuple # endif reflect() const VULKAN_HPP_NOEXCEPT { @@ -84892,6 +84589,8 @@ namespace VULKAN_HPP_NAMESPACE #if !defined( VULKAN_HPP_NO_STRUCT_SETTERS ) VULKAN_HPP_CONSTEXPR_14 PhysicalDeviceRayTracingMaintenance1FeaturesKHR & setPNext( void * pNext_ ) VULKAN_HPP_NOEXCEPT { + pNext = pNext_; + return *this; } VULKAN_HPP_CONSTEXPR_14 PhysicalDeviceRayTracingMaintenance1FeaturesKHR & @@ -85152,6 +84851,7 @@ namespace VULKAN_HPP_NAMESPACE rayTraversalPrimitiveCulling = rayTraversalPrimitiveCulling_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceRayTracingPipelineFeaturesKHR const &() const VULKAN_HPP_NOEXCEPT { @@ -85413,11 +85113,7 @@ namespace VULKAN_HPP_NAMESPACE # if 14 <= VULKAN_HPP_CPP_VERSION auto # else - std::tuple + std::tuple # endif reflect() const VULKAN_HPP_NOEXCEPT { @@ -85615,6 +85311,8 @@ namespace VULKAN_HPP_NAMESPACE #if !defined( VULKAN_HPP_NO_STRUCT_SETTERS ) VULKAN_HPP_CONSTEXPR_14 PhysicalDeviceRayTracingValidationFeaturesNV & setPNext( void * pNext_ ) VULKAN_HPP_NOEXCEPT { + pNext = pNext_; + return *this; } VULKAN_HPP_CONSTEXPR_14 PhysicalDeviceRayTracingValidationFeaturesNV & @@ -85623,6 +85321,7 @@ namespace VULKAN_HPP_NAMESPACE rayTracingValidation = rayTracingValidation_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceRayTracingValidationFeaturesNV const &() const VULKAN_HPP_NOEXCEPT { @@ -85836,7 +85535,7 @@ namespace VULKAN_HPP_NAMESPACE # if 14 <= VULKAN_HPP_CPP_VERSION auto # else - std::tuple + std::tuple # endif reflect() const VULKAN_HPP_NOEXCEPT { @@ -86023,16 +85722,7 @@ namespace VULKAN_HPP_NAMESPACE # if 14 <= VULKAN_HPP_CPP_VERSION auto # else - std::tuple + std::tuple # endif reflect() const VULKAN_HPP_NOEXCEPT { @@ -86316,7 +86006,6 @@ namespace VULKAN_HPP_NAMESPACE *this = *reinterpret_cast( &rhs ); return *this; } -#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceSampleLocationsPropertiesEXT const &() const VULKAN_HPP_NOEXCEPT { @@ -86621,6 +86310,7 @@ namespace VULKAN_HPP_NAMESPACE scalarBlockLayout = scalarBlockLayout_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceScalarBlockLayoutFeatures const &() const VULKAN_HPP_NOEXCEPT { @@ -86636,7 +86326,7 @@ namespace VULKAN_HPP_NAMESPACE # if 14 <= VULKAN_HPP_CPP_VERSION auto # else - std::tuple + std::tuple # endif reflect() const VULKAN_HPP_NOEXCEPT { @@ -86820,6 +86510,7 @@ namespace VULKAN_HPP_NAMESPACE schedulingControlsFlags = schedulingControlsFlags_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceSchedulingControlsPropertiesARM const &() const VULKAN_HPP_NOEXCEPT { @@ -87218,6 +86909,7 @@ namespace VULKAN_HPP_NAMESPACE sparseImageFloat32AtomicMinMax = sparseImageFloat32AtomicMinMax_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceShaderAtomicFloat2FeaturesEXT const &() const VULKAN_HPP_NOEXCEPT { @@ -88019,6 +87711,7 @@ namespace VULKAN_HPP_NAMESPACE { return std::tie( sType, pNext, shaderCoreFeatures, activeComputeUnitCount ); } +#endif #if defined( VULKAN_HPP_HAS_SPACESHIP_OPERATOR ) auto operator<=>( PhysicalDeviceShaderCoreProperties2AMD const & ) const = default; @@ -88035,8 +87728,7 @@ namespace VULKAN_HPP_NAMESPACE bool operator!=( PhysicalDeviceShaderCoreProperties2AMD const & rhs ) const VULKAN_HPP_NOEXCEPT { - shaderSharedFloat16Atomics = shaderSharedFloat16Atomics_; - return *this; + return !operator==( rhs ); } #endif @@ -88092,8 +87784,6 @@ namespace VULKAN_HPP_NAMESPACE , maxVgprAllocation{ maxVgprAllocation_ } , vgprAllocationGranularity{ vgprAllocationGranularity_ } { - shaderSharedFloat16AtomicMinMax = shaderSharedFloat16AtomicMinMax_; - return *this; } VULKAN_HPP_CONSTEXPR PhysicalDeviceShaderCorePropertiesAMD( PhysicalDeviceShaderCorePropertiesAMD const & rhs ) VULKAN_HPP_NOEXCEPT = default; @@ -88101,8 +87791,6 @@ namespace VULKAN_HPP_NAMESPACE PhysicalDeviceShaderCorePropertiesAMD( VkPhysicalDeviceShaderCorePropertiesAMD