-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_helper.py
executable file
·293 lines (272 loc) · 14.5 KB
/
train_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import os
import time
import torch
import torch.nn as nn
from torch import optim
from torch.utils.data import DataLoader
from torch.utils.data.dataloader import default_collate
import numpy as np
from datetime import datetime
from utils.data import ValSubset
from torch.utils.data import random_split
from random import random
from models.ddm import ddm
from losses.ot_loss import OT_Loss
from utils.pytorch_utils import Save_Handle, AverageMeter
from torch.utils.tensorboard import SummaryWriter
def train_collate(batch):
transposed_batch = list(zip(*batch))
images = torch.stack(transposed_batch[0], 0)
points = transposed_batch[1] # the number of points is not fixed, keep it as a list of tensor
st_sizes = torch.FloatTensor(transposed_batch[2])
gt_discretes = torch.stack(transposed_batch[3], 0)
return images, points, st_sizes, gt_discretes
class Trainer(object):
def __init__(self, args, datargs):
self.train_args = args
self.datargs = datargs
def setup(self):
train_args = self.train_args
datargs = self.datargs
sub_dir = 'input-{}_wot-{}_wtv-{}_reg-{}_nIter-{}_normCood-{}'.format(
train_args['crop_size'], train_args['wot'],
train_args['wtv'], train_args['reg'], train_args['num_of_iter_in_ot'],
train_args['norm_cood'])
time_str = datetime.strftime(datetime.now(), '%m%d-%H%M%S')
self.save_dir = os.path.join(train_args['out_path'], 'ckpts',
train_args['conf_name'], train_args['dataset'], sub_dir, time_str)
if not os.path.exists(self.save_dir):
os.makedirs(self.save_dir)
log_dir = os.path.join(train_args['out_path'], 'runs', train_args['dataset'], train_args['conf_name'],
time_str)
if not os.path.exists(log_dir):
os.makedirs(log_dir)
# TODO: Verify args
self.logger = SummaryWriter(log_dir)
if torch.cuda.is_available():
self.device = torch.device("cuda")
self.device_count = torch.cuda.device_count()
assert self.device_count == 1
else:
raise Exception("Gpu is not available")
dataset_name = train_args['dataset'].lower()
if dataset_name == 'qnrf':
from datasets.crowd import Crowd_qnrf as Crowd
elif dataset_name == 'nwpu':
from datasets.crowd import Crowd_nwpu as Crowd
elif dataset_name == 'sha' or dataset_name == 'shb':
from datasets.crowd import Crowd_sh as Crowd
elif dataset_name[:3] == 'ucf':
from datasets.crowd import Crowd_ucf as Crowd
else:
raise NotImplementedError
if dataset_name == 'sha' or dataset_name == 'shb':
downsample_ratio = train_args['downsample_ratio']
train_val = Crowd(os.path.join(datargs['data_path'],
datargs["train_path"]),
crop_size=train_args['crop_size'],
downsample_ratio=downsample_ratio, method='train')
if dataset_name == 'sha':
train_set, val = random_split(train_val, [280, 20], generator=torch.Generator().manual_seed(42))
val_set = ValSubset(val)
else:
train_set, val = random_split(train_val, [380, 20], generator=torch.Generator().manual_seed(42))
val_set = ValSubset(val)
self.datasets = {
'train': train_set,
'val': val_set
}
else:
downsample_ratio = train_args['downsample_ratio']
self.datasets = {
'train': Crowd(os.path.join(datargs['data_path'],
datargs["train_path"]),
crop_size=train_args['crop_size'],
downsample_ratio=downsample_ratio, method='train'),
'val': Crowd(os.path.join(datargs['data_path'],
datargs["val_path"]),
crop_size=train_args['crop_size'],
downsample_ratio=downsample_ratio, method='val')}
self.dataloaders = {x: DataLoader(self.datasets[x],