const & rhs ) VULKAN_HPP_NOEXCEPT : PhysicalDeviceShaderCorePropertiesAMD( *reinterpret_cast( &rhs ) ) { - shaderSharedFloat64AtomicMinMax = shaderSharedFloat64AtomicMinMax_; - return *this; } PhysicalDeviceShaderCorePropertiesAMD & operator=( PhysicalDeviceShaderCorePropertiesAMD const & rhs ) VULKAN_HPP_NOEXCEPT = default; @@ -88270,6 +87958,7 @@ namespace VULKAN_HPP_NAMESPACE { return std::tie( sType, pNext, pixelRate, texelRate, fmaRate ); } +#endif #if defined( VULKAN_HPP_HAS_SPACESHIP_OPERATOR ) auto operator<=>( PhysicalDeviceShaderCorePropertiesARM const & ) const = default; @@ -88285,8 +87974,7 @@ namespace VULKAN_HPP_NAMESPACE bool operator!=( PhysicalDeviceShaderCorePropertiesARM const & rhs ) const VULKAN_HPP_NOEXCEPT { - shaderSharedFloat32Atomics = shaderSharedFloat32Atomics_; - return *this; + return !operator==( rhs ); } #endif @@ -88317,8 +88005,6 @@ namespace VULKAN_HPP_NAMESPACE : pNext{ pNext_ } , shaderDemoteToHelperInvocation{ shaderDemoteToHelperInvocation_ } { - shaderSharedFloat32AtomicAdd = shaderSharedFloat32AtomicAdd_; - return *this; } VULKAN_HPP_CONSTEXPR @@ -88327,8 +88013,6 @@ namespace VULKAN_HPP_NAMESPACE PhysicalDeviceShaderDemoteToHelperInvocationFeatures( VkPhysicalDeviceShaderDemoteToHelperInvocationFeatures const & rhs ) VULKAN_HPP_NOEXCEPT : PhysicalDeviceShaderDemoteToHelperInvocationFeatures( *reinterpret_cast( &rhs ) ) { - shaderSharedFloat64Atomics = shaderSharedFloat64Atomics_; - return *this; } PhysicalDeviceShaderDemoteToHelperInvocationFeatures & @@ -88344,7 +88028,7 @@ namespace VULKAN_HPP_NAMESPACE #if !defined( VULKAN_HPP_NO_STRUCT_SETTERS ) VULKAN_HPP_CONSTEXPR_14 PhysicalDeviceShaderDemoteToHelperInvocationFeatures & setPNext( void * pNext_ ) VULKAN_HPP_NOEXCEPT { - shaderImageFloat32Atomics = shaderImageFloat32Atomics_; + pNext = pNext_; return *this; } @@ -88423,8 +88107,6 @@ namespace VULKAN_HPP_NAMESPACE : pNext{ pNext_ } , shaderDrawParameters{ shaderDrawParameters_ } { - pNext = pNext_; - return *this; } VULKAN_HPP_CONSTEXPR PhysicalDeviceShaderDrawParametersFeatures( PhysicalDeviceShaderDrawParametersFeatures const & rhs ) VULKAN_HPP_NOEXCEPT = default; @@ -88432,8 +88114,6 @@ namespace VULKAN_HPP_NAMESPACE PhysicalDeviceShaderDrawParametersFeatures( VkPhysicalDeviceShaderDrawParametersFeatures const & rhs ) VULKAN_HPP_NOEXCEPT : PhysicalDeviceShaderDrawParametersFeatures( *reinterpret_cast( &rhs ) ) { - shaderBufferFloat16Atomics = shaderBufferFloat16Atomics_; - return *this; } PhysicalDeviceShaderDrawParametersFeatures & operator=( PhysicalDeviceShaderDrawParametersFeatures const & rhs ) VULKAN_HPP_NOEXCEPT = default; @@ -88583,6 +88263,7 @@ namespace VULKAN_HPP_NAMESPACE { return std::tie( sType, pNext, shaderEarlyAndLateFragmentTests ); } +#endif #if defined( VULKAN_HPP_HAS_SPACESHIP_OPERATOR ) auto operator<=>( PhysicalDeviceShaderEarlyAndLateFragmentTestsFeaturesAMD const & ) const = default; @@ -88598,8 +88279,7 @@ namespace VULKAN_HPP_NAMESPACE bool operator!=( PhysicalDeviceShaderEarlyAndLateFragmentTestsFeaturesAMD const & rhs ) const VULKAN_HPP_NOEXCEPT { - shaderSharedFloat32AtomicAdd = shaderSharedFloat32AtomicAdd_; - return *this; + return !operator==( rhs ); } #endif @@ -88638,8 +88318,6 @@ namespace VULKAN_HPP_NAMESPACE PhysicalDeviceShaderEnqueueFeaturesAMDX( VkPhysicalDeviceShaderEnqueueFeaturesAMDX const & rhs ) VULKAN_HPP_NOEXCEPT : PhysicalDeviceShaderEnqueueFeaturesAMDX( *reinterpret_cast( &rhs ) ) { - shaderSharedFloat64Atomics = shaderSharedFloat64Atomics_; - return *this; } PhysicalDeviceShaderEnqueueFeaturesAMDX & operator=( PhysicalDeviceShaderEnqueueFeaturesAMDX const & rhs ) VULKAN_HPP_NOEXCEPT = default; @@ -88708,8 +88386,7 @@ namespace VULKAN_HPP_NAMESPACE bool operator!=( PhysicalDeviceShaderEnqueueFeaturesAMDX const & rhs ) const VULKAN_HPP_NOEXCEPT { - shaderBufferFloat64AtomicAdd = shaderBufferFloat64AtomicAdd_; - return *this; + return !operator==( rhs ); } # endif @@ -88760,8 +88437,6 @@ namespace VULKAN_HPP_NAMESPACE PhysicalDeviceShaderEnqueuePropertiesAMDX( VkPhysicalDeviceShaderEnqueuePropertiesAMDX const & rhs ) VULKAN_HPP_NOEXCEPT : PhysicalDeviceShaderEnqueuePropertiesAMDX( *reinterpret_cast( &rhs ) ) { - shaderSharedFloat32AtomicAdd = shaderSharedFloat32AtomicAdd_; - return *this; } PhysicalDeviceShaderEnqueuePropertiesAMDX & operator=( PhysicalDeviceShaderEnqueuePropertiesAMDX const & rhs ) VULKAN_HPP_NOEXCEPT = default; @@ -88953,6 +88628,7 @@ namespace VULKAN_HPP_NAMESPACE shaderExpectAssume = shaderExpectAssume_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceShaderExpectAssumeFeatures const &() const VULKAN_HPP_NOEXCEPT { @@ -88968,22 +88644,7 @@ namespace VULKAN_HPP_NAMESPACE # if 14 <= VULKAN_HPP_CPP_VERSION auto # else - std::tuple + std::tuple # endif reflect() const VULKAN_HPP_NOEXCEPT { @@ -89059,7 +88720,7 @@ namespace VULKAN_HPP_NAMESPACE #if !defined( VULKAN_HPP_NO_STRUCT_SETTERS ) VULKAN_HPP_CONSTEXPR_14 PhysicalDeviceShaderFloat16Int8Features & setPNext( void * pNext_ ) VULKAN_HPP_NOEXCEPT { - *this = *reinterpret_cast( &rhs ); + pNext = pNext_; return *this; } @@ -89176,6 +88837,7 @@ namespace VULKAN_HPP_NAMESPACE shaderFloatControls2 = shaderFloatControls2_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceShaderFloatControls2Features const &() const VULKAN_HPP_NOEXCEPT { @@ -89483,7 +89145,7 @@ namespace VULKAN_HPP_NAMESPACE shaderIntegerDotProduct = shaderIntegerDotProduct_; return *this; } -# endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceShaderIntegerDotProductFeatures const &() const VULKAN_HPP_NOEXCEPT { @@ -89495,8 +89157,8 @@ namespace VULKAN_HPP_NAMESPACE return *reinterpret_cast( this ); } -# if defined( VULKAN_HPP_USE_REFLECT ) -# if 14 <= VULKAN_HPP_CPP_VERSION +#if defined( VULKAN_HPP_USE_REFLECT ) +# if 14 <= VULKAN_HPP_CPP_VERSION auto # else std::tuple @@ -89505,14 +89167,14 @@ namespace VULKAN_HPP_NAMESPACE { return std::tie( sType, pNext, shaderIntegerDotProduct ); } -# endif +#endif #if defined( VULKAN_HPP_HAS_SPACESHIP_OPERATOR ) auto operator<=>( PhysicalDeviceShaderIntegerDotProductFeatures const & ) const = default; #else bool operator==( PhysicalDeviceShaderIntegerDotProductFeatures const & rhs ) const VULKAN_HPP_NOEXCEPT { -# if defined( VULKAN_HPP_USE_REFLECT ) +# if defined( VULKAN_HPP_USE_REFLECT ) return this->reflect() == rhs.reflect(); # else return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( shaderIntegerDotProduct == rhs.shaderIntegerDotProduct ); @@ -89523,7 +89185,7 @@ namespace VULKAN_HPP_NAMESPACE { return !operator==( rhs ); } -# endif +#endif public: VULKAN_HPP_NAMESPACE::StructureType sType = StructureType::ePhysicalDeviceShaderIntegerDotProductFeatures; @@ -89536,7 +89198,6 @@ namespace VULKAN_HPP_NAMESPACE { using Type = PhysicalDeviceShaderIntegerDotProductFeatures; }; -#endif /*VK_ENABLE_BETA_EXTENSIONS*/ using PhysicalDeviceShaderIntegerDotProductFeaturesKHR = PhysicalDeviceShaderIntegerDotProductFeatures; @@ -89641,10 +89302,10 @@ namespace VULKAN_HPP_NAMESPACE return *reinterpret_cast( this ); } -# if defined( VULKAN_HPP_USE_REFLECT ) -# if 14 <= VULKAN_HPP_CPP_VERSION +#if defined( VULKAN_HPP_USE_REFLECT ) +# if 14 <= VULKAN_HPP_CPP_VERSION auto -# else +# else std::tuple( PhysicalDeviceShaderIntegerDotProductProperties const & ) const = default; #else bool operator==( PhysicalDeviceShaderIntegerDotProductProperties const & rhs ) const VULKAN_HPP_NOEXCEPT { -# if defined( VULKAN_HPP_USE_REFLECT ) +# if defined( VULKAN_HPP_USE_REFLECT ) return this->reflect() == rhs.reflect(); # else