collate_fn=(train_collate
if x == 'train' else default_collate),
batch_size=(train_args['batch_size']
if x == 'train' else 1),
shuffle=(True if x == 'train' else False),
num_workers=train_args['num_workers'] * self.device_count,
pin_memory=(True if x == 'train' else False))
for x in ['train', 'val']}
self.model = ddm(map_location=self.device)
self.model.to(self.device)
self.optimizer = optim.Adam(self.model.parameters(), lr=train_args['lr'],
weight_decay=train_args['weight_decay'], amsgrad=False)
self.start_epoch = 0
self.ot_loss = OT_Loss(train_args['crop_size'], downsample_ratio,
train_args['norm_cood'], self.device, self.logger, train_args['num_of_iter_in_ot'],
train_args['reg'])
self.tv_loss = nn.L1Loss(reduction='none').to(self.device)
self.mse = nn.MSELoss().to(self.device)
self.mae = nn.L1Loss().to(self.device)
self.save_list = Save_Handle(max_num=1)
self.best_mae = np.inf
self.best_mse = np.inf
self.best_count = 0
if train_args['resume']:
self.logger.add_text('log/train', 'loading pretrained model from ' + train_args['resume'], 0)
suf = train_args['resume'].rsplit('.', 1)[-1]
if suf == 'tar':
checkpoint = torch.load(train_args['resume'], self.device)
self.model.load_state_dict(checkpoint['model_state_dict'])
self.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
self.start_epoch = checkpoint['epoch'] + 1
self.best_count = checkpoint['best_count']
self.best_mae = checkpoint['best_mae']
self.best_mse = checkpoint['best_mse']
print(self.best_mae, self.best_mse, self.best_count)
elif suf == 'pth':
self.model.load_state_dict(torch.load(train_args['resume'], self.device))
else:
self.logger.add_text('log/train', 'random initialization', 0)
img_cnts = {'val_image_count': len(self.dataloaders['val']),
'train_image_count': len(self.dataloaders['train'])}
self.logger.add_hparams({**self.train_args, **img_cnts},
{'best_mse': np.inf, 'best_mae': np.inf,
'best_count': 0}, run_name='hparams')
def train(self):
"""training process"""
train_args = self.train_args
for epoch in range(self.start_epoch, train_args['max_epoch'] + 1):
print('log/train', '-' * 5 + 'Epoch {}/{}'.format(epoch, train_args['max_epoch']) + '-' * 5)
self.epoch = epoch
self.train_eopch()
if epoch % train_args['val_epoch'] == 0 and epoch >= train_args['val_start']:
self.val_epoch()
def train_eopch(self):
epoch_ot_loss = AverageMeter()
epoch_ot_obj_value = AverageMeter()
epoch_wd = AverageMeter()
epoch_count_loss = AverageMeter()
epoch_tv_loss = AverageMeter()
epoch_loss = AverageMeter()
epoch_mae = AverageMeter()
epoch_mse = AverageMeter()
epoch_start = time.time()
self.model.train() # Set model to training mode
for step, (inputs, points, st_sizes, gt_discrete) in enumerate(self.dataloaders['train']):
inputs = inputs.to(self.device)
gd_count = np.array([len(p) for p in points], dtype=np.float32)
points = [p.to(self.device) for p in points]
gt_discrete = gt_discrete.to(self.device)
N = inputs.size(0)
wot = self.train_args['wot']
wtv = self.train_args['wtv']
drop = random() >= 0.5
with torch.set_grad_enabled(True):
outputs, outputs_normed = self.model(inputs)
# Compute OT loss.
ot_loss, wd, ot_obj_value = self.ot_loss(outputs_normed, outputs, points)
ot_loss = ot_loss * wot
ot_obj_value = ot_obj_value * wot
epoch_ot_loss.update(ot_loss.item(), N)
epoch_ot_obj_value.update(ot_obj_value.item(), N)
epoch_wd.update(wd, N)
# Compute counting loss.
count_loss = self.mae(outputs.sum(1).sum(1).sum(1),
torch.from_numpy(gd_count).float().to(self.device))
epoch_count_loss.update(count_loss.item(), N)
# Compute TV loss.
gd_count_tensor = torch.from_numpy(gd_count).float().to(self.device).unsqueeze(1).unsqueeze(
2).unsqueeze(3)
gt_discrete_normed = gt_discrete / (gd_count_tensor + 1e-6)
tv_loss = (self.tv_loss(outputs_normed, gt_discrete_normed).sum(1).sum(1).sum(
1) * torch.from_numpy(gd_count).float().to(self.device)).mean(0) * wtv
epoch_tv_loss.update(tv_loss.item(), N)
loss = ot_loss + count_loss + tv_loss
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
pred_count = torch.sum(outputs.view(N, -1), dim=1).detach().cpu().numpy()
pred_err = pred_count - gd_count
epoch_loss.update(loss.item(), N)
epoch_mse.update(np.mean(pred_err * pred_err), N)
epoch_mae.update(np.mean(abs(pred_err)), N)
if drop:
self.model.dl1.train()
self.model.dl1a.train()
self.model.dl2.train()
self.model.dl2a.train()
self.model.dl3.train()
self.model.dl3a.train()
mae = epoch_mae.get_avg()
mse = np.sqrt(epoch_mse.get_avg())
self.logger.add_scalar('loss/train', epoch_loss.get_avg(), self.epoch)
self.logger.add_scalar('mse/train', mse, self.epoch)
self.logger.add_scalar('mae/train', mae, self.epoch)
self.logger.add_scalar('ot_loss/train', epoch_ot_loss.get_avg(), self.epoch)
self.logger.add_scalar('wd/train', epoch_wd.get_avg(), self.epoch)
self.logger.add_scalar('ot_obj_val/train', epoch_ot_obj_value.get_avg(), self.epoch)
self.logger.add_scalar('count_loss/train', epoch_count_loss.get_avg(), self.epoch)
self.logger.add_scalar('tv_loss/train', epoch_tv_loss.get_avg(), self.epoch)
self.logger.add_scalar('time_cost/train', time.time() - epoch_start, self.epoch)
print(
'log/train',
'Epoch {} Train, Loss: {:.2f}, OT Loss: {:.2e}, Wass Distance: {:.2f}, OT obj value: {:.2f}, '
'Count Loss: {:.2f}, TV Loss: {:.2f}, MSE: {:.2f} MAE: {:.2f}, Cost {:.1f} sec'
.format(self.epoch, epoch_loss.get_avg(), epoch_ot_loss.get_avg(), epoch_wd.get_avg(),
epoch_ot_obj_value.get_avg(), epoch_count_loss.get_avg(), epoch_tv_loss.get_avg(),
np.sqrt(epoch_mse.get_avg()), epoch_mae.get_avg(),
time.time() - epoch_start), self.epoch)
model_state_dic = self.model.state_dict()
save_path = os.path.join(self.save_dir, str(self.epoch)+'_ckpt.tar')
# TODO: Reset best counts option
torch.save({
'epoch': self.epoch,
'best_mae': self.best_mae,
'best_mse': self.best_mse,
'best_count': self.best_count,
'optimizer_state_dict': self.optimizer.state_dict(),
'model_state_dict': model_state_dic
}, save_path)
self.save_list.append(save_path)
def val_epoch(self):
epoch_start = time.time()
self.model.eval() # Set model to evaluate mode
epoch_res = []
for inputs, count, name in self.dataloaders['val']:
inputs = inputs.to(self.device)
assert inputs.size(0) == 1, 'the batch size should equal to 1 in validation mode'
with torch.set_grad_enabled(False):
outputs, _ = self.model(inputs)
res = count[0].item() - torch.sum(outputs).item()
epoch_res.append(res)
epoch_res = np.array(epoch_res)
mse = np.sqrt(np.mean(np.square(epoch_res)))
mae = np.mean(np.abs(epoch_res))
self.logger.add_scalar('mse/val', mse, self.epoch)
self.logger.add_scalar('mae/val', mae, self.epoch)
self.logger.add_scalar('time_cost/val', time.time() - epoch_start, self.epoch)
print('log/val', 'Epoch {} Val, MSE: {:.2f} MAE: {:.2f}, Cost {:.1f} sec'
.format(self.epoch, mse, mae, time.time() - epoch_start))
model_state_dic = self.model.state_dict()
if (2.0 * mse + mae) < (2.0 * self.best_mse + self.best_mae):
self.best_mse = mse
self.best_mae = mae
filename = 'best_model_{:.2f}_{:.2f}_{}.pth'.format(self.best_mse, self.best_mae, self.best_count)
txt = "save best mse {:.2f} mae {:.2f} model epoch {}".format(self.best_mse, self.best_mae, self.epoch)
print(txt)
self.logger.add_text('log/val',
txt,
self.best_count)
best_metrics = {'best_mse': mse, 'best_mae': mae, 'best_count': self.best_count}
for k, v in best_metrics.items():
self.logger.add_scalar(k+'/val', v, self.epoch)
self.logger.add_hparams({},
{'best_mse': mse, 'best_mae': mae,
'best_count': self.best_count}, run_name='hparams')
torch.save(model_state_dic, os.path.join(self.save_dir, filename))
self.best_count += 1
elif mse < self.best_mse or mae < self.best_mae:
filename = 'best_model_{}_{}.pth'.format(mse, mae)
txt = "save best mse {:.2f} mae {:.2f} model epoch {}**".format(mse, mae, self.epoch)
print(txt)
torch.save(model_state_dic, os.path.join(self.save_dir, filename))