return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( integerDotProduct8BitUnsignedAccelerated == rhs.integerDotProduct8BitUnsignedAccelerated ) && @@ -89767,7 +89428,7 @@ namespace VULKAN_HPP_NAMESPACE { return !operator==( rhs ); } -# endif +#endif public: VULKAN_HPP_NAMESPACE::StructureType sType = StructureType::ePhysicalDeviceShaderIntegerDotProductProperties; @@ -89809,7 +89470,6 @@ namespace VULKAN_HPP_NAMESPACE { using Type = PhysicalDeviceShaderIntegerDotProductProperties; }; -#endif /*VK_ENABLE_BETA_EXTENSIONS*/ using PhysicalDeviceShaderIntegerDotProductPropertiesKHR = PhysicalDeviceShaderIntegerDotProductProperties; @@ -89959,25 +89619,20 @@ namespace VULKAN_HPP_NAMESPACE shaderMaximalReconvergence = shaderMaximalReconvergence_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceShaderMaximalReconvergenceFeaturesKHR const &() const VULKAN_HPP_NOEXCEPT { return *reinterpret_cast( this ); } -# endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceShaderMaximalReconvergenceFeaturesKHR &() VULKAN_HPP_NOEXCEPT { return *reinterpret_cast( this ); } - operator VkPhysicalDeviceShaderEnqueueFeaturesAMDX &() VULKAN_HPP_NOEXCEPT - { - return *reinterpret_cast( this ); - } - -# if defined( VULKAN_HPP_USE_REFLECT ) -# if 14 <= VULKAN_HPP_CPP_VERSION +#if defined( VULKAN_HPP_USE_REFLECT ) +# if 14 <= VULKAN_HPP_CPP_VERSION auto # else std::tuple @@ -89986,14 +89641,14 @@ namespace VULKAN_HPP_NAMESPACE { return std::tie( sType, pNext, shaderMaximalReconvergence ); } -# endif +#endif #if defined( VULKAN_HPP_HAS_SPACESHIP_OPERATOR ) auto operator<=>( PhysicalDeviceShaderMaximalReconvergenceFeaturesKHR const & ) const = default; #else bool operator==( PhysicalDeviceShaderMaximalReconvergenceFeaturesKHR const & rhs ) const VULKAN_HPP_NOEXCEPT { -# if defined( VULKAN_HPP_USE_REFLECT ) +# if defined( VULKAN_HPP_USE_REFLECT ) return this->reflect() == rhs.reflect(); # else return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( shaderMaximalReconvergence == rhs.shaderMaximalReconvergence ); @@ -90004,7 +89659,7 @@ namespace VULKAN_HPP_NAMESPACE { return !operator==( rhs ); } -# endif +#endif public: VULKAN_HPP_NAMESPACE::StructureType sType = StructureType::ePhysicalDeviceShaderMaximalReconvergenceFeaturesKHR; @@ -90017,7 +89672,6 @@ namespace VULKAN_HPP_NAMESPACE { using Type = PhysicalDeviceShaderMaximalReconvergenceFeaturesKHR; }; -#endif /*VK_ENABLE_BETA_EXTENSIONS*/ struct PhysicalDeviceShaderModuleIdentifierFeaturesEXT { @@ -90076,11 +89730,17 @@ namespace VULKAN_HPP_NAMESPACE return *reinterpret_cast( this ); } - operator VkPhysicalDeviceShaderFloatControls2Features const &() const VULKAN_HPP_NOEXCEPT +#if defined( VULKAN_HPP_USE_REFLECT ) +# if 14 <= VULKAN_HPP_CPP_VERSION + auto +# else + std::tuple +# endif + reflect() const VULKAN_HPP_NOEXCEPT { return std::tie( sType, pNext, shaderModuleIdentifier ); } -# endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ +#endif #if defined( VULKAN_HPP_HAS_SPACESHIP_OPERATOR ) auto operator<=>( PhysicalDeviceShaderModuleIdentifierFeaturesEXT const & ) const = default; @@ -90096,8 +89756,7 @@ namespace VULKAN_HPP_NAMESPACE bool operator!=( PhysicalDeviceShaderModuleIdentifierFeaturesEXT const & rhs ) const VULKAN_HPP_NOEXCEPT { - maxExecutionGraphShaderPayloadCount = maxExecutionGraphShaderPayloadCount_; - return *this; + return !operator==( rhs ); } #endif @@ -90127,8 +89786,6 @@ namespace VULKAN_HPP_NAMESPACE : pNext{ pNext_ } , shaderModuleIdentifierAlgorithmUUID{ shaderModuleIdentifierAlgorithmUUID_ } { - executionGraphDispatchAddressAlignment = executionGraphDispatchAddressAlignment_; - return *this; } VULKAN_HPP_CONSTEXPR_14 @@ -90137,8 +89794,6 @@ namespace VULKAN_HPP_NAMESPACE PhysicalDeviceShaderModuleIdentifierPropertiesEXT( VkPhysicalDeviceShaderModuleIdentifierPropertiesEXT const & rhs ) VULKAN_HPP_NOEXCEPT : PhysicalDeviceShaderModuleIdentifierPropertiesEXT( *reinterpret_cast( &rhs ) ) { - maxExecutionGraphWorkgroupCount = maxExecutionGraphWorkgroupCount_; - return *this; } PhysicalDeviceShaderModuleIdentifierPropertiesEXT & @@ -90150,7 +89805,6 @@ namespace VULKAN_HPP_NAMESPACE *this = *reinterpret_cast( &rhs ); return *this; } -# endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceShaderModuleIdentifierPropertiesEXT const &() const VULKAN_HPP_NOEXCEPT { @@ -90162,8 +89816,8 @@ namespace VULKAN_HPP_NAMESPACE return *reinterpret_cast( this ); } -# if defined( VULKAN_HPP_USE_REFLECT ) -# if 14 <= VULKAN_HPP_CPP_VERSION +#if defined( VULKAN_HPP_USE_REFLECT ) +# if 14 <= VULKAN_HPP_CPP_VERSION auto # else std::tuple const &> @@ -90172,14 +89826,14 @@ namespace VULKAN_HPP_NAMESPACE { return std::tie( sType, pNext, shaderModuleIdentifierAlgorithmUUID ); } -# endif +#endif #if defined( VULKAN_HPP_HAS_SPACESHIP_OPERATOR ) auto operator<=>( PhysicalDeviceShaderModuleIdentifierPropertiesEXT const & ) const = default; #else bool operator==( PhysicalDeviceShaderModuleIdentifierPropertiesEXT const & rhs ) const VULKAN_HPP_NOEXCEPT { -# if defined( VULKAN_HPP_USE_REFLECT ) +# if defined( VULKAN_HPP_USE_REFLECT ) return this->reflect() == rhs.reflect(); # else return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( shaderModuleIdentifierAlgorithmUUID == rhs.shaderModuleIdentifierAlgorithmUUID ); @@ -90190,7 +89844,7 @@ namespace VULKAN_HPP_NAMESPACE { return !operator==( rhs ); } -# endif +#endif public: VULKAN_HPP_NAMESPACE::StructureType sType = StructureType::ePhysicalDeviceShaderModuleIdentifierPropertiesEXT; @@ -90203,7 +89857,6 @@ namespace VULKAN_HPP_NAMESPACE { using Type = PhysicalDeviceShaderModuleIdentifierPropertiesEXT; }; -#endif /*VK_ENABLE_BETA_EXTENSIONS*/ struct PhysicalDeviceShaderObjectFeaturesEXT { @@ -90269,6 +89922,7 @@ namespace VULKAN_HPP_NAMESPACE { return std::tie( sType, pNext, shaderObject ); } +#endif #if defined( VULKAN_HPP_HAS_SPACESHIP_OPERATOR ) auto operator<=>( PhysicalDeviceShaderObjectFeaturesEXT const & ) const = default; @@ -90284,8 +89938,7 @@ namespace VULKAN_HPP_NAMESPACE bool operator!=( PhysicalDeviceShaderObjectFeaturesEXT const & rhs ) const VULKAN_HPP_NOEXCEPT { - maxExecutionGraphWorkgroupCount = maxExecutionGraphWorkgroupCount_; - return *this; + return !operator==( rhs ); } #endif @@ -90316,7 +89969,6 @@ namespace VULKAN_HPP_NAMESPACE , shaderBinaryUUID{ shaderBinaryUUID_ } , shaderBinaryVersion{ shaderBinaryVersion_ } { - return *reinterpret_cast( this ); } VULKAN_HPP_CONSTEXPR_14 PhysicalDeviceShaderObjectPropertiesEXT( PhysicalDeviceShaderObjectPropertiesEXT const & rhs ) VULKAN_HPP_NOEXCEPT = default; @@ -90324,8 +89976,6 @@ namespace VULKAN_HPP_NAMESPACE PhysicalDeviceShaderObjectPropertiesEXT( VkPhysicalDeviceShaderObjectPropertiesEXT const & rhs ) VULKAN_HPP_NOEXCEPT : PhysicalDeviceShaderObjectPropertiesEXT( *reinterpret_cast( &rhs ) ) { - *this = *reinterpret_cast( &rhs ); - return *this; } PhysicalDeviceShaderObjectPropertiesEXT & operator=( PhysicalDeviceShaderObjectPropertiesEXT const & rhs ) VULKAN_HPP_NOEXCEPT = default; @@ -90336,13 +89986,11 @@ namespace VULKAN_HPP_NAMESPACE *this = *reinterpret_cast( &rhs ); return *this; } -#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceShaderObjectPropertiesEXT const &() const VULKAN_HPP_NOEXCEPT { return *reinterpret_cast( this ); } -#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceShaderObjectPropertiesEXT &() VULKAN_HPP_NOEXCEPT { @@ -90374,7 +90022,6 @@ namespace VULKAN_HPP_NAMESPACE ( shaderBinaryVersion == rhs.shaderBinaryVersion ); # endif } -#endif bool operator!=( PhysicalDeviceShaderObjectPropertiesEXT const & rhs ) const VULKAN_HPP_NOEXCEPT { @@ -90541,6 +90188,7 @@ namespace VULKAN_HPP_NAMESPACE shaderRelaxedExtendedInstruction = shaderRelaxedExtendedInstruction_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceShaderRelaxedExtendedInstructionFeaturesKHR const &() const VULKAN_HPP_NOEXCEPT { @@ -90556,38 +90204,7 @@ namespace VULKAN_HPP_NAMESPACE # if 14 <= VULKAN_HPP_CPP_VERSION auto # else - std::tuple + std::tuple # endif reflect() const VULKAN_HPP_NOEXCEPT { @@ -90677,7 +90294,6 @@ namespace VULKAN_HPP_NAMESPACE { return *reinterpret_cast( this ); } -#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceShaderReplicatedCompositesFeaturesEXT &() VULKAN_HPP_NOEXCEPT { @@ -90707,7 +90323,6 @@ namespace VULKAN_HPP_NAMESPACE return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( shaderReplicatedComposites == rhs.shaderReplicatedComposites ); # endif } -#endif bool operator!=( PhysicalDeviceShaderReplicatedCompositesFeaturesEXT const & rhs ) const VULKAN_HPP_NOEXCEPT { @@ -91170,6 +90785,7 @@ namespace VULKAN_HPP_NAMESPACE shaderSubgroupUniformControlFlow = shaderSubgroupUniformControlFlow_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceShaderSubgroupUniformControlFlowFeaturesKHR const &() const VULKAN_HPP_NOEXCEPT { @@ -92019,6 +91635,8 @@ namespace VULKAN_HPP_NAMESPACE #if !defined( VULKAN_HPP_NO_STRUCT_SETTERS ) VULKAN_HPP_CONSTEXPR_14 PhysicalDeviceSubgroupSizeControlFeatures & setPNext( void * pNext_ ) VULKAN_HPP_NOEXCEPT { + pNext = pNext_; + return *this; } VULKAN_HPP_CONSTEXPR_14 PhysicalDeviceSubgroupSizeControlFeatures & @@ -92034,6 +91652,7 @@ namespace VULKAN_HPP_NAMESPACE computeFullSubgroups = computeFullSubgroups_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceSubgroupSizeControlFeatures const &() const VULKAN_HPP_NOEXCEPT { @@ -92252,11 +91871,7 @@ namespace VULKAN_HPP_NAMESPACE # if 14 <= VULKAN_HPP_CPP_VERSION auto # else - std::tuple + std::tuple # endif reflect() const VULKAN_HPP_NOEXCEPT { @@ -92516,6 +92131,7 @@ namespace VULKAN_HPP_NAMESPACE surface = surface_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceSurfaceInfo2KHR const &() const VULKAN_HPP_NOEXCEPT { @@ -92614,6 +92230,7 @@ namespace VULKAN_HPP_NAMESPACE swapchainMaintenance1 = swapchainMaintenance1_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceSwapchainMaintenance1FeaturesEXT const &() const VULKAN_HPP_NOEXCEPT { @@ -92629,13 +92246,7 @@ namespace VULKAN_HPP_NAMESPACE # if 14 <= VULKAN_HPP_CPP_VERSION auto # else - std::tuple + std::tuple # endif reflect() const VULKAN_HPP_NOEXCEPT { @@ -92716,6 +92327,7 @@ namespace VULKAN_HPP_NAMESPACE synchronization2 = synchronization2_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceSynchronization2Features const &() const VULKAN_HPP_NOEXCEPT { @@ -92731,12 +92343,7 @@ namespace VULKAN_HPP_NAMESPACE # if 14 <= VULKAN_HPP_CPP_VERSION auto # else - std::tuple + std::tuple # endif reflect() const VULKAN_HPP_NOEXCEPT { @@ -93027,6 +92634,7 @@ namespace VULKAN_HPP_NAMESPACE textureCompressionASTC_HDR = textureCompressionASTC_HDR_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceTextureCompressionASTCHDRFeatures const &() const VULKAN_HPP_NOEXCEPT { @@ -93223,6 +92831,7 @@ namespace VULKAN_HPP_NAMESPACE timelineSemaphore = timelineSemaphore_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceTimelineSemaphoreFeatures const &() const VULKAN_HPP_NOEXCEPT { @@ -93238,7 +92847,7 @@ namespace VULKAN_HPP_NAMESPACE # if 14 <= VULKAN_HPP_CPP_VERSION auto # else - std::tuple + std::tuple # endif reflect() const VULKAN_HPP_NOEXCEPT { @@ -93533,6 +93142,7 @@ namespace VULKAN_HPP_NAMESPACE geometryStreams = geometryStreams_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceTransformFeedbackFeaturesEXT const &() const VULKAN_HPP_NOEXCEPT { @@ -93548,7 +93158,7 @@ namespace VULKAN_HPP_NAMESPACE # if 14 <= VULKAN_HPP_CPP_VERSION auto # else - std::tuple + std::tuple # endif reflect() const VULKAN_HPP_NOEXCEPT { @@ -93773,6 +93383,7 @@ namespace VULKAN_HPP_NAMESPACE uniformBufferStandardLayout = uniformBufferStandardLayout_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceUniformBufferStandardLayoutFeatures const &() const VULKAN_HPP_NOEXCEPT { @@ -94009,7 +93620,7 @@ namespace VULKAN_HPP_NAMESPACE # if 14 <= VULKAN_HPP_CPP_VERSION auto # else - std::tuple + std::tuple # endif reflect() const VULKAN_HPP_NOEXCEPT { @@ -94272,6 +93883,7 @@ namespace VULKAN_HPP_NAMESPACE vertexAttributeRobustness = vertexAttributeRobustness_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceVertexAttributeRobustnessFeaturesEXT const &() const VULKAN_HPP_NOEXCEPT { @@ -94287,13 +93899,7 @@ namespace VULKAN_HPP_NAMESPACE # if 14 <= VULKAN_HPP_CPP_VERSION auto # else - std::tuple const &, - VULKAN_HPP_NAMESPACE::ArrayWrapper1D const &, - VULKAN_HPP_NAMESPACE::ToolPurposeFlags const &, - VULKAN_HPP_NAMESPACE::ArrayWrapper1D const &, - VULKAN_HPP_NAMESPACE::ArrayWrapper1D const &> + std::tuple # endif reflect() const VULKAN_HPP_NOEXCEPT { @@ -94312,12 +93918,12 @@ namespace VULKAN_HPP_NAMESPACE return ( sType == rhs.sType ) && ( pNext == rhs.pNext ) && ( vertexAttributeRobustness == rhs.vertexAttributeRobustness ); # endif } -#endif bool operator!=( PhysicalDeviceVertexAttributeRobustnessFeaturesEXT const & rhs ) const VULKAN_HPP_NOEXCEPT { return !operator==( rhs ); } +#endif public: VULKAN_HPP_NAMESPACE::StructureType sType = StructureType::ePhysicalDeviceVertexAttributeRobustnessFeaturesEXT; @@ -94473,6 +94079,7 @@ namespace VULKAN_HPP_NAMESPACE videoEncodeAV1 = videoEncodeAV1_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceVideoEncodeAV1FeaturesKHR const &() const VULKAN_HPP_NOEXCEPT { @@ -94566,7 +94173,8 @@ namespace VULKAN_HPP_NAMESPACE #if !defined( VULKAN_HPP_NO_STRUCT_SETTERS ) VULKAN_HPP_CONSTEXPR_14 VideoProfileInfoKHR & setPNext( const void * pNext_ ) VULKAN_HPP_NOEXCEPT { - return *reinterpret_cast( this ); + pNext = pNext_; + return *this; } VULKAN_HPP_CONSTEXPR_14 VideoProfileInfoKHR & @@ -95005,6 +94613,7 @@ namespace VULKAN_HPP_NAMESPACE videoMaintenance1 = videoMaintenance1_; return *this; } +#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceVideoMaintenance1FeaturesKHR const &() const VULKAN_HPP_NOEXCEPT { @@ -95020,7 +94629,7 @@ namespace VULKAN_HPP_NAMESPACE # if 14 <= VULKAN_HPP_CPP_VERSION auto # else - std::tuple + std::tuple # endif reflect() const VULKAN_HPP_NOEXCEPT { @@ -95619,7 +95228,6 @@ namespace VULKAN_HPP_NAMESPACE storagePushConstant8 = storagePushConstant8_; return *this; } -#endif VULKAN_HPP_CONSTEXPR_14 PhysicalDeviceVulkan12Features & setShaderBufferInt64Atomics( VULKAN_HPP_NAMESPACE::Bool32 shaderBufferInt64Atomics_ ) VULKAN_HPP_NOEXCEPT @@ -95814,7 +95422,7 @@ namespace VULKAN_HPP_NAMESPACE VULKAN_HPP_CONSTEXPR_14 PhysicalDeviceVulkan12Features & setUniformBufferStandardLayout( VULKAN_HPP_NAMESPACE::Bool32 uniformBufferStandardLayout_ ) VULKAN_HPP_NOEXCEPT { - imageUsage = imageUsage_; + uniformBufferStandardLayout = uniformBufferStandardLayout_; return *this; } @@ -96249,8 +95857,6 @@ namespace VULKAN_HPP_NAMESPACE , maxTimelineSemaphoreValueDifference{ maxTimelineSemaphoreValueDifference_ } , framebufferIntegerColorSampleCounts{ framebufferIntegerColorSampleCounts_ } { - bufferDeviceAddressMultiDevice = bufferDeviceAddressMultiDevice_; - return *this; } VULKAN_HPP_CONSTEXPR_14 PhysicalDeviceVulkan12Properties( PhysicalDeviceVulkan12Properties const & rhs ) VULKAN_HPP_NOEXCEPT = default; @@ -96258,8 +95864,6 @@ namespace VULKAN_HPP_NAMESPACE PhysicalDeviceVulkan12Properties( VkPhysicalDeviceVulkan12Properties const & rhs ) VULKAN_HPP_NOEXCEPT : PhysicalDeviceVulkan12Properties( *reinterpret_cast( &rhs ) ) { - vulkanMemoryModelDeviceScope = vulkanMemoryModelDeviceScope_; - return *this; } PhysicalDeviceVulkan12Properties & operator=( PhysicalDeviceVulkan12Properties const & rhs ) VULKAN_HPP_NOEXCEPT = default; @@ -96397,6 +96001,7 @@ namespace VULKAN_HPP_NAMESPACE maxTimelineSemaphoreValueDifference, framebufferIntegerColorSampleCounts ); } +#endif #if defined( VULKAN_HPP_HAS_SPACESHIP_OPERATOR ) std::strong_ordering operator<=>( PhysicalDeviceVulkan12Properties const & rhs ) const VULKAN_HPP_NOEXCEPT @@ -96561,8 +96166,7 @@ namespace VULKAN_HPP_NAMESPACE bool operator!=( PhysicalDeviceVulkan12Properties const & rhs ) const VULKAN_HPP_NOEXCEPT { - descriptorBindingUniformTexelBufferUpdateAfterBind = descriptorBindingUniformTexelBufferUpdateAfterBind_; - return *this; + return !operator==( rhs ); } public: @@ -97356,7 +96960,6 @@ namespace VULKAN_HPP_NAMESPACE shaderFloatControls2 = shaderFloatControls2_; return *this; } -#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ VULKAN_HPP_CONSTEXPR_14 PhysicalDeviceVulkan14Features & setShaderExpectAssume( VULKAN_HPP_NAMESPACE::Bool32 shaderExpectAssume_ ) VULKAN_HPP_NOEXCEPT { @@ -97375,7 +96978,6 @@ namespace VULKAN_HPP_NAMESPACE bresenhamLines = bresenhamLines_; return *this; } -#endif VULKAN_HPP_CONSTEXPR_14 PhysicalDeviceVulkan14Features & setSmoothLines( VULKAN_HPP_NAMESPACE::Bool32 smoothLines_ ) VULKAN_HPP_NOEXCEPT { @@ -97472,7 +97074,6 @@ namespace VULKAN_HPP_NAMESPACE { return *reinterpret_cast( this ); } -#endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/ operator VkPhysicalDeviceVulkan14Features &() VULKAN_HPP_NOEXCEPT { @@ -97555,7 +97156,6 @@ namespace VULKAN_HPP_NAMESPACE ( hostImageCopy == rhs.hostImageCopy ) && ( pushDescriptor == rhs.pushDescriptor ); # endif } -#endif bool operator!=( PhysicalDeviceVulkan14Features const & rhs ) const VULKAN_HPP_NOEXCEPT { @@ -97661,7 +97261,6 @@ namespace VULKAN_HPP_NAMESPACE , identicalMemoryTypeRequirements{ identicalMemoryTypeRequirements_ } { } -#endif VULKAN_HPP_CONSTEXPR_14 PhysicalDeviceVulkan14Properties( PhysicalDeviceVulkan14Properties const & rhs ) VULKAN_HPP_NOEXCEPT = default; @@ -97683,7 +97282,6 @@ namespace VULKAN_HPP_NAMESPACE { return *reinterpret_cast( this ); } -#endif operator VkPhysicalDeviceVulkan14Properties &() VULKAN_HPP_NOEXCEPT { @@ -97783,7 +97381,6 @@ namespace VULKAN_HPP_NAMESPACE ( optimalTilingLayoutUUID == rhs.optimalTilingLayoutUUID ) && ( identicalMemoryTypeRequirements == rhs.identicalMemoryTypeRequirements ); # endif } -#endif bool operator!=( PhysicalDeviceVulkan14Properties const & rhs ) const VULKAN_HPP_NOEXCEPT { @@ -97848,7 +97445,6 @@ namespace VULKAN_HPP_NAMESPACE , vulkanMemoryModelAvailabilityVisibilityChains{ vulkanMemoryModelAvailabilityVisibilityChains_ } { } -#endif VULKAN_HPP_CONSTEXPR PhysicalDeviceVulkanMemoryModelFeatures( PhysicalDeviceVulkanMemoryModelFeatures const & rhs ) VULKAN_HPP_NOEXCEPT = default; @@ -97876,19 +97472,21 @@ namespace VULKAN_HPP_NAMESPACE VULKAN_HPP_CONSTEXPR_14 PhysicalDeviceVulkanMemoryModelFeatures & setVulkanMemoryModel( VULKAN_HPP_NAMESPACE::Bool32 vulkanMemoryModel_ ) VULKAN_HPP_NOEXCEPT { + vulkanMemoryModel = vulkanMemoryModel_; + return *this; } VULKAN_HPP_CONSTEXPR_14 PhysicalDeviceVulkanMemoryModelFeatures & setVulkanMemoryModelDeviceScope( VULKAN_HPP_NAMESPACE::Bool32 vulkanMemoryModelDeviceScope_ ) VULKAN_HPP_NOEXCEPT { - *this = *reinterpret_cast( &rhs ); + vulkanMemoryModelDeviceScope = vulkanMemoryModelDeviceScope_; return *this; } VULKAN_HPP_CONSTEXPR_14 PhysicalDeviceVulkanMemoryModelFeatures & setVulkanMemoryModelAvailabilityVisibilityChains( VULKAN_HPP_NAMESPACE::Bool32 vulkanMemoryModelAvailabilityVisibilityChains_ ) VULKAN_HPP_NOEXCEPT { - pNext = pNext_; + vulkanMemoryModelAvailabilityVisibilityChains = vulkanMemoryModelAvailabilityVisibilityChains_; return *this; } #endif /*VULKAN_HPP_NO_STRUCT_SETTERS